blob: eb40d8413bca937e8c87ccf457e9cf88723801f7 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2012-2020, The Linux Foundation. All rights reserved.
*/
#include <linux/delay.h>
#include <drm/drm_print.h>
#include "dp_reg.h"
#include "dp_aux.h"
enum msm_dp_aux_err {
DP_AUX_ERR_NONE,
DP_AUX_ERR_ADDR,
DP_AUX_ERR_TOUT,
DP_AUX_ERR_NACK,
DP_AUX_ERR_DEFER,
DP_AUX_ERR_NACK_DEFER,
DP_AUX_ERR_PHY,
};
struct dp_aux_private {
struct device *dev;
struct dp_catalog *catalog;
struct mutex mutex;
struct completion comp;
enum msm_dp_aux_err aux_error_num;
u32 retry_cnt;
bool cmd_busy;
bool native;
bool read;
bool no_send_addr;
bool no_send_stop;
u32 offset;
u32 segment;
struct drm_dp_aux dp_aux;
};
#define MAX_AUX_RETRIES 5
static ssize_t dp_aux_write(struct dp_aux_private *aux,
struct drm_dp_aux_msg *msg)
{
u8 data[4];
u32 reg;
ssize_t len;
u8 *msgdata = msg->buffer;
int const AUX_CMD_FIFO_LEN = 128;
int i = 0;
if (aux->read)
len = 0;
else
len = msg->size;
/*
* cmd fifo only has depth of 144 bytes
* limit buf length to 128 bytes here
*/
if (len > AUX_CMD_FIFO_LEN - 4) {
DRM_ERROR("buf size greater than allowed size of 128 bytes\n");
return -EINVAL;
}
/* Pack cmd and write to HW */
data[0] = (msg->address >> 16) & 0xf; /* addr[19:16] */
if (aux->read)
data[0] |= BIT(4); /* R/W */
data[1] = msg->address >> 8; /* addr[15:8] */
data[2] = msg->address; /* addr[7:0] */
data[3] = msg->size - 1; /* len[7:0] */
for (i = 0; i < len + 4; i++) {
reg = (i < 4) ? data[i] : msgdata[i - 4];
reg <<= DP_AUX_DATA_OFFSET;
reg &= DP_AUX_DATA_MASK;
reg |= DP_AUX_DATA_WRITE;
/* index = 0, write */
if (i == 0)
reg |= DP_AUX_DATA_INDEX_WRITE;
aux->catalog->aux_data = reg;
dp_catalog_aux_write_data(aux->catalog);
}
dp_catalog_aux_clear_trans(aux->catalog, false);
dp_catalog_aux_clear_hw_interrupts(aux->catalog);
reg = 0; /* Transaction number == 1 */
if (!aux->native) { /* i2c */
reg |= DP_AUX_TRANS_CTRL_I2C;
if (aux->no_send_addr)
reg |= DP_AUX_TRANS_CTRL_NO_SEND_ADDR;
if (aux->no_send_stop)
reg |= DP_AUX_TRANS_CTRL_NO_SEND_STOP;
}
reg |= DP_AUX_TRANS_CTRL_GO;
aux->catalog->aux_data = reg;
dp_catalog_aux_write_trans(aux->catalog);
return len;
}
static ssize_t dp_aux_cmd_fifo_tx(struct dp_aux_private *aux,
struct drm_dp_aux_msg *msg)
{
ssize_t ret;
unsigned long time_left;
reinit_completion(&aux->comp);
ret = dp_aux_write(aux, msg);
if (ret < 0)
return ret;
time_left = wait_for_completion_timeout(&aux->comp,
msecs_to_jiffies(250));
if (!time_left)
return -ETIMEDOUT;
return ret;
}
static ssize_t dp_aux_cmd_fifo_rx(struct dp_aux_private *aux,
struct drm_dp_aux_msg *msg)
{
u32 data;
u8 *dp;
u32 i, actual_i;
u32 len = msg->size;
dp_catalog_aux_clear_trans(aux->catalog, true);
data = DP_AUX_DATA_INDEX_WRITE; /* INDEX_WRITE */
data |= DP_AUX_DATA_READ; /* read */
aux->catalog->aux_data = data;
dp_catalog_aux_write_data(aux->catalog);
dp = msg->buffer;
/* discard first byte */
data = dp_catalog_aux_read_data(aux->catalog);
