| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Architecture-specific unaligned trap handling. |
| * |
| * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co |
| * Stephane Eranian <eranian@hpl.hp.com> |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * |
| * 2002/12/09 Fix rotating register handling (off-by-1 error, missing fr-rotation). Fix |
| * get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame |
| * stacked register returns an undefined value; it does NOT trigger a |
| * "rsvd register fault"). |
| * 2001/10/11 Fix unaligned access to rotating registers in s/w pipelined loops. |
| * 2001/08/13 Correct size of extended floats (float_fsz) from 16 to 10 bytes. |
| * 2001/01/17 Add support emulation of unaligned kernel accesses. |
| */ |
| #include <linux/jiffies.h> |
| #include <linux/kernel.h> |
| #include <linux/sched/signal.h> |
| #include <linux/tty.h> |
| #include <linux/extable.h> |
| #include <linux/ratelimit.h> |
| #include <linux/uaccess.h> |
| |
| #include <asm/intrinsics.h> |
| #include <asm/processor.h> |
| #include <asm/rse.h> |
| #include <asm/exception.h> |
| #include <asm/unaligned.h> |
| |
| extern int die_if_kernel(char *str, struct pt_regs *regs, long err); |
| |
| #undef DEBUG_UNALIGNED_TRAP |
| |
| #ifdef DEBUG_UNALIGNED_TRAP |
| # define DPRINT(a...) do { printk("%s %u: ", __func__, __LINE__); printk (a); } while (0) |
| # define DDUMP(str,vp,len) dump(str, vp, len) |
| |
| static void |
| dump (const char *str, void *vp, size_t len) |
| { |
| unsigned char *cp = vp; |
| int i; |
| |
| printk("%s", str); |
| for (i = 0; i < len; ++i) |
| printk (" %02x", *cp++); |
| printk("\n"); |
| } |
| #else |
| # define DPRINT(a...) |
| # define DDUMP(str,vp,len) |
| #endif |
| |
| #define IA64_FIRST_STACKED_GR 32 |
| #define IA64_FIRST_ROTATING_FR 32 |
| #define SIGN_EXT9 0xffffffffffffff00ul |
| |
| /* |
| * sysctl settable hook which tells the kernel whether to honor the |
| * IA64_THREAD_UAC_NOPRINT prctl. Because this is user settable, we want |
| * to allow the super user to enable/disable this for security reasons |
| * (i.e. don't allow attacker to fill up logs with unaligned accesses). |
| */ |
| int no_unaligned_warning; |
| int unaligned_dump_stack; |
| |
| /* |
| * For M-unit: |
| * |
| * opcode | m | x6 | |
| * --------|------|---------| |
| * [40-37] | [36] | [35:30] | |
| * --------|------|---------| |
| * 4 | 1 | 6 | = 11 bits |
| * -------------------------- |
| * However bits [31:30] are not directly useful to distinguish between |
| * load/store so we can use [35:32] instead, which gives the following |
| * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer |
| * checking the m-bit until later in the load/store emulation. |
| */ |
| #define IA64_OPCODE_MASK 0x1ef |
| #define IA64_OPCODE_SHIFT 32 |
| |
| /* |
| * Table C-28 Integer Load/Store |
| * |
| * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF |
| * |
| * ld8.fill, st8.fill MUST be aligned because the RNATs are based on |
| * the address (bits [8:3]), so we must failed. |
| */ |
| #define LD_OP 0x080 |
| #define LDS_OP 0x081 |
| #define LDA_OP 0x082 |
| #define LDSA_OP 0x083 |
| #define LDBIAS_OP 0x084 |
| #define LDACQ_OP 0x085 |
| /* 0x086, 0x087 are not relevant */ |
| #define LDCCLR_OP 0x088 |
| #define LDCNC_OP 0x089 |
| #define LDCCLRACQ_OP 0x08a |
| #define ST_OP 0x08c |
| #define STREL_OP 0x08d |
| /* 0x08e,0x8f are not relevant */ |
| |
| /* |
| * Table C-29 Integer Load +Reg |
| * |
| * we use the ld->m (bit [36:36]) field to determine whether or not we have |
| * a load/store of this form. |
| */ |
| |
| /* |
| * Table C-30 Integer Load/Store +Imm |
| * |
| * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF |
| * |
| * ld8.fill, st8.fill must be aligned because the Nat register are based on |
| * the address, so we must fail and the program must be fixed. |
| */ |
| #define LD_IMM_OP 0x0a0 |
| #define LDS_IMM_OP 0x0a1 |
| #define LDA_IMM_OP 0x0a2 |
| #define LDSA_IMM_OP 0x0a3 |
| #define LDBIAS_IMM_OP 0x0a4 |
| #define LDACQ_IMM_OP 0x0a5 |
| /* 0x0a6, 0xa7 are not relevant */ |
| #define LDCCLR_IMM_OP 0x0a8 |
| #define LDCNC_IMM_OP 0x0a9 |
| #define LDCCLRACQ_IMM_OP 0x0aa |
| #define ST_IMM_OP 0x0ac |
| #define STREL_IMM_OP 0x0ad |
| /* 0x0ae,0xaf are not relevant */ |
| |
| /* |
| * Table C-32 Floating-point Load/Store |
| */ |
| #define LDF_OP 0x0c0 |
| #define LDFS_OP 0x0c1 |
| #define LDFA_OP 0x0c2 |
| #define LDFSA_OP 0x0c3 |
| /* 0x0c6 is irrelevant */ |
| #define LDFCCLR_OP 0x0c8 |
| #define LDFCNC_OP 0x0c9 |
| /* 0x0cb is irrelevant */ |
| #define STF_OP 0x0cc |
| |
| /* |
| * Table C-33 Floating-point Load +Reg |
| * |
| * we use the ld->m (bit [36:36]) field to determine whether or not we have |
| * a load/store of this form. |
| */ |
| |
| /* |
| * Table C-34 Floating-point Load/Store +Imm |
| */ |
| #define LDF_IMM_OP 0x0e0 |
| #define LDFS_IMM_OP 0x0e1 |
| #define LDFA_IMM_OP 0x0e2 |
| #define LDFSA_IMM_OP 0x0e3 |
| /* 0x0e6 is irrelevant */ |
| #define LDFCCLR_IMM_OP 0x0e8 |
| #define LDFCNC_IMM_OP 0x0e9 |
| #define STF_IMM_OP 0x0ec |
| |
| typedef struct { |
| unsigned long qp:6; /* [0:5] */ |
| unsigned long r1:7; /* [6:12] */ |
| unsigned long imm:7; /* [13:19] */ |
| unsigned long r3:7; /* [20:26] */ |
| unsigned long x:1; /* [27:27] */ |
| unsigned long hint:2; /* [28:29] */ |
| unsigned long x6_sz:2; /* [30:31] */ |
| unsigned long x6_op:4; /* [32:35], x6 = x6_sz|x6_op */ |
| unsigned long m:1; /* [36:36] */ |
| unsigned long op:4; /* [37:40] */ |
| unsigned long pad:23; /* [41:63] */ |
| } load_store_t; |
| |
| |
| typedef enum { |
