blob: 808484d11209761d93e10a6e4937a3e4a75d34b2 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* sleep.c - ACPI sleep support.
*
* Copyright (c) 2005 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
* Copyright (c) 2004 David Shaohua Li <shaohua.li@intel.com>
* Copyright (c) 2000-2003 Patrick Mochel
* Copyright (c) 2003 Open Source Development Lab
*/
#define pr_fmt(fmt) "ACPI: PM: " fmt
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/dmi.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/suspend.h>
#include <linux/reboot.h>
#include <linux/acpi.h>
#include <linux/module.h>
#include <linux/syscore_ops.h>
#include <asm/io.h>
#include <trace/events/power.h>
#include "internal.h"
#include "sleep.h"
/*
* Some HW-full platforms do not have _S5, so they may need
* to leverage efi power off for a shutdown.
*/
bool acpi_no_s5;
static u8 sleep_states[ACPI_S_STATE_COUNT];
static void acpi_sleep_tts_switch(u32 acpi_state)
{
acpi_status status;
status = acpi_execute_simple_method(NULL, "\\_TTS", acpi_state);
if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) {
/*
* OS can't evaluate the _TTS object correctly. Some warning
* message will be printed. But it won't break anything.
*/
pr_notice("Failure in evaluating _TTS object\n");
}
}
static int tts_notify_reboot(struct notifier_block *this,
unsigned long code, void *x)
{
acpi_sleep_tts_switch(ACPI_STATE_S5);
return NOTIFY_DONE;
}
static struct notifier_block tts_notifier = {
.notifier_call = tts_notify_reboot,
.next = NULL,
.priority = 0,
};
#ifndef acpi_skip_set_wakeup_address
#define acpi_skip_set_wakeup_address() false
#endif
static int acpi_sleep_prepare(u32 acpi_state)
{
#ifdef CONFIG_ACPI_SLEEP
unsigned long acpi_wakeup_address;
/* do we have a wakeup address for S2 and S3? */
if (acpi_state == ACPI_STATE_S3 && !acpi_skip_set_wakeup_address()) {
acpi_wakeup_address = acpi_get_wakeup_address();
if (!acpi_wakeup_address)
return -EFAULT;
acpi_set_waking_vector(acpi_wakeup_address);
}
#endif
pr_info("Preparing to enter system sleep state S%d\n", acpi_state);
acpi_enable_wakeup_devices(acpi_state);
acpi_enter_sleep_state_prep(acpi_state);
return 0;
}
bool acpi_sleep_state_supported(u8 sleep_state)
{
acpi_status status;
u8 type_a, type_b;
status = acpi_get_sleep_type_data(sleep_state, &type_a, &type_b);
return ACPI_SUCCESS(status) && (!acpi_gbl_reduced_hardware
|| (acpi_gbl_FADT.sleep_control.address
&& acpi_gbl_FADT.sleep_status.address));
}
#ifdef CONFIG_ACPI_SLEEP
static u32 acpi_target_sleep_state = ACPI_STATE_S0;
u32 acpi_target_system_state(void)
{
return acpi_target_sleep_state;
}
EXPORT_SYMBOL_GPL(acpi_target_system_state);
static bool pwr_btn_event_pending;
/*
* The ACPI specification wants us to save NVS memory regions during hibernation
* and to restore them during the subsequent resume. Windows does that also for
* suspend to RAM. However, it is known that this mechanism does not work on
* all machines, so we allow the user to disable it with the help of the
* 'acpi_sleep=nonvs' kernel command line option.
*/
static bool nvs_nosave;
void __init acpi_nvs_nosave(void)
{
nvs_nosave = true;
}
/*
* The ACPI specification wants us to save NVS memory regions during hibernation
* but says nothing about saving NVS during S3. Not all versions of Windows
* save NVS on S3 suspend either, and it is clear that not all systems need
* NVS to be saved at S3 time. To improve suspend/resume time, allow the
* user to disable saving NVS on S3 if their system does not require it, but
* continue to save/restore NVS for S4 as specified.
*/
static bool nvs_nosave_s3;
void __init acpi_nvs_nosave_s3(void)
{
nvs_nosave_s3 = true;
}
static int __init init_nvs_save_s3(const struct dmi_system_id *d)
{
nvs_nosave_s3 = false;
return 0;
}
/*
* ACPI 1.0 wants us to execute _PTS before suspending devices, so we allow the
* user to request that behavior by using the 'acpi_old_suspend_ordering'
* kernel command line option that causes the following variable to be set.
