| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _ASM_X86_EFI_H |
| #define _ASM_X86_EFI_H |
| |
| #include <asm/fpu/api.h> |
| #include <asm/processor-flags.h> |
| #include <asm/tlb.h> |
| #include <asm/nospec-branch.h> |
| #include <asm/mmu_context.h> |
| #include <linux/build_bug.h> |
| #include <linux/kernel.h> |
| #include <linux/pgtable.h> |
| |
| extern unsigned long efi_fw_vendor, efi_config_table; |
| extern unsigned long efi_mixed_mode_stack_pa; |
| |
| /* |
| * We map the EFI regions needed for runtime services non-contiguously, |
| * with preserved alignment on virtual addresses starting from -4G down |
| * for a total max space of 64G. This way, we provide for stable runtime |
| * services addresses across kernels so that a kexec'd kernel can still |
| * use them. |
| * |
| * This is the main reason why we're doing stable VA mappings for RT |
| * services. |
| */ |
| |
| #define EFI32_LOADER_SIGNATURE "EL32" |
| #define EFI64_LOADER_SIGNATURE "EL64" |
| |
| #define ARCH_EFI_IRQ_FLAGS_MASK X86_EFLAGS_IF |
| |
| /* |
| * The EFI services are called through variadic functions in many cases. These |
| * functions are implemented in assembler and support only a fixed number of |
| * arguments. The macros below allows us to check at build time that we don't |
| * try to call them with too many arguments. |
| * |
| * __efi_nargs() will return the number of arguments if it is 7 or less, and |
| * cause a BUILD_BUG otherwise. The limitations of the C preprocessor make it |
| * impossible to calculate the exact number of arguments beyond some |
| * pre-defined limit. The maximum number of arguments currently supported by |
| * any of the thunks is 7, so this is good enough for now and can be extended |
| * in the obvious way if we ever need more. |
| */ |
| |
| #define __efi_nargs(...) __efi_nargs_(__VA_ARGS__) |
| #define __efi_nargs_(...) __efi_nargs__(0, ##__VA_ARGS__, \ |
| __efi_arg_sentinel(7), __efi_arg_sentinel(6), \ |
| __efi_arg_sentinel(5), __efi_arg_sentinel(4), \ |
| __efi_arg_sentinel(3), __efi_arg_sentinel(2), \ |
| __efi_arg_sentinel(1), __efi_arg_sentinel(0)) |
| #define __efi_nargs__(_0, _1, _2, _3, _4, _5, _6, _7, n, ...) \ |
| __take_second_arg(n, \ |
| ({ BUILD_BUG_ON_MSG(1, "__efi_nargs limit exceeded"); 8; })) |
| #define __efi_arg_sentinel(n) , n |
| |
| /* |
| * __efi_nargs_check(f, n, ...) will cause a BUILD_BUG if the ellipsis |
| * represents more than n arguments. |
| */ |
| |
| #define __efi_nargs_check(f, n, ...) \ |
| __efi_nargs_check_(f, __efi_nargs(__VA_ARGS__), n) |
| #define __efi_nargs_check_(f, p, n) __efi_nargs_check__(f, p, n) |
| #define __efi_nargs_check__(f, p, n) ({ \ |
| BUILD_BUG_ON_MSG( \ |
| (p) > (n), \ |
| #f " called with too many arguments (" #p ">" #n ")"); \ |
| }) |
| |
| static inline void efi_fpu_begin(void) |
| { |
| /* |
| * The UEFI calling convention (UEFI spec 2.3.2 and 2.3.4) requires |
| * that FCW and MXCSR (64-bit) must be initialized prior to calling |
| * UEFI code. (Oddly the spec does not require that the FPU stack |
| * be empty.) |
| */ |
| kernel_fpu_begin_mask(KFPU_387 | KFPU_MXCSR); |
| } |
| |
| static inline void efi_fpu_end(void) |
| { |
| kernel_fpu_end(); |
| } |
| |
| #ifdef CONFIG_X86_32 |
