| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * |
| * Copyright (c) 2014 Samsung Electronics Co., Ltd. |
| * Author: Andrey Ryabinin <a.ryabinin@samsung.com> |
| */ |
| |
| #define pr_fmt(fmt) "kasan test: %s " fmt, __func__ |
| |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| #include <linux/kasan.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/mman.h> |
| #include <linux/module.h> |
| #include <linux/printk.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/uaccess.h> |
| #include <linux/io.h> |
| #include <linux/vmalloc.h> |
| |
| #include <asm/page.h> |
| |
| /* |
| * Note: test functions are marked noinline so that their names appear in |
| * reports. |
| */ |
| |
| static noinline void __init kmalloc_oob_right(void) |
| { |
| char *ptr; |
| size_t size = 123; |
| |
| pr_info("out-of-bounds to right\n"); |
| ptr = kmalloc(size, GFP_KERNEL); |
| if (!ptr) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| |
| ptr[size] = 'x'; |
| kfree(ptr); |
| } |
| |
| static noinline void __init kmalloc_oob_left(void) |
| { |
| char *ptr; |
| size_t size = 15; |
| |
| pr_info("out-of-bounds to left\n"); |
| ptr = kmalloc(size, GFP_KERNEL); |
| if (!ptr) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| |
| *ptr = *(ptr - 1); |
| kfree(ptr); |
| } |
| |
| static noinline void __init kmalloc_node_oob_right(void) |
| { |
| char *ptr; |
| size_t size = 4096; |
| |
| pr_info("kmalloc_node(): out-of-bounds to right\n"); |
| ptr = kmalloc_node(size, GFP_KERNEL, 0); |
| if (!ptr) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| |
| ptr[size] = 0; |
| kfree(ptr); |
| } |
| |
| #ifdef CONFIG_SLUB |
| static noinline void __init kmalloc_pagealloc_oob_right(void) |
| { |
| char *ptr; |
| size_t size = KMALLOC_MAX_CACHE_SIZE + 10; |
| |
| /* Allocate a chunk that does not fit into a SLUB cache to trigger |
| * the page allocator fallback. |
| */ |
| pr_info("kmalloc pagealloc allocation: out-of-bounds to right\n"); |
| ptr = kmalloc(size, GFP_KERNEL); |
| if (!ptr) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| |
| ptr[size] = 0; |
| kfree(ptr); |
| } |
| |
| static noinline void __init kmalloc_pagealloc_uaf(void) |
| { |
| char *ptr; |
| size_t size = KMALLOC_MAX_CACHE_SIZE + 10; |
| |
| pr_info("kmalloc pagealloc allocation: use-after-free\n"); |
| ptr = kmalloc(size, GFP_KERNEL); |
| if (!ptr) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| |
| kfree(ptr); |
| ptr[0] = 0; |
| } |
| |
| static noinline void __init kmalloc_pagealloc_invalid_free(void) |
| { |
| char *ptr; |
| size_t size = KMALLOC_MAX_CACHE_SIZE + 10; |
| |
| pr_info("kmalloc pagealloc allocation: invalid-free\n"); |
| ptr = kmalloc(size, GFP_KERNEL); |
| if (!ptr) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| |
| kfree(ptr + 1); |
| } |
| #endif |
| |
| static noinline void __init kmalloc_large_oob_right(void) |
| { |
| char *ptr; |
| size_t size = KMALLOC_MAX_CACHE_SIZE - 256; |
| /* Allocate a chunk that is large enough, but still fits into a slab |
| * and does not trigger the page allocator fallback in SLUB. |
| */ |
| pr_info("kmalloc large allocation: out-of-bounds to right\n"); |
| ptr = kmalloc(size, GFP_KERNEL); |
| if (!ptr) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| |
| ptr[size] = 0; |
