| /* |
| * Copyright 2018 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/fb.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| |
| #include "hwmgr.h" |
| #include "amd_powerplay.h" |
| #include "vega20_smumgr.h" |
| #include "hardwaremanager.h" |
| #include "ppatomfwctrl.h" |
| #include "atomfirmware.h" |
| #include "cgs_common.h" |
| #include "vega20_powertune.h" |
| #include "vega20_inc.h" |
| #include "pppcielanes.h" |
| #include "vega20_hwmgr.h" |
| #include "vega20_processpptables.h" |
| #include "vega20_pptable.h" |
| #include "vega20_thermal.h" |
| #include "vega20_ppsmc.h" |
| #include "pp_debug.h" |
| #include "amd_pcie_helpers.h" |
| #include "ppinterrupt.h" |
| #include "pp_overdriver.h" |
| #include "pp_thermal.h" |
| |
| static void vega20_set_default_registry_data(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| |
| data->gfxclk_average_alpha = PPVEGA20_VEGA20GFXCLKAVERAGEALPHA_DFLT; |
| data->socclk_average_alpha = PPVEGA20_VEGA20SOCCLKAVERAGEALPHA_DFLT; |
| data->uclk_average_alpha = PPVEGA20_VEGA20UCLKCLKAVERAGEALPHA_DFLT; |
| data->gfx_activity_average_alpha = PPVEGA20_VEGA20GFXACTIVITYAVERAGEALPHA_DFLT; |
| data->lowest_uclk_reserved_for_ulv = PPVEGA20_VEGA20LOWESTUCLKRESERVEDFORULV_DFLT; |
| |
| data->display_voltage_mode = PPVEGA20_VEGA20DISPLAYVOLTAGEMODE_DFLT; |
| data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; |
| data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; |
| data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; |
| data->disp_clk_quad_eqn_a = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; |
| data->disp_clk_quad_eqn_b = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; |
| data->disp_clk_quad_eqn_c = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; |
| data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; |
| data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; |
| data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; |
| data->phy_clk_quad_eqn_a = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; |
| data->phy_clk_quad_eqn_b = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; |
| data->phy_clk_quad_eqn_c = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT; |
| |
| data->registry_data.disallowed_features = 0x0; |
| data->registry_data.od_state_in_dc_support = 0; |
| data->registry_data.thermal_support = 1; |
| data->registry_data.skip_baco_hardware = 0; |
| |
| data->registry_data.log_avfs_param = 0; |
| data->registry_data.sclk_throttle_low_notification = 1; |
| data->registry_data.force_dpm_high = 0; |
| data->registry_data.stable_pstate_sclk_dpm_percentage = 75; |
| |
| data->registry_data.didt_support = 0; |
| if (data->registry_data.didt_support) { |
| data->registry_data.didt_mode = 6; |
| data->registry_data.sq_ramping_support = 1; |
| data->registry_data.db_ramping_support = 0; |
| data->registry_data.td_ramping_support = 0; |
| data->registry_data.tcp_ramping_support = 0; |
| data->registry_data.dbr_ramping_support = 0; |
| data->registry_data.edc_didt_support = 1; |
| data->registry_data.gc_didt_support = 0; |
| data->registry_data.psm_didt_support = 0; |
| } |
| |
| data->registry_data.pcie_lane_override = 0xff; |
| data->registry_data.pcie_speed_override = 0xff; |
| data->registry_data.pcie_clock_override = 0xffffffff; |
| data->registry_data.regulator_hot_gpio_support = 1; |
| data->registry_data.ac_dc_switch_gpio_support = 0; |
| data->registry_data.quick_transition_support = 0; |
| data->registry_data.zrpm_start_temp = 0xffff; |
| data->registry_data.zrpm_stop_temp = 0xffff; |
| data->registry_data.od8_feature_enable = 1; |
| data->registry_data.disable_water_mark = 0; |
| data->registry_data.disable_pp_tuning = 0; |
| data->registry_data.disable_xlpp_tuning = 0; |
| data->registry_data.disable_workload_policy = 0; |
| data->registry_data.perf_ui_tuning_profile_turbo = 0x19190F0F; |
| data->registry_data.perf_ui_tuning_profile_powerSave = 0x19191919; |
| data->registry_data.perf_ui_tuning_profile_xl = 0x00000F0A; |
| data->registry_data.force_workload_policy_mask = 0; |
| data->registry_data.disable_3d_fs_detection = 0; |
| data->registry_data.fps_support = 1; |
| data->registry_data.disable_auto_wattman = 1; |
| data->registry_data.auto_wattman_debug = 0; |
| data->registry_data.auto_wattman_sample_period = 100; |
| data->registry_data.auto_wattman_threshold = 50; |
| data->registry_data.gfxoff_controlled_by_driver = 1; |
| data->gfxoff_allowed = false; |
| data->counter_gfxoff = 0; |
| } |
| |
| static int vega20_set_features_platform_caps(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| struct amdgpu_device *adev = hwmgr->adev; |
| |
| if (data->vddci_control == VEGA20_VOLTAGE_CONTROL_NONE) |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ControlVDDCI); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_TablelessHardwareInterface); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EnableSMU7ThermalManagement); |
| |
| if (adev->pg_flags & AMD_PG_SUPPORT_UVD) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_UVDPowerGating); |
| |
| if (adev->pg_flags & AMD_PG_SUPPORT_VCE) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_VCEPowerGating); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_UnTabledHardwareInterface); |
| |
| if (data->registry_data.od8_feature_enable) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_OD8inACSupport); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ActivityReporting); |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_FanSpeedInTableIsRPM); |
| |
| if (data->registry_data.od_state_in_dc_support) { |
| if (data->registry_data.od8_feature_enable) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_OD8inDCSupport); |
| } |
| |
| if (data->registry_data.thermal_support && |
| data->registry_data.fuzzy_fan_control_support && |
| hwmgr->thermal_controller.advanceFanControlParameters.usTMax) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ODFuzzyFanControlSupport); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DynamicPowerManagement); |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SMC); |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ThermalPolicyDelay); |
| |
| if (data->registry_data.force_dpm_high) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ExclusiveModeAlwaysHigh); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DynamicUVDState); |
| |
| if (data->registry_data.sclk_throttle_low_notification) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkThrottleLowNotification); |
| |
| /* power tune caps */ |
| /* assume disabled */ |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PowerContainment); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DiDtSupport); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SQRamping); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DBRamping); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_TDRamping); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_TCPRamping); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DBRRamping); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DiDtEDCEnable); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_GCEDC); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PSM); |
| |
| if (data->registry_data.didt_support) { |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DiDtSupport); |
| if (data->registry_data.sq_ramping_support) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SQRamping); |
| if (data->registry_data.db_ramping_support) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DBRamping); |
| if (data->registry_data.td_ramping_support) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_TDRamping); |
| if (data->registry_data.tcp_ramping_support) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_TCPRamping); |
| if (data->registry_data.dbr_ramping_support) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DBRRamping); |
| if (data->registry_data.edc_didt_support) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DiDtEDCEnable); |
| if (data->registry_data.gc_didt_support) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_GCEDC); |
| if (data->registry_data.psm_didt_support) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PSM); |
| } |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot); |
| |
| if (data->registry_data.ac_dc_switch_gpio_support) { |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition); |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme); |
| } |
| |
| if (data->registry_data.quick_transition_support) { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme); |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_Falcon_QuickTransition); |
| } |
| |
| if (data->lowest_uclk_reserved_for_ulv != PPVEGA20_VEGA20LOWESTUCLKRESERVEDFORULV_DFLT) { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_LowestUclkReservedForUlv); |
| if (data->lowest_uclk_reserved_for_ulv == 1) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_LowestUclkReservedForUlv); |
| } |
| |
| if (data->registry_data.custom_fan_support) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_CustomFanControlSupport); |
| |
| return 0; |
| } |
| |
| static void vega20_init_dpm_defaults(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| int i; |
| |
| data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id = |
| FEATURE_DPM_PREFETCHER_BIT; |
| data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id = |
| FEATURE_DPM_GFXCLK_BIT; |
| data->smu_features[GNLD_DPM_UCLK].smu_feature_id = |
| FEATURE_DPM_UCLK_BIT; |
| data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id = |
| FEATURE_DPM_SOCCLK_BIT; |
| data->smu_features[GNLD_DPM_UVD].smu_feature_id = |
| FEATURE_DPM_UVD_BIT; |
| data->smu_features[GNLD_DPM_VCE].smu_feature_id = |
| FEATURE_DPM_VCE_BIT; |
| data->smu_features[GNLD_ULV].smu_feature_id = |
| FEATURE_ULV_BIT; |
| data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id = |
| FEATURE_DPM_MP0CLK_BIT; |
| data->smu_features[GNLD_DPM_LINK].smu_feature_id = |
| FEATURE_DPM_LINK_BIT; |
| data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id = |
| FEATURE_DPM_DCEFCLK_BIT; |
| data->smu_features[GNLD_DS_GFXCLK].smu_feature_id = |
| FEATURE_DS_GFXCLK_BIT; |
| data->smu_features[GNLD_DS_SOCCLK].smu_feature_id = |
| FEATURE_DS_SOCCLK_BIT; |
| data->smu_features[GNLD_DS_LCLK].smu_feature_id = |
| FEATURE_DS_LCLK_BIT; |
| data->smu_features[GNLD_PPT].smu_feature_id = |
| FEATURE_PPT_BIT; |
| data->smu_features[GNLD_TDC].smu_feature_id = |
| FEATURE_TDC_BIT; |
| data->smu_features[GNLD_THERMAL].smu_feature_id = |
| FEATURE_THERMAL_BIT; |
| data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id = |
| FEATURE_GFX_PER_CU_CG_BIT; |
| data->smu_features[GNLD_RM].smu_feature_id = |
| FEATURE_RM_BIT; |
| data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id = |
| FEATURE_DS_DCEFCLK_BIT; |
| data->smu_features[GNLD_ACDC].smu_feature_id = |
| FEATURE_ACDC_BIT; |
| data->smu_features[GNLD_VR0HOT].smu_feature_id = |
| FEATURE_VR0HOT_BIT; |
| data->smu_features[GNLD_VR1HOT].smu_feature_id = |
| FEATURE_VR1HOT_BIT; |
| data->smu_features[GNLD_FW_CTF].smu_feature_id = |
| FEATURE_FW_CTF_BIT; |
| data->smu_features[GNLD_LED_DISPLAY].smu_feature_id = |
| FEATURE_LED_DISPLAY_BIT; |
| data->smu_features[GNLD_FAN_CONTROL].smu_feature_id = |
| FEATURE_FAN_CONTROL_BIT; |
| data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT; |
| data->smu_features[GNLD_GFXOFF].smu_feature_id = FEATURE_GFXOFF_BIT; |
| data->smu_features[GNLD_CG].smu_feature_id = FEATURE_CG_BIT; |
| data->smu_features[GNLD_DPM_FCLK].smu_feature_id = FEATURE_DPM_FCLK_BIT; |
| data->smu_features[GNLD_DS_FCLK].smu_feature_id = FEATURE_DS_FCLK_BIT; |
| data->smu_features[GNLD_DS_MP1CLK].smu_feature_id = FEATURE_DS_MP1CLK_BIT; |
| data->smu_features[GNLD_DS_MP0CLK].smu_feature_id = FEATURE_DS_MP0CLK_BIT; |
| data->smu_features[GNLD_XGMI].smu_feature_id = FEATURE_XGMI_BIT; |
| |
| for (i = 0; i < GNLD_FEATURES_MAX; i++) { |
| data->smu_features[i].smu_feature_bitmap = |
| (uint64_t)(1ULL << data->smu_features[i].smu_feature_id); |
| data->smu_features[i].allowed = |
| ((data->registry_data.disallowed_features >> i) & 1) ? |
| false : true; |
| } |
| } |
| |
| static int vega20_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr) |
| { |
| return 0; |
| } |
| |
| static int vega20_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) |
| { |
| kfree(hwmgr->backend); |
| hwmgr->backend = NULL; |
| |
| return 0; |
| } |
| |
| static int vega20_hwmgr_backend_init(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data; |
| struct amdgpu_device *adev = hwmgr->adev; |
| |
| data = kzalloc(sizeof(struct vega20_hwmgr), GFP_KERNEL); |
| if (data == NULL) |
| return -ENOMEM; |
| |
| hwmgr->backend = data; |
| |
| hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_VIDEO]; |
| hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_VIDEO; |
| hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_VIDEO; |
| |
| vega20_set_default_registry_data(hwmgr); |
| |
| data->disable_dpm_mask = 0xff; |
| |
| /* need to set voltage control types before EVV patching */ |
| data->vddc_control = VEGA20_VOLTAGE_CONTROL_NONE; |
| data->mvdd_control = VEGA20_VOLTAGE_CONTROL_NONE; |
| data->vddci_control = VEGA20_VOLTAGE_CONTROL_NONE; |
| |
| data->water_marks_bitmap = 0; |
| data->avfs_exist = false; |
| |
| vega20_set_features_platform_caps(hwmgr); |
| |
| vega20_init_dpm_defaults(hwmgr); |
| |
| /* Parse pptable data read from VBIOS */ |
| vega20_set_private_data_based_on_pptable(hwmgr); |
| |
| data->is_tlu_enabled = false; |
| |
| hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = |
| VEGA20_MAX_HARDWARE_POWERLEVELS; |
| hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; |
| hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; |
| |
| hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */ |
| /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */ |
| hwmgr->platform_descriptor.clockStep.engineClock = 500; |
| hwmgr->platform_descriptor.clockStep.memoryClock = 500; |
| |
| data->total_active_cus = adev->gfx.cu_info.number; |
| |
| return 0; |
| } |
| |
| static int vega20_init_sclk_threshold(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| |
| data->low_sclk_interrupt_threshold = 0; |
| |
| return 0; |
| } |
| |
| static int vega20_setup_asic_task(struct pp_hwmgr *hwmgr) |
| { |
| int ret = 0; |
| |
| ret = vega20_init_sclk_threshold(hwmgr); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Failed to init sclk threshold!", |
| return ret); |
| |
| return 0; |
| } |
| |
| /* |
| * @fn vega20_init_dpm_state |
| * @brief Function to initialize all Soft Min/Max and Hard Min/Max to 0xff. |
| * |
| * @param dpm_state - the address of the DPM Table to initiailize. |
| * @return None. |
| */ |
| static void vega20_init_dpm_state(struct vega20_dpm_state *dpm_state) |
| { |
| dpm_state->soft_min_level = 0x0; |
| dpm_state->soft_max_level = 0xffff; |
| dpm_state->hard_min_level = 0x0; |
| dpm_state->hard_max_level = 0xffff; |
| } |
| |
| static int vega20_get_number_of_dpm_level(struct pp_hwmgr *hwmgr, |
| PPCLK_e clk_id, uint32_t *num_of_levels) |
| { |
| int ret = 0; |
| |
| ret = smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_GetDpmFreqByIndex, |
| (clk_id << 16 | 0xFF)); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[GetNumOfDpmLevel] failed to get dpm levels!", |
| return ret); |
| |
| vega20_read_arg_from_smc(hwmgr, num_of_levels); |
| PP_ASSERT_WITH_CODE(*num_of_levels > 0, |
| "[GetNumOfDpmLevel] number of clk levels is invalid!", |
| return -EINVAL); |
| |
| return ret; |
| } |
| |
| static int vega20_get_dpm_frequency_by_index(struct pp_hwmgr *hwmgr, |
| PPCLK_e clk_id, uint32_t index, uint32_t *clk) |
| { |
| int ret = 0; |
| |
| ret = smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_GetDpmFreqByIndex, |
| (clk_id << 16 | index)); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[GetDpmFreqByIndex] failed to get dpm freq by index!", |
| return ret); |
| |
| vega20_read_arg_from_smc(hwmgr, clk); |
| PP_ASSERT_WITH_CODE(*clk, |
| "[GetDpmFreqByIndex] clk value is invalid!", |
| return -EINVAL); |
| |
| return ret; |
| } |
| |
| static int vega20_setup_single_dpm_table(struct pp_hwmgr *hwmgr, |
| struct vega20_single_dpm_table *dpm_table, PPCLK_e clk_id) |
| { |
| int ret = 0; |
| uint32_t i, num_of_levels, clk; |
| |
| ret = vega20_get_number_of_dpm_level(hwmgr, clk_id, &num_of_levels); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[SetupSingleDpmTable] failed to get clk levels!", |
| return ret); |
| |
| dpm_table->count = num_of_levels; |
| |
| for (i = 0; i < num_of_levels; i++) { |
| ret = vega20_get_dpm_frequency_by_index(hwmgr, clk_id, i, &clk); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[SetupSingleDpmTable] failed to get clk of specific level!", |
| return ret); |
| dpm_table->dpm_levels[i].value = clk; |
| dpm_table->dpm_levels[i].enabled = true; |
| } |
| |
| return ret; |
| } |
| |
| static int vega20_setup_gfxclk_dpm_table(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| struct vega20_single_dpm_table *dpm_table; |
| int ret = 0; |
| |
| dpm_table = &(data->dpm_table.gfx_table); |
| if (data->smu_features[GNLD_DPM_GFXCLK].enabled) { |
| ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_GFXCLK); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[SetupDefaultDpmTable] failed to get gfxclk dpm levels!", |
| return ret); |
| } else { |
| dpm_table->count = 1; |
| dpm_table->dpm_levels[0].value = data->vbios_boot_state.gfx_clock / 100; |
| } |
| |
| return ret; |
| } |
| |
| static int vega20_setup_memclk_dpm_table(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| struct vega20_single_dpm_table *dpm_table; |
| int ret = 0; |
| |
| dpm_table = &(data->dpm_table.mem_table); |
| if (data->smu_features[GNLD_DPM_UCLK].enabled) { |
| ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_UCLK); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[SetupDefaultDpmTable] failed to get memclk dpm levels!", |
| return ret); |
| } else { |
| dpm_table->count = 1; |
| dpm_table->dpm_levels[0].value = data->vbios_boot_state.mem_clock / 100; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * This function is to initialize all DPM state tables |
| * for SMU based on the dependency table. |
| * Dynamic state patching function will then trim these |
| * state tables to the allowed range based |
| * on the power policy or external client requests, |
| * such as UVD request, etc. |
| */ |
| static int vega20_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| struct vega20_single_dpm_table *dpm_table; |
| int ret = 0; |
| |
| memset(&data->dpm_table, 0, sizeof(data->dpm_table)); |
| |
| /* socclk */ |
| dpm_table = &(data->dpm_table.soc_table); |
| if (data->smu_features[GNLD_DPM_SOCCLK].enabled) { |
| ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_SOCCLK); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[SetupDefaultDpmTable] failed to get socclk dpm levels!", |
| return ret); |
| } else { |
| dpm_table->count = 1; |
| dpm_table->dpm_levels[0].value = data->vbios_boot_state.soc_clock / 100; |
| } |
| vega20_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| /* gfxclk */ |
| dpm_table = &(data->dpm_table.gfx_table); |
| ret = vega20_setup_gfxclk_dpm_table(hwmgr); |
| if (ret) |
| return ret; |
| vega20_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| /* memclk */ |
| dpm_table = &(data->dpm_table.mem_table); |
| ret = vega20_setup_memclk_dpm_table(hwmgr); |
| if (ret) |
| return ret; |
| vega20_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| /* eclk */ |
| dpm_table = &(data->dpm_table.eclk_table); |
| if (data->smu_features[GNLD_DPM_VCE].enabled) { |
| ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_ECLK); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[SetupDefaultDpmTable] failed to get eclk dpm levels!", |
| return ret); |
| } else { |
| dpm_table->count = 1; |
| dpm_table->dpm_levels[0].value = data->vbios_boot_state.eclock / 100; |
| } |
| vega20_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| /* vclk */ |
| dpm_table = &(data->dpm_table.vclk_table); |
| if (data->smu_features[GNLD_DPM_UVD].enabled) { |
| ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_VCLK); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[SetupDefaultDpmTable] failed to get vclk dpm levels!", |
| return ret); |
| } else { |
| dpm_table->count = 1; |
| dpm_table->dpm_levels[0].value = data->vbios_boot_state.vclock / 100; |
| } |
| vega20_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| /* dclk */ |
| dpm_table = &(data->dpm_table.dclk_table); |
| if (data->smu_features[GNLD_DPM_UVD].enabled) { |
| ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DCLK); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[SetupDefaultDpmTable] failed to get dclk dpm levels!", |
| return ret); |
| } else { |
| dpm_table->count = 1; |
| dpm_table->dpm_levels[0].value = data->vbios_boot_state.dclock / 100; |
| } |
| vega20_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| /* dcefclk */ |
| dpm_table = &(data->dpm_table.dcef_table); |
| if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { |
| ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DCEFCLK); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[SetupDefaultDpmTable] failed to get dcefclk dpm levels!", |
| return ret); |
| } else { |
| dpm_table->count = 1; |
| dpm_table->dpm_levels[0].value = data->vbios_boot_state.dcef_clock / 100; |
| } |
| vega20_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| /* pixclk */ |
| dpm_table = &(data->dpm_table.pixel_table); |
| if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { |
| ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_PIXCLK); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[SetupDefaultDpmTable] failed to get pixclk dpm levels!", |
| return ret); |
| } else |
| dpm_table->count = 0; |
| vega20_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| /* dispclk */ |
| dpm_table = &(data->dpm_table.display_table); |
| if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { |
| ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DISPCLK); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[SetupDefaultDpmTable] failed to get dispclk dpm levels!", |
| return ret); |
| } else |
| dpm_table->count = 0; |
| vega20_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| /* phyclk */ |
| dpm_table = &(data->dpm_table.phy_table); |
| if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { |
| ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_PHYCLK); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[SetupDefaultDpmTable] failed to get phyclk dpm levels!", |
| return ret); |
| } else |
| dpm_table->count = 0; |
| vega20_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| /* fclk */ |
| dpm_table = &(data->dpm_table.fclk_table); |
| if (data->smu_features[GNLD_DPM_FCLK].enabled) { |
| ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_FCLK); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[SetupDefaultDpmTable] failed to get fclk dpm levels!", |
| return ret); |
| } else |
| dpm_table->count = 0; |
| vega20_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| /* save a copy of the default DPM table */ |
| memcpy(&(data->golden_dpm_table), &(data->dpm_table), |
| sizeof(struct vega20_dpm_table)); |
| |
| return 0; |
| } |
| |
| /** |
| * Initializes the SMC table and uploads it |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pInput the pointer to input data (PowerState) |
| * @return always 0 |
| */ |
| static int vega20_init_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
| struct pp_atomfwctrl_bios_boot_up_values boot_up_values; |
| struct phm_ppt_v3_information *pptable_information = |
| (struct phm_ppt_v3_information *)hwmgr->pptable; |
| |
| result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values); |
| PP_ASSERT_WITH_CODE(!result, |
| "[InitSMCTable] Failed to get vbios bootup values!", |
| return result); |
| |
| data->vbios_boot_state.vddc = boot_up_values.usVddc; |
| data->vbios_boot_state.vddci = boot_up_values.usVddci; |
| data->vbios_boot_state.mvddc = boot_up_values.usMvddc; |
| data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk; |
| data->vbios_boot_state.mem_clock = boot_up_values.ulUClk; |
| data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk; |
| data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk; |
| data->vbios_boot_state.eclock = boot_up_values.ulEClk; |
| data->vbios_boot_state.vclock = boot_up_values.ulVClk; |
| data->vbios_boot_state.dclock = boot_up_values.ulDClk; |
| data->vbios_boot_state.uc_cooling_id = boot_up_values.ucCoolingID; |
| |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetMinDeepSleepDcefclk, |
| (uint32_t)(data->vbios_boot_state.dcef_clock / 100)); |
| |
| memcpy(pp_table, pptable_information->smc_pptable, sizeof(PPTable_t)); |
| |
| result = vega20_copy_table_to_smc(hwmgr, |
| (uint8_t *)pp_table, TABLE_PPTABLE); |
| PP_ASSERT_WITH_CODE(!result, |
| "[InitSMCTable] Failed to upload PPtable!", |
| return result); |
| |
| return 0; |
| } |
| |
| static int vega20_set_allowed_featuresmask(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| uint32_t allowed_features_low = 0, allowed_features_high = 0; |
| int i; |
| int ret = 0; |
| |
| for (i = 0; i < GNLD_FEATURES_MAX; i++) |
| if (data->smu_features[i].allowed) |
| data->smu_features[i].smu_feature_id > 31 ? |
| (allowed_features_high |= |
| ((data->smu_features[i].smu_feature_bitmap >> SMU_FEATURES_HIGH_SHIFT) |
| & 0xFFFFFFFF)) : |
| (allowed_features_low |= |
| ((data->smu_features[i].smu_feature_bitmap >> SMU_FEATURES_LOW_SHIFT) |
| & 0xFFFFFFFF)); |
| |
| ret = smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetAllowedFeaturesMaskHigh, allowed_features_high); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[SetAllowedFeaturesMask] Attempt to set allowed features mask(high) failed!", |
| return ret); |
| |
| ret = smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetAllowedFeaturesMaskLow, allowed_features_low); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[SetAllowedFeaturesMask] Attempt to set allowed features mask (low) failed!", |
| return ret); |
| |
| return 0; |
| } |
| |
| static int vega20_run_btc_afll(struct pp_hwmgr *hwmgr) |
| { |
| return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAfllBtc); |
| } |
| |
| static int vega20_enable_all_smu_features(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| uint64_t features_enabled; |
| int i; |
| bool enabled; |
| int ret = 0; |
| |
| PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, |
| PPSMC_MSG_EnableAllSmuFeatures)) == 0, |
| "[EnableAllSMUFeatures] Failed to enable all smu features!", |
| return ret); |
| |
| ret = vega20_get_enabled_smc_features(hwmgr, &features_enabled); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[EnableAllSmuFeatures] Failed to get enabled smc features!", |
| return ret); |
| |
| for (i = 0; i < GNLD_FEATURES_MAX; i++) { |
| enabled = (features_enabled & data->smu_features[i].smu_feature_bitmap) ? |
| true : false; |
| data->smu_features[i].enabled = enabled; |
| data->smu_features[i].supported = enabled; |
| |
| #if 0 |
| if (data->smu_features[i].allowed && !enabled) |
| pr_info("[EnableAllSMUFeatures] feature %d is expected enabled!", i); |
| else if (!data->smu_features[i].allowed && enabled) |
| pr_info("[EnableAllSMUFeatures] feature %d is expected disabled!", i); |