| #define arch_efi_call_virt_setup() \ |
| ({ \ |
| efi_fpu_begin(); \ |
| firmware_restrict_branch_speculation_start(); \ |
| }) |
| |
| #define arch_efi_call_virt_teardown() \ |
| ({ \ |
| firmware_restrict_branch_speculation_end(); \ |
| efi_fpu_end(); \ |
| }) |
| |
| #define arch_efi_call_virt(p, f, args...) p->f(args) |
| |
| #else /* !CONFIG_X86_32 */ |
| |
| #define EFI_LOADER_SIGNATURE "EL64" |
| |
| extern asmlinkage u64 __efi_call(void *fp, ...); |
| |
| #define efi_call(...) ({ \ |
| __efi_nargs_check(efi_call, 7, __VA_ARGS__); \ |
| __efi_call(__VA_ARGS__); \ |
| }) |
| |
| #define arch_efi_call_virt_setup() \ |
| ({ \ |
| efi_sync_low_kernel_mappings(); \ |
| efi_fpu_begin(); \ |
| firmware_restrict_branch_speculation_start(); \ |
| efi_enter_mm(); \ |
| }) |
| |
| #define arch_efi_call_virt(p, f, args...) \ |
| efi_call((void *)p->f, args) \ |
| |
| #define arch_efi_call_virt_teardown() \ |
| ({ \ |
| efi_leave_mm(); \ |
| firmware_restrict_branch_speculation_end(); \ |
| efi_fpu_end(); \ |
| }) |
| |
| #ifdef CONFIG_KASAN |
| /* |
| * CONFIG_KASAN may redefine memset to __memset. __memset function is present |
| * only in kernel binary. Since the EFI stub linked into a separate binary it |
| * doesn't have __memset(). So we should use standard memset from |
| * arch/x86/boot/compressed/string.c. The same applies to memcpy and memmove. |
| */ |
| #undef memcpy |
| #undef memset |
| #undef memmove |
| #endif |
| |
| #endif /* CONFIG_X86_32 */ |
| |
| extern int __init efi_memblock_x86_reserve_range(void); |
| extern void __init efi_print_memmap(void); |
| extern void __init efi_map_region(efi_memory_desc_t *md); |
| extern void __init efi_map_region_fixed(efi_memory_desc_t *md); |
| extern void efi_sync_low_kernel_mappings(void); |
| extern int __init efi_alloc_page_tables(void); |
| extern int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages); |
| extern void __init efi_runtime_update_mappings(void); |
| extern void __init efi_dump_pagetable(void); |
| extern void __init efi_apply_memmap_quirks(void); |
| extern int __init efi_reuse_config(u64 tables, int nr_tables); |
| extern void efi_delete_dummy_variable(void); |
| extern void efi_crash_gracefully_on_page_fault(unsigned long phys_addr); |
| extern void efi_free_boot_services(void); |
| |
| void efi_enter_mm(void); |
| void efi_leave_mm(void); |
| |
| /* kexec external ABI */ |
| struct efi_setup_data { |
| u64 fw_vendor; |
| u64 __unused; |
| u64 tables; |
| u64 smbios; |
| u64 reserved[8]; |
| }; |
| |
| extern u64 efi_setup; |
| |
| #ifdef CONFIG_EFI |
| extern efi_status_t __efi64_thunk(u32, ...); |
| |
| #define efi64_thunk(...) ({ \ |
| __efi_nargs_check(efi64_thunk, 6, __VA_ARGS__); \ |
| __efi64_thunk(__VA_ARGS__); \ |
| }) |
| |
| static inline bool efi_is_mixed(void) |
| { |
| if (!IS_ENABLED(CONFIG_EFI_MIXED)) |
| return false; |
| return IS_ENABLED(CONFIG_X86_64) && !efi_enabled(EFI_64BIT); |
| } |
| |
| static inline bool efi_runtime_supported(void) |
| { |
| if (IS_ENABLED(CONFIG_X86_64) == efi_enabled(EFI_64BIT)) |
| return true; |
| |
| return IS_ENABLED(CONFIG_EFI_MIXED); |
| } |
| |
| extern void parse_efi_setup(u64 phys_addr, u32 data_len); |
| |