for (i = 0; i < len; i++) {
data = dp_catalog_aux_read_data(aux->catalog);
*dp++ = (u8)((data >> DP_AUX_DATA_OFFSET) & 0xff);
actual_i = (data >> DP_AUX_DATA_INDEX_OFFSET) & 0xFF;
if (i != actual_i)
break;
}
return i;
}
static void dp_aux_native_handler(struct dp_aux_private *aux, u32 isr)
{
if (isr & DP_INTR_AUX_I2C_DONE)
aux->aux_error_num = DP_AUX_ERR_NONE;
else if (isr & DP_INTR_WRONG_ADDR)
aux->aux_error_num = DP_AUX_ERR_ADDR;
else if (isr & DP_INTR_TIMEOUT)
aux->aux_error_num = DP_AUX_ERR_TOUT;
if (isr & DP_INTR_NACK_DEFER)
aux->aux_error_num = DP_AUX_ERR_NACK;
if (isr & DP_INTR_AUX_ERROR) {
aux->aux_error_num = DP_AUX_ERR_PHY;
dp_catalog_aux_clear_hw_interrupts(aux->catalog);
}
}
static void dp_aux_i2c_handler(struct dp_aux_private *aux, u32 isr)
{
if (isr & DP_INTR_AUX_I2C_DONE) {
if (isr & (DP_INTR_I2C_NACK | DP_INTR_I2C_DEFER))
aux->aux_error_num = DP_AUX_ERR_NACK;
else
aux->aux_error_num = DP_AUX_ERR_NONE;
} else {
if (isr & DP_INTR_WRONG_ADDR)
aux->aux_error_num = DP_AUX_ERR_ADDR;
else if (isr & DP_INTR_TIMEOUT)
aux->aux_error_num = DP_AUX_ERR_TOUT;
if (isr & DP_INTR_NACK_DEFER)
aux->aux_error_num = DP_AUX_ERR_NACK_DEFER;
if (isr & DP_INTR_I2C_NACK)
aux->aux_error_num = DP_AUX_ERR_NACK;
if (isr & DP_INTR_I2C_DEFER)
aux->aux_error_num = DP_AUX_ERR_DEFER;
if (isr & DP_INTR_AUX_ERROR) {
aux->aux_error_num = DP_AUX_ERR_PHY;
dp_catalog_aux_clear_hw_interrupts(aux->catalog);
}
}
}
static void dp_aux_update_offset_and_segment(struct dp_aux_private *aux,
struct drm_dp_aux_msg *input_msg)
{
u32 edid_address = 0x50;
u32 segment_address = 0x30;
bool i2c_read = input_msg->request &
(DP_AUX_I2C_READ & DP_AUX_NATIVE_READ);
u8 *data;
if (aux->native || i2c_read || ((input_msg->address != edid_address) &&
(input_msg->address != segment_address)))
return;
data = input_msg->buffer;
if (input_msg->address == segment_address)
aux->segment = *data;
else
aux->offset = *data;
}
/**
* dp_aux_transfer_helper() - helper function for EDID read transactions
*
* @aux: DP AUX private structure
* @input_msg: input message from DRM upstream APIs
* @send_seg: send the segment to sink
*
* return: void
*
* This helper function is used to fix EDID reads for non-compliant
* sinks that do not handle the i2c middle-of-transaction flag correctly.
*/
static void dp_aux_transfer_helper(struct dp_aux_private *aux,
struct drm_dp_aux_msg *input_msg,
bool send_seg)
{
struct drm_dp_aux_msg helper_msg;
u32 message_size = 0x10;
u32 segment_address = 0x30;
u32 const edid_block_length = 0x80;
bool i2c_mot = input_msg->request & DP_AUX_I2C_MOT;
bool i2c_read = input_msg->request &
(DP_AUX_I2C_READ & DP_AUX_NATIVE_READ);
if (!i2c_mot || !i2c_read || (input_msg->size == 0))
return;
/*
* Sending the segment value and EDID offset will be performed
* from the DRM upstream EDID driver for each block. Avoid
* duplicate AUX transactions related to this while reading the
* first 16 bytes of each block.
