| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * linux/arch/ia64/kernel/time.c |
| * |
| * Copyright (C) 1998-2003 Hewlett-Packard Co |
| * Stephane Eranian <eranian@hpl.hp.com> |
| * David Mosberger <davidm@hpl.hp.com> |
| * Copyright (C) 1999 Don Dugger <don.dugger@intel.com> |
| * Copyright (C) 1999-2000 VA Linux Systems |
| * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com> |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/profile.h> |
| #include <linux/sched.h> |
| #include <linux/time.h> |
| #include <linux/nmi.h> |
| #include <linux/interrupt.h> |
| #include <linux/efi.h> |
| #include <linux/timex.h> |
| #include <linux/timekeeper_internal.h> |
| #include <linux/platform_device.h> |
| #include <linux/sched/cputime.h> |
| |
| #include <asm/delay.h> |
| #include <asm/hw_irq.h> |
| #include <asm/ptrace.h> |
| #include <asm/sal.h> |
| #include <asm/sections.h> |
| |
| #include "fsyscall_gtod_data.h" |
| |
| static u64 itc_get_cycles(struct clocksource *cs); |
| |
| struct fsyscall_gtod_data_t fsyscall_gtod_data; |
| |
| struct itc_jitter_data_t itc_jitter_data; |
| |
| volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */ |
| |
| #ifdef CONFIG_IA64_DEBUG_IRQ |
| |
| unsigned long last_cli_ip; |
| EXPORT_SYMBOL(last_cli_ip); |
| |
| #endif |
| |
| static struct clocksource clocksource_itc = { |
| .name = "itc", |
| .rating = 350, |
| .read = itc_get_cycles, |
| .mask = CLOCKSOURCE_MASK(64), |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| static struct clocksource *itc_clocksource; |
| |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE |
| |
| #include <linux/kernel_stat.h> |
| |
| extern u64 cycle_to_nsec(u64 cyc); |
| |
| void vtime_flush(struct task_struct *tsk) |
| { |
| struct thread_info *ti = task_thread_info(tsk); |
| u64 delta; |
| |
| if (ti->utime) |
| account_user_time(tsk, cycle_to_nsec(ti->utime)); |
| |
| if (ti->gtime) |
| account_guest_time(tsk, cycle_to_nsec(ti->gtime)); |
| |
| if (ti->idle_time) |
| account_idle_time(cycle_to_nsec(ti->idle_time)); |
| |
| if (ti->stime) { |
| delta = cycle_to_nsec(ti->stime); |
| account_system_index_time(tsk, delta, CPUTIME_SYSTEM); |
| } |
| |
| if (ti->hardirq_time) { |
| delta = cycle_to_nsec(ti->hardirq_time); |
| account_system_index_time(tsk, delta, CPUTIME_IRQ); |
| } |
| |
| if (ti->softirq_time) { |
| delta = cycle_to_nsec(ti->softirq_time); |
| account_system_index_time(tsk, delta, CPUTIME_SOFTIRQ); |
| } |
| |
| ti->utime = 0; |
| ti->gtime = 0; |
| ti->idle_time = 0; |
| ti->stime = 0; |
| ti->hardirq_time = 0; |
| ti->softirq_time = 0; |
| } |
| |
| /* |
| * Called from the context switch with interrupts disabled, to charge all |
| * accumulated times to the current process, and to prepare accounting on |
| * the next process. |
| */ |
| void arch_vtime_task_switch(struct task_struct *prev) |
| { |
| struct thread_info *pi = task_thread_info(prev); |
| struct thread_info *ni = task_thread_info(current); |
| |
| ni->ac_stamp = pi->ac_stamp; |
| ni->ac_stime = ni->ac_utime = 0; |
| } |
| |
| /* |
| * Account time for a transition between system, hard irq or soft irq state. |
| * Note that this function is called with interrupts enabled. |
| */ |
| static __u64 vtime_delta(struct task_struct *tsk) |
| { |
| struct thread_info *ti = task_thread_info(tsk); |
| __u64 now, delta_stime; |
| |
| WARN_ON_ONCE(!irqs_disabled()); |
| |
| now = ia64_get_itc(); |
| delta_stime = now - ti->ac_stamp; |
| ti->ac_stamp = now; |
| |
| return delta_stime; |
| } |
| |
| void vtime_account_kernel(struct task_struct *tsk) |
| { |
| struct thread_info *ti = task_thread_info(tsk); |
| __u64 stime = vtime_delta(tsk); |
| |
| if ((tsk->flags & PF_VCPU) && !irq_count()) |
| ti->gtime += stime; |
| else if (hardirq_count()) |
| ti->hardirq_time += stime; |
| else if (in_serving_softirq()) |
| ti->softirq_time += stime; |
| else |
| ti->stime += stime; |
| } |
| EXPORT_SYMBOL_GPL(vtime_account_kernel); |
| |
| void vtime_account_idle(struct task_struct *tsk) |
| { |
| struct thread_info *ti = task_thread_info(tsk); |
| |
| ti->idle_time += vtime_delta(tsk); |
| } |
| |
| #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ |
| |
| static irqreturn_t |
| timer_interrupt (int irq, void *dev_id) |
| { |
| unsigned long new_itm; |
| |
| if (cpu_is_offline(smp_processor_id())) { |
| return IRQ_HANDLED; |
| } |
| |
| new_itm = local_cpu_data->itm_next; |
| |
| if (!time_after(ia64_get_itc(), new_itm)) |
| printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n", |