| UPD_IMMEDIATE, /* ldXZ r1=[r3],imm(9) */ |
| UPD_REG /* ldXZ r1=[r3],r2 */ |
| } update_t; |
| |
| /* |
| * We use tables to keep track of the offsets of registers in the saved state. |
| * This way we save having big switch/case statements. |
| * |
| * We use bit 0 to indicate switch_stack or pt_regs. |
| * The offset is simply shifted by 1 bit. |
| * A 2-byte value should be enough to hold any kind of offset |
| * |
| * In case the calling convention changes (and thus pt_regs/switch_stack) |
| * simply use RSW instead of RPT or vice-versa. |
| */ |
| |
| #define RPO(x) ((size_t) &((struct pt_regs *)0)->x) |
| #define RSO(x) ((size_t) &((struct switch_stack *)0)->x) |
| |
| #define RPT(x) (RPO(x) << 1) |
| #define RSW(x) (1| RSO(x)<<1) |
| |
| #define GR_OFFS(x) (gr_info[x]>>1) |
| #define GR_IN_SW(x) (gr_info[x] & 0x1) |
| |
| #define FR_OFFS(x) (fr_info[x]>>1) |
| #define FR_IN_SW(x) (fr_info[x] & 0x1) |
| |
| static u16 gr_info[32]={ |
| 0, /* r0 is read-only : WE SHOULD NEVER GET THIS */ |
| |
| RPT(r1), RPT(r2), RPT(r3), |
| |
| RSW(r4), RSW(r5), RSW(r6), RSW(r7), |
| |
| RPT(r8), RPT(r9), RPT(r10), RPT(r11), |
| RPT(r12), RPT(r13), RPT(r14), RPT(r15), |
| |
| RPT(r16), RPT(r17), RPT(r18), RPT(r19), |
| RPT(r20), RPT(r21), RPT(r22), RPT(r23), |
| RPT(r24), RPT(r25), RPT(r26), RPT(r27), |
| RPT(r28), RPT(r29), RPT(r30), RPT(r31) |
| }; |
| |
| static u16 fr_info[32]={ |
| 0, /* constant : WE SHOULD NEVER GET THIS */ |
| 0, /* constant : WE SHOULD NEVER GET THIS */ |
| |
| RSW(f2), RSW(f3), RSW(f4), RSW(f5), |
| |
| RPT(f6), RPT(f7), RPT(f8), RPT(f9), |
| RPT(f10), RPT(f11), |
| |
| RSW(f12), RSW(f13), RSW(f14), |
| RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19), |
| RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24), |
| RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29), |
| RSW(f30), RSW(f31) |
| }; |
| |
| /* Invalidate ALAT entry for integer register REGNO. */ |
| static void |
| invala_gr (int regno) |
| { |
| # define F(reg) case reg: ia64_invala_gr(reg); break |
| |
| switch (regno) { |
| F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7); |
| F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15); |
| F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23); |
| F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31); |
| F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39); |
| F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47); |
| F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55); |
| F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63); |
| F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71); |
| F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79); |
| F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87); |
| F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95); |
| F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103); |
| F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111); |
| F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119); |
| F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127); |
| } |
| # undef F |
| } |
| |
| /* Invalidate ALAT entry for floating-point register REGNO. */ |
| static void |
| invala_fr (int regno) |
| { |
| # define F(reg) case reg: ia64_invala_fr(reg); break |
| |
| switch (regno) { |
| F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7); |
| F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15); |
| F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23); |
| F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31); |
| F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39); |
| F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47); |
| F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55); |
| F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63); |
| F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71); |
| F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79); |
| F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87); |
| F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95); |
| F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103); |
| F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111); |
| F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119); |
| F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127); |
| } |
| # undef F |
| } |
| |
| static inline unsigned long |
| rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg) |
| { |
| reg += rrb; |
| if (reg >= sor) |
| reg -= sor; |
| return reg; |
| } |
| |
| static void |
| set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat) |
| { |
| struct switch_stack *sw = (struct switch_stack *) regs - 1; |
| unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end; |
| unsigned long *kbs = (void *) current + IA64_RBS_OFFSET; |
| unsigned long rnats, nat_mask; |
| unsigned long on_kbs; |
| long sof = (regs->cr_ifs) & 0x7f; |
| long sor = 8 * ((regs->cr_ifs >> 14) & 0xf); |
| long rrb_gr = (regs->cr_ifs >> 18) & 0x7f; |
| long ridx = r1 - 32; |
| |
| if (ridx >= sof) { |
| /* this should never happen, as the "rsvd register fault" has higher priority */ |
| DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof); |
| return; |
| } |
| |
| if (ridx < sor) |
| ridx = rotate_reg(sor, rrb_gr, ridx); |
| |
| DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n", |
| r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx); |
| |
| on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore); |
| addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx); |
| if (addr >= kbs) { |