| kfree(ptr); |
| } |
| |
| static noinline void __init kmalloc_oob_krealloc_more(void) |
| { |
| char *ptr1, *ptr2; |
| size_t size1 = 17; |
| size_t size2 = 19; |
| |
| pr_info("out-of-bounds after krealloc more\n"); |
| ptr1 = kmalloc(size1, GFP_KERNEL); |
| ptr2 = krealloc(ptr1, size2, GFP_KERNEL); |
| if (!ptr1 || !ptr2) { |
| pr_err("Allocation failed\n"); |
| kfree(ptr1); |
| kfree(ptr2); |
| return; |
| } |
| |
| ptr2[size2] = 'x'; |
| kfree(ptr2); |
| } |
| |
| static noinline void __init kmalloc_oob_krealloc_less(void) |
| { |
| char *ptr1, *ptr2; |
| size_t size1 = 17; |
| size_t size2 = 15; |
| |
| pr_info("out-of-bounds after krealloc less\n"); |
| ptr1 = kmalloc(size1, GFP_KERNEL); |
| ptr2 = krealloc(ptr1, size2, GFP_KERNEL); |
| if (!ptr1 || !ptr2) { |
| pr_err("Allocation failed\n"); |
| kfree(ptr1); |
| return; |
| } |
| ptr2[size2] = 'x'; |
| kfree(ptr2); |
| } |
| |
| static noinline void __init kmalloc_oob_16(void) |
| { |
| struct { |
| u64 words[2]; |
| } *ptr1, *ptr2; |
| |
| pr_info("kmalloc out-of-bounds for 16-bytes access\n"); |
| ptr1 = kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL); |
| ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL); |
| if (!ptr1 || !ptr2) { |
| pr_err("Allocation failed\n"); |
| kfree(ptr1); |
| kfree(ptr2); |
| return; |
| } |
| *ptr1 = *ptr2; |
| kfree(ptr1); |
| kfree(ptr2); |
| } |
| |
| static noinline void __init kmalloc_oob_memset_2(void) |
| { |
| char *ptr; |
| size_t size = 8; |
| |
| pr_info("out-of-bounds in memset2\n"); |
| ptr = kmalloc(size, GFP_KERNEL); |
| if (!ptr) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| |
| memset(ptr+7, 0, 2); |
| kfree(ptr); |
| } |
| |
| static noinline void __init kmalloc_oob_memset_4(void) |
| { |
| char *ptr; |
| size_t size = 8; |
| |
| pr_info("out-of-bounds in memset4\n"); |
| ptr = kmalloc(size, GFP_KERNEL); |
| if (!ptr) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| |
| memset(ptr+5, 0, 4); |
| kfree(ptr); |
| } |
| |
| |
| static noinline void __init kmalloc_oob_memset_8(void) |
| { |
| char *ptr; |
| size_t size = 8; |
| |
| pr_info("out-of-bounds in memset8\n"); |
| ptr = kmalloc(size, GFP_KERNEL); |
| if (!ptr) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| |
| memset(ptr+1, 0, 8); |
| kfree(ptr); |
| } |
| |
| static noinline void __init kmalloc_oob_memset_16(void) |
| { |
| char *ptr; |
| size_t size = 16; |
| |
| pr_info("out-of-bounds in memset16\n"); |
| ptr = kmalloc(size, GFP_KERNEL); |
| if (!ptr) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| |
| memset(ptr+1, 0, 16); |
| kfree(ptr); |
| } |
| |
| static noinline void __init kmalloc_oob_in_memset(void) |
| { |
| char *ptr; |
| size_t size = 666; |
| |
| pr_info("out-of-bounds in memset\n"); |
| ptr = kmalloc(size, GFP_KERNEL); |
| if (!ptr) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| |
| memset(ptr, 0, size+5); |
| kfree(ptr); |
| } |
| |
| static noinline void __init kmalloc_uaf(void) |
| { |
| char *ptr; |
| size_t size = 10; |
| |
| pr_info("use-after-free\n"); |
| ptr = kmalloc(size, GFP_KERNEL); |
| if (!ptr) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| |
| kfree(ptr); |
| *(ptr + 8) = 'x'; |
| } |
| |
| static noinline void __init kmalloc_uaf_memset(void) |
| { |
| char *ptr; |