*/
static bool old_suspend_ordering;
void __init acpi_old_suspend_ordering(void)
{
old_suspend_ordering = true;
}
static int __init init_old_suspend_ordering(const struct dmi_system_id *d)
{
acpi_old_suspend_ordering();
return 0;
}
static int __init init_nvs_nosave(const struct dmi_system_id *d)
{
acpi_nvs_nosave();
return 0;
}
bool acpi_sleep_default_s3;
static int __init init_default_s3(const struct dmi_system_id *d)
{
acpi_sleep_default_s3 = true;
return 0;
}
static const struct dmi_system_id acpisleep_dmi_table[] __initconst = {
{
.callback = init_old_suspend_ordering,
.ident = "Abit KN9 (nForce4 variant)",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "http://www.abit.com.tw/"),
DMI_MATCH(DMI_BOARD_NAME, "KN9 Series(NF-CK804)"),
},
},
{
.callback = init_old_suspend_ordering,
.ident = "HP xw4600 Workstation",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
DMI_MATCH(DMI_PRODUCT_NAME, "HP xw4600 Workstation"),
},
},
{
.callback = init_old_suspend_ordering,
.ident = "Asus Pundit P1-AH2 (M2N8L motherboard)",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
DMI_MATCH(DMI_BOARD_NAME, "M2N8L"),
},
},
{
.callback = init_old_suspend_ordering,
.ident = "Panasonic CF51-2L",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR,
"Matsushita Electric Industrial Co.,Ltd."),
DMI_MATCH(DMI_BOARD_NAME, "CF51-2L"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VGN-FW41E_H",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FW41E_H"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VGN-FW21E",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FW21E"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VGN-FW21M",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FW21M"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VPCEB17FX",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VPCEB17FX"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VGN-SR11M",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VGN-SR11M"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Everex StepNote Series",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Everex Systems, Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "Everex StepNote Series"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VPCEB1Z1E",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VPCEB1Z1E"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VGN-NW130D",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VGN-NW130D"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VPCCW29FX",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VPCCW29FX"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Averatec AV1020-ED2",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "AVERATEC"),
DMI_MATCH(DMI_PRODUCT_NAME, "1000 Series"),
},
},
{
.callback = init_old_suspend_ordering,
.ident = "Asus A8N-SLI DELUXE",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
DMI_MATCH(DMI_BOARD_NAME, "A8N-SLI DELUXE"),
},
},
{
.callback = init_old_suspend_ordering,
.ident = "Asus A8N-SLI Premium",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
DMI_MATCH(DMI_BOARD_NAME, "A8N-SLI Premium"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VGN-SR26GN_P",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VGN-SR26GN_P"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VPCEB1S1E",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VPCEB1S1E"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Sony Vaio VGN-FW520F",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FW520F"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Asus K54C",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "K54C"),
},
},
{
.callback = init_nvs_nosave,
.ident = "Asus K54HR",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "K54HR"),
},
},
{
.callback = init_nvs_save_s3,
.ident = "Asus 1025C",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
DMI_MATCH(DMI_PRODUCT_NAME, "1025C"),
},
},
/*
* https://bugzilla.kernel.org/show_bug.cgi?id=189431
* Lenovo G50-45 is a platform later than 2012, but needs nvs memory
* saving during S3.
*/
{
.callback = init_nvs_save_s3,
.ident = "Lenovo G50-45",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
DMI_MATCH(DMI_PRODUCT_NAME, "80E3"),
},
},
{
.callback = init_nvs_save_s3,
.ident = "Lenovo G40-45",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
DMI_MATCH(DMI_PRODUCT_NAME, "80E1"),
},
},
/*
* ThinkPad X1 Tablet(2016) cannot do suspend-to-idle using
* the Low Power S0 Idle firmware interface (see
* https://bugzilla.kernel.org/show_bug.cgi?id=199057).
*/
{
.callback = init_default_s3,
.ident = "ThinkPad X1 Tablet(2016)",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
DMI_MATCH(DMI_PRODUCT_NAME, "20GGA00L00"),
},
},
/*
* ASUS B1400CEAE hangs on resume from suspend (see
* https://bugzilla.kernel.org/show_bug.cgi?id=215742).