| /* the register is on the kernel backing store: easy... */ |
| rnat_addr = ia64_rse_rnat_addr(addr); |
| if ((unsigned long) rnat_addr >= sw->ar_bspstore) |
| rnat_addr = &sw->ar_rnat; |
| nat_mask = 1UL << ia64_rse_slot_num(addr); |
| |
| *addr = val; |
| if (nat) |
| *rnat_addr |= nat_mask; |
| else |
| *rnat_addr &= ~nat_mask; |
| return; |
| } |
| |
| if (!user_stack(current, regs)) { |
| DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1); |
| return; |
| } |
| |
| bspstore = (unsigned long *)regs->ar_bspstore; |
| ubs_end = ia64_rse_skip_regs(bspstore, on_kbs); |
| bsp = ia64_rse_skip_regs(ubs_end, -sof); |
| addr = ia64_rse_skip_regs(bsp, ridx); |
| |
| DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr); |
| |
| ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val); |
| |
| rnat_addr = ia64_rse_rnat_addr(addr); |
| |
| ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats); |
| DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n", |
| (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1); |
| |
| nat_mask = 1UL << ia64_rse_slot_num(addr); |
| if (nat) |
| rnats |= nat_mask; |
| else |
| rnats &= ~nat_mask; |
| ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats); |
| |
| DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats); |
| } |
| |
| |
| static void |
| get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat) |
| { |
| struct switch_stack *sw = (struct switch_stack *) regs - 1; |
| unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore; |
| unsigned long *kbs = (void *) current + IA64_RBS_OFFSET; |
| unsigned long rnats, nat_mask; |
| unsigned long on_kbs; |
| long sof = (regs->cr_ifs) & 0x7f; |
| long sor = 8 * ((regs->cr_ifs >> 14) & 0xf); |
| long rrb_gr = (regs->cr_ifs >> 18) & 0x7f; |
| long ridx = r1 - 32; |
| |
| if (ridx >= sof) { |
| /* read of out-of-frame register returns an undefined value; 0 in our case. */ |
| DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof); |
| goto fail; |
| } |
| |
| if (ridx < sor) |
| ridx = rotate_reg(sor, rrb_gr, ridx); |
| |
| DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n", |
| r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx); |
| |
| on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore); |
| addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx); |
| if (addr >= kbs) { |
| /* the register is on the kernel backing store: easy... */ |
| *val = *addr; |
| if (nat) { |
| rnat_addr = ia64_rse_rnat_addr(addr); |
| if ((unsigned long) rnat_addr >= sw->ar_bspstore) |
| rnat_addr = &sw->ar_rnat; |
| nat_mask = 1UL << ia64_rse_slot_num(addr); |
| *nat = (*rnat_addr & nat_mask) != 0; |
| } |
| return; |
| } |
| |
| if (!user_stack(current, regs)) { |
| DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1); |
| goto fail; |
| } |
| |
| bspstore = (unsigned long *)regs->ar_bspstore; |
| ubs_end = ia64_rse_skip_regs(bspstore, on_kbs); |
| bsp = ia64_rse_skip_regs(ubs_end, -sof); |
| addr = ia64_rse_skip_regs(bsp, ridx); |
| |
| DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr); |
| |
| ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val); |
| |
| if (nat) { |
| rnat_addr = ia64_rse_rnat_addr(addr); |
| nat_mask = 1UL << ia64_rse_slot_num(addr); |
| |
| DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats); |
| |
| ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats); |
| *nat = (rnats & nat_mask) != 0; |
| } |
| return; |
| |
| fail: |
| *val = 0; |
| if (nat) |
| *nat = 0; |
| return; |
| } |
| |
| |
| static void |
| setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs) |
| { |
| struct switch_stack *sw = (struct switch_stack *) regs - 1; |
| unsigned long addr; |
| unsigned long bitmask; |
| unsigned long *unat; |
| |
| /* |
| * First takes care of stacked registers |
| */ |
| if (regnum >= IA64_FIRST_STACKED_GR) { |
| set_rse_reg(regs, regnum, val, nat); |
| return; |
| } |
| |
| /* |
| * Using r0 as a target raises a General Exception fault which has higher priority |
| * than the Unaligned Reference fault. |
| */ |
| |
| /* |
| * Now look at registers in [0-31] range and init correct UNAT |
| */ |
| if (GR_IN_SW(regnum)) { |
| addr = (unsigned long)sw; |
| unat = &sw->ar_unat; |
| } else { |
| addr = (unsigned long)regs; |
| unat = &sw->caller_unat; |
| } |
| DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n", |
| addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum)); |
| /* |
| * add offset from base of struct |
| * and do it ! |
| */ |
| addr += GR_OFFS(regnum); |
| |
| *(unsigned long *)addr = val; |
| |
| /* |
| * We need to clear the corresponding UNAT bit to fully emulate the load |
| * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4 |
| */ |
| bitmask = 1UL << (addr >> 3 & 0x3f); |
| DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat); |
| if (nat) { |
| *unat |= bitmask; |
| } else { |
| *unat &= ~bitmask; |
| } |
| DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat); |
| } |
| |
| /* |
| * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the |
| * range from 32-127, result is in the range from 0-95. |
| */ |
| static inline unsigned long |
| fph_index (struct pt_regs *regs, long regnum) |
| { |
| unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f; |
| return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR)); |
| } |
| |
| static void |
| setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs) |
| { |
| struct switch_stack *sw = (struct switch_stack *)regs - 1; |
| unsigned long addr; |
| |
| /* |
| * From EAS-2.5: FPDisableFault has higher priority than Unaligned |