| ia64_get_itc(), new_itm); |
| |
| profile_tick(CPU_PROFILING); |
| |
| while (1) { |
| update_process_times(user_mode(get_irq_regs())); |
| |
| new_itm += local_cpu_data->itm_delta; |
| |
| if (smp_processor_id() == time_keeper_id) |
| xtime_update(1); |
| |
| local_cpu_data->itm_next = new_itm; |
| |
| if (time_after(new_itm, ia64_get_itc())) |
| break; |
| |
| /* |
| * Allow IPIs to interrupt the timer loop. |
| */ |
| local_irq_enable(); |
| local_irq_disable(); |
| } |
| |
| do { |
| /* |
| * If we're too close to the next clock tick for |
| * comfort, we increase the safety margin by |
| * intentionally dropping the next tick(s). We do NOT |
| * update itm.next because that would force us to call |
| * xtime_update() which in turn would let our clock run |
| * too fast (with the potentially devastating effect |
| * of losing monotony of time). |
| */ |
| while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2)) |
| new_itm += local_cpu_data->itm_delta; |
| ia64_set_itm(new_itm); |
| /* double check, in case we got hit by a (slow) PMI: */ |
| } while (time_after_eq(ia64_get_itc(), new_itm)); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Encapsulate access to the itm structure for SMP. |
| */ |
| void |
| ia64_cpu_local_tick (void) |
| { |
| int cpu = smp_processor_id(); |
| unsigned long shift = 0, delta; |
| |
| /* arrange for the cycle counter to generate a timer interrupt: */ |
| ia64_set_itv(IA64_TIMER_VECTOR); |
| |
| delta = local_cpu_data->itm_delta; |
| /* |
| * Stagger the timer tick for each CPU so they don't occur all at (almost) the |
| * same time: |
| */ |
| if (cpu) { |
| unsigned long hi = 1UL << ia64_fls(cpu); |
| shift = (2*(cpu - hi) + 1) * delta/hi/2; |
| } |
| local_cpu_data->itm_next = ia64_get_itc() + delta + shift; |
| ia64_set_itm(local_cpu_data->itm_next); |
| } |
| |
| static int nojitter; |
| |
| static int __init nojitter_setup(char *str) |
| { |
| nojitter = 1; |
| printk("Jitter checking for ITC timers disabled\n"); |
| return 1; |
| } |
| |
| __setup("nojitter", nojitter_setup); |
| |
| |
| void ia64_init_itm(void) |
| { |
| unsigned long platform_base_freq, itc_freq; |
| struct pal_freq_ratio itc_ratio, proc_ratio; |
| long status, platform_base_drift, itc_drift; |
| |
| /* |
| * According to SAL v2.6, we need to use a SAL call to determine the platform base |
| * frequency and then a PAL call to determine the frequency ratio between the ITC |
| * and the base frequency. |
| */ |
| status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM, |
| &platform_base_freq, &platform_base_drift); |
| if (status != 0) { |
| printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status)); |
| } else { |
| status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio); |
| if (status != 0) |
| printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status); |
| } |
| if (status != 0) { |
| /* invent "random" values */ |
| printk(KERN_ERR |
| "SAL/PAL failed to obtain frequency info---inventing reasonable values\n"); |
| platform_base_freq = 100000000; |
| platform_base_drift = -1; /* no drift info */ |
| itc_ratio.num = 3; |
| itc_ratio.den = 1; |
| } |
| if (platform_base_freq < 40000000) { |
| printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n", |
| platform_base_freq); |
| platform_base_freq = 75000000; |
| platform_base_drift = -1; |
| } |
| if (!proc_ratio.den) |
| proc_ratio.den = 1; /* avoid division by zero */ |
| if (!itc_ratio.den) |
| itc_ratio.den = 1; /* avoid division by zero */ |
| |
| itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den; |
| |
| local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ; |
| printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, " |
| "ITC freq=%lu.%03luMHz", smp_processor_id(), |
| platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000, |
| itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000); |
| |
| if (platform_base_drift != -1) { |
| itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den; |
| printk("+/-%ldppm\n", itc_drift); |
| } else { |
| itc_drift = -1; |
| printk("\n"); |
| } |
| |
| local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den; |
| local_cpu_data->itc_freq = itc_freq; |
| local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC; |
| local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT) |
| + itc_freq/2)/itc_freq; |
| |
| if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) { |
| #ifdef CONFIG_SMP |