| extern void efifb_setup_from_dmi(struct screen_info *si, const char *opt); |
| |
| extern void efi_thunk_runtime_setup(void); |
| efi_status_t efi_set_virtual_address_map(unsigned long memory_map_size, |
| unsigned long descriptor_size, |
| u32 descriptor_version, |
| efi_memory_desc_t *virtual_map, |
| unsigned long systab_phys); |
| |
| /* arch specific definitions used by the stub code */ |
| |
| #ifdef CONFIG_EFI_MIXED |
| |
| #define ARCH_HAS_EFISTUB_WRAPPERS |
| |
| static inline bool efi_is_64bit(void) |
| { |
| extern const bool efi_is64; |
| |
| return efi_is64; |
| } |
| |
| static inline bool efi_is_native(void) |
| { |
| return efi_is_64bit(); |
| } |
| |
| #define efi_mixed_mode_cast(attr) \ |
| __builtin_choose_expr( \ |
| __builtin_types_compatible_p(u32, __typeof__(attr)), \ |
| (unsigned long)(attr), (attr)) |
| |
| #define efi_table_attr(inst, attr) \ |
| (efi_is_native() \ |
| ? inst->attr \ |
| : (__typeof__(inst->attr)) \ |
| efi_mixed_mode_cast(inst->mixed_mode.attr)) |
| |
| /* |
| * The following macros allow translating arguments if necessary from native to |
| * mixed mode. The use case for this is to initialize the upper 32 bits of |
| * output parameters, and where the 32-bit method requires a 64-bit argument, |
| * which must be split up into two arguments to be thunked properly. |
| * |
| * As examples, the AllocatePool boot service returns the address of the |
| * allocation, but it will not set the high 32 bits of the address. To ensure |
| * that the full 64-bit address is initialized, we zero-init the address before |
| * calling the thunk. |
| * |
| * The FreePages boot service takes a 64-bit physical address even in 32-bit |
| * mode. For the thunk to work correctly, a native 64-bit call of |
| * free_pages(addr, size) |
| * must be translated to |
| * efi64_thunk(free_pages, addr & U32_MAX, addr >> 32, size) |
| * so that the two 32-bit halves of addr get pushed onto the stack separately. |
| */ |
| |
| static inline void *efi64_zero_upper(void *p) |
| { |
| ((u32 *)p)[1] = 0; |
| return p; |
| } |
| |
| static inline u32 efi64_convert_status(efi_status_t status) |
| { |
| return (u32)(status | (u64)status >> 32); |
| } |
| |
| #define __efi64_argmap_free_pages(addr, size) \ |
| ((addr), 0, (size)) |
| |
| #define __efi64_argmap_get_memory_map(mm_size, mm, key, size, ver) \ |
| ((mm_size), (mm), efi64_zero_upper(key), efi64_zero_upper(size), (ver)) |
| |
| #define __efi64_argmap_allocate_pool(type, size, buffer) \ |
| ((type), (size), efi64_zero_upper(buffer)) |
| |
| #define __efi64_argmap_create_event(type, tpl, f, c, event) \ |
| ((type), (tpl), (f), (c), efi64_zero_upper(event)) |
| |
| #define __efi64_argmap_set_timer(event, type, time) \ |
| ((event), (type), lower_32_bits(time), upper_32_bits(time)) |
| |
| #define __efi64_argmap_wait_for_event(num, event, index) \ |
| ((num), (event), efi64_zero_upper(index)) |
| |
| #define __efi64_argmap_handle_protocol(handle, protocol, interface) \ |
| ((handle), (protocol), efi64_zero_upper(interface)) |
| |
| #define __efi64_argmap_locate_protocol(protocol, reg, interface) \ |
| ((protocol), (reg), efi64_zero_upper(interface)) |
| |
| #define __efi64_argmap_locate_device_path(protocol, path, handle) \ |