| * Fault. Thus, when we get here, we know the partition is enabled. |
| * To update f32-f127, there are three choices: |
| * |
| * (1) save f32-f127 to thread.fph and update the values there |
| * (2) use a gigantic switch statement to directly access the registers |
| * (3) generate code on the fly to update the desired register |
| * |
| * For now, we are using approach (1). |
| */ |
| if (regnum >= IA64_FIRST_ROTATING_FR) { |
| ia64_sync_fph(current); |
| current->thread.fph[fph_index(regs, regnum)] = *fpval; |
| } else { |
| /* |
| * pt_regs or switch_stack ? |
| */ |
| if (FR_IN_SW(regnum)) { |
| addr = (unsigned long)sw; |
| } else { |
| addr = (unsigned long)regs; |
| } |
| |
| DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum)); |
| |
| addr += FR_OFFS(regnum); |
| *(struct ia64_fpreg *)addr = *fpval; |
| |
| /* |
| * mark the low partition as being used now |
| * |
| * It is highly unlikely that this bit is not already set, but |
| * let's do it for safety. |
| */ |
| regs->cr_ipsr |= IA64_PSR_MFL; |
| } |
| } |
| |
| /* |
| * Those 2 inline functions generate the spilled versions of the constant floating point |
| * registers which can be used with stfX |
| */ |
| static inline void |
| float_spill_f0 (struct ia64_fpreg *final) |
| { |
| ia64_stf_spill(final, 0); |
| } |
| |
| static inline void |
| float_spill_f1 (struct ia64_fpreg *final) |
| { |
| ia64_stf_spill(final, 1); |
| } |
| |
| static void |
| getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs) |
| { |
| struct switch_stack *sw = (struct switch_stack *) regs - 1; |
| unsigned long addr; |
| |
| /* |
| * From EAS-2.5: FPDisableFault has higher priority than |
| * Unaligned Fault. Thus, when we get here, we know the partition is |
| * enabled. |
| * |
| * When regnum > 31, the register is still live and we need to force a save |
| * to current->thread.fph to get access to it. See discussion in setfpreg() |
| * for reasons and other ways of doing this. |
| */ |
| if (regnum >= IA64_FIRST_ROTATING_FR) { |
| ia64_flush_fph(current); |
| *fpval = current->thread.fph[fph_index(regs, regnum)]; |
| } else { |
| /* |
| * f0 = 0.0, f1= 1.0. Those registers are constant and are thus |
| * not saved, we must generate their spilled form on the fly |
| */ |
| switch(regnum) { |
| case 0: |
| float_spill_f0(fpval); |
| break; |
| case 1: |
| float_spill_f1(fpval); |
| break; |
| default: |
| /* |
| * pt_regs or switch_stack ? |
| */ |
| addr = FR_IN_SW(regnum) ? (unsigned long)sw |
| : (unsigned long)regs; |
| |
| DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n", |
| FR_IN_SW(regnum), addr, FR_OFFS(regnum)); |
| |
| addr += FR_OFFS(regnum); |
| *fpval = *(struct ia64_fpreg *)addr; |
| } |
| } |
| } |
| |
| |
| static void |
| getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs) |
| { |
| struct switch_stack *sw = (struct switch_stack *) regs - 1; |
| unsigned long addr, *unat; |
| |
| if (regnum >= IA64_FIRST_STACKED_GR) { |
| get_rse_reg(regs, regnum, val, nat); |
| return; |
| } |
| |
| /* |
| * take care of r0 (read-only always evaluate to 0) |
| */ |
| if (regnum == 0) { |
| *val = 0; |
| if (nat) |
| *nat = 0; |
| return; |
| } |
| |
| /* |
| * Now look at registers in [0-31] range and init correct UNAT |
| */ |
| if (GR_IN_SW(regnum)) { |
| addr = (unsigned long)sw; |
| unat = &sw->ar_unat; |
| } else { |
| addr = (unsigned long)regs; |
| unat = &sw->caller_unat; |
| } |
| |
| DPRINT("addr_base=%lx offset=0x%x\n", addr, GR_OFFS(regnum)); |
| |
| addr += GR_OFFS(regnum); |
| |
| *val = *(unsigned long *)addr; |
| |
| /* |
| * do it only when requested |
| */ |
| if (nat) |
| *nat = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL; |
| } |
| |
| static void |
| emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa) |
| { |
| /* |
| * IMPORTANT: |
| * Given the way we handle unaligned speculative loads, we should |
| * not get to this point in the code but we keep this sanity check, |
| * just in case. |
| */ |
| if (ld.x6_op == 1 || ld.x6_op == 3) { |
| printk(KERN_ERR "%s: register update on speculative load, error\n", __func__); |
| if (die_if_kernel("unaligned reference on speculative load with register update\n", |
| regs, 30)) |
| return; |
| } |
| |
| |
| /* |
| * at this point, we know that the base register to update is valid i.e., |
| * it's not r0 |
| */ |
| if (type == UPD_IMMEDIATE) { |
| unsigned long imm; |
| |
| /* |
| * Load +Imm: ldXZ r1=[r3],imm(9) |
| * |
| * |
| * form imm9: [13:19] contain the first 7 bits |
| */ |
| imm = ld.x << 7 | ld.imm; |
| |
| /* |
| * sign extend (1+8bits) if m set |
| */ |
| if (ld.m) imm |= SIGN_EXT9; |
| |
| /* |
| * ifa == r3 and we know that the NaT bit on r3 was clear so |
| * we can directly use ifa. |
| */ |
| ifa += imm; |
| |
| setreg(ld.r3, ifa, 0, regs); |
| |
| DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa); |
| |
| } else if (ld.m) { |
| unsigned long r2; |
| int nat_r2; |
| |
| /* |
| * Load +Reg Opcode: ldXZ r1=[r3],r2 |
| * |
| * Note: that we update r3 even in the case of ldfX.a |
| * (where the load does not happen) |
| * |
| * The way the load algorithm works, we know that r3 does not |
| * have its NaT bit set (would have gotten NaT consumption |
| * before getting the unaligned fault). So we can use ifa |
| * which equals r3 at this point. |
| * |
| * IMPORTANT: |
| * The above statement holds ONLY because we know that we |
| * never reach this code when trying to do a ldX.s. |
| * If we ever make it to here on an ldfX.s then |
| */ |
| getreg(ld.imm, &r2, &nat_r2, regs); |
| |
| ifa += r2; |
| |
| /* |
| * propagate Nat r2 -> r3 |
| */ |