*/
{
.callback = init_default_s3,
.ident = "ASUS B1400CEAE",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
DMI_MATCH(DMI_PRODUCT_NAME, "ASUS EXPERTBOOK B1400CEAE"),
},
},
{},
};
static bool ignore_blacklist;
void __init acpi_sleep_no_blacklist(void)
{
ignore_blacklist = true;
}
static void __init acpi_sleep_dmi_check(void)
{
if (ignore_blacklist)
return;
if (dmi_get_bios_year() >= 2012)
acpi_nvs_nosave_s3();
dmi_check_system(acpisleep_dmi_table);
}
/**
* acpi_pm_freeze - Disable the GPEs and suspend EC transactions.
*/
static int acpi_pm_freeze(void)
{
acpi_disable_all_gpes();
acpi_os_wait_events_complete();
acpi_ec_block_transactions();
return 0;
}
/**
* acpi_pm_pre_suspend - Enable wakeup devices, "freeze" EC and save NVS.
*/
static int acpi_pm_pre_suspend(void)
{
acpi_pm_freeze();
return suspend_nvs_save();
}
/**
* __acpi_pm_prepare - Prepare the platform to enter the target state.
*
* If necessary, set the firmware waking vector and do arch-specific
* nastiness to get the wakeup code to the waking vector.
*/
static int __acpi_pm_prepare(void)
{
int error = acpi_sleep_prepare(acpi_target_sleep_state);
if (error)
acpi_target_sleep_state = ACPI_STATE_S0;
return error;
}
/**
* acpi_pm_prepare - Prepare the platform to enter the target sleep
* state and disable the GPEs.
*/
static int acpi_pm_prepare(void)
{
int error = __acpi_pm_prepare();
if (!error)
error = acpi_pm_pre_suspend();
return error;
}
/**
* acpi_pm_finish - Instruct the platform to leave a sleep state.
*
* This is called after we wake back up (or if entering the sleep state
* failed).
*/
static void acpi_pm_finish(void)
{
struct acpi_device *pwr_btn_adev;
u32 acpi_state = acpi_target_sleep_state;
acpi_ec_unblock_transactions();
suspend_nvs_free();
if (acpi_state == ACPI_STATE_S0)
return;
pr_info("Waking up from system sleep state S%d\n", acpi_state);
acpi_disable_wakeup_devices(acpi_state);
acpi_leave_sleep_state(acpi_state);
/* reset firmware waking vector */
acpi_set_waking_vector(0);
acpi_target_sleep_state = ACPI_STATE_S0;
acpi_resume_power_resources();
/* If we were woken with the fixed power button, provide a small
* hint to userspace in the form of a wakeup event on the fixed power
* button device (if it can be found).
*
* We delay the event generation til now, as the PM layer requires
* timekeeping to be running before we generate events. */
if (!pwr_btn_event_pending)
return;
pwr_btn_event_pending = false;
pwr_btn_adev = acpi_dev_get_first_match_dev(ACPI_BUTTON_HID_POWERF,
NULL, -1);
if (pwr_btn_adev) {
pm_wakeup_event(&pwr_btn_adev->dev, 0);
acpi_dev_put(pwr_btn_adev);
}
}
/**
* acpi_pm_start - Start system PM transition.
*/
static void acpi_pm_start(u32 acpi_state)
{
acpi_target_sleep_state = acpi_state;
acpi_sleep_tts_switch(acpi_target_sleep_state);
acpi_scan_lock_acquire();
}
/**
* acpi_pm_end - Finish up system PM transition.
*/
static void acpi_pm_end(void)
{
acpi_turn_off_unused_power_resources();
acpi_scan_lock_release();
/*
* This is necessary in case acpi_pm_finish() is not called during a
* failing transition to a sleep state.
*/
acpi_target_sleep_state = ACPI_STATE_S0;
acpi_sleep_tts_switch(acpi_target_sleep_state);
}
#else /* !CONFIG_ACPI_SLEEP */
#define sleep_no_lps0 (1)
#define acpi_target_sleep_state ACPI_STATE_S0
#define acpi_sleep_default_s3 (1)
static inline void acpi_sleep_dmi_check(void) {}
#endif /* CONFIG_ACPI_SLEEP */
#ifdef CONFIG_SUSPEND
static u32 acpi_suspend_states[] = {
[PM_SUSPEND_ON] = ACPI_STATE_S0,
[PM_SUSPEND_STANDBY] = ACPI_STATE_S1,
[PM_SUSPEND_MEM] = ACPI_STATE_S3,
[PM_SUSPEND_MAX] = ACPI_STATE_S5
};
/**
* acpi_suspend_begin - Set the target system sleep state to the state
* associated with given @pm_state, if supported.