| ((protocol), (path), efi64_zero_upper(handle)) |
| |
| #define __efi64_argmap_exit(handle, status, size, data) \ |
| ((handle), efi64_convert_status(status), (size), (data)) |
| |
| /* PCI I/O */ |
| #define __efi64_argmap_get_location(protocol, seg, bus, dev, func) \ |
| ((protocol), efi64_zero_upper(seg), efi64_zero_upper(bus), \ |
| efi64_zero_upper(dev), efi64_zero_upper(func)) |
| |
| /* LoadFile */ |
| #define __efi64_argmap_load_file(protocol, path, policy, bufsize, buf) \ |
| ((protocol), (path), (policy), efi64_zero_upper(bufsize), (buf)) |
| |
| /* Graphics Output Protocol */ |
| #define __efi64_argmap_query_mode(gop, mode, size, info) \ |
| ((gop), (mode), efi64_zero_upper(size), efi64_zero_upper(info)) |
| |
| /* |
| * The macros below handle the plumbing for the argument mapping. To add a |
| * mapping for a specific EFI method, simply define a macro |
| * __efi64_argmap_<method name>, following the examples above. |
| */ |
| |
| #define __efi64_thunk_map(inst, func, ...) \ |
| efi64_thunk(inst->mixed_mode.func, \ |
| __efi64_argmap(__efi64_argmap_ ## func(__VA_ARGS__), \ |
| (__VA_ARGS__))) |
| |
| #define __efi64_argmap(mapped, args) \ |
| __PASTE(__efi64_argmap__, __efi_nargs(__efi_eat mapped))(mapped, args) |
| #define __efi64_argmap__0(mapped, args) __efi_eval mapped |
| #define __efi64_argmap__1(mapped, args) __efi_eval args |
| |
| #define __efi_eat(...) |
| #define __efi_eval(...) __VA_ARGS__ |
| |
| /* The three macros below handle dispatching via the thunk if needed */ |
| |
| #define efi_call_proto(inst, func, ...) \ |
| (efi_is_native() \ |
| ? inst->func(inst, ##__VA_ARGS__) \ |
| : __efi64_thunk_map(inst, func, inst, ##__VA_ARGS__)) |
| |
| #define efi_bs_call(func, ...) \ |
| (efi_is_native() \ |
| ? efi_system_table->boottime->func(__VA_ARGS__) \ |
| : __efi64_thunk_map(efi_table_attr(efi_system_table, \ |
| boottime), \ |
| func, __VA_ARGS__)) |
| |
| #define efi_rt_call(func, ...) \ |
| (efi_is_native() \ |
| ? efi_system_table->runtime->func(__VA_ARGS__) \ |
| : __efi64_thunk_map(efi_table_attr(efi_system_table, \ |
| runtime), \ |
| func, __VA_ARGS__)) |
| |
| #else /* CONFIG_EFI_MIXED */ |
| |
| static inline bool efi_is_64bit(void) |
| { |
| return IS_ENABLED(CONFIG_X86_64); |
| } |
| |
| #endif /* CONFIG_EFI_MIXED */ |
| |
| extern bool efi_reboot_required(void); |
| extern bool efi_is_table_address(unsigned long phys_addr); |
| |
| extern void efi_find_mirror(void); |
| extern void efi_reserve_boot_services(void); |
| #else |
| static inline void parse_efi_setup(u64 phys_addr, u32 data_len) {} |
| static inline bool efi_reboot_required(void) |
| { |
| return false; |
| } |
| static inline bool efi_is_table_address(unsigned long phys_addr) |
| { |
| return false; |
| } |
| static inline void efi_find_mirror(void) |
| { |
| } |
| static inline void efi_reserve_boot_services(void) |
| { |
| } |
| #endif /* CONFIG_EFI */ |
| |
| #ifdef CONFIG_EFI_FAKE_MEMMAP |
| extern void __init efi_fake_memmap_early(void); |
| #else |
| static inline void efi_fake_memmap_early(void) |
| { |
| } |
| #endif |
| |
| #define arch_ima_efi_boot_mode \ |
| ({ extern struct boot_params boot_params; boot_params.secure_boot; }) |
| |
| #endif /* _ASM_X86_EFI_H */ |