| #endif |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_disable_all_smu_features(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| uint64_t features_enabled; |
| int i; |
| bool enabled; |
| int ret = 0; |
| |
| PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, |
| PPSMC_MSG_DisableAllSmuFeatures)) == 0, |
| "[DisableAllSMUFeatures] Failed to disable all smu features!", |
| return ret); |
| |
| ret = vega20_get_enabled_smc_features(hwmgr, &features_enabled); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[DisableAllSMUFeatures] Failed to get enabled smc features!", |
| return ret); |
| |
| for (i = 0; i < GNLD_FEATURES_MAX; i++) { |
| enabled = (features_enabled & data->smu_features[i].smu_feature_bitmap) ? |
| true : false; |
| data->smu_features[i].enabled = enabled; |
| data->smu_features[i].supported = enabled; |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_od8_set_feature_capabilities( |
| struct pp_hwmgr *hwmgr) |
| { |
| struct phm_ppt_v3_information *pptable_information = |
| (struct phm_ppt_v3_information *)hwmgr->pptable; |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
| struct vega20_od8_settings *od_settings = &(data->od8_settings); |
| |
| od_settings->overdrive8_capabilities = 0; |
| |
| if (data->smu_features[GNLD_DPM_GFXCLK].enabled) { |
| if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_GFXCLK_LIMITS] && |
| pptable_information->od_settings_max[OD8_SETTING_GFXCLK_FMAX] > 0 && |
| pptable_information->od_settings_min[OD8_SETTING_GFXCLK_FMIN] > 0 && |
| (pptable_information->od_settings_max[OD8_SETTING_GFXCLK_FMAX] >= |
| pptable_information->od_settings_min[OD8_SETTING_GFXCLK_FMIN])) |
| od_settings->overdrive8_capabilities |= OD8_GFXCLK_LIMITS; |
| |
| if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_GFXCLK_CURVE] && |
| (pptable_information->od_settings_min[OD8_SETTING_GFXCLK_VOLTAGE1] >= |
| pp_table->MinVoltageGfx / VOLTAGE_SCALE) && |
| (pptable_information->od_settings_max[OD8_SETTING_GFXCLK_VOLTAGE3] <= |
| pp_table->MaxVoltageGfx / VOLTAGE_SCALE) && |
| (pptable_information->od_settings_max[OD8_SETTING_GFXCLK_VOLTAGE3] >= |
| pptable_information->od_settings_min[OD8_SETTING_GFXCLK_VOLTAGE1])) |
| od_settings->overdrive8_capabilities |= OD8_GFXCLK_CURVE; |
| } |
| |
| if (data->smu_features[GNLD_DPM_UCLK].enabled) { |
| if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_UCLK_MAX] && |
| pptable_information->od_settings_min[OD8_SETTING_UCLK_FMAX] > 0 && |
| pptable_information->od_settings_max[OD8_SETTING_UCLK_FMAX] > 0 && |
| (pptable_information->od_settings_max[OD8_SETTING_UCLK_FMAX] >= |
| pptable_information->od_settings_min[OD8_SETTING_UCLK_FMAX])) |
| od_settings->overdrive8_capabilities |= OD8_UCLK_MAX; |
| } |
| |
| if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_POWER_LIMIT] && |
| pptable_information->od_settings_max[OD8_SETTING_POWER_PERCENTAGE] > 0 && |
| pptable_information->od_settings_max[OD8_SETTING_POWER_PERCENTAGE] <= 100 && |
| pptable_information->od_settings_min[OD8_SETTING_POWER_PERCENTAGE] > 0 && |
| pptable_information->od_settings_min[OD8_SETTING_POWER_PERCENTAGE] <= 100) |
| od_settings->overdrive8_capabilities |= OD8_POWER_LIMIT; |
| |
| if (data->smu_features[GNLD_FAN_CONTROL].enabled) { |
| if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_ACOUSTIC_LIMIT] && |
| pptable_information->od_settings_min[OD8_SETTING_FAN_ACOUSTIC_LIMIT] > 0 && |
| pptable_information->od_settings_max[OD8_SETTING_FAN_ACOUSTIC_LIMIT] > 0 && |
| (pptable_information->od_settings_max[OD8_SETTING_FAN_ACOUSTIC_LIMIT] >= |
| pptable_information->od_settings_min[OD8_SETTING_FAN_ACOUSTIC_LIMIT])) |
| od_settings->overdrive8_capabilities |= OD8_ACOUSTIC_LIMIT_SCLK; |
| |
| if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_SPEED_MIN] && |
| (pptable_information->od_settings_min[OD8_SETTING_FAN_MIN_SPEED] >= |
| (pp_table->FanPwmMin * pp_table->FanMaximumRpm / 100)) && |
| pptable_information->od_settings_max[OD8_SETTING_FAN_MIN_SPEED] > 0 && |
| (pptable_information->od_settings_max[OD8_SETTING_FAN_MIN_SPEED] >= |
| pptable_information->od_settings_min[OD8_SETTING_FAN_MIN_SPEED])) |
| od_settings->overdrive8_capabilities |= OD8_FAN_SPEED_MIN; |
| } |
| |
| if (data->smu_features[GNLD_THERMAL].enabled) { |
| if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_TEMPERATURE_FAN] && |
| pptable_information->od_settings_max[OD8_SETTING_FAN_TARGET_TEMP] > 0 && |
| pptable_information->od_settings_min[OD8_SETTING_FAN_TARGET_TEMP] > 0 && |
| (pptable_information->od_settings_max[OD8_SETTING_FAN_TARGET_TEMP] >= |
| pptable_information->od_settings_min[OD8_SETTING_FAN_TARGET_TEMP])) |
| od_settings->overdrive8_capabilities |= OD8_TEMPERATURE_FAN; |
| |
| if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_TEMPERATURE_SYSTEM] && |
| pptable_information->od_settings_max[OD8_SETTING_OPERATING_TEMP_MAX] > 0 && |
| pptable_information->od_settings_min[OD8_SETTING_OPERATING_TEMP_MAX] > 0 && |
| (pptable_information->od_settings_max[OD8_SETTING_OPERATING_TEMP_MAX] >= |
| pptable_information->od_settings_min[OD8_SETTING_OPERATING_TEMP_MAX])) |
| od_settings->overdrive8_capabilities |= OD8_TEMPERATURE_SYSTEM; |
| } |
| |
| if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_MEMORY_TIMING_TUNE]) |
| od_settings->overdrive8_capabilities |= OD8_MEMORY_TIMING_TUNE; |
| |
| if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_ZERO_RPM_CONTROL] && |
| pp_table->FanZeroRpmEnable) |
| od_settings->overdrive8_capabilities |= OD8_FAN_ZERO_RPM_CONTROL; |
| |
| return 0; |
| } |
| |
| static int vega20_od8_set_feature_id( |
| struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| struct vega20_od8_settings *od_settings = &(data->od8_settings); |
| |
| if (od_settings->overdrive8_capabilities & OD8_GFXCLK_LIMITS) { |
| od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id = |
| OD8_GFXCLK_LIMITS; |
| od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id = |
| OD8_GFXCLK_LIMITS; |
| } else { |
| od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id = |
| 0; |
| od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id = |
| 0; |
| } |
| |
| if (od_settings->overdrive8_capabilities & OD8_GFXCLK_CURVE) { |
| od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id = |
| OD8_GFXCLK_CURVE; |
| od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id = |
| OD8_GFXCLK_CURVE; |
| od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id = |
| OD8_GFXCLK_CURVE; |
| od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id = |
| OD8_GFXCLK_CURVE; |
| od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id = |
| OD8_GFXCLK_CURVE; |
| od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id = |
| OD8_GFXCLK_CURVE; |
| } else { |
| od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id = |
| 0; |
| od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id = |
| 0; |
| od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id = |
| 0; |
| od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id = |
| 0; |
| od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id = |
| 0; |
| od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id = |
| 0; |
| } |
| |
| if (od_settings->overdrive8_capabilities & OD8_UCLK_MAX) |
| od_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id = OD8_UCLK_MAX; |
| else |
| od_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id = 0; |
| |
| if (od_settings->overdrive8_capabilities & OD8_POWER_LIMIT) |
| od_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].feature_id = OD8_POWER_LIMIT; |
| else |
| od_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].feature_id = 0; |
| |
| if (od_settings->overdrive8_capabilities & OD8_ACOUSTIC_LIMIT_SCLK) |
| od_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].feature_id = |
| OD8_ACOUSTIC_LIMIT_SCLK; |
| else |
| od_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].feature_id = |
| 0; |
| |
| if (od_settings->overdrive8_capabilities & OD8_FAN_SPEED_MIN) |
| od_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].feature_id = |
| OD8_FAN_SPEED_MIN; |
| else |
| od_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].feature_id = |
| 0; |
| |
| if (od_settings->overdrive8_capabilities & OD8_TEMPERATURE_FAN) |
| od_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].feature_id = |
| OD8_TEMPERATURE_FAN; |
| else |
| od_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].feature_id = |
| 0; |
| |
| if (od_settings->overdrive8_capabilities & OD8_TEMPERATURE_SYSTEM) |
| od_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].feature_id = |
| OD8_TEMPERATURE_SYSTEM; |
| else |
| od_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].feature_id = |
| 0; |
| |
| return 0; |
| } |
| |
| static int vega20_od8_get_gfx_clock_base_voltage( |
| struct pp_hwmgr *hwmgr, |
| uint32_t *voltage, |
| uint32_t freq) |
| { |
| int ret = 0; |
| |
| ret = smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_GetAVFSVoltageByDpm, |
| ((AVFS_CURVE << 24) | (OD8_HOTCURVE_TEMPERATURE << 16) | freq)); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[GetBaseVoltage] failed to get GFXCLK AVFS voltage from SMU!", |
| return ret); |
| |
| vega20_read_arg_from_smc(hwmgr, voltage); |
| *voltage = *voltage / VOLTAGE_SCALE; |
| |
| return 0; |
| } |
| |
| static int vega20_od8_initialize_default_settings( |
| struct pp_hwmgr *hwmgr) |
| { |
| struct phm_ppt_v3_information *pptable_information = |
| (struct phm_ppt_v3_information *)hwmgr->pptable; |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| struct vega20_od8_settings *od8_settings = &(data->od8_settings); |
| OverDriveTable_t *od_table = &(data->smc_state_table.overdrive_table); |
| int i, ret = 0; |
| |
| /* Set Feature Capabilities */ |
| vega20_od8_set_feature_capabilities(hwmgr); |
| |
| /* Map FeatureID to individual settings */ |
| vega20_od8_set_feature_id(hwmgr); |
| |
| /* Set default values */ |
| ret = vega20_copy_table_from_smc(hwmgr, (uint8_t *)od_table, TABLE_OVERDRIVE); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Failed to export over drive table!", |
| return ret); |
| |
| if (od8_settings->overdrive8_capabilities & OD8_GFXCLK_LIMITS) { |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].default_value = |
| od_table->GfxclkFmin; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].default_value = |
| od_table->GfxclkFmax; |
| } else { |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].default_value = |
| 0; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].default_value = |
| 0; |
| } |
| |
| if (od8_settings->overdrive8_capabilities & OD8_GFXCLK_CURVE) { |
| od_table->GfxclkFreq1 = od_table->GfxclkFmin; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].default_value = |
| od_table->GfxclkFreq1; |
| |
| od_table->GfxclkFreq3 = od_table->GfxclkFmax; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].default_value = |
| od_table->GfxclkFreq3; |
| |
| od_table->GfxclkFreq2 = (od_table->GfxclkFreq1 + od_table->GfxclkFreq3) / 2; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].default_value = |
| od_table->GfxclkFreq2; |
| |
| PP_ASSERT_WITH_CODE(!vega20_od8_get_gfx_clock_base_voltage(hwmgr, |
| &(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value), |
| od_table->GfxclkFreq1), |
| "[PhwVega20_OD8_InitializeDefaultSettings] Failed to get Base clock voltage from SMU!", |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value = 0); |
| od_table->GfxclkVolt1 = od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value |
| * VOLTAGE_SCALE; |
| |
| PP_ASSERT_WITH_CODE(!vega20_od8_get_gfx_clock_base_voltage(hwmgr, |
| &(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value), |
| od_table->GfxclkFreq2), |
| "[PhwVega20_OD8_InitializeDefaultSettings] Failed to get Base clock voltage from SMU!", |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value = 0); |
| od_table->GfxclkVolt2 = od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value |
| * VOLTAGE_SCALE; |
| |
| PP_ASSERT_WITH_CODE(!vega20_od8_get_gfx_clock_base_voltage(hwmgr, |
| &(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value), |
| od_table->GfxclkFreq3), |
| "[PhwVega20_OD8_InitializeDefaultSettings] Failed to get Base clock voltage from SMU!", |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value = 0); |
| od_table->GfxclkVolt3 = od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value |
| * VOLTAGE_SCALE; |
| } else { |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].default_value = |
| 0; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value = |
| 0; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].default_value = |
| 0; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value = |
| 0; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].default_value = |
| 0; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value = |
| 0; |
| } |
| |
| if (od8_settings->overdrive8_capabilities & OD8_UCLK_MAX) |
| od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].default_value = |
| od_table->UclkFmax; |
| else |
| od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].default_value = |
| 0; |
| |
| if (od8_settings->overdrive8_capabilities & OD8_POWER_LIMIT) |
| od8_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].default_value = |
| od_table->OverDrivePct; |
| else |
| od8_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].default_value = |
| 0; |
| |
| if (od8_settings->overdrive8_capabilities & OD8_ACOUSTIC_LIMIT_SCLK) |
| od8_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].default_value = |
| od_table->FanMaximumRpm; |
| else |
| od8_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].default_value = |
| 0; |
| |
| if (od8_settings->overdrive8_capabilities & OD8_FAN_SPEED_MIN) |