*/
static int acpi_suspend_begin(suspend_state_t pm_state)
{
u32 acpi_state = acpi_suspend_states[pm_state];
int error;
error = (nvs_nosave || nvs_nosave_s3) ? 0 : suspend_nvs_alloc();
if (error)
return error;
if (!sleep_states[acpi_state]) {
pr_err("ACPI does not support sleep state S%u\n", acpi_state);
return -ENOSYS;
}
if (acpi_state > ACPI_STATE_S1)
pm_set_suspend_via_firmware();
acpi_pm_start(acpi_state);
return 0;
}
/**
* acpi_suspend_enter - Actually enter a sleep state.
* @pm_state: ignored
*
* Flush caches and go to sleep. For STR we have to call arch-specific
* assembly, which in turn call acpi_enter_sleep_state().
* It's unfortunate, but it works. Please fix if you're feeling frisky.
*/
static int acpi_suspend_enter(suspend_state_t pm_state)
{
acpi_status status = AE_OK;
u32 acpi_state = acpi_target_sleep_state;
int error;
trace_suspend_resume(TPS("acpi_suspend"), acpi_state, true);
switch (acpi_state) {
case ACPI_STATE_S1:
barrier();
status = acpi_enter_sleep_state(acpi_state);
break;
case ACPI_STATE_S3:
if (!acpi_suspend_lowlevel)
return -ENOSYS;
error = acpi_suspend_lowlevel();
if (error)
return error;
pr_info("Low-level resume complete\n");
pm_set_resume_via_firmware();
break;
}
trace_suspend_resume(TPS("acpi_suspend"), acpi_state, false);
/* This violates the spec but is required for bug compatibility. */
acpi_write_bit_register(ACPI_BITREG_SCI_ENABLE, 1);
/* Reprogram control registers */
acpi_leave_sleep_state_prep(acpi_state);
/* ACPI 3.0 specs (P62) says that it's the responsibility
* of the OSPM to clear the status bit [ implying that the
* POWER_BUTTON event should not reach userspace ]
*
* However, we do generate a small hint for userspace in the form of
* a wakeup event. We flag this condition for now and generate the
* event later, as we're currently too early in resume to be able to
* generate wakeup events.
*/
if (ACPI_SUCCESS(status) && (acpi_state == ACPI_STATE_S3)) {
acpi_event_status pwr_btn_status = ACPI_EVENT_FLAG_DISABLED;
acpi_get_event_status(ACPI_EVENT_POWER_BUTTON, &pwr_btn_status);
if (pwr_btn_status & ACPI_EVENT_FLAG_STATUS_SET) {
acpi_clear_event(ACPI_EVENT_POWER_BUTTON);
/* Flag for later */
pwr_btn_event_pending = true;
}
}
/*
* Disable all GPE and clear their status bits before interrupts are
* enabled. Some GPEs (like wakeup GPEs) have no handlers and this can
* prevent them from producing spurious interrups.
*
* acpi_leave_sleep_state() will reenable specific GPEs later.
*
* Because this code runs on one CPU with disabled interrupts (all of
* the other CPUs are offline at this time), it need not acquire any
* sleeping locks which may trigger an implicit preemption point even
* if there is no contention, so avoid doing that by using a low-level
* library routine here.
*/
acpi_hw_disable_all_gpes();
/* Allow EC transactions to happen. */
acpi_ec_unblock_transactions();
suspend_nvs_restore();
return ACPI_SUCCESS(status) ? 0 : -EFAULT;
}
static int acpi_suspend_state_valid(suspend_state_t pm_state)
{
u32 acpi_state;
switch (pm_state) {
case PM_SUSPEND_ON:
case PM_SUSPEND_STANDBY:
case PM_SUSPEND_MEM:
acpi_state = acpi_suspend_states[pm_state];
return sleep_states[acpi_state];
default:
return 0;
}
}
static const struct platform_suspend_ops acpi_suspend_ops = {
.valid = acpi_suspend_state_valid,
.begin = acpi_suspend_begin,
.prepare_late = acpi_pm_prepare,
.enter = acpi_suspend_enter,
.wake = acpi_pm_finish,
.end = acpi_pm_end,
};
/**
* acpi_suspend_begin_old - Set the target system sleep state to the
* state associated with given @pm_state, if supported, and
* execute the _PTS control method. This function is used if the
* pre-ACPI 2.0 suspend ordering has been requested.