| /* On IA64 in an SMP configuration ITCs are never accurately synchronized. |
| * Jitter compensation requires a cmpxchg which may limit |
| * the scalability of the syscalls for retrieving time. |
| * The ITC synchronization is usually successful to within a few |
| * ITC ticks but this is not a sure thing. If you need to improve |
| * timer performance in SMP situations then boot the kernel with the |
| * "nojitter" option. However, doing so may result in time fluctuating (maybe |
| * even going backward) if the ITC offsets between the individual CPUs |
| * are too large. |
| */ |
| if (!nojitter) |
| itc_jitter_data.itc_jitter = 1; |
| #endif |
| } else |
| /* |
| * ITC is drifty and we have not synchronized the ITCs in smpboot.c. |
| * ITC values may fluctuate significantly between processors. |
| * Clock should not be used for hrtimers. Mark itc as only |
| * useful for boot and testing. |
| * |
| * Note that jitter compensation is off! There is no point of |
| * synchronizing ITCs since they may be large differentials |
| * that change over time. |
| * |
| * The only way to fix this would be to repeatedly sync the |
| * ITCs. Until that time we have to avoid ITC. |
| */ |
| clocksource_itc.rating = 50; |
| |
| /* avoid softlock up message when cpu is unplug and plugged again. */ |
| touch_softlockup_watchdog(); |
| |
| /* Setup the CPU local timer tick */ |
| ia64_cpu_local_tick(); |
| |
| if (!itc_clocksource) { |
| clocksource_register_hz(&clocksource_itc, |
| local_cpu_data->itc_freq); |
| itc_clocksource = &clocksource_itc; |
| } |
| } |
| |
| static u64 itc_get_cycles(struct clocksource *cs) |
| { |
| unsigned long lcycle, now, ret; |
| |
| if (!itc_jitter_data.itc_jitter) |
| return get_cycles(); |
| |
| lcycle = itc_jitter_data.itc_lastcycle; |
| now = get_cycles(); |
| if (lcycle && time_after(lcycle, now)) |
| return lcycle; |
| |
| /* |
| * Keep track of the last timer value returned. |
| * In an SMP environment, you could lose out in contention of |
| * cmpxchg. If so, your cmpxchg returns new value which the |
| * winner of contention updated to. Use the new value instead. |
| */ |
| ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now); |
| if (unlikely(ret != lcycle)) |
| return ret; |
| |
| return now; |
| } |
| |
| |
| static struct irqaction timer_irqaction = { |
| .handler = timer_interrupt, |
| .flags = IRQF_IRQPOLL, |
| .name = "timer" |
| }; |
| |
| void read_persistent_clock64(struct timespec64 *ts) |
| { |
| efi_gettimeofday(ts); |
| } |
| |
| void __init |
| time_init (void) |
| { |
| register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction); |
| ia64_init_itm(); |
| } |
| |
| /* |
| * Generic udelay assumes that if preemption is allowed and the thread |
| * migrates to another CPU, that the ITC values are synchronized across |
| * all CPUs. |
| */ |
| static void |
| ia64_itc_udelay (unsigned long usecs) |
| { |
| unsigned long start = ia64_get_itc(); |
| unsigned long end = start + usecs*local_cpu_data->cyc_per_usec; |
| |
| while (time_before(ia64_get_itc(), end)) |
| cpu_relax(); |
| } |
| |
| void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay; |
| |
| void |
| udelay (unsigned long usecs) |
| { |
| (*ia64_udelay)(usecs); |
| } |
| EXPORT_SYMBOL(udelay); |
| |
| /* IA64 doesn't cache the timezone */ |
| void update_vsyscall_tz(void) |
| { |
| } |
| |
| void update_vsyscall(struct timekeeper *tk) |
| { |
| write_seqcount_begin(&fsyscall_gtod_data.seq); |
| |
| /* copy vsyscall data */ |
| fsyscall_gtod_data.clk_mask = tk->tkr_mono.mask; |
| fsyscall_gtod_data.clk_mult = tk->tkr_mono.mult; |
| fsyscall_gtod_data.clk_shift = tk->tkr_mono.shift; |
| fsyscall_gtod_data.clk_fsys_mmio = tk->tkr_mono.clock->archdata.fsys_mmio; |
| fsyscall_gtod_data.clk_cycle_last = tk->tkr_mono.cycle_last; |
| |
| fsyscall_gtod_data.wall_time.sec = tk->xtime_sec; |
| fsyscall_gtod_data.wall_time.snsec = tk->tkr_mono.xtime_nsec; |
| |
| fsyscall_gtod_data.monotonic_time.sec = tk->xtime_sec |
| + tk->wall_to_monotonic.tv_sec; |
| fsyscall_gtod_data.monotonic_time.snsec = tk->tkr_mono.xtime_nsec |
| + ((u64)tk->wall_to_monotonic.tv_nsec |
| << tk->tkr_mono.shift); |
| |
| /* normalize */ |
| while (fsyscall_gtod_data.monotonic_time.snsec >= |
| (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) { |
| fsyscall_gtod_data.monotonic_time.snsec -= |
| ((u64)NSEC_PER_SEC) << tk->tkr_mono.shift; |
| fsyscall_gtod_data.monotonic_time.sec++; |
| } |
| |
| write_seqcount_end(&fsyscall_gtod_data.seq); |
| } |
| |