| size_t size = 33; |
| |
| pr_info("use-after-free in memset\n"); |
| ptr = kmalloc(size, GFP_KERNEL); |
| if (!ptr) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| |
| kfree(ptr); |
| memset(ptr, 0, size); |
| } |
| |
| static noinline void __init kmalloc_uaf2(void) |
| { |
| char *ptr1, *ptr2; |
| size_t size = 43; |
| |
| pr_info("use-after-free after another kmalloc\n"); |
| ptr1 = kmalloc(size, GFP_KERNEL); |
| if (!ptr1) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| |
| kfree(ptr1); |
| ptr2 = kmalloc(size, GFP_KERNEL); |
| if (!ptr2) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| |
| ptr1[40] = 'x'; |
| if (ptr1 == ptr2) |
| pr_err("Could not detect use-after-free: ptr1 == ptr2\n"); |
| kfree(ptr2); |
| } |
| |
| static noinline void __init kfree_via_page(void) |
| { |
| char *ptr; |
| size_t size = 8; |
| struct page *page; |
| unsigned long offset; |
| |
| pr_info("invalid-free false positive (via page)\n"); |
| ptr = kmalloc(size, GFP_KERNEL); |
| if (!ptr) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| |
| page = virt_to_page(ptr); |
| offset = offset_in_page(ptr); |
| kfree(page_address(page) + offset); |
| } |
| |
| static noinline void __init kfree_via_phys(void) |
| { |
| char *ptr; |
| size_t size = 8; |
| phys_addr_t phys; |
| |
| pr_info("invalid-free false positive (via phys)\n"); |
| ptr = kmalloc(size, GFP_KERNEL); |
| if (!ptr) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| |
| phys = virt_to_phys(ptr); |
| kfree(phys_to_virt(phys)); |
| } |
| |
| static noinline void __init kmem_cache_oob(void) |
| { |
| char *p; |
| size_t size = 200; |
| struct kmem_cache *cache = kmem_cache_create("test_cache", |
| size, 0, |
| 0, NULL); |
| if (!cache) { |
| pr_err("Cache allocation failed\n"); |
| return; |
| } |
| pr_info("out-of-bounds in kmem_cache_alloc\n"); |
| p = kmem_cache_alloc(cache, GFP_KERNEL); |
| if (!p) { |
| pr_err("Allocation failed\n"); |
| kmem_cache_destroy(cache); |
| return; |
| } |
| |
| *p = p[size]; |
| kmem_cache_free(cache, p); |
| kmem_cache_destroy(cache); |
| } |
| |
| static noinline void __init memcg_accounted_kmem_cache(void) |
| { |
| int i; |
| char *p; |
| size_t size = 200; |
| struct kmem_cache *cache; |
| |
| cache = kmem_cache_create("test_cache", size, 0, SLAB_ACCOUNT, NULL); |
| if (!cache) { |
| pr_err("Cache allocation failed\n"); |
| return; |
| } |
| |
| pr_info("allocate memcg accounted object\n"); |
| /* |
| * Several allocations with a delay to allow for lazy per memcg kmem |
| * cache creation. |
| */ |
| for (i = 0; i < 5; i++) { |
| p = kmem_cache_alloc(cache, GFP_KERNEL); |
| if (!p) |
| goto free_cache; |
| |
| kmem_cache_free(cache, p); |
| msleep(100); |
| } |
| |
| free_cache: |
| kmem_cache_destroy(cache); |
| } |
| |
| static char global_array[10]; |
| |
| static noinline void __init kasan_global_oob(void) |
| { |
| volatile int i = 3; |
| char *p = &global_array[ARRAY_SIZE(global_array) + i]; |
| |
| pr_info("out-of-bounds global variable\n"); |
| *(volatile char *)p; |
| } |
| |
| static noinline void __init kasan_stack_oob(void) |
| { |
| char stack_array[10]; |
| volatile int i = 0; |
| char *p = &stack_array[ARRAY_SIZE(stack_array) + i]; |
| |
| pr_info("out-of-bounds on stack\n"); |
| *(volatile char *)p; |