| setreg(ld.r3, ifa, nat_r2, regs); |
| |
| DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2); |
| } |
| } |
| |
| |
| static int |
| emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs) |
| { |
| unsigned int len = 1 << ld.x6_sz; |
| unsigned long val = 0; |
| |
| /* |
| * r0, as target, doesn't need to be checked because Illegal Instruction |
| * faults have higher priority than unaligned faults. |
| * |
| * r0 cannot be found as the base as it would never generate an |
| * unaligned reference. |
| */ |
| |
| /* |
| * ldX.a we will emulate load and also invalidate the ALAT entry. |
| * See comment below for explanation on how we handle ldX.a |
| */ |
| |
| if (len != 2 && len != 4 && len != 8) { |
| DPRINT("unknown size: x6=%d\n", ld.x6_sz); |
| return -1; |
| } |
| /* this assumes little-endian byte-order: */ |
| if (copy_from_user(&val, (void __user *) ifa, len)) |
| return -1; |
| setreg(ld.r1, val, 0, regs); |
| |
| /* |
| * check for updates on any kind of loads |
| */ |
| if (ld.op == 0x5 || ld.m) |
| emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa); |
| |
| /* |
| * handling of various loads (based on EAS2.4): |
| * |
| * ldX.acq (ordered load): |
| * - acquire semantics would have been used, so force fence instead. |
| * |
| * ldX.c.clr (check load and clear): |
| * - if we get to this handler, it's because the entry was not in the ALAT. |
| * Therefore the operation reverts to a normal load |
| * |
| * ldX.c.nc (check load no clear): |
| * - same as previous one |
| * |
| * ldX.c.clr.acq (ordered check load and clear): |
| * - same as above for c.clr part. The load needs to have acquire semantics. So |
| * we use the fence semantics which is stronger and thus ensures correctness. |
| * |
| * ldX.a (advanced load): |
| * - suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the |
| * address doesn't match requested size alignment. This means that we would |
| * possibly need more than one load to get the result. |
| * |
| * The load part can be handled just like a normal load, however the difficult |
| * part is to get the right thing into the ALAT. The critical piece of information |
| * in the base address of the load & size. To do that, a ld.a must be executed, |
| * clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now |
| * if we use the same target register, we will be okay for the check.a instruction. |
| * If we look at the store, basically a stX [r3]=r1 checks the ALAT for any entry |
| * which would overlap within [r3,r3+X] (the size of the load was store in the |
| * ALAT). If such an entry is found the entry is invalidated. But this is not good |
| * enough, take the following example: |
| * r3=3 |
| * ld4.a r1=[r3] |
| * |
| * Could be emulated by doing: |
| * ld1.a r1=[r3],1 |
| * store to temporary; |
| * ld1.a r1=[r3],1 |
| * store & shift to temporary; |
| * ld1.a r1=[r3],1 |
| * store & shift to temporary; |
| * ld1.a r1=[r3] |
| * store & shift to temporary; |
| * r1=temporary |
| * |
| * So in this case, you would get the right value is r1 but the wrong info in |
| * the ALAT. Notice that you could do it in reverse to finish with address 3 |
| * but you would still get the size wrong. To get the size right, one needs to |
| * execute exactly the same kind of load. You could do it from a aligned |
| * temporary location, but you would get the address wrong. |
| * |
| * So no matter what, it is not possible to emulate an advanced load |
| * correctly. But is that really critical ? |
| * |
| * We will always convert ld.a into a normal load with ALAT invalidated. This |
| * will enable compiler to do optimization where certain code path after ld.a |
| * is not required to have ld.c/chk.a, e.g., code path with no intervening stores. |
| * |
| * If there is a store after the advanced load, one must either do a ld.c.* or |
| * chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no |
| * entry found in ALAT), and that's perfectly ok because: |
| * |
| * - ld.c.*, if the entry is not present a normal load is executed |
| * - chk.a.*, if the entry is not present, execution jumps to recovery code |
| * |
| * In either case, the load can be potentially retried in another form. |
| * |
| * ALAT must be invalidated for the register (so that chk.a or ld.c don't pick |
| * up a stale entry later). The register base update MUST also be performed. |
| */ |
| |
| /* |
| * when the load has the .acq completer then |
| * use ordering fence. |
| */ |
| if (ld.x6_op == 0x5 || ld.x6_op == 0xa) |
| mb(); |
| |
| /* |
| * invalidate ALAT entry in case of advanced load |
| */ |
| if (ld.x6_op == 0x2) |
| invala_gr(ld.r1); |
| |
| return 0; |
| } |
| |
| static int |
| emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs) |
| { |
| unsigned long r2; |
| unsigned int len = 1 << ld.x6_sz; |
| |
| /* |
| * if we get to this handler, Nat bits on both r3 and r2 have already |
| * been checked. so we don't need to do it |
| * |
| * extract the value to be stored |
| */ |
| getreg(ld.imm, &r2, NULL, regs); |
| |
| /* |
| * we rely on the macros in unaligned.h for now i.e., |
| * we let the compiler figure out how to read memory gracefully. |
| * |
| * We need this switch/case because the way the inline function |
| * works. The code is optimized by the compiler and looks like |
| * a single switch/case. |
| */ |
| DPRINT("st%d [%lx]=%lx\n", len, ifa, r2); |
| |
| if (len != 2 && len != 4 && len != 8) { |
| DPRINT("unknown size: x6=%d\n", ld.x6_sz); |
| return -1; |
| } |
| |
| /* this assumes little-endian byte-order: */ |
| if (copy_to_user((void __user *) ifa, &r2, len)) |