| od8_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].default_value = |
| od_table->FanMinimumPwm * data->smc_state_table.pp_table.FanMaximumRpm / 100; |
| else |
| od8_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].default_value = |
| 0; |
| |
| if (od8_settings->overdrive8_capabilities & OD8_TEMPERATURE_FAN) |
| od8_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].default_value = |
| od_table->FanTargetTemperature; |
| else |
| od8_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].default_value = |
| 0; |
| |
| if (od8_settings->overdrive8_capabilities & OD8_TEMPERATURE_SYSTEM) |
| od8_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].default_value = |
| od_table->MaxOpTemp; |
| else |
| od8_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].default_value = |
| 0; |
| |
| for (i = 0; i < OD8_SETTING_COUNT; i++) { |
| if (od8_settings->od8_settings_array[i].feature_id) { |
| od8_settings->od8_settings_array[i].min_value = |
| pptable_information->od_settings_min[i]; |
| od8_settings->od8_settings_array[i].max_value = |
| pptable_information->od_settings_max[i]; |
| od8_settings->od8_settings_array[i].current_value = |
| od8_settings->od8_settings_array[i].default_value; |
| } else { |
| od8_settings->od8_settings_array[i].min_value = |
| 0; |
| od8_settings->od8_settings_array[i].max_value = |
| 0; |
| od8_settings->od8_settings_array[i].current_value = |
| 0; |
| } |
| } |
| |
| ret = vega20_copy_table_to_smc(hwmgr, (uint8_t *)od_table, TABLE_OVERDRIVE); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Failed to import over drive table!", |
| return ret); |
| |
| return 0; |
| } |
| |
| static int vega20_od8_set_settings( |
| struct pp_hwmgr *hwmgr, |
| uint32_t index, |
| uint32_t value) |
| { |
| OverDriveTable_t od_table; |
| int ret = 0; |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| struct vega20_od8_single_setting *od8_settings = |
| data->od8_settings.od8_settings_array; |
| |
| ret = vega20_copy_table_from_smc(hwmgr, (uint8_t *)(&od_table), TABLE_OVERDRIVE); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Failed to export over drive table!", |
| return ret); |
| |
| switch(index) { |
| case OD8_SETTING_GFXCLK_FMIN: |
| od_table.GfxclkFmin = (uint16_t)value; |
| break; |
| case OD8_SETTING_GFXCLK_FMAX: |
| if (value < od8_settings[OD8_SETTING_GFXCLK_FMAX].min_value || |
| value > od8_settings[OD8_SETTING_GFXCLK_FMAX].max_value) |
| return -EINVAL; |
| |
| od_table.GfxclkFmax = (uint16_t)value; |
| break; |
| case OD8_SETTING_GFXCLK_FREQ1: |
| od_table.GfxclkFreq1 = (uint16_t)value; |
| break; |
| case OD8_SETTING_GFXCLK_VOLTAGE1: |
| od_table.GfxclkVolt1 = (uint16_t)value; |
| break; |
| case OD8_SETTING_GFXCLK_FREQ2: |
| od_table.GfxclkFreq2 = (uint16_t)value; |
| break; |
| case OD8_SETTING_GFXCLK_VOLTAGE2: |
| od_table.GfxclkVolt2 = (uint16_t)value; |
| break; |
| case OD8_SETTING_GFXCLK_FREQ3: |
| od_table.GfxclkFreq3 = (uint16_t)value; |
| break; |
| case OD8_SETTING_GFXCLK_VOLTAGE3: |
| od_table.GfxclkVolt3 = (uint16_t)value; |
| break; |
| case OD8_SETTING_UCLK_FMAX: |
| if (value < od8_settings[OD8_SETTING_UCLK_FMAX].min_value || |
| value > od8_settings[OD8_SETTING_UCLK_FMAX].max_value) |
| return -EINVAL; |
| od_table.UclkFmax = (uint16_t)value; |
| break; |
| case OD8_SETTING_POWER_PERCENTAGE: |
| od_table.OverDrivePct = (int16_t)value; |
| break; |
| case OD8_SETTING_FAN_ACOUSTIC_LIMIT: |
| od_table.FanMaximumRpm = (uint16_t)value; |
| break; |
| case OD8_SETTING_FAN_MIN_SPEED: |
| od_table.FanMinimumPwm = (uint16_t)value; |
| break; |
| case OD8_SETTING_FAN_TARGET_TEMP: |
| od_table.FanTargetTemperature = (uint16_t)value; |
| break; |
| case OD8_SETTING_OPERATING_TEMP_MAX: |
| od_table.MaxOpTemp = (uint16_t)value; |
| break; |
| } |
| |
| ret = vega20_copy_table_to_smc(hwmgr, (uint8_t *)(&od_table), TABLE_OVERDRIVE); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Failed to import over drive table!", |
| return ret); |
| |
| return 0; |
| } |
| |
| static int vega20_get_sclk_od( |
| struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = hwmgr->backend; |
| struct vega20_single_dpm_table *sclk_table = |
| &(data->dpm_table.gfx_table); |
| struct vega20_single_dpm_table *golden_sclk_table = |
| &(data->golden_dpm_table.gfx_table); |
| int value; |
| |
| /* od percentage */ |
| value = DIV_ROUND_UP((sclk_table->dpm_levels[sclk_table->count - 1].value - |
| golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value) * 100, |
| golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value); |
| |
| return value; |
| } |
| |
| static int vega20_set_sclk_od( |
| struct pp_hwmgr *hwmgr, uint32_t value) |
| { |
| struct vega20_hwmgr *data = hwmgr->backend; |
| struct vega20_single_dpm_table *golden_sclk_table = |
| &(data->golden_dpm_table.gfx_table); |
| uint32_t od_sclk; |
| int ret = 0; |
| |
| od_sclk = golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value * value; |
| od_sclk /= 100; |
| od_sclk += golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value; |
| |
| ret = vega20_od8_set_settings(hwmgr, OD8_SETTING_GFXCLK_FMAX, od_sclk); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[SetSclkOD] failed to set od gfxclk!", |
| return ret); |
| |
| /* retrieve updated gfxclk table */ |
| ret = vega20_setup_gfxclk_dpm_table(hwmgr); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[SetSclkOD] failed to refresh gfxclk table!", |
| return ret); |
| |
| return 0; |
| } |
| |
| static int vega20_get_mclk_od( |
| struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = hwmgr->backend; |
| struct vega20_single_dpm_table *mclk_table = |
| &(data->dpm_table.mem_table); |
| struct vega20_single_dpm_table *golden_mclk_table = |
| &(data->golden_dpm_table.mem_table); |
| int value; |
| |
| /* od percentage */ |
| value = DIV_ROUND_UP((mclk_table->dpm_levels[mclk_table->count - 1].value - |
| golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value) * 100, |
| golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value); |
| |
| return value; |
| } |
| |
| static int vega20_set_mclk_od( |
| struct pp_hwmgr *hwmgr, uint32_t value) |
| { |
| struct vega20_hwmgr *data = hwmgr->backend; |
| struct vega20_single_dpm_table *golden_mclk_table = |
| &(data->golden_dpm_table.mem_table); |
| uint32_t od_mclk; |
| int ret = 0; |
| |
| od_mclk = golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value * value; |
| od_mclk /= 100; |
| od_mclk += golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value; |
| |
| ret = vega20_od8_set_settings(hwmgr, OD8_SETTING_UCLK_FMAX, od_mclk); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[SetMclkOD] failed to set od memclk!", |
| return ret); |
| |
| /* retrieve updated memclk table */ |
| ret = vega20_setup_memclk_dpm_table(hwmgr); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[SetMclkOD] failed to refresh memclk table!", |
| return ret); |
| |
| return 0; |
| } |
| |
| static int vega20_populate_umdpstate_clocks( |
| struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| struct vega20_single_dpm_table *gfx_table = &(data->dpm_table.gfx_table); |
| struct vega20_single_dpm_table *mem_table = &(data->dpm_table.mem_table); |
| |
| hwmgr->pstate_sclk = gfx_table->dpm_levels[0].value; |
| hwmgr->pstate_mclk = mem_table->dpm_levels[0].value; |
| |
| if (gfx_table->count > VEGA20_UMD_PSTATE_GFXCLK_LEVEL && |
| mem_table->count > VEGA20_UMD_PSTATE_MCLK_LEVEL) { |
| hwmgr->pstate_sclk = gfx_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value; |
| hwmgr->pstate_mclk = mem_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value; |
| } |
| |
| hwmgr->pstate_sclk = hwmgr->pstate_sclk * 100; |
| hwmgr->pstate_mclk = hwmgr->pstate_mclk * 100; |
| |
| return 0; |
| } |
| |
| static int vega20_get_max_sustainable_clock(struct pp_hwmgr *hwmgr, |
| PP_Clock *clock, PPCLK_e clock_select) |
| { |
| int ret = 0; |
| |
| PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_GetDcModeMaxDpmFreq, |
| (clock_select << 16))) == 0, |
| "[GetMaxSustainableClock] Failed to get max DC clock from SMC!", |
| return ret); |
| vega20_read_arg_from_smc(hwmgr, clock); |
| |
| /* if DC limit is zero, return AC limit */ |
| if (*clock == 0) { |
| PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_GetMaxDpmFreq, |
| (clock_select << 16))) == 0, |
| "[GetMaxSustainableClock] failed to get max AC clock from SMC!", |
| return ret); |
| vega20_read_arg_from_smc(hwmgr, clock); |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_init_max_sustainable_clocks(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| struct vega20_max_sustainable_clocks *max_sustainable_clocks = |
| &(data->max_sustainable_clocks); |
| int ret = 0; |
| |
| max_sustainable_clocks->uclock = data->vbios_boot_state.mem_clock / 100; |
| max_sustainable_clocks->soc_clock = data->vbios_boot_state.soc_clock / 100; |
| max_sustainable_clocks->dcef_clock = data->vbios_boot_state.dcef_clock / 100; |
| max_sustainable_clocks->display_clock = 0xFFFFFFFF; |
| max_sustainable_clocks->phy_clock = 0xFFFFFFFF; |
| max_sustainable_clocks->pixel_clock = 0xFFFFFFFF; |
| |
| if (data->smu_features[GNLD_DPM_UCLK].enabled) |
| PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr, |
| &(max_sustainable_clocks->uclock), |
| PPCLK_UCLK)) == 0, |
| "[InitMaxSustainableClocks] failed to get max UCLK from SMC!", |
| return ret); |
| |
| if (data->smu_features[GNLD_DPM_SOCCLK].enabled) |
| PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr, |
| &(max_sustainable_clocks->soc_clock), |
| PPCLK_SOCCLK)) == 0, |
| "[InitMaxSustainableClocks] failed to get max SOCCLK from SMC!", |
| return ret); |
| |
| if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { |
| PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr, |
| &(max_sustainable_clocks->dcef_clock), |
| PPCLK_DCEFCLK)) == 0, |
| "[InitMaxSustainableClocks] failed to get max DCEFCLK from SMC!", |
| return ret); |
| PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr, |
| &(max_sustainable_clocks->display_clock), |
| PPCLK_DISPCLK)) == 0, |
| "[InitMaxSustainableClocks] failed to get max DISPCLK from SMC!", |
| return ret); |
| PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr, |
| &(max_sustainable_clocks->phy_clock), |
| PPCLK_PHYCLK)) == 0, |
| "[InitMaxSustainableClocks] failed to get max PHYCLK from SMC!", |
| return ret); |
| PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr, |
| &(max_sustainable_clocks->pixel_clock), |
| PPCLK_PIXCLK)) == 0, |
| "[InitMaxSustainableClocks] failed to get max PIXCLK from SMC!", |
| return ret); |
| } |
| |
| if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock) |
| max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock; |
| |
| return 0; |
| } |
| |
| static void vega20_init_powergate_state(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| |
| data->uvd_power_gated = true; |
| data->vce_power_gated = true; |
| |
| if (data->smu_features[GNLD_DPM_UVD].enabled) |
| data->uvd_power_gated = false; |
| |
| if (data->smu_features[GNLD_DPM_VCE].enabled) |
| data->vce_power_gated = false; |
| } |
| |
| static int vega20_enable_dpm_tasks(struct pp_hwmgr *hwmgr) |
| { |
| int result = 0; |
| |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_NumOfDisplays, 0); |
| |
| result = vega20_set_allowed_featuresmask(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "[EnableDPMTasks] Failed to set allowed featuresmask!\n", |
| return result); |
| |
| result = vega20_init_smc_table(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "[EnableDPMTasks] Failed to initialize SMC table!", |
| return result); |
| |
| result = vega20_run_btc_afll(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "[EnableDPMTasks] Failed to run btc afll!", |
| return result); |
| |
| result = vega20_enable_all_smu_features(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "[EnableDPMTasks] Failed to enable all smu features!", |
| return result); |
| |
| /* Initialize UVD/VCE powergating state */ |
| vega20_init_powergate_state(hwmgr); |
| |
| result = vega20_setup_default_dpm_tables(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "[EnableDPMTasks] Failed to setup default DPM tables!", |
| return result); |
| |
| result = vega20_init_max_sustainable_clocks(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "[EnableDPMTasks] Failed to get maximum sustainable clocks!", |
| return result); |
| |
| result = vega20_power_control_set_level(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "[EnableDPMTasks] Failed to power control set level!", |
| return result); |
| |
| result = vega20_od8_initialize_default_settings(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "[EnableDPMTasks] Failed to initialize odn settings!", |
| return result); |
| |
| result = vega20_populate_umdpstate_clocks(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "[EnableDPMTasks] Failed to populate umdpstate clocks!", |
| return result); |
| |
| return 0; |
| } |
| |
| static uint32_t vega20_find_lowest_dpm_level( |
| struct vega20_single_dpm_table *table) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < table->count; i++) { |
| if (table->dpm_levels[i].enabled) |
| break; |
| } |
| if (i >= table->count) { |
| i = 0; |
| table->dpm_levels[i].enabled = true; |
| } |
| |
| return i; |
| } |
| |
| static uint32_t vega20_find_highest_dpm_level( |
| struct vega20_single_dpm_table *table) |
| { |
| int i = 0; |
| |
| PP_ASSERT_WITH_CODE(table != NULL, |
| "[FindHighestDPMLevel] DPM Table does not exist!", |
| return 0); |
| PP_ASSERT_WITH_CODE(table->count > 0, |
| "[FindHighestDPMLevel] DPM Table has no entry!", |
| return 0); |
| PP_ASSERT_WITH_CODE(table->count <= MAX_REGULAR_DPM_NUMBER, |