| } |
| |
| static noinline void __init ksize_unpoisons_memory(void) |
| { |
| char *ptr; |
| size_t size = 123, real_size; |
| |
| pr_info("ksize() unpoisons the whole allocated chunk\n"); |
| ptr = kmalloc(size, GFP_KERNEL); |
| if (!ptr) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| real_size = ksize(ptr); |
| /* This access doesn't trigger an error. */ |
| ptr[size] = 'x'; |
| /* This one does. */ |
| ptr[real_size] = 'y'; |
| kfree(ptr); |
| } |
| |
| static noinline void __init copy_user_test(void) |
| { |
| char *kmem; |
| char __user *usermem; |
| size_t size = 10; |
| int unused; |
| |
| kmem = kmalloc(size, GFP_KERNEL); |
| if (!kmem) |
| return; |
| |
| usermem = (char __user *)vm_mmap(NULL, 0, PAGE_SIZE, |
| PROT_READ | PROT_WRITE | PROT_EXEC, |
| MAP_ANONYMOUS | MAP_PRIVATE, 0); |
| if (IS_ERR(usermem)) { |
| pr_err("Failed to allocate user memory\n"); |
| kfree(kmem); |
| return; |
| } |
| |
| pr_info("out-of-bounds in copy_from_user()\n"); |
| unused = copy_from_user(kmem, usermem, size + 1); |
| |
| pr_info("out-of-bounds in copy_to_user()\n"); |
| unused = copy_to_user(usermem, kmem, size + 1); |
| |
| pr_info("out-of-bounds in __copy_from_user()\n"); |
| unused = __copy_from_user(kmem, usermem, size + 1); |
| |
| pr_info("out-of-bounds in __copy_to_user()\n"); |
| unused = __copy_to_user(usermem, kmem, size + 1); |
| |
| pr_info("out-of-bounds in __copy_from_user_inatomic()\n"); |
| unused = __copy_from_user_inatomic(kmem, usermem, size + 1); |
| |
| pr_info("out-of-bounds in __copy_to_user_inatomic()\n"); |
| unused = __copy_to_user_inatomic(usermem, kmem, size + 1); |
| |
| pr_info("out-of-bounds in strncpy_from_user()\n"); |
| unused = strncpy_from_user(kmem, usermem, size + 1); |
| |
| vm_munmap((unsigned long)usermem, PAGE_SIZE); |
| kfree(kmem); |
| } |
| |
| static noinline void __init kasan_alloca_oob_left(void) |
| { |
| volatile int i = 10; |
| char alloca_array[i]; |
| char *p = alloca_array - 1; |
| |
| pr_info("out-of-bounds to left on alloca\n"); |
| *(volatile char *)p; |
| } |
| |
| static noinline void __init kasan_alloca_oob_right(void) |
| { |
| volatile int i = 10; |
| char alloca_array[i]; |
| char *p = alloca_array + i; |
| |
| pr_info("out-of-bounds to right on alloca\n"); |
| *(volatile char *)p; |
| } |
| |
| static noinline void __init kmem_cache_double_free(void) |
| { |
| char *p; |
| size_t size = 200; |
| struct kmem_cache *cache; |
| |
| cache = kmem_cache_create("test_cache", size, 0, 0, NULL); |
| if (!cache) { |
| pr_err("Cache allocation failed\n"); |
| return; |
| } |
| pr_info("double-free on heap object\n"); |
| p = kmem_cache_alloc(cache, GFP_KERNEL); |
| if (!p) { |
| pr_err("Allocation failed\n"); |
| kmem_cache_destroy(cache); |
| return; |
| } |
| |
| kmem_cache_free(cache, p); |
| kmem_cache_free(cache, p); |
| kmem_cache_destroy(cache); |
| } |
| |
| static noinline void __init kmem_cache_invalid_free(void) |
| { |
| char *p; |
| size_t size = 200; |
| struct kmem_cache *cache; |
| |
| cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU, |
| NULL); |
| if (!cache) { |
| pr_err("Cache allocation failed\n"); |
| return; |
| } |
| pr_info("invalid-free of heap object\n"); |
| p = kmem_cache_alloc(cache, GFP_KERNEL); |
| if (!p) { |