| return -1; |
| |
| /* |
| * stX [r3]=r2,imm(9) |
| * |
| * NOTE: |
| * ld.r3 can never be r0, because r0 would not generate an |
| * unaligned access. |
| */ |
| if (ld.op == 0x5) { |
| unsigned long imm; |
| |
| /* |
| * form imm9: [12:6] contain first 7bits |
| */ |
| imm = ld.x << 7 | ld.r1; |
| /* |
| * sign extend (8bits) if m set |
| */ |
| if (ld.m) imm |= SIGN_EXT9; |
| /* |
| * ifa == r3 (NaT is necessarily cleared) |
| */ |
| ifa += imm; |
| |
| DPRINT("imm=%lx r3=%lx\n", imm, ifa); |
| |
| setreg(ld.r3, ifa, 0, regs); |
| } |
| /* |
| * we don't have alat_invalidate_multiple() so we need |
| * to do the complete flush :-<< |
| */ |
| ia64_invala(); |
| |
| /* |
| * stX.rel: use fence instead of release |
| */ |
| if (ld.x6_op == 0xd) |
| mb(); |
| |
| return 0; |
| } |
| |
| /* |
| * floating point operations sizes in bytes |
| */ |
| static const unsigned char float_fsz[4]={ |
| 10, /* extended precision (e) */ |
| 8, /* integer (8) */ |
| 4, /* single precision (s) */ |
| 8 /* double precision (d) */ |
| }; |
| |
| static inline void |
| mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final) |
| { |
| ia64_ldfe(6, init); |
| ia64_stop(); |
| ia64_stf_spill(final, 6); |
| } |
| |
| static inline void |
| mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final) |
| { |
| ia64_ldf8(6, init); |
| ia64_stop(); |
| ia64_stf_spill(final, 6); |
| } |
| |
| static inline void |
| mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final) |
| { |
| ia64_ldfs(6, init); |
| ia64_stop(); |
| ia64_stf_spill(final, 6); |
| } |
| |
| static inline void |
| mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final) |
| { |
| ia64_ldfd(6, init); |
| ia64_stop(); |
| ia64_stf_spill(final, 6); |
| } |
| |
| static inline void |
| float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final) |
| { |
| ia64_ldf_fill(6, init); |
| ia64_stop(); |
| ia64_stfe(final, 6); |
| } |
| |
| static inline void |
| float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final) |
| { |
| ia64_ldf_fill(6, init); |
| ia64_stop(); |
| ia64_stf8(final, 6); |
| } |
| |
| static inline void |
| float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final) |
| { |
| ia64_ldf_fill(6, init); |
| ia64_stop(); |
| ia64_stfs(final, 6); |
| } |
| |
| static inline void |
| float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final) |
| { |
| ia64_ldf_fill(6, init); |
| ia64_stop(); |
| ia64_stfd(final, 6); |
| } |
| |
| static int |
| emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs) |
| { |
| struct ia64_fpreg fpr_init[2]; |
| struct ia64_fpreg fpr_final[2]; |
| unsigned long len = float_fsz[ld.x6_sz]; |
| |
| /* |
| * fr0 & fr1 don't need to be checked because Illegal Instruction faults have |
| * higher priority than unaligned faults. |
| * |
| * r0 cannot be found as the base as it would never generate an unaligned |
| * reference. |
| */ |
| |
| /* |
| * make sure we get clean buffers |
| */ |
| memset(&fpr_init, 0, sizeof(fpr_init)); |
| memset(&fpr_final, 0, sizeof(fpr_final)); |
| |
| /* |
| * ldfpX.a: we don't try to emulate anything but we must |
| * invalidate the ALAT entry and execute updates, if any. |
| */ |
| if (ld.x6_op != 0x2) { |
| /* |
| * This assumes little-endian byte-order. Note that there is no "ldfpe" |
| * instruction: |
| */ |
| if (copy_from_user(&fpr_init[0], (void __user *) ifa, len) |
| || copy_from_user(&fpr_init[1], (void __user *) (ifa + len), len)) |
| return -1; |
| |
| DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz); |
| DDUMP("frp_init =", &fpr_init, 2*len); |
| /* |
| * XXX fixme |
| * Could optimize inlines by using ldfpX & 2 spills |
| */ |
| switch( ld.x6_sz ) { |
| case 0: |
| mem2float_extended(&fpr_init[0], &fpr_final[0]); |
| mem2float_extended(&fpr_init[1], &fpr_final[1]); |
| break; |
| case 1: |
| mem2float_integer(&fpr_init[0], &fpr_final[0]); |
| mem2float_integer(&fpr_init[1], &fpr_final[1]); |
| break; |
| case 2: |
| mem2float_single(&fpr_init[0], &fpr_final[0]); |
| mem2float_single(&fpr_init[1], &fpr_final[1]); |
| break; |
| case 3: |
| mem2float_double(&fpr_init[0], &fpr_final[0]); |
| mem2float_double(&fpr_init[1], &fpr_final[1]); |
| break; |
| } |
| DDUMP("fpr_final =", &fpr_final, 2*len); |
| /* |
| * XXX fixme |
| * |
| * A possible optimization would be to drop fpr_final and directly |
| * use the storage from the saved context i.e., the actual final |
| * destination (pt_regs, switch_stack or thread structure). |
| */ |
| setfpreg(ld.r1, &fpr_final[0], regs); |
| setfpreg(ld.imm, &fpr_final[1], regs); |
| } |
| |
| /* |
| * Check for updates: only immediate updates are available for this |
| * instruction. |
| */ |
| if (ld.m) { |
| /* |
| * the immediate is implicit given the ldsz of the operation: |
| * single: 8 (2x4) and for all others it's 16 (2x8) |
| */ |
| ifa += len<<1; |
| |
| /* |
| * IMPORTANT: |
| * the fact that we force the NaT of r3 to zero is ONLY valid |
| * as long as we don't come here with a ldfpX.s. |
| * For this reason we keep this sanity check |
| */ |
| if (ld.x6_op == 1 || ld.x6_op == 3) |
| printk(KERN_ERR "%s: register update on speculative load pair, error\n", |
| __func__); |
| |
| setreg(ld.r3, ifa, 0, regs); |
| } |
| |
| /* |
| * Invalidate ALAT entries, if any, for both registers. |
| */ |
| if (ld.x6_op == 0x2) { |
| invala_fr(ld.r1); |
| invala_fr(ld.imm); |
| } |
| return 0; |
| } |
| |
| |
| static int |
| emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs) |
| { |
| struct ia64_fpreg fpr_init; |
| struct ia64_fpreg fpr_final; |