| "[FindHighestDPMLevel] DPM Table has too many entries!", |
| return MAX_REGULAR_DPM_NUMBER - 1); |
| |
| for (i = table->count - 1; i >= 0; i--) { |
| if (table->dpm_levels[i].enabled) |
| break; |
| } |
| if (i < 0) { |
| i = 0; |
| table->dpm_levels[i].enabled = true; |
| } |
| |
| return i; |
| } |
| |
| static int vega20_upload_dpm_min_level(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| uint32_t min_freq; |
| int ret = 0; |
| |
| if (data->smu_features[GNLD_DPM_GFXCLK].enabled) { |
| min_freq = data->dpm_table.gfx_table.dpm_state.soft_min_level; |
| PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( |
| hwmgr, PPSMC_MSG_SetSoftMinByFreq, |
| (PPCLK_GFXCLK << 16) | (min_freq & 0xffff))), |
| "Failed to set soft min gfxclk !", |
| return ret); |
| } |
| |
| if (data->smu_features[GNLD_DPM_UCLK].enabled) { |
| min_freq = data->dpm_table.mem_table.dpm_state.soft_min_level; |
| PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( |
| hwmgr, PPSMC_MSG_SetSoftMinByFreq, |
| (PPCLK_UCLK << 16) | (min_freq & 0xffff))), |
| "Failed to set soft min memclk !", |
| return ret); |
| |
| min_freq = data->dpm_table.mem_table.dpm_state.hard_min_level; |
| PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( |
| hwmgr, PPSMC_MSG_SetHardMinByFreq, |
| (PPCLK_UCLK << 16) | (min_freq & 0xffff))), |
| "Failed to set hard min memclk !", |
| return ret); |
| } |
| |
| if (data->smu_features[GNLD_DPM_UVD].enabled) { |
| min_freq = data->dpm_table.vclk_table.dpm_state.soft_min_level; |
| |
| PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( |
| hwmgr, PPSMC_MSG_SetSoftMinByFreq, |
| (PPCLK_VCLK << 16) | (min_freq & 0xffff))), |
| "Failed to set soft min vclk!", |
| return ret); |
| |
| min_freq = data->dpm_table.dclk_table.dpm_state.soft_min_level; |
| |
| PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( |
| hwmgr, PPSMC_MSG_SetSoftMinByFreq, |
| (PPCLK_DCLK << 16) | (min_freq & 0xffff))), |
| "Failed to set soft min dclk!", |
| return ret); |
| } |
| |
| if (data->smu_features[GNLD_DPM_VCE].enabled) { |
| min_freq = data->dpm_table.eclk_table.dpm_state.soft_min_level; |
| |
| PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( |
| hwmgr, PPSMC_MSG_SetSoftMinByFreq, |
| (PPCLK_ECLK << 16) | (min_freq & 0xffff))), |
| "Failed to set soft min eclk!", |
| return ret); |
| } |
| |
| if (data->smu_features[GNLD_DPM_SOCCLK].enabled) { |
| min_freq = data->dpm_table.soc_table.dpm_state.soft_min_level; |
| |
| PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( |
| hwmgr, PPSMC_MSG_SetSoftMinByFreq, |
| (PPCLK_SOCCLK << 16) | (min_freq & 0xffff))), |
| "Failed to set soft min socclk!", |
| return ret); |
| } |
| |
| return ret; |
| } |
| |
| static int vega20_upload_dpm_max_level(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| uint32_t max_freq; |
| int ret = 0; |
| |
| if (data->smu_features[GNLD_DPM_GFXCLK].enabled) { |
| max_freq = data->dpm_table.gfx_table.dpm_state.soft_max_level; |
| |
| PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( |
| hwmgr, PPSMC_MSG_SetSoftMaxByFreq, |
| (PPCLK_GFXCLK << 16) | (max_freq & 0xffff))), |
| "Failed to set soft max gfxclk!", |
| return ret); |
| } |
| |
| if (data->smu_features[GNLD_DPM_UCLK].enabled) { |
| max_freq = data->dpm_table.mem_table.dpm_state.soft_max_level; |
| |
| PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( |
| hwmgr, PPSMC_MSG_SetSoftMaxByFreq, |
| (PPCLK_UCLK << 16) | (max_freq & 0xffff))), |
| "Failed to set soft max memclk!", |
| return ret); |
| } |
| |
| if (data->smu_features[GNLD_DPM_UVD].enabled) { |
| max_freq = data->dpm_table.vclk_table.dpm_state.soft_max_level; |
| |
| PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( |
| hwmgr, PPSMC_MSG_SetSoftMaxByFreq, |
| (PPCLK_VCLK << 16) | (max_freq & 0xffff))), |
| "Failed to set soft max vclk!", |
| return ret); |
| |
| max_freq = data->dpm_table.dclk_table.dpm_state.soft_max_level; |
| PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( |
| hwmgr, PPSMC_MSG_SetSoftMaxByFreq, |
| (PPCLK_DCLK << 16) | (max_freq & 0xffff))), |
| "Failed to set soft max dclk!", |
| return ret); |
| } |
| |
| if (data->smu_features[GNLD_DPM_VCE].enabled) { |
| max_freq = data->dpm_table.eclk_table.dpm_state.soft_max_level; |
| |
| PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( |
| hwmgr, PPSMC_MSG_SetSoftMaxByFreq, |
| (PPCLK_ECLK << 16) | (max_freq & 0xffff))), |
| "Failed to set soft max eclk!", |
| return ret); |
| } |
| |
| if (data->smu_features[GNLD_DPM_SOCCLK].enabled) { |
| max_freq = data->dpm_table.soc_table.dpm_state.soft_max_level; |
| |
| PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( |
| hwmgr, PPSMC_MSG_SetSoftMaxByFreq, |
| (PPCLK_SOCCLK << 16) | (max_freq & 0xffff))), |
| "Failed to set soft max socclk!", |
| return ret); |
| } |
| |
| return ret; |
| } |
| |
| int vega20_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| int ret = 0; |
| |
| if (data->smu_features[GNLD_DPM_VCE].supported) { |
| if (data->smu_features[GNLD_DPM_VCE].enabled == enable) { |
| if (enable) |
| PP_DBG_LOG("[EnableDisableVCEDPM] feature VCE DPM already enabled!\n"); |
| else |
| PP_DBG_LOG("[EnableDisableVCEDPM] feature VCE DPM already disabled!\n"); |
| } |
| |
| ret = vega20_enable_smc_features(hwmgr, |
| enable, |
| data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Attempt to Enable/Disable DPM VCE Failed!", |
| return ret); |
| data->smu_features[GNLD_DPM_VCE].enabled = enable; |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_get_clock_ranges(struct pp_hwmgr *hwmgr, |
| uint32_t *clock, |
| PPCLK_e clock_select, |
| bool max) |
| { |
| int ret; |
| *clock = 0; |
| |
| if (max) { |
| PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_GetMaxDpmFreq, (clock_select << 16))) == 0, |
| "[GetClockRanges] Failed to get max clock from SMC!", |
| return ret); |
| vega20_read_arg_from_smc(hwmgr, clock); |
| } else { |
| PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_GetMinDpmFreq, |
| (clock_select << 16))) == 0, |
| "[GetClockRanges] Failed to get min clock from SMC!", |
| return ret); |
| vega20_read_arg_from_smc(hwmgr, clock); |
| } |
| |
| return 0; |
| } |
| |
| static uint32_t vega20_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| uint32_t gfx_clk; |
| int ret = 0; |
| |
| PP_ASSERT_WITH_CODE(data->smu_features[GNLD_DPM_GFXCLK].enabled, |
| "[GetSclks]: gfxclk dpm not enabled!\n", |
| return -EPERM); |
| |
| if (low) { |
| ret = vega20_get_clock_ranges(hwmgr, &gfx_clk, PPCLK_GFXCLK, false); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[GetSclks]: fail to get min PPCLK_GFXCLK\n", |
| return ret); |
| } else { |
| ret = vega20_get_clock_ranges(hwmgr, &gfx_clk, PPCLK_GFXCLK, true); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[GetSclks]: fail to get max PPCLK_GFXCLK\n", |
| return ret); |
| } |
| |
| return (gfx_clk * 100); |
| } |
| |
| static uint32_t vega20_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| uint32_t mem_clk; |
| int ret = 0; |
| |
| PP_ASSERT_WITH_CODE(data->smu_features[GNLD_DPM_UCLK].enabled, |
| "[MemMclks]: memclk dpm not enabled!\n", |
| return -EPERM); |
| |
| if (low) { |
| ret = vega20_get_clock_ranges(hwmgr, &mem_clk, PPCLK_UCLK, false); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[GetMclks]: fail to get min PPCLK_UCLK\n", |
| return ret); |
| } else { |
| ret = vega20_get_clock_ranges(hwmgr, &mem_clk, PPCLK_UCLK, true); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[GetMclks]: fail to get max PPCLK_UCLK\n", |
| return ret); |
| } |
| |
| return (mem_clk * 100); |
| } |
| |
| static int vega20_get_gpu_power(struct pp_hwmgr *hwmgr, |
| uint32_t *query) |
| { |
| int ret = 0; |
| SmuMetrics_t metrics_table; |
| |
| ret = vega20_copy_table_from_smc(hwmgr, (uint8_t *)&metrics_table, TABLE_SMU_METRICS); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Failed to export SMU METRICS table!", |
| return ret); |
| |
| *query = metrics_table.CurrSocketPower << 8; |
| |
| return ret; |
| } |
| |
| static int vega20_get_current_gfx_clk_freq(struct pp_hwmgr *hwmgr, uint32_t *gfx_freq) |
| { |
| uint32_t gfx_clk = 0; |
| int ret = 0; |
| |
| *gfx_freq = 0; |
| |
| PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_GetDpmClockFreq, (PPCLK_GFXCLK << 16))) == 0, |
| "[GetCurrentGfxClkFreq] Attempt to get Current GFXCLK Frequency Failed!", |
| return ret); |
| vega20_read_arg_from_smc(hwmgr, &gfx_clk); |
| |
| *gfx_freq = gfx_clk * 100; |
| |
| return 0; |
| } |
| |
| static int vega20_get_current_mclk_freq(struct pp_hwmgr *hwmgr, uint32_t *mclk_freq) |
| { |
| uint32_t mem_clk = 0; |
| int ret = 0; |
| |
| *mclk_freq = 0; |
| |
| PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_GetDpmClockFreq, (PPCLK_UCLK << 16))) == 0, |
| "[GetCurrentMClkFreq] Attempt to get Current MCLK Frequency Failed!", |
| return ret); |
| vega20_read_arg_from_smc(hwmgr, &mem_clk); |
| |
| *mclk_freq = mem_clk * 100; |
| |
| return 0; |
| } |
| |
| static int vega20_get_current_activity_percent(struct pp_hwmgr *hwmgr, |
| uint32_t *activity_percent) |
| { |
| int ret = 0; |
| SmuMetrics_t metrics_table; |
| |
| ret = vega20_copy_table_from_smc(hwmgr, (uint8_t *)&metrics_table, TABLE_SMU_METRICS); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Failed to export SMU METRICS table!", |
| return ret); |
| |
| *activity_percent = metrics_table.AverageGfxActivity; |
| |
| return ret; |
| } |
| |
| static int vega20_read_sensor(struct pp_hwmgr *hwmgr, int idx, |
| void *value, int *size) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| int ret = 0; |
| |
| switch (idx) { |
| case AMDGPU_PP_SENSOR_GFX_SCLK: |
| ret = vega20_get_current_gfx_clk_freq(hwmgr, (uint32_t *)value); |
| if (!ret) |
| *size = 4; |
| break; |
| case AMDGPU_PP_SENSOR_GFX_MCLK: |
| ret = vega20_get_current_mclk_freq(hwmgr, (uint32_t *)value); |
| if (!ret) |
| *size = 4; |
| break; |
| case AMDGPU_PP_SENSOR_GPU_LOAD: |
| ret = vega20_get_current_activity_percent(hwmgr, (uint32_t *)value); |
| if (!ret) |
| *size = 4; |
| break; |
| case AMDGPU_PP_SENSOR_GPU_TEMP: |
| *((uint32_t *)value) = vega20_thermal_get_temperature(hwmgr); |
| *size = 4; |
| break; |
| case AMDGPU_PP_SENSOR_UVD_POWER: |
| *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1; |
| *size = 4; |
| break; |
| case AMDGPU_PP_SENSOR_VCE_POWER: |
| *((uint32_t *)value) = data->vce_power_gated ? 0 : 1; |
| *size = 4; |
| break; |
| case AMDGPU_PP_SENSOR_GPU_POWER: |
| *size = 16; |
| ret = vega20_get_gpu_power(hwmgr, (uint32_t *)value); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| return ret; |
| } |
| |
| static int vega20_notify_smc_display_change(struct pp_hwmgr *hwmgr, |
| bool has_disp) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| |
| if (data->smu_features[GNLD_DPM_UCLK].enabled) |
| return smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetUclkFastSwitch, |
| has_disp ? 1 : 0); |
| |
| return 0; |
| } |
| |
| int vega20_display_clock_voltage_request(struct pp_hwmgr *hwmgr, |
| struct pp_display_clock_request *clock_req) |
| { |
| int result = 0; |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| enum amd_pp_clock_type clk_type = clock_req->clock_type; |
| uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000; |
| PPCLK_e clk_select = 0; |
| uint32_t clk_request = 0; |
| |
| if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { |
| switch (clk_type) { |
| case amd_pp_dcef_clock: |
| clk_freq = clock_req->clock_freq_in_khz / 100; |
| clk_select = PPCLK_DCEFCLK; |
| break; |
| case amd_pp_disp_clock: |
| clk_select = PPCLK_DISPCLK; |
| break; |
| case amd_pp_pixel_clock: |
| clk_select = PPCLK_PIXCLK; |
| break; |
| case amd_pp_phy_clock: |
| clk_select = PPCLK_PHYCLK; |
| break; |
| default: |
| pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!"); |
| result = -EINVAL; |
| break; |
| } |
| |
| if (!result) { |
| clk_request = (clk_select << 16) | clk_freq; |
| result = smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetHardMinByFreq, |
| clk_request); |
| } |
| } |
| |
| return result; |
| } |
| |
| static int vega20_notify_smc_display_config_after_ps_adjustment( |
| struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| struct PP_Clocks min_clocks = {0}; |
| struct pp_display_clock_request clock_req; |
| int ret = 0; |
| |
| if ((hwmgr->display_config->num_display > 1) && |
| !hwmgr->display_config->multi_monitor_in_sync && |
| !hwmgr->display_config->nb_pstate_switch_disable) |
| vega20_notify_smc_display_change(hwmgr, false); |
| else |
| vega20_notify_smc_display_change(hwmgr, true); |
| |
| min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk; |
| min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk; |
| min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; |
| |
| if (data->smu_features[GNLD_DPM_DCEFCLK].supported) { |
| clock_req.clock_type = amd_pp_dcef_clock; |
| clock_req.clock_freq_in_khz = min_clocks.dcefClock; |
| if (!vega20_display_clock_voltage_request(hwmgr, &clock_req)) { |
| if (data->smu_features[GNLD_DS_DCEFCLK].supported) |
| PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter( |
| hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk, |
| min_clocks.dcefClockInSR / 100)) == 0, |
| "Attempt to set divider for DCEFCLK Failed!", |
| return ret); |
| } else { |
| pr_info("Attempt to set Hard Min for DCEFCLK Failed!"); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_force_dpm_highest(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| uint32_t soft_level; |
| int ret = 0; |
| |
| soft_level = vega20_find_highest_dpm_level(&(data->dpm_table.gfx_table)); |
| |
| data->dpm_table.gfx_table.dpm_state.soft_min_level = |
| data->dpm_table.gfx_table.dpm_state.soft_max_level = |
| data->dpm_table.gfx_table.dpm_levels[soft_level].value; |
| |