| pr_err("Allocation failed\n"); |
| kmem_cache_destroy(cache); |
| return; |
| } |
| |
| /* Trigger invalid free, the object doesn't get freed */ |
| kmem_cache_free(cache, p + 1); |
| |
| /* |
| * Properly free the object to prevent the "Objects remaining in |
| * test_cache on __kmem_cache_shutdown" BUG failure. |
| */ |
| kmem_cache_free(cache, p); |
| |
| kmem_cache_destroy(cache); |
| } |
| |
| static noinline void __init kasan_memchr(void) |
| { |
| char *ptr; |
| size_t size = 24; |
| |
| pr_info("out-of-bounds in memchr\n"); |
| ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); |
| if (!ptr) |
| return; |
| |
| memchr(ptr, '1', size + 1); |
| kfree(ptr); |
| } |
| |
| static noinline void __init kasan_memcmp(void) |
| { |
| char *ptr; |
| size_t size = 24; |
| int arr[9]; |
| |
| pr_info("out-of-bounds in memcmp\n"); |
| ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); |
| if (!ptr) |
| return; |
| |
| memset(arr, 0, sizeof(arr)); |
| memcmp(ptr, arr, size+1); |
| kfree(ptr); |
| } |
| |
| static noinline void __init kasan_strings(void) |
| { |
| char *ptr; |
| size_t size = 24; |
| |
| pr_info("use-after-free in strchr\n"); |
| ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); |
| if (!ptr) |
| return; |
| |
| kfree(ptr); |
| |
| /* |
| * Try to cause only 1 invalid access (less spam in dmesg). |
| * For that we need ptr to point to zeroed byte. |
| * Skip metadata that could be stored in freed object so ptr |
| * will likely point to zeroed byte. |
| */ |
| ptr += 16; |
| strchr(ptr, '1'); |
| |
| pr_info("use-after-free in strrchr\n"); |
| strrchr(ptr, '1'); |
| |
| pr_info("use-after-free in strcmp\n"); |
| strcmp(ptr, "2"); |
| |
| pr_info("use-after-free in strncmp\n"); |
| strncmp(ptr, "2", 1); |
| |
| pr_info("use-after-free in strlen\n"); |
| strlen(ptr); |
| |
| pr_info("use-after-free in strnlen\n"); |
| strnlen(ptr, 1); |
| } |
| |
| static noinline void __init kasan_bitops(void) |
| { |
| /* |
| * Allocate 1 more byte, which causes kzalloc to round up to 16-bytes; |
| * this way we do not actually corrupt other memory. |
| */ |
| long *bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL); |
| if (!bits) |
| return; |
| |
| /* |
| * Below calls try to access bit within allocated memory; however, the |
| * below accesses are still out-of-bounds, since bitops are defined to |
| * operate on the whole long the bit is in. |
| */ |
| pr_info("out-of-bounds in set_bit\n"); |
| set_bit(BITS_PER_LONG, bits); |
| |
| pr_info("out-of-bounds in __set_bit\n"); |
| __set_bit(BITS_PER_LONG, bits); |
| |
| pr_info("out-of-bounds in clear_bit\n"); |
| clear_bit(BITS_PER_LONG, bits); |
| |
| pr_info("out-of-bounds in __clear_bit\n"); |
| __clear_bit(BITS_PER_LONG, bits); |
| |
| pr_info("out-of-bounds in clear_bit_unlock\n"); |
| clear_bit_unlock(BITS_PER_LONG, bits); |
| |
| pr_info("out-of-bounds in __clear_bit_unlock\n"); |
| __clear_bit_unlock(BITS_PER_LONG, bits); |
| |
| pr_info("out-of-bounds in change_bit\n"); |
| change_bit(BITS_PER_LONG, bits); |
| |
| pr_info("out-of-bounds in __change_bit\n"); |
| __change_bit(BITS_PER_LONG, bits); |
| |
| /* |
| * Below calls try to access bit beyond allocated memory. |
| */ |
| pr_info("out-of-bounds in test_and_set_bit\n"); |