*/
if (!(aux->offset % edid_block_length) || !send_seg)
goto end;
aux->read = false;
aux->cmd_busy = true;
aux->no_send_addr = true;
aux->no_send_stop = true;
/*
* Send the segment address for every i2c read in which the
* middle-of-tranaction flag is set. This is required to support EDID
* reads of more than 2 blocks as the segment address is reset to 0
* since we are overriding the middle-of-transaction flag for read
* transactions.
*/
if (aux->segment) {
memset(&helper_msg, 0, sizeof(helper_msg));
helper_msg.address = segment_address;
helper_msg.buffer = &aux->segment;
helper_msg.size = 1;
dp_aux_cmd_fifo_tx(aux, &helper_msg);
}
/*
* Send the offset address for every i2c read in which the
* middle-of-transaction flag is set. This will ensure that the sink
* will update its read pointer and return the correct portion of the
* EDID buffer in the subsequent i2c read trasntion triggered in the
* native AUX transfer function.
*/
memset(&helper_msg, 0, sizeof(helper_msg));
helper_msg.address = input_msg->address;
helper_msg.buffer = &aux->offset;
helper_msg.size = 1;
dp_aux_cmd_fifo_tx(aux, &helper_msg);
end:
aux->offset += message_size;
if (aux->offset == 0x80 || aux->offset == 0x100)
aux->segment = 0x0; /* reset segment at end of block */
}
/*
* This function does the real job to process an AUX transaction.
* It will call aux_reset() function to reset the AUX channel,
* if the waiting is timeout.
*/
static ssize_t dp_aux_transfer(struct drm_dp_aux *dp_aux,
struct drm_dp_aux_msg *msg)
{
ssize_t ret;
int const aux_cmd_native_max = 16;
int const aux_cmd_i2c_max = 128;
struct dp_aux_private *aux;
aux = container_of(dp_aux, struct dp_aux_private, dp_aux);
aux->native = msg->request & (DP_AUX_NATIVE_WRITE & DP_AUX_NATIVE_READ);
/* Ignore address only message */
if (msg->size == 0 || !msg->buffer) {
msg->reply = aux->native ?
DP_AUX_NATIVE_REPLY_ACK : DP_AUX_I2C_REPLY_ACK;
return msg->size;
}
/* msg sanity check */
if ((aux->native && msg->size > aux_cmd_native_max) ||
msg->size > aux_cmd_i2c_max) {
DRM_ERROR("%s: invalid msg: size(%zu), request(%x)\n",
__func__, msg->size, msg->request);
return -EINVAL;
}
mutex_lock(&aux->mutex);
dp_aux_update_offset_and_segment(aux, msg);
dp_aux_transfer_helper(aux, msg, true);
aux->read = msg->request & (DP_AUX_I2C_READ & DP_AUX_NATIVE_READ);
aux->cmd_busy = true;
if (aux->read) {
aux->no_send_addr = true;
aux->no_send_stop = false;
} else {
aux->no_send_addr = true;
aux->no_send_stop = true;
}
ret = dp_aux_cmd_fifo_tx(aux, msg);
if (ret < 0) {
if (aux->native) {
aux->retry_cnt++;
if (!(aux->retry_cnt % MAX_AUX_RETRIES))
dp_catalog_aux_update_cfg(aux->catalog);
}
/* reset aux if link is in connected state */
if (dp_catalog_link_is_connected(aux->catalog))
dp_catalog_aux_reset(aux->catalog);
} else {
aux->retry_cnt = 0;