| soft_level = vega20_find_highest_dpm_level(&(data->dpm_table.mem_table)); |
| |
| data->dpm_table.mem_table.dpm_state.soft_min_level = |
| data->dpm_table.mem_table.dpm_state.soft_max_level = |
| data->dpm_table.mem_table.dpm_levels[soft_level].value; |
| |
| ret = vega20_upload_dpm_min_level(hwmgr); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Failed to upload boot level to highest!", |
| return ret); |
| |
| ret = vega20_upload_dpm_max_level(hwmgr); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Failed to upload dpm max level to highest!", |
| return ret); |
| |
| return 0; |
| } |
| |
| static int vega20_force_dpm_lowest(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| uint32_t soft_level; |
| int ret = 0; |
| |
| soft_level = vega20_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); |
| |
| data->dpm_table.gfx_table.dpm_state.soft_min_level = |
| data->dpm_table.gfx_table.dpm_state.soft_max_level = |
| data->dpm_table.gfx_table.dpm_levels[soft_level].value; |
| |
| soft_level = vega20_find_lowest_dpm_level(&(data->dpm_table.mem_table)); |
| |
| data->dpm_table.mem_table.dpm_state.soft_min_level = |
| data->dpm_table.mem_table.dpm_state.soft_max_level = |
| data->dpm_table.mem_table.dpm_levels[soft_level].value; |
| |
| ret = vega20_upload_dpm_min_level(hwmgr); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Failed to upload boot level to highest!", |
| return ret); |
| |
| ret = vega20_upload_dpm_max_level(hwmgr); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Failed to upload dpm max level to highest!", |
| return ret); |
| |
| return 0; |
| |
| } |
| |
| static int vega20_unforce_dpm_levels(struct pp_hwmgr *hwmgr) |
| { |
| int ret = 0; |
| |
| ret = vega20_upload_dpm_min_level(hwmgr); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Failed to upload DPM Bootup Levels!", |
| return ret); |
| |
| ret = vega20_upload_dpm_max_level(hwmgr); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Failed to upload DPM Max Levels!", |
| return ret); |
| |
| return 0; |
| } |
| |
| static int vega20_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level, |
| uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| struct vega20_single_dpm_table *gfx_dpm_table = &(data->dpm_table.gfx_table); |
| struct vega20_single_dpm_table *mem_dpm_table = &(data->dpm_table.mem_table); |
| struct vega20_single_dpm_table *soc_dpm_table = &(data->dpm_table.soc_table); |
| |
| *sclk_mask = 0; |
| *mclk_mask = 0; |
| *soc_mask = 0; |
| |
| if (gfx_dpm_table->count > VEGA20_UMD_PSTATE_GFXCLK_LEVEL && |
| mem_dpm_table->count > VEGA20_UMD_PSTATE_MCLK_LEVEL && |
| soc_dpm_table->count > VEGA20_UMD_PSTATE_SOCCLK_LEVEL) { |
| *sclk_mask = VEGA20_UMD_PSTATE_GFXCLK_LEVEL; |
| *mclk_mask = VEGA20_UMD_PSTATE_MCLK_LEVEL; |
| *soc_mask = VEGA20_UMD_PSTATE_SOCCLK_LEVEL; |
| } |
| |
| if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { |
| *sclk_mask = 0; |
| } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { |
| *mclk_mask = 0; |
| } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { |
| *sclk_mask = gfx_dpm_table->count - 1; |
| *mclk_mask = mem_dpm_table->count - 1; |
| *soc_mask = soc_dpm_table->count - 1; |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_force_clock_level(struct pp_hwmgr *hwmgr, |
| enum pp_clock_type type, uint32_t mask) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| uint32_t soft_min_level, soft_max_level; |
| int ret = 0; |
| |
| switch (type) { |
| case PP_SCLK: |
| soft_min_level = mask ? (ffs(mask) - 1) : 0; |
| soft_max_level = mask ? (fls(mask) - 1) : 0; |
| |
| data->dpm_table.gfx_table.dpm_state.soft_min_level = |
| data->dpm_table.gfx_table.dpm_levels[soft_min_level].value; |
| data->dpm_table.gfx_table.dpm_state.soft_max_level = |
| data->dpm_table.gfx_table.dpm_levels[soft_max_level].value; |
| |
| ret = vega20_upload_dpm_min_level(hwmgr); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Failed to upload boot level to lowest!", |
| return ret); |
| |
| ret = vega20_upload_dpm_max_level(hwmgr); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Failed to upload dpm max level to highest!", |
| return ret); |
| break; |
| |
| case PP_MCLK: |
| soft_min_level = mask ? (ffs(mask) - 1) : 0; |
| soft_max_level = mask ? (fls(mask) - 1) : 0; |
| |
| data->dpm_table.mem_table.dpm_state.soft_min_level = |
| data->dpm_table.mem_table.dpm_levels[soft_min_level].value; |
| data->dpm_table.mem_table.dpm_state.soft_max_level = |
| data->dpm_table.mem_table.dpm_levels[soft_max_level].value; |
| |
| ret = vega20_upload_dpm_min_level(hwmgr); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Failed to upload boot level to lowest!", |
| return ret); |
| |
| ret = vega20_upload_dpm_max_level(hwmgr); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Failed to upload dpm max level to highest!", |
| return ret); |
| |
| break; |
| |
| case PP_PCIE: |
| break; |
| |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_dpm_force_dpm_level(struct pp_hwmgr *hwmgr, |
| enum amd_dpm_forced_level level) |
| { |
| int ret = 0; |
| uint32_t sclk_mask, mclk_mask, soc_mask; |
| |
| switch (level) { |
| case AMD_DPM_FORCED_LEVEL_HIGH: |
| ret = vega20_force_dpm_highest(hwmgr); |
| break; |
| |
| case AMD_DPM_FORCED_LEVEL_LOW: |
| ret = vega20_force_dpm_lowest(hwmgr); |
| break; |
| |
| case AMD_DPM_FORCED_LEVEL_AUTO: |
| ret = vega20_unforce_dpm_levels(hwmgr); |
| break; |
| |
| case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: |
| case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: |
| case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: |
| case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: |
| ret = vega20_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask); |
| if (ret) |
| return ret; |
| vega20_force_clock_level(hwmgr, PP_SCLK, 1 << sclk_mask); |
| vega20_force_clock_level(hwmgr, PP_MCLK, 1 << mclk_mask); |
| break; |
| |
| case AMD_DPM_FORCED_LEVEL_MANUAL: |
| case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: |
| default: |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static uint32_t vega20_get_fan_control_mode(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| |
| if (data->smu_features[GNLD_FAN_CONTROL].enabled == false) |
| return AMD_FAN_CTRL_MANUAL; |
| else |
| return AMD_FAN_CTRL_AUTO; |
| } |
| |
| static int vega20_get_dal_power_level(struct pp_hwmgr *hwmgr, |
| struct amd_pp_simple_clock_info *info) |
| { |
| #if 0 |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)hwmgr->pptable; |
| struct phm_clock_and_voltage_limits *max_limits = |
| &table_info->max_clock_voltage_on_ac; |
| |
| info->engine_max_clock = max_limits->sclk; |
| info->memory_max_clock = max_limits->mclk; |
| #endif |
| return 0; |
| } |
| |
| |
| static int vega20_get_sclks(struct pp_hwmgr *hwmgr, |
| struct pp_clock_levels_with_latency *clocks) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table); |
| int i, count; |
| |
| PP_ASSERT_WITH_CODE(data->smu_features[GNLD_DPM_GFXCLK].enabled, |
| "[GetSclks]: gfxclk dpm not enabled!\n", |
| return -EPERM); |
| |
| count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; |
| clocks->num_levels = count; |
| |
| for (i = 0; i < count; i++) { |
| clocks->data[i].clocks_in_khz = |
| dpm_table->dpm_levels[i].value * 100; |
| clocks->data[i].latency_in_us = 0; |
| } |
| |
| return 0; |
| } |
| |
| static uint32_t vega20_get_mem_latency(struct pp_hwmgr *hwmgr, |
| uint32_t clock) |
| { |
| return 25; |
| } |
| |
| static int vega20_get_memclocks(struct pp_hwmgr *hwmgr, |
| struct pp_clock_levels_with_latency *clocks) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.mem_table); |
| int i, count; |
| |
| PP_ASSERT_WITH_CODE(data->smu_features[GNLD_DPM_UCLK].enabled, |
| "[GetMclks]: uclk dpm not enabled!\n", |
| return -EPERM); |
| |
| count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; |
| clocks->num_levels = data->mclk_latency_table.count = count; |
| |
| for (i = 0; i < count; i++) { |
| clocks->data[i].clocks_in_khz = |
| data->mclk_latency_table.entries[i].frequency = |
| dpm_table->dpm_levels[i].value * 100; |
| clocks->data[i].latency_in_us = |
| data->mclk_latency_table.entries[i].latency = |
| vega20_get_mem_latency(hwmgr, dpm_table->dpm_levels[i].value); |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_get_dcefclocks(struct pp_hwmgr *hwmgr, |
| struct pp_clock_levels_with_latency *clocks) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.dcef_table); |
| int i, count; |
| |
| PP_ASSERT_WITH_CODE(data->smu_features[GNLD_DPM_DCEFCLK].enabled, |
| "[GetDcfclocks]: dcefclk dpm not enabled!\n", |
| return -EPERM); |
| |
| count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; |
| clocks->num_levels = count; |
| |
| for (i = 0; i < count; i++) { |
| clocks->data[i].clocks_in_khz = |
| dpm_table->dpm_levels[i].value * 100; |
| clocks->data[i].latency_in_us = 0; |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_get_socclocks(struct pp_hwmgr *hwmgr, |
| struct pp_clock_levels_with_latency *clocks) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.soc_table); |
| int i, count; |
| |
| PP_ASSERT_WITH_CODE(data->smu_features[GNLD_DPM_SOCCLK].enabled, |
| "[GetSocclks]: socclk dpm not enabled!\n", |
| return -EPERM); |
| |
| count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; |
| clocks->num_levels = count; |
| |
| for (i = 0; i < count; i++) { |
| clocks->data[i].clocks_in_khz = |
| dpm_table->dpm_levels[i].value * 100; |
| clocks->data[i].latency_in_us = 0; |
| } |
| |
| return 0; |
| |
| } |
| |
| static int vega20_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr, |
| enum amd_pp_clock_type type, |
| struct pp_clock_levels_with_latency *clocks) |
| { |
| int ret; |
| |
| switch (type) { |
| case amd_pp_sys_clock: |
| ret = vega20_get_sclks(hwmgr, clocks); |
| break; |
| case amd_pp_mem_clock: |
| ret = vega20_get_memclocks(hwmgr, clocks); |
| break; |
| case amd_pp_dcef_clock: |
| ret = vega20_get_dcefclocks(hwmgr, clocks); |
| break; |
| case amd_pp_soc_clock: |
| ret = vega20_get_socclocks(hwmgr, clocks); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static int vega20_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr, |
| enum amd_pp_clock_type type, |
| struct pp_clock_levels_with_voltage *clocks) |
| { |
| clocks->num_levels = 0; |
| |
| return 0; |
| } |
| |
| static int vega20_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr, |
| void *clock_ranges) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| Watermarks_t *table = &(data->smc_state_table.water_marks_table); |
| struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_ranges; |
| |
| if (!data->registry_data.disable_water_mark && |
| data->smu_features[GNLD_DPM_DCEFCLK].supported && |
| data->smu_features[GNLD_DPM_SOCCLK].supported) { |
| smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges); |
| data->water_marks_bitmap |= WaterMarksExist; |
| data->water_marks_bitmap &= ~WaterMarksLoaded; |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_odn_edit_dpm_table(struct pp_hwmgr *hwmgr, |
| enum PP_OD_DPM_TABLE_COMMAND type, |
| long *input, uint32_t size) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| struct vega20_od8_single_setting *od8_settings = |
| data->od8_settings.od8_settings_array; |
| OverDriveTable_t *od_table = |
| &(data->smc_state_table.overdrive_table); |
| struct pp_clock_levels_with_latency clocks; |
| int32_t input_index, input_clk, input_vol, i; |
| int od8_id; |
| int ret; |
| |
| PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage", |
| return -EINVAL); |
| |
| switch (type) { |
| case PP_OD_EDIT_SCLK_VDDC_TABLE: |
| if (!(od8_settings[OD8_SETTING_GFXCLK_FMIN].feature_id && |
| od8_settings[OD8_SETTING_GFXCLK_FMAX].feature_id)) { |
| pr_info("Sclk min/max frequency overdrive not supported\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| for (i = 0; i < size; i += 2) { |
| if (i + 2 > size) { |
| pr_info("invalid number of input parameters %d\n", |
| size); |
| return -EINVAL; |
| } |
| |
| input_index = input[i]; |
| input_clk = input[i + 1]; |
| |
| if (input_index != 0 && input_index != 1) { |
| pr_info("Invalid index %d\n", input_index); |
| pr_info("Support min/max sclk frequency setting only which index by 0/1\n"); |
| return -EINVAL; |
| } |
| |
| if (input_clk < od8_settings[OD8_SETTING_GFXCLK_FMIN].min_value || |
| input_clk > od8_settings[OD8_SETTING_GFXCLK_FMAX].max_value) { |
| pr_info("clock freq %d is not within allowed range [%d - %d]\n", |
| input_clk, |
| od8_settings[OD8_SETTING_GFXCLK_FMIN].min_value, |
| od8_settings[OD8_SETTING_GFXCLK_FMAX].max_value); |
| return -EINVAL; |
| } |
| |
| if ((input_index == 0 && od_table->GfxclkFmin != input_clk) || |
| (input_index == 1 && od_table->GfxclkFmax != input_clk)) |
| data->gfxclk_overdrive = true; |
| |
| if (input_index == 0) |
| od_table->GfxclkFmin = input_clk; |
| else |
| od_table->GfxclkFmax = input_clk; |
| } |
| |
| break; |
| |
| case PP_OD_EDIT_MCLK_VDDC_TABLE: |
| if (!od8_settings[OD8_SETTING_UCLK_FMAX].feature_id) { |
| pr_info("Mclk max frequency overdrive not supported\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| ret = vega20_get_memclocks(hwmgr, &clocks); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Attempt to get memory clk levels failed!", |
| return ret); |
| |
| for (i = 0; i < size; i += 2) { |
| if (i + 2 > size) { |
| pr_info("invalid number of input parameters %d\n", |
| size); |
| return -EINVAL; |
| } |
| |
| input_index = input[i]; |
| input_clk = input[i + 1]; |
| |
| if (input_index != 1) { |
| pr_info("Invalid index %d\n", input_index); |
| pr_info("Support max Mclk frequency setting only which index by 1\n"); |
| return -EINVAL; |
| } |
| |
| if (input_clk < clocks.data[0].clocks_in_khz / 100 || |