*/
static int acpi_suspend_begin_old(suspend_state_t pm_state)
{
int error = acpi_suspend_begin(pm_state);
if (!error)
error = __acpi_pm_prepare();
return error;
}
/*
* The following callbacks are used if the pre-ACPI 2.0 suspend ordering has
* been requested.
*/
static const struct platform_suspend_ops acpi_suspend_ops_old = {
.valid = acpi_suspend_state_valid,
.begin = acpi_suspend_begin_old,
.prepare_late = acpi_pm_pre_suspend,
.enter = acpi_suspend_enter,
.wake = acpi_pm_finish,
.end = acpi_pm_end,
.recover = acpi_pm_finish,
};
static bool s2idle_wakeup;
int acpi_s2idle_begin(void)
{
acpi_scan_lock_acquire();
return 0;
}
int acpi_s2idle_prepare(void)
{
if (acpi_sci_irq_valid()) {
int error;
error = enable_irq_wake(acpi_sci_irq);
if (error)
pr_warn("Warning: Failed to enable wakeup from IRQ %d: %d\n",
acpi_sci_irq, error);
acpi_ec_set_gpe_wake_mask(ACPI_GPE_ENABLE);
}
acpi_enable_wakeup_devices(ACPI_STATE_S0);
/* Change the configuration of GPEs to avoid spurious wakeup. */
acpi_enable_all_wakeup_gpes();
acpi_os_wait_events_complete();
s2idle_wakeup = true;
return 0;
}
bool acpi_s2idle_wake(void)
{
if (!acpi_sci_irq_valid())
return pm_wakeup_pending();
while (pm_wakeup_pending()) {
/*
* If IRQD_WAKEUP_ARMED is set for the SCI at this point, the
* SCI has not triggered while suspended, so bail out (the
* wakeup is pending anyway and the SCI is not the source of
* it).
*/
if (irqd_is_wakeup_armed(irq_get_irq_data(acpi_sci_irq))) {
pm_pr_dbg("Wakeup unrelated to ACPI SCI\n");
return true;
}
/*
* If the status bit of any enabled fixed event is set, the
* wakeup is regarded as valid.
*/
if (acpi_any_fixed_event_status_set()) {
pm_pr_dbg("ACPI fixed event wakeup\n");
return true;
}
/* Check wakeups from drivers sharing the SCI. */
if (acpi_check_wakeup_handlers()) {
pm_pr_dbg("ACPI custom handler wakeup\n");
return true;
}
/*
* Check non-EC GPE wakeups and if there are none, cancel the
* SCI-related wakeup and dispatch the EC GPE.
*/
if (acpi_ec_dispatch_gpe()) {
pm_pr_dbg("ACPI non-EC GPE wakeup\n");
return true;
}
acpi_os_wait_events_complete();
/*
* The SCI is in the "suspended" state now and it cannot produce
* new wakeup events till the rearming below, so if any of them
* are pending here, they must be resulting from the processing
* of EC events above or coming from somewhere else.
*/
if (pm_wakeup_pending()) {
pm_pr_dbg("Wakeup after ACPI Notify sync\n");
return true;
}
pm_pr_dbg("Rearming ACPI SCI for wakeup\n");
pm_wakeup_clear(acpi_sci_irq);
rearm_wake_irq(acpi_sci_irq);
}
return false;
}
void acpi_s2idle_restore(void)
{
/*
* Drain pending events before restoring the working-state configuration
* of GPEs.
*/
acpi_os_wait_events_complete(); /* synchronize GPE processing */
acpi_ec_flush_work(); /* flush the EC driver's workqueues */
acpi_os_wait_events_complete(); /* synchronize Notify handling */
s2idle_wakeup = false;
acpi_enable_all_runtime_gpes();
acpi_disable_wakeup_devices(ACPI_STATE_S0);
if (acpi_sci_irq_valid()) {
acpi_ec_set_gpe_wake_mask(ACPI_GPE_DISABLE);
disable_irq_wake(acpi_sci_irq);
}
}
void acpi_s2idle_end(void)
{
acpi_scan_lock_release();
}
static const struct platform_s2idle_ops acpi_s2idle_ops = {
.begin = acpi_s2idle_begin,
.prepare = acpi_s2idle_prepare,
.wake = acpi_s2idle_wake,
.restore = acpi_s2idle_restore,
.end = acpi_s2idle_end,
};
void __weak acpi_s2idle_setup(void)
{
if (acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0)
pr_info("Efficient low-power S0 idle declared\n");
s2idle_set_ops(&acpi_s2idle_ops);
}
static void __init acpi_sleep_suspend_setup(void)
{
bool suspend_ops_needed = false;
int i;
for (i = ACPI_STATE_S1; i < ACPI_STATE_S4; i++)
if (acpi_sleep_state_supported(i)) {
sleep_states[i] = 1;
suspend_ops_needed = true;
}
if (suspend_ops_needed)
suspend_set_ops(old_suspend_ordering ?