switch (aux->aux_error_num) {
case DP_AUX_ERR_NONE:
if (aux->read)
ret = dp_aux_cmd_fifo_rx(aux, msg);
msg->reply = aux->native ? DP_AUX_NATIVE_REPLY_ACK : DP_AUX_I2C_REPLY_ACK;
break;
case DP_AUX_ERR_DEFER:
msg->reply = aux->native ? DP_AUX_NATIVE_REPLY_DEFER : DP_AUX_I2C_REPLY_DEFER;
break;
case DP_AUX_ERR_PHY:
case DP_AUX_ERR_ADDR:
case DP_AUX_ERR_NACK:
case DP_AUX_ERR_NACK_DEFER:
msg->reply = aux->native ? DP_AUX_NATIVE_REPLY_NACK : DP_AUX_I2C_REPLY_NACK;
break;
case DP_AUX_ERR_TOUT:
ret = -ETIMEDOUT;
break;
}
}
aux->cmd_busy = false;
mutex_unlock(&aux->mutex);
return ret;
}
void dp_aux_isr(struct drm_dp_aux *dp_aux)
{
u32 isr;
struct dp_aux_private *aux;
if (!dp_aux) {
DRM_ERROR("invalid input\n");
return;
}
aux = container_of(dp_aux, struct dp_aux_private, dp_aux);
isr = dp_catalog_aux_get_irq(aux->catalog);
if (!aux->cmd_busy)
return;
if (aux->native)
dp_aux_native_handler(aux, isr);
else
dp_aux_i2c_handler(aux, isr);
complete(&aux->comp);
}
void dp_aux_reconfig(struct drm_dp_aux *dp_aux)
{
struct dp_aux_private *aux;
aux = container_of(dp_aux, struct dp_aux_private, dp_aux);
dp_catalog_aux_update_cfg(aux->catalog);
dp_catalog_aux_reset(aux->catalog);
}
void dp_aux_init(struct drm_dp_aux *dp_aux)
{
struct dp_aux_private *aux;
if (!dp_aux) {
DRM_ERROR("invalid input\n");
return;
}
aux = container_of(dp_aux, struct dp_aux_private, dp_aux);
dp_catalog_aux_enable(aux->catalog, true);
aux->retry_cnt = 0;
}
void dp_aux_deinit(struct drm_dp_aux *dp_aux)
{
struct dp_aux_private *aux;
aux = container_of(dp_aux, struct dp_aux_private, dp_aux);
dp_catalog_aux_enable(aux->catalog, false);
}
int dp_aux_register(struct drm_dp_aux *dp_aux)
{
struct dp_aux_private *aux;
int ret;
if (!dp_aux) {
DRM_ERROR("invalid input\n");
return -EINVAL;
}
aux = container_of(dp_aux, struct dp_aux_private, dp_aux);
aux->dp_aux.name = "dpu_dp_aux";
aux->dp_aux.dev = aux->dev;
aux->dp_aux.transfer = dp_aux_transfer;
ret = drm_dp_aux_register(&aux->dp_aux);
if (ret) {
DRM_ERROR("%s: failed to register drm aux: %d\n", __func__,
ret);
return ret;
}
return 0;
}
void dp_aux_unregister(struct drm_dp_aux *dp_aux)
{
drm_dp_aux_unregister(dp_aux);
}
struct drm_dp_aux *dp_aux_get(struct device *dev, struct dp_catalog *catalog)
{
struct dp_aux_private *aux;
if (!catalog) {
DRM_ERROR("invalid input\n");
return ERR_PTR(-ENODEV);
}
aux = devm_kzalloc(dev, sizeof(*aux), GFP_KERNEL);
if (!aux)
return ERR_PTR(-ENOMEM);
init_completion(&aux->comp);
aux->cmd_busy = false;
mutex_init(&aux->mutex);
aux->dev = dev;
aux->catalog = catalog;
aux->retry_cnt = 0;
return &aux->dp_aux;
}
void dp_aux_put(struct drm_dp_aux *dp_aux)
{
struct dp_aux_private *aux;
if (!dp_aux)
return;
aux = container_of(dp_aux, struct dp_aux_private, dp_aux);
mutex_destroy(&aux->mutex);
devm_kfree(aux->dev, aux);
}