| unsigned long len = float_fsz[ld.x6_sz]; |
| |
| /* |
| * fr0 & fr1 don't need to be checked because Illegal Instruction |
| * faults have higher priority than unaligned faults. |
| * |
| * r0 cannot be found as the base as it would never generate an |
| * unaligned reference. |
| */ |
| |
| /* |
| * make sure we get clean buffers |
| */ |
| memset(&fpr_init,0, sizeof(fpr_init)); |
| memset(&fpr_final,0, sizeof(fpr_final)); |
| |
| /* |
| * ldfX.a we don't try to emulate anything but we must |
| * invalidate the ALAT entry. |
| * See comments in ldX for descriptions on how the various loads are handled. |
| */ |
| if (ld.x6_op != 0x2) { |
| if (copy_from_user(&fpr_init, (void __user *) ifa, len)) |
| return -1; |
| |
| DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz); |
| DDUMP("fpr_init =", &fpr_init, len); |
| /* |
| * we only do something for x6_op={0,8,9} |
| */ |
| switch( ld.x6_sz ) { |
| case 0: |
| mem2float_extended(&fpr_init, &fpr_final); |
| break; |
| case 1: |
| mem2float_integer(&fpr_init, &fpr_final); |
| break; |
| case 2: |
| mem2float_single(&fpr_init, &fpr_final); |
| break; |
| case 3: |
| mem2float_double(&fpr_init, &fpr_final); |
| break; |
| } |
| DDUMP("fpr_final =", &fpr_final, len); |
| /* |
| * XXX fixme |
| * |
| * A possible optimization would be to drop fpr_final and directly |
| * use the storage from the saved context i.e., the actual final |
| * destination (pt_regs, switch_stack or thread structure). |
| */ |
| setfpreg(ld.r1, &fpr_final, regs); |
| } |
| |
| /* |
| * check for updates on any loads |
| */ |
| if (ld.op == 0x7 || ld.m) |
| emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa); |
| |
| /* |
| * invalidate ALAT entry in case of advanced floating point loads |
| */ |
| if (ld.x6_op == 0x2) |
| invala_fr(ld.r1); |
| |
| return 0; |
| } |
| |
| |
| static int |
| emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs) |
| { |
| struct ia64_fpreg fpr_init; |
| struct ia64_fpreg fpr_final; |
| unsigned long len = float_fsz[ld.x6_sz]; |
| |
| /* |
| * make sure we get clean buffers |
| */ |
| memset(&fpr_init,0, sizeof(fpr_init)); |
| memset(&fpr_final,0, sizeof(fpr_final)); |
| |
| /* |
| * if we get to this handler, Nat bits on both r3 and r2 have already |
| * been checked. so we don't need to do it |
| * |
| * extract the value to be stored |
| */ |
| getfpreg(ld.imm, &fpr_init, regs); |
| /* |
| * during this step, we extract the spilled registers from the saved |
| * context i.e., we refill. Then we store (no spill) to temporary |
| * aligned location |
| */ |
| switch( ld.x6_sz ) { |
| case 0: |
| float2mem_extended(&fpr_init, &fpr_final); |
| break; |
| case 1: |
| float2mem_integer(&fpr_init, &fpr_final); |
| break; |
| case 2: |
| float2mem_single(&fpr_init, &fpr_final); |
| break; |
| case 3: |
| float2mem_double(&fpr_init, &fpr_final); |
| break; |
| } |
| DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz); |
| DDUMP("fpr_init =", &fpr_init, len); |
| DDUMP("fpr_final =", &fpr_final, len); |
| |
| if (copy_to_user((void __user *) ifa, &fpr_final, len)) |
| return -1; |
| |
| /* |
| * stfX [r3]=r2,imm(9) |
| * |
| * NOTE: |
| * ld.r3 can never be r0, because r0 would not generate an |
| * unaligned access. |
| */ |
| if (ld.op == 0x7) { |
| unsigned long imm; |
| |
| /* |
| * form imm9: [12:6] contain first 7bits |
| */ |
| imm = ld.x << 7 | ld.r1; |
| /* |
| * sign extend (8bits) if m set |
| */ |
| if (ld.m) |
| imm |= SIGN_EXT9; |
| /* |
| * ifa == r3 (NaT is necessarily cleared) |
| */ |
| ifa += imm; |
| |
| DPRINT("imm=%lx r3=%lx\n", imm, ifa); |
| |
| setreg(ld.r3, ifa, 0, regs); |
| } |
| /* |
| * we don't have alat_invalidate_multiple() so we need |
| * to do the complete flush :-<< |
| */ |
| ia64_invala(); |
| |
| return 0; |
| } |
| |
| /* |
| * Make sure we log the unaligned access, so that user/sysadmin can notice it and |
| * eventually fix the program. However, we don't want to do that for every access so we |
| * pace it with jiffies. |
| */ |
| static DEFINE_RATELIMIT_STATE(logging_rate_limit, 5 * HZ, 5); |
| |
| void |
| ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs) |
| { |
| struct ia64_psr *ipsr = ia64_psr(regs); |
| mm_segment_t old_fs = get_fs(); |
| unsigned long bundle[2]; |
| unsigned long opcode; |
| const struct exception_table_entry *eh = NULL; |
| union { |
| unsigned long l; |
| load_store_t insn; |
| } u; |
| int ret = -1; |
| |
| if (ia64_psr(regs)->be) { |
| /* we don't support big-endian accesses */ |
| if (die_if_kernel("big-endian unaligned accesses are not supported", regs, 0)) |
| return; |
| goto force_sigbus; |
| } |
| |
| /* |
| * Treat kernel accesses for which there is an exception handler entry the same as |
| * user-level unaligned accesses. Otherwise, a clever program could trick this |
| * handler into reading an arbitrary kernel addresses... |
| */ |
| if (!user_mode(regs)) |
| eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri); |
| if (user_mode(regs) || eh) { |
| if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0) |
| goto force_sigbus; |
| |
| if (!no_unaligned_warning && |
| !(current->thread.flags & IA64_THREAD_UAC_NOPRINT) && |
| __ratelimit(&logging_rate_limit)) |
| { |
| char buf[200]; /* comm[] is at most 16 bytes... */ |
| size_t len; |
| |
| len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, " |
| "ip=0x%016lx\n\r", current->comm, |
| task_pid_nr(current), |
| ifa, regs->cr_iip + ipsr->ri); |
| /* |
| * Don't call tty_write_message() if we're in the kernel; we might |
| * be holding locks... |
| */ |
| if (user_mode(regs)) { |