| input_clk > od8_settings[OD8_SETTING_UCLK_FMAX].max_value) { |
| pr_info("clock freq %d is not within allowed range [%d - %d]\n", |
| input_clk, |
| clocks.data[0].clocks_in_khz / 100, |
| od8_settings[OD8_SETTING_UCLK_FMAX].max_value); |
| return -EINVAL; |
| } |
| |
| if (input_index == 1 && od_table->UclkFmax != input_clk) |
| data->memclk_overdrive = true; |
| |
| od_table->UclkFmax = input_clk; |
| } |
| |
| break; |
| |
| case PP_OD_EDIT_VDDC_CURVE: |
| if (!(od8_settings[OD8_SETTING_GFXCLK_FREQ1].feature_id && |
| od8_settings[OD8_SETTING_GFXCLK_FREQ2].feature_id && |
| od8_settings[OD8_SETTING_GFXCLK_FREQ3].feature_id && |
| od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id && |
| od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id && |
| od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id)) { |
| pr_info("Voltage curve calibrate not supported\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| for (i = 0; i < size; i += 3) { |
| if (i + 3 > size) { |
| pr_info("invalid number of input parameters %d\n", |
| size); |
| return -EINVAL; |
| } |
| |
| input_index = input[i]; |
| input_clk = input[i + 1]; |
| input_vol = input[i + 2]; |
| |
| if (input_index > 2) { |
| pr_info("Setting for point %d is not supported\n", |
| input_index + 1); |
| pr_info("Three supported points index by 0, 1, 2\n"); |
| return -EINVAL; |
| } |
| |
| od8_id = OD8_SETTING_GFXCLK_FREQ1 + 2 * input_index; |
| if (input_clk < od8_settings[od8_id].min_value || |
| input_clk > od8_settings[od8_id].max_value) { |
| pr_info("clock freq %d is not within allowed range [%d - %d]\n", |
| input_clk, |
| od8_settings[od8_id].min_value, |
| od8_settings[od8_id].max_value); |
| return -EINVAL; |
| } |
| |
| od8_id = OD8_SETTING_GFXCLK_VOLTAGE1 + 2 * input_index; |
| if (input_vol < od8_settings[od8_id].min_value || |
| input_vol > od8_settings[od8_id].max_value) { |
| pr_info("clock voltage %d is not within allowed range [%d - %d]\n", |
| input_vol, |
| od8_settings[od8_id].min_value, |
| od8_settings[od8_id].max_value); |
| return -EINVAL; |
| } |
| |
| switch (input_index) { |
| case 0: |
| od_table->GfxclkFreq1 = input_clk; |
| od_table->GfxclkVolt1 = input_vol * VOLTAGE_SCALE; |
| break; |
| case 1: |
| od_table->GfxclkFreq2 = input_clk; |
| od_table->GfxclkVolt2 = input_vol * VOLTAGE_SCALE; |
| break; |
| case 2: |
| od_table->GfxclkFreq3 = input_clk; |
| od_table->GfxclkVolt3 = input_vol * VOLTAGE_SCALE; |
| break; |
| } |
| } |
| break; |
| |
| case PP_OD_RESTORE_DEFAULT_TABLE: |
| data->gfxclk_overdrive = false; |
| data->memclk_overdrive = false; |
| |
| ret = vega20_copy_table_from_smc(hwmgr, |
| (uint8_t *)od_table, |
| TABLE_OVERDRIVE); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Failed to export overdrive table!", |
| return ret); |
| break; |
| |
| case PP_OD_COMMIT_DPM_TABLE: |
| ret = vega20_copy_table_to_smc(hwmgr, |
| (uint8_t *)od_table, |
| TABLE_OVERDRIVE); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Failed to import overdrive table!", |
| return ret); |
| |
| /* retrieve updated gfxclk table */ |
| if (data->gfxclk_overdrive) { |
| data->gfxclk_overdrive = false; |
| |
| ret = vega20_setup_gfxclk_dpm_table(hwmgr); |
| if (ret) |
| return ret; |
| } |
| |
| /* retrieve updated memclk table */ |
| if (data->memclk_overdrive) { |
| data->memclk_overdrive = false; |
| |
| ret = vega20_setup_memclk_dpm_table(hwmgr); |
| if (ret) |
| return ret; |
| } |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_print_clock_levels(struct pp_hwmgr *hwmgr, |
| enum pp_clock_type type, char *buf) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| struct vega20_od8_single_setting *od8_settings = |
| data->od8_settings.od8_settings_array; |
| OverDriveTable_t *od_table = |
| &(data->smc_state_table.overdrive_table); |
| struct pp_clock_levels_with_latency clocks; |
| int i, now, size = 0; |
| int ret = 0; |
| |
| switch (type) { |
| case PP_SCLK: |
| ret = vega20_get_current_gfx_clk_freq(hwmgr, &now); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Attempt to get current gfx clk Failed!", |
| return ret); |
| |
| ret = vega20_get_sclks(hwmgr, &clocks); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Attempt to get gfx clk levels Failed!", |
| return ret); |
| |
| for (i = 0; i < clocks.num_levels; i++) |
| size += sprintf(buf + size, "%d: %uMhz %s\n", |
| i, clocks.data[i].clocks_in_khz / 100, |
| (clocks.data[i].clocks_in_khz == now) ? "*" : ""); |
| break; |
| |
| case PP_MCLK: |
| ret = vega20_get_current_mclk_freq(hwmgr, &now); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Attempt to get current mclk freq Failed!", |
| return ret); |
| |
| ret = vega20_get_memclocks(hwmgr, &clocks); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Attempt to get memory clk levels Failed!", |
| return ret); |
| |
| for (i = 0; i < clocks.num_levels; i++) |
| size += sprintf(buf + size, "%d: %uMhz %s\n", |
| i, clocks.data[i].clocks_in_khz / 100, |
| (clocks.data[i].clocks_in_khz == now) ? "*" : ""); |
| break; |
| |
| case PP_PCIE: |
| break; |
| |
| case OD_SCLK: |
| if (od8_settings[OD8_SETTING_GFXCLK_FMIN].feature_id && |
| od8_settings[OD8_SETTING_GFXCLK_FMAX].feature_id) { |
| size = sprintf(buf, "%s:\n", "OD_SCLK"); |
| size += sprintf(buf + size, "0: %10uMhz\n", |
| od_table->GfxclkFmin); |
| size += sprintf(buf + size, "1: %10uMhz\n", |
| od_table->GfxclkFmax); |
| } |
| break; |
| |
| case OD_MCLK: |
| if (od8_settings[OD8_SETTING_UCLK_FMAX].feature_id) { |
| size = sprintf(buf, "%s:\n", "OD_MCLK"); |
| size += sprintf(buf + size, "1: %10uMhz\n", |
| od_table->UclkFmax); |
| } |
| |
| break; |
| |
| case OD_VDDC_CURVE: |
| if (od8_settings[OD8_SETTING_GFXCLK_FREQ1].feature_id && |
| od8_settings[OD8_SETTING_GFXCLK_FREQ2].feature_id && |
| od8_settings[OD8_SETTING_GFXCLK_FREQ3].feature_id && |
| od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id && |
| od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id && |
| od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id) { |
| size = sprintf(buf, "%s:\n", "OD_VDDC_CURVE"); |
| size += sprintf(buf + size, "0: %10uMhz %10dmV\n", |
| od_table->GfxclkFreq1, |
| od_table->GfxclkVolt1 / VOLTAGE_SCALE); |
| size += sprintf(buf + size, "1: %10uMhz %10dmV\n", |
| od_table->GfxclkFreq2, |
| od_table->GfxclkVolt2 / VOLTAGE_SCALE); |
| size += sprintf(buf + size, "2: %10uMhz %10dmV\n", |
| od_table->GfxclkFreq3, |
| od_table->GfxclkVolt3 / VOLTAGE_SCALE); |
| } |
| |
| break; |
| |
| case OD_RANGE: |
| size = sprintf(buf, "%s:\n", "OD_RANGE"); |
| |
| if (od8_settings[OD8_SETTING_GFXCLK_FMIN].feature_id && |
| od8_settings[OD8_SETTING_GFXCLK_FMAX].feature_id) { |
| size += sprintf(buf + size, "SCLK: %7uMhz %10uMhz\n", |
| od8_settings[OD8_SETTING_GFXCLK_FMIN].min_value, |
| od8_settings[OD8_SETTING_GFXCLK_FMAX].max_value); |
| } |
| |
| if (od8_settings[OD8_SETTING_UCLK_FMAX].feature_id) { |
| ret = vega20_get_memclocks(hwmgr, &clocks); |
| PP_ASSERT_WITH_CODE(!ret, |
| "Fail to get memory clk levels!", |
| return ret); |
| |
| size += sprintf(buf + size, "MCLK: %7uMhz %10uMhz\n", |
| clocks.data[0].clocks_in_khz / 100, |
| od8_settings[OD8_SETTING_UCLK_FMAX].max_value); |
| } |
| |
| if (od8_settings[OD8_SETTING_GFXCLK_FREQ1].feature_id && |
| od8_settings[OD8_SETTING_GFXCLK_FREQ2].feature_id && |
| od8_settings[OD8_SETTING_GFXCLK_FREQ3].feature_id && |
| od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id && |
| od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id && |
| od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id) { |
| size += sprintf(buf + size, "VDDC_CURVE_SCLK[0]: %7uMhz %10uMhz\n", |
| od8_settings[OD8_SETTING_GFXCLK_FREQ1].min_value, |
| od8_settings[OD8_SETTING_GFXCLK_FREQ1].max_value); |
| size += sprintf(buf + size, "VDDC_CURVE_VOLT[0]: %7dmV %11dmV\n", |
| od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].min_value, |
| od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].max_value); |
| size += sprintf(buf + size, "VDDC_CURVE_SCLK[1]: %7uMhz %10uMhz\n", |
| od8_settings[OD8_SETTING_GFXCLK_FREQ2].min_value, |
| od8_settings[OD8_SETTING_GFXCLK_FREQ2].max_value); |
| size += sprintf(buf + size, "VDDC_CURVE_VOLT[1]: %7dmV %11dmV\n", |
| od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].min_value, |
| od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].max_value); |
| size += sprintf(buf + size, "VDDC_CURVE_SCLK[2]: %7uMhz %10uMhz\n", |
| od8_settings[OD8_SETTING_GFXCLK_FREQ3].min_value, |
| od8_settings[OD8_SETTING_GFXCLK_FREQ3].max_value); |
| size += sprintf(buf + size, "VDDC_CURVE_VOLT[2]: %7dmV %11dmV\n", |
| od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].min_value, |
| od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].max_value); |
| } |
| |
| break; |
| default: |
| break; |
| } |
| return size; |
| } |
| |
| static int vega20_set_uclk_to_highest_dpm_level(struct pp_hwmgr *hwmgr, |
| struct vega20_single_dpm_table *dpm_table) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| int ret = 0; |
| |
| if (data->smu_features[GNLD_DPM_UCLK].enabled) { |
| PP_ASSERT_WITH_CODE(dpm_table->count > 0, |
| "[SetUclkToHightestDpmLevel] Dpm table has no entry!", |
| return -EINVAL); |
| PP_ASSERT_WITH_CODE(dpm_table->count <= NUM_UCLK_DPM_LEVELS, |
| "[SetUclkToHightestDpmLevel] Dpm table has too many entries!", |
| return -EINVAL); |
| |
| dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetHardMinByFreq, |
| (PPCLK_UCLK << 16 ) | dpm_table->dpm_state.hard_min_level)), |
| "[SetUclkToHightestDpmLevel] Set hard min uclk failed!", |
| return ret); |
| } |
| |
| return ret; |
| } |
| |
| static int vega20_pre_display_configuration_changed_task(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| int ret = 0; |
| |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_NumOfDisplays, 0); |
| |
| ret = vega20_set_uclk_to_highest_dpm_level(hwmgr, |
| &data->dpm_table.mem_table); |
| |
| return ret; |
| } |
| |
| static int vega20_display_configuration_changed_task(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| int result = 0; |
| Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table); |
| |
| if ((data->water_marks_bitmap & WaterMarksExist) && |
| !(data->water_marks_bitmap & WaterMarksLoaded)) { |
| result = vega20_copy_table_to_smc(hwmgr, |
| (uint8_t *)wm_table, TABLE_WATERMARKS); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to update WMTABLE!", |
| return result); |
| data->water_marks_bitmap |= WaterMarksLoaded; |
| } |
| |
| if ((data->water_marks_bitmap & WaterMarksExist) && |
| data->smu_features[GNLD_DPM_DCEFCLK].supported && |
| data->smu_features[GNLD_DPM_SOCCLK].supported) { |
| result = smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_NumOfDisplays, |
| hwmgr->display_config->num_display); |
| } |
| |
| return result; |
| } |
| |
| int vega20_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable) |
| { |
| struct vega20_hwmgr *data = |
| (struct vega20_hwmgr *)(hwmgr->backend); |
| int ret = 0; |
| |
| if (data->smu_features[GNLD_DPM_UVD].supported) { |
| if (data->smu_features[GNLD_DPM_UVD].enabled == enable) { |
| if (enable) |
| PP_DBG_LOG("[EnableDisableUVDDPM] feature DPM UVD already enabled!\n"); |
| else |
| PP_DBG_LOG("[EnableDisableUVDDPM] feature DPM UVD already disabled!\n"); |
| } |
| |
| ret = vega20_enable_smc_features(hwmgr, |
| enable, |
| data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[EnableDisableUVDDPM] Attempt to Enable/Disable DPM UVD Failed!", |
| return ret); |
| data->smu_features[GNLD_DPM_UVD].enabled = enable; |
| } |
| |
| return 0; |
| } |
| |
| static void vega20_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| |
| if (data->vce_power_gated == bgate) |
| return ; |
| |
| data->vce_power_gated = bgate; |
| vega20_enable_disable_vce_dpm(hwmgr, !bgate); |
| } |
| |
| static void vega20_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| |
| if (data->uvd_power_gated == bgate) |
| return ; |
| |
| data->uvd_power_gated = bgate; |
| vega20_enable_disable_uvd_dpm(hwmgr, !bgate); |
| } |
| |
| static int vega20_apply_clocks_adjust_rules(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| struct vega20_single_dpm_table *dpm_table; |
| bool vblank_too_short = false; |
| bool disable_mclk_switching; |
| uint32_t i, latency; |
| |
| disable_mclk_switching = ((1 < hwmgr->display_config->num_display) && |
| !hwmgr->display_config->multi_monitor_in_sync) || |
| vblank_too_short; |
| latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency; |
| |
| /* gfxclk */ |
| dpm_table = &(data->dpm_table.gfx_table); |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| |
| if (PP_CAP(PHM_PlatformCaps_UMDPState)) { |
| if (VEGA20_UMD_PSTATE_GFXCLK_LEVEL < dpm_table->count) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value; |
| } |
| |
| if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value; |
| } |
| |
| if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| } |
| } |
| |
| /* memclk */ |
| dpm_table = &(data->dpm_table.mem_table); |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| |
| if (PP_CAP(PHM_PlatformCaps_UMDPState)) { |
| if (VEGA20_UMD_PSTATE_MCLK_LEVEL < dpm_table->count) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value; |
| } |
| |
| if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value; |
| } |
| |
| if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| } |
| } |
| |
| /* honour DAL's UCLK Hardmin */ |
| if (dpm_table->dpm_state.hard_min_level < (hwmgr->display_config->min_mem_set_clock / 100)) |
| dpm_table->dpm_state.hard_min_level = hwmgr->display_config->min_mem_set_clock / 100; |
| |
| /* Hardmin is dependent on displayconfig */ |
| if (disable_mclk_switching) { |
| dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| for (i = 0; i < data->mclk_latency_table.count - 1; i++) { |
| if (data->mclk_latency_table.entries[i].latency <= latency) { |
| if (dpm_table->dpm_levels[i].value >= (hwmgr->display_config->min_mem_set_clock / 100)) { |
| dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[i].value; |
| break; |
| } |
| } |
| } |
| } |
| |
| if (hwmgr->display_config->nb_pstate_switch_disable) |
| dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| |
| /* vclk */ |
| dpm_table = &(data->dpm_table.vclk_table); |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| |
| if (PP_CAP(PHM_PlatformCaps_UMDPState)) { |
| if (VEGA20_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value; |
| } |
| |
| if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| } |
| } |
| |
| /* dclk */ |
| dpm_table = &(data->dpm_table.dclk_table); |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| |
| if (PP_CAP(PHM_PlatformCaps_UMDPState)) { |
| if (VEGA20_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value; |
| } |
| |
| if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| } |
| } |
| |
| /* socclk */ |
| dpm_table = &(data->dpm_table.soc_table); |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| |
| if (PP_CAP(PHM_PlatformCaps_UMDPState)) { |
| if (VEGA20_UMD_PSTATE_SOCCLK_LEVEL < dpm_table->count) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_SOCCLK_LEVEL].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_SOCCLK_LEVEL].value; |
| } |
| |
| if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| } |
| } |
| |
| /* eclk */ |
| dpm_table = &(data->dpm_table.eclk_table); |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| |
| if (PP_CAP(PHM_PlatformCaps_UMDPState)) { |
| if (VEGA20_UMD_PSTATE_VCEMCLK_LEVEL < dpm_table->count) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_VCEMCLK_LEVEL].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_VCEMCLK_LEVEL].value; |
| } |
| |
| if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static bool |
| vega20_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| bool is_update_required = false; |
| |
| if (data->display_timing.num_existing_displays != |
| hwmgr->display_config->num_display) |
| is_update_required = true; |
| |
| if (data->registry_data.gfx_clk_deep_sleep_support && |
| (data->display_timing.min_clock_in_sr != |
| hwmgr->display_config->min_core_set_clock_in_sr)) |
| is_update_required = true; |
| |
| return is_update_required; |
| } |
| |
| static int vega20_disable_dpm_tasks(struct pp_hwmgr *hwmgr) |
| { |
| int ret = 0; |
| |
| ret = vega20_disable_all_smu_features(hwmgr); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[DisableDpmTasks] Failed to disable all smu features!", |
| return ret); |
| |
| return 0; |
| } |
| |
| static int vega20_power_off_asic(struct pp_hwmgr *hwmgr) |
| { |
| struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); |
| int result; |
| |
| result = vega20_disable_dpm_tasks(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "[PowerOffAsic] Failed to disable DPM!", |
| ); |
| data->water_marks_bitmap &= ~(WaterMarksLoaded); |
| |
| return result; |
| } |
| |
| static int vega20_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf) |
| { |
| DpmActivityMonitorCoeffInt_t activity_monitor; |
| uint32_t i, size = 0; |
| uint16_t workload_type = 0; |
| static const char *profile_name[] = { |
| "3D_FULL_SCREEN", |
| "POWER_SAVING", |
| "VIDEO", |
| "VR", |
| "COMPUTE", |
| "CUSTOM"}; |
| static const char *title[] = { |
| "PROFILE_INDEX(NAME)", |
| "CLOCK_TYPE(NAME)", |
| "FPS", |
| "UseRlcBusy", |
| "MinActiveFreqType", |
| "MinActiveFreq", |
| "BoosterFreqType", |
| "BoosterFreq", |
| "PD_Data_limit_c", |
| "PD_Data_error_coeff", |
| "PD_Data_error_rate_coeff"}; |
| int result = 0; |
| |
| if (!buf) |
| return -EINVAL; |
| |
| size += sprintf(buf + size, "%16s %s %s %s %s %s %s %s %s %s %s\n", |
| title[0], title[1], title[2], title[3], title[4], title[5], |
| title[6], title[7], title[8], title[9], title[10]); |
| |
| for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) { |
| /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ |
| workload_type = i + 1; |
| result = vega20_get_activity_monitor_coeff(hwmgr, |
| (uint8_t *)(&activity_monitor), workload_type); |
| PP_ASSERT_WITH_CODE(!result, |
| "[GetPowerProfile] Failed to get activity monitor!", |
| return result); |
| |
| size += sprintf(buf + size, "%2d(%14s%s)\n", |
| i, profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " "); |
| |
| size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", |
| " ", |
| 0, |
| "GFXCLK", |
| activity_monitor.Gfx_FPS, |
| activity_monitor.Gfx_UseRlcBusy, |
| activity_monitor.Gfx_MinActiveFreqType, |
| activity_monitor.Gfx_MinActiveFreq, |
| activity_monitor.Gfx_BoosterFreqType, |
| activity_monitor.Gfx_BoosterFreq, |
| activity_monitor.Gfx_PD_Data_limit_c, |
| activity_monitor.Gfx_PD_Data_error_coeff, |
| activity_monitor.Gfx_PD_Data_error_rate_coeff); |
| |
| size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", |
| " ", |
| 1, |
| "SOCCLK", |
| activity_monitor.Soc_FPS, |
| activity_monitor.Soc_UseRlcBusy, |
| activity_monitor.Soc_MinActiveFreqType, |
| activity_monitor.Soc_MinActiveFreq, |
| activity_monitor.Soc_BoosterFreqType, |
| activity_monitor.Soc_BoosterFreq, |
| activity_monitor.Soc_PD_Data_limit_c, |
| activity_monitor.Soc_PD_Data_error_coeff, |
| activity_monitor.Soc_PD_Data_error_rate_coeff); |
| |
| size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", |
| " ", |
| 2, |
| "UCLK", |
| activity_monitor.Mem_FPS, |
| activity_monitor.Mem_UseRlcBusy, |
| activity_monitor.Mem_MinActiveFreqType, |
| activity_monitor.Mem_MinActiveFreq, |
| activity_monitor.Mem_BoosterFreqType, |
| activity_monitor.Mem_BoosterFreq, |
| activity_monitor.Mem_PD_Data_limit_c, |
| activity_monitor.Mem_PD_Data_error_coeff, |
| activity_monitor.Mem_PD_Data_error_rate_coeff); |
| |
| size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", |
| " ", |
| 3, |
| "FCLK", |
| activity_monitor.Fclk_FPS, |
| activity_monitor.Fclk_UseRlcBusy, |
| activity_monitor.Fclk_MinActiveFreqType, |
| activity_monitor.Fclk_MinActiveFreq, |
| activity_monitor.Fclk_BoosterFreqType, |
| activity_monitor.Fclk_BoosterFreq, |
| activity_monitor.Fclk_PD_Data_limit_c, |
| activity_monitor.Fclk_PD_Data_error_coeff, |
| activity_monitor.Fclk_PD_Data_error_rate_coeff); |
| } |
| |
| return size; |
| } |
| |
| static int vega20_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size) |
| { |
| DpmActivityMonitorCoeffInt_t activity_monitor; |
| int result = 0; |
| |
| hwmgr->power_profile_mode = input[size]; |
| |
| if (hwmgr->power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { |
| if (size < 10) |
| return -EINVAL; |
| |
| result = vega20_get_activity_monitor_coeff(hwmgr, |
| (uint8_t *)(&activity_monitor), |
| WORKLOAD_PPLIB_CUSTOM_BIT); |
| PP_ASSERT_WITH_CODE(!result, |
| "[SetPowerProfile] Failed to get activity monitor!", |
| return result); |
| |
| switch (input[0]) { |
| case 0: /* Gfxclk */ |
| activity_monitor.Gfx_FPS = input[1]; |
| activity_monitor.Gfx_UseRlcBusy = input[2]; |
| activity_monitor.Gfx_MinActiveFreqType = input[3]; |
| activity_monitor.Gfx_MinActiveFreq = input[4]; |
| activity_monitor.Gfx_BoosterFreqType = input[5]; |
| activity_monitor.Gfx_BoosterFreq = input[6]; |
| activity_monitor.Gfx_PD_Data_limit_c = input[7]; |
| activity_monitor.Gfx_PD_Data_error_coeff = input[8]; |
| activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9]; |
| break; |
| case 1: /* Socclk */ |
| activity_monitor.Soc_FPS = input[1]; |
| activity_monitor.Soc_UseRlcBusy = input[2]; |
| activity_monitor.Soc_MinActiveFreqType = input[3]; |
| activity_monitor.Soc_MinActiveFreq = input[4]; |
| activity_monitor.Soc_BoosterFreqType = input[5]; |
| activity_monitor.Soc_BoosterFreq = input[6]; |
| activity_monitor.Soc_PD_Data_limit_c = input[7]; |
| activity_monitor.Soc_PD_Data_error_coeff = input[8]; |
| activity_monitor.Soc_PD_Data_error_rate_coeff = input[9]; |
| break; |
| case 2: /* Uclk */ |
| activity_monitor.Mem_FPS = input[1]; |
| activity_monitor.Mem_UseRlcBusy = input[2]; |
| activity_monitor.Mem_MinActiveFreqType = input[3]; |
| activity_monitor.Mem_MinActiveFreq = input[4]; |
| activity_monitor.Mem_BoosterFreqType = input[5]; |
| activity_monitor.Mem_BoosterFreq = input[6]; |
| activity_monitor.Mem_PD_Data_limit_c = input[7]; |
| activity_monitor.Mem_PD_Data_error_coeff = input[8]; |
| activity_monitor.Mem_PD_Data_error_rate_coeff = input[9]; |
| break; |
| case 3: /* Fclk */ |
| activity_monitor.Fclk_FPS = input[1]; |
| activity_monitor.Fclk_UseRlcBusy = input[2]; |
| activity_monitor.Fclk_MinActiveFreqType = input[3]; |
| activity_monitor.Fclk_MinActiveFreq = input[4]; |
| activity_monitor.Fclk_BoosterFreqType = input[5]; |
| activity_monitor.Fclk_BoosterFreq = input[6]; |
| activity_monitor.Fclk_PD_Data_limit_c = input[7]; |
| activity_monitor.Fclk_PD_Data_error_coeff = input[8]; |
| activity_monitor.Fclk_PD_Data_error_rate_coeff = input[9]; |
| break; |
| } |
| |
| result = vega20_set_activity_monitor_coeff(hwmgr, |
| (uint8_t *)(&activity_monitor), |
| WORKLOAD_PPLIB_CUSTOM_BIT); |
| PP_ASSERT_WITH_CODE(!result, |
| "[SetPowerProfile] Failed to set activity monitor!", |
| return result); |
| } |
| |
| smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask, |
| 1 << hwmgr->power_profile_mode); |
| |
| return 0; |
| } |
| |
| static int vega20_notify_cac_buffer_info(struct pp_hwmgr *hwmgr, |
| uint32_t virtual_addr_low, |
| uint32_t virtual_addr_hi, |
| uint32_t mc_addr_low, |
| uint32_t mc_addr_hi, |
| uint32_t size) |
| { |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetSystemVirtualDramAddrHigh, |
| virtual_addr_hi); |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetSystemVirtualDramAddrLow, |
| virtual_addr_low); |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_DramLogSetDramAddrHigh, |
| mc_addr_hi); |
| |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_DramLogSetDramAddrLow, |
| mc_addr_low); |
| |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_DramLogSetDramSize, |
| size); |
| return 0; |
| } |
| |
| static int vega20_get_thermal_temperature_range(struct pp_hwmgr *hwmgr, |
| struct PP_TemperatureRange *thermal_data) |
| { |
| struct phm_ppt_v3_information *pptable_information = |
| (struct phm_ppt_v3_information *)hwmgr->pptable; |
| |
| memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange)); |
| |
| thermal_data->max = pptable_information->us_software_shutdown_temp * |
| PP_TEMPERATURE_UNITS_PER_CENTIGRADES; |
| |
| return 0; |
| } |
| |
| static const struct pp_hwmgr_func vega20_hwmgr_funcs = { |
| /* init/fini related */ |
| .backend_init = |
| vega20_hwmgr_backend_init, |
| .backend_fini = |
| vega20_hwmgr_backend_fini, |
| .asic_setup = |
| vega20_setup_asic_task, |
| .power_off_asic = |
| vega20_power_off_asic, |
| .dynamic_state_management_enable = |
| vega20_enable_dpm_tasks, |
| .dynamic_state_management_disable = |
| vega20_disable_dpm_tasks, |
| /* power state related */ |
| .apply_clocks_adjust_rules = |
| vega20_apply_clocks_adjust_rules, |
| .pre_display_config_changed = |
| vega20_pre_display_configuration_changed_task, |
| .display_config_changed = |
| vega20_display_configuration_changed_task, |
| .check_smc_update_required_for_display_configuration = |
| vega20_check_smc_update_required_for_display_configuration, |
| .notify_smc_display_config_after_ps_adjustment = |
| vega20_notify_smc_display_config_after_ps_adjustment, |
| /* export to DAL */ |
| .get_sclk = |
| vega20_dpm_get_sclk, |
| .get_mclk = |
| vega20_dpm_get_mclk, |
| .get_dal_power_level = |
| vega20_get_dal_power_level, |
| .get_clock_by_type_with_latency = |
| vega20_get_clock_by_type_with_latency, |
| .get_clock_by_type_with_voltage = |
| vega20_get_clock_by_type_with_voltage, |
| .set_watermarks_for_clocks_ranges = |
| vega20_set_watermarks_for_clocks_ranges, |
| .display_clock_voltage_request = |
| vega20_display_clock_voltage_request, |
| /* UMD pstate, profile related */ |
| .force_dpm_level = |
| vega20_dpm_force_dpm_level, |
| .get_power_profile_mode = |
| vega20_get_power_profile_mode, |
| .set_power_profile_mode = |
| vega20_set_power_profile_mode, |
| /* od related */ |
| .set_power_limit = |
| vega20_set_power_limit, |
| .get_sclk_od = |
| vega20_get_sclk_od, |
| .set_sclk_od = |
| vega20_set_sclk_od, |
| .get_mclk_od = |
| vega20_get_mclk_od, |
| .set_mclk_od = |
| vega20_set_mclk_od, |
| .odn_edit_dpm_table = |
| vega20_odn_edit_dpm_table, |
| /* for sysfs to retrive/set gfxclk/memclk */ |
| .force_clock_level = |
| vega20_force_clock_level, |
| .print_clock_levels = |
| vega20_print_clock_levels, |
| .read_sensor = |
| vega20_read_sensor, |
| /* powergate related */ |
| .powergate_uvd = |
| vega20_power_gate_uvd, |
| .powergate_vce = |
| vega20_power_gate_vce, |
| /* thermal related */ |
| .start_thermal_controller = |
| vega20_start_thermal_controller, |
| .stop_thermal_controller = |
| vega20_thermal_stop_thermal_controller, |
| .get_thermal_temperature_range = |
| vega20_get_thermal_temperature_range, |
| .register_irq_handlers = |
| smu9_register_irq_handlers, |
| .disable_smc_firmware_ctf = |
| vega20_thermal_disable_alert, |
| /* fan control related */ |
| .get_fan_speed_info = |
| vega20_fan_ctrl_get_fan_speed_info, |
| .get_fan_speed_rpm = |
| vega20_fan_ctrl_get_fan_speed_rpm, |
| .get_fan_control_mode = |
| vega20_get_fan_control_mode, |
| /* smu memory related */ |
| .notify_cac_buffer_info = |
| vega20_notify_cac_buffer_info, |
| }; |
| |
| int vega20_hwmgr_init(struct pp_hwmgr *hwmgr) |
| { |
| hwmgr->hwmgr_func = &vega20_hwmgr_funcs; |
| hwmgr->pptable_func = &vega20_pptable_funcs; |
| |
| return 0; |
| } |