| test_and_set_bit(BITS_PER_LONG + BITS_PER_BYTE, bits); |
| |
| pr_info("out-of-bounds in __test_and_set_bit\n"); |
| __test_and_set_bit(BITS_PER_LONG + BITS_PER_BYTE, bits); |
| |
| pr_info("out-of-bounds in test_and_set_bit_lock\n"); |
| test_and_set_bit_lock(BITS_PER_LONG + BITS_PER_BYTE, bits); |
| |
| pr_info("out-of-bounds in test_and_clear_bit\n"); |
| test_and_clear_bit(BITS_PER_LONG + BITS_PER_BYTE, bits); |
| |
| pr_info("out-of-bounds in __test_and_clear_bit\n"); |
| __test_and_clear_bit(BITS_PER_LONG + BITS_PER_BYTE, bits); |
| |
| pr_info("out-of-bounds in test_and_change_bit\n"); |
| test_and_change_bit(BITS_PER_LONG + BITS_PER_BYTE, bits); |
| |
| pr_info("out-of-bounds in __test_and_change_bit\n"); |
| __test_and_change_bit(BITS_PER_LONG + BITS_PER_BYTE, bits); |
| |
| pr_info("out-of-bounds in test_bit\n"); |
| (void)test_bit(BITS_PER_LONG + BITS_PER_BYTE, bits); |
| |
| #if defined(clear_bit_unlock_is_negative_byte) |
| pr_info("out-of-bounds in clear_bit_unlock_is_negative_byte\n"); |
| clear_bit_unlock_is_negative_byte(BITS_PER_LONG + BITS_PER_BYTE, bits); |
| #endif |
| kfree(bits); |
| } |
| |
| static noinline void __init kmalloc_double_kzfree(void) |
| { |
| char *ptr; |
| size_t size = 16; |
| |
| pr_info("double-free (kzfree)\n"); |
| ptr = kmalloc(size, GFP_KERNEL); |
| if (!ptr) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| |
| kzfree(ptr); |
| kzfree(ptr); |
| } |
| |
| #ifdef CONFIG_KASAN_VMALLOC |
| static noinline void __init vmalloc_oob(void) |
| { |
| void *area; |
| |
| pr_info("vmalloc out-of-bounds\n"); |
| |
| /* |
| * We have to be careful not to hit the guard page. |
| * The MMU will catch that and crash us. |
| */ |
| area = vmalloc(3000); |
| if (!area) { |
| pr_err("Allocation failed\n"); |
| return; |
| } |
| |
| ((volatile char *)area)[3100]; |
| vfree(area); |
| } |
| #else |
| static void __init vmalloc_oob(void) {} |
| #endif |
| |
| static int __init kmalloc_tests_init(void) |
| { |
| /* |
| * Temporarily enable multi-shot mode. Otherwise, we'd only get a |
| * report for the first case. |
| */ |
| bool multishot = kasan_save_enable_multi_shot(); |
| |
| kmalloc_oob_right(); |
| kmalloc_oob_left(); |
| kmalloc_node_oob_right(); |
| #ifdef CONFIG_SLUB |
| kmalloc_pagealloc_oob_right(); |
| kmalloc_pagealloc_uaf(); |
| kmalloc_pagealloc_invalid_free(); |
| #endif |
| kmalloc_large_oob_right(); |
| kmalloc_oob_krealloc_more(); |
| kmalloc_oob_krealloc_less(); |
| kmalloc_oob_16(); |
| kmalloc_oob_in_memset(); |
| kmalloc_oob_memset_2(); |
| kmalloc_oob_memset_4(); |
| kmalloc_oob_memset_8(); |
| kmalloc_oob_memset_16(); |
| kmalloc_uaf(); |
| kmalloc_uaf_memset(); |
| kmalloc_uaf2(); |
| kfree_via_page(); |
| kfree_via_phys(); |
| kmem_cache_oob(); |
| memcg_accounted_kmem_cache(); |
| kasan_stack_oob(); |
| kasan_global_oob(); |
| kasan_alloca_oob_left(); |
| kasan_alloca_oob_right(); |
| ksize_unpoisons_memory(); |
| copy_user_test(); |
| kmem_cache_double_free(); |
| kmem_cache_invalid_free(); |
| kasan_memchr(); |
| kasan_memcmp(); |
| kasan_strings(); |
| kasan_bitops(); |
| kmalloc_double_kzfree(); |
| vmalloc_oob(); |
| |
| kasan_restore_multi_shot(multishot); |
| |
| return -EAGAIN; |
| } |
| |
| module_init(kmalloc_tests_init); |
| MODULE_LICENSE("GPL"); |