| struct tty_struct *tty = get_current_tty(); |
| tty_write_message(tty, buf); |
| tty_kref_put(tty); |
| } |
| buf[len-1] = '\0'; /* drop '\r' */ |
| /* watch for command names containing %s */ |
| printk(KERN_WARNING "%s", buf); |
| } else { |
| if (no_unaligned_warning) { |
| printk_once(KERN_WARNING "%s(%d) encountered an " |
| "unaligned exception which required\n" |
| "kernel assistance, which degrades " |
| "the performance of the application.\n" |
| "Unaligned exception warnings have " |
| "been disabled by the system " |
| "administrator\n" |
| "echo 0 > /proc/sys/kernel/ignore-" |
| "unaligned-usertrap to re-enable\n", |
| current->comm, task_pid_nr(current)); |
| } |
| } |
| } else { |
| if (__ratelimit(&logging_rate_limit)) { |
| printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n", |
| ifa, regs->cr_iip + ipsr->ri); |
| if (unaligned_dump_stack) |
| dump_stack(); |
| } |
| set_fs(KERNEL_DS); |
| } |
| |
| DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n", |
| regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it); |
| |
| if (__copy_from_user(bundle, (void __user *) regs->cr_iip, 16)) |
| goto failure; |
| |
| /* |
| * extract the instruction from the bundle given the slot number |
| */ |
| switch (ipsr->ri) { |
| default: |
| case 0: u.l = (bundle[0] >> 5); break; |
| case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break; |
| case 2: u.l = (bundle[1] >> 23); break; |
| } |
| opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK; |
| |
| DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d " |
| "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm, |
| u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op); |
| |
| /* |
| * IMPORTANT: |
| * Notice that the switch statement DOES not cover all possible instructions |
| * that DO generate unaligned references. This is made on purpose because for some |
| * instructions it DOES NOT make sense to try and emulate the access. Sometimes it |
| * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e., |
| * the program will get a signal and die: |
| * |
| * load/store: |
| * - ldX.spill |
| * - stX.spill |
| * Reason: RNATs are based on addresses |
| * - ld16 |
| * - st16 |
| * Reason: ld16 and st16 are supposed to occur in a single |
| * memory op |
| * |
| * synchronization: |
| * - cmpxchg |
| * - fetchadd |
| * - xchg |
| * Reason: ATOMIC operations cannot be emulated properly using multiple |
| * instructions. |
| * |
| * speculative loads: |
| * - ldX.sZ |
| * Reason: side effects, code must be ready to deal with failure so simpler |
| * to let the load fail. |
| * --------------------------------------------------------------------------------- |
| * XXX fixme |
| * |
| * I would like to get rid of this switch case and do something |
| * more elegant. |
| */ |
| switch (opcode) { |
| case LDS_OP: |
| case LDSA_OP: |
| if (u.insn.x) |
| /* oops, really a semaphore op (cmpxchg, etc) */ |
| goto failure; |
| /*FALLTHRU*/ |
| case LDS_IMM_OP: |
| case LDSA_IMM_OP: |
| case LDFS_OP: |
| case LDFSA_OP: |
| case LDFS_IMM_OP: |
| /* |
| * The instruction will be retried with deferred exceptions turned on, and |
| * we should get Nat bit installed |
| * |
| * IMPORTANT: When PSR_ED is set, the register & immediate update forms |
| * are actually executed even though the operation failed. So we don't |
| * need to take care of this. |
| */ |
| DPRINT("forcing PSR_ED\n"); |
| regs->cr_ipsr |= IA64_PSR_ED; |
| goto done; |
| |
| case LD_OP: |
| case LDA_OP: |
| case LDBIAS_OP: |
| case LDACQ_OP: |
| case LDCCLR_OP: |
| case LDCNC_OP: |
| case LDCCLRACQ_OP: |
| if (u.insn.x) |
| /* oops, really a semaphore op (cmpxchg, etc) */ |
| goto failure; |
| /*FALLTHRU*/ |
| case LD_IMM_OP: |
| case LDA_IMM_OP: |
| case LDBIAS_IMM_OP: |
| case LDACQ_IMM_OP: |
| case LDCCLR_IMM_OP: |
| case LDCNC_IMM_OP: |
| case LDCCLRACQ_IMM_OP: |
| ret = emulate_load_int(ifa, u.insn, regs); |
| break; |
| |
| case ST_OP: |
| case STREL_OP: |
| if (u.insn.x) |
| /* oops, really a semaphore op (cmpxchg, etc) */ |
| goto failure; |
| /*FALLTHRU*/ |
| case ST_IMM_OP: |
| case STREL_IMM_OP: |
| ret = emulate_store_int(ifa, u.insn, regs); |
| break; |
| |
| case LDF_OP: |
| case LDFA_OP: |
| case LDFCCLR_OP: |
| case LDFCNC_OP: |
| if (u.insn.x) |
| ret = emulate_load_floatpair(ifa, u.insn, regs); |
| else |
| ret = emulate_load_float(ifa, u.insn, regs); |
| break; |
| |
| case LDF_IMM_OP: |
| case LDFA_IMM_OP: |
| case LDFCCLR_IMM_OP: |
| case LDFCNC_IMM_OP: |
| ret = emulate_load_float(ifa, u.insn, regs); |
| break; |
| |
| case STF_OP: |
| case STF_IMM_OP: |
| ret = emulate_store_float(ifa, u.insn, regs); |
| break; |
| |
| default: |
| goto failure; |
| } |
| DPRINT("ret=%d\n", ret); |
| if (ret) |
| goto failure; |
| |
| if (ipsr->ri == 2) |
| /* |
| * given today's architecture this case is not likely to happen because a |
| * memory access instruction (M) can never be in the last slot of a |
| * bundle. But let's keep it for now. |
| */ |
| regs->cr_iip += 16; |
| ipsr->ri = (ipsr->ri + 1) & 0x3; |
| |
| DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip); |
| done: |
| set_fs(old_fs); /* restore original address limit */ |
| return; |
| |
| failure: |
| /* something went wrong... */ |
| if (!user_mode(regs)) { |
| if (eh) { |
| ia64_handle_exception(regs, eh); |
| goto done; |
| } |
| if (die_if_kernel("error during unaligned kernel access\n", regs, ret)) |
| return; |
| /* NOT_REACHED */ |
| } |
| force_sigbus: |
| force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) ifa, |
| 0, 0, 0); |
| goto done; |
| } |