&acpi_suspend_ops_old : &acpi_suspend_ops);
acpi_s2idle_setup();
}
#else /* !CONFIG_SUSPEND */
#define s2idle_wakeup (false)
static inline void acpi_sleep_suspend_setup(void) {}
#endif /* !CONFIG_SUSPEND */
bool acpi_s2idle_wakeup(void)
{
return s2idle_wakeup;
}
#ifdef CONFIG_PM_SLEEP
static u32 saved_bm_rld;
static int acpi_save_bm_rld(void)
{
acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
return 0;
}
static void acpi_restore_bm_rld(void)
{
u32 resumed_bm_rld = 0;
acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
if (resumed_bm_rld == saved_bm_rld)
return;
acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
}
static struct syscore_ops acpi_sleep_syscore_ops = {
.suspend = acpi_save_bm_rld,
.resume = acpi_restore_bm_rld,
};
static void acpi_sleep_syscore_init(void)
{
register_syscore_ops(&acpi_sleep_syscore_ops);
}
#else
static inline void acpi_sleep_syscore_init(void) {}
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_HIBERNATION
static unsigned long s4_hardware_signature;
static struct acpi_table_facs *facs;
int acpi_check_s4_hw_signature = -1; /* Default behaviour is just to warn */
static int acpi_hibernation_begin(pm_message_t stage)
{
if (!nvs_nosave) {
int error = suspend_nvs_alloc();
if (error)
return error;
}
if (stage.event == PM_EVENT_HIBERNATE)
pm_set_suspend_via_firmware();
acpi_pm_start(ACPI_STATE_S4);
return 0;
}
static int acpi_hibernation_enter(void)
{
acpi_status status = AE_OK;
/* This shouldn't return. If it returns, we have a problem */
status = acpi_enter_sleep_state(ACPI_STATE_S4);
/* Reprogram control registers */
acpi_leave_sleep_state_prep(ACPI_STATE_S4);
return ACPI_SUCCESS(status) ? 0 : -EFAULT;
}
static void acpi_hibernation_leave(void)
{
pm_set_resume_via_firmware();
/*
* If ACPI is not enabled by the BIOS and the boot kernel, we need to
* enable it here.
*/
acpi_enable();
/* Reprogram control registers */
acpi_leave_sleep_state_prep(ACPI_STATE_S4);
/* Check the hardware signature */
if (facs && s4_hardware_signature != facs->hardware_signature)
pr_crit("Hardware changed while hibernated, success doubtful!\n");
/* Restore the NVS memory area */
suspend_nvs_restore();
/* Allow EC transactions to happen. */
acpi_ec_unblock_transactions();
}
static void acpi_pm_thaw(void)
{
acpi_ec_unblock_transactions();
acpi_enable_all_runtime_gpes();
}
static const struct platform_hibernation_ops acpi_hibernation_ops = {
.begin = acpi_hibernation_begin,
.end = acpi_pm_end,
.pre_snapshot = acpi_pm_prepare,
.finish = acpi_pm_finish,
.prepare = acpi_pm_prepare,
.enter = acpi_hibernation_enter,
.leave = acpi_hibernation_leave,
.pre_restore = acpi_pm_freeze,
.restore_cleanup = acpi_pm_thaw,
};
/**
* acpi_hibernation_begin_old - Set the target system sleep state to
* ACPI_STATE_S4 and execute the _PTS control method. This
* function is used if the pre-ACPI 2.0 suspend ordering has been
* requested.
*/
static int acpi_hibernation_begin_old(pm_message_t stage)
{
int error;
/*
* The _TTS object should always be evaluated before the _PTS object.
* When the old_suspended_ordering is true, the _PTS object is
* evaluated in the acpi_sleep_prepare.
*/
acpi_sleep_tts_switch(ACPI_STATE_S4);
error = acpi_sleep_prepare(ACPI_STATE_S4);
if (error)
return error;
if (!nvs_nosave) {
error = suspend_nvs_alloc();
if (error)
return error;
}
if (stage.event == PM_EVENT_HIBERNATE)
pm_set_suspend_via_firmware();
acpi_target_sleep_state = ACPI_STATE_S4;
acpi_scan_lock_acquire();
return 0;
}
/*
* The following callbacks are used if the pre-ACPI 2.0 suspend ordering has
* been requested.
*/
static const struct platform_hibernation_ops acpi_hibernation_ops_old = {
.begin = acpi_hibernation_begin_old,
.end = acpi_pm_end,
.pre_snapshot = acpi_pm_pre_suspend,
.prepare = acpi_pm_freeze,
.finish = acpi_pm_finish,
.enter = acpi_hibernation_enter,
.leave = acpi_hibernation_leave,
.pre_restore = acpi_pm_freeze,
.restore_cleanup = acpi_pm_thaw,
.recover = acpi_pm_finish,
};
static void acpi_sleep_hibernate_setup(void)
{
if (!acpi_sleep_state_supported(ACPI_STATE_S4))
return;
hibernation_set_ops(old_suspend_ordering ?
&acpi_hibernation_ops_old : &acpi_hibernation_ops);
sleep_states[ACPI_STATE_S4] = 1;
if (!acpi_check_s4_hw_signature)
return;
acpi_get_table(ACPI_SIG_FACS, 1, (struct acpi_table_header **)&facs);
if (facs) {
/*
* s4_hardware_signature is the local variable which is just
* used to warn about mismatch after we're attempting to
* resume (in violation of the ACPI specification.)
*/
s4_hardware_signature = facs->hardware_signature;
if (acpi_check_s4_hw_signature > 0) {
/*
* If we're actually obeying the ACPI specification
* then the signature is written out as part of the
* swsusp header, in order to allow the boot kernel
* to gracefully decline to resume.
*/
swsusp_hardware_signature = facs->hardware_signature;
}
}
}
#else /* !CONFIG_HIBERNATION */
static inline void acpi_sleep_hibernate_setup(void) {}
#endif /* !CONFIG_HIBERNATION */
static int acpi_power_off_prepare(struct sys_off_data *data)
{
/* Prepare to power off the system */
acpi_sleep_prepare(ACPI_STATE_S5);
acpi_disable_all_gpes();
acpi_os_wait_events_complete();
return NOTIFY_DONE;
}
static int acpi_power_off(struct sys_off_data *data)
{
/* acpi_sleep_prepare(ACPI_STATE_S5) should have already been called */
pr_debug("%s called\n", __func__);
local_irq_disable();
acpi_enter_sleep_state(ACPI_STATE_S5);
return NOTIFY_DONE;
}
int __init acpi_sleep_init(void)
{
char supported[ACPI_S_STATE_COUNT * 3 + 1];
char *pos = supported;
int i;
acpi_sleep_dmi_check();
sleep_states[ACPI_STATE_S0] = 1;
acpi_sleep_syscore_init();
acpi_sleep_suspend_setup();
acpi_sleep_hibernate_setup();
if (acpi_sleep_state_supported(ACPI_STATE_S5)) {
sleep_states[ACPI_STATE_S5] = 1;
register_sys_off_handler(SYS_OFF_MODE_POWER_OFF_PREPARE,
SYS_OFF_PRIO_FIRMWARE,
acpi_power_off_prepare, NULL);
register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
SYS_OFF_PRIO_FIRMWARE,
acpi_power_off, NULL);
/*
* Windows uses S5 for reboot, so some BIOSes depend on it to
* perform proper reboot.
*/
register_sys_off_handler(SYS_OFF_MODE_RESTART_PREPARE,
SYS_OFF_PRIO_FIRMWARE,
acpi_power_off_prepare, NULL);
} else {
acpi_no_s5 = true;
}
supported[0] = 0;
for (i = 0; i < ACPI_S_STATE_COUNT; i++) {
if (sleep_states[i])
pos += sprintf(pos, " S%d", i);
}
pr_info("(supports%s)\n", supported);
/*
* Register the tts_notifier to reboot notifier list so that the _TTS
* object can also be evaluated when the system enters S5.
*/
register_reboot_notifier(&tts_notifier);
return 0;
}