| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware |
| * monitoring |
| * Based on lm75.c and lm85.c |
| * Supports adm1030 / adm1031 |
| * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org> |
| * Reworked by Jean Delvare <jdelvare@suse.de> |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/jiffies.h> |
| #include <linux/i2c.h> |
| #include <linux/hwmon.h> |
| #include <linux/hwmon-sysfs.h> |
| #include <linux/err.h> |
| #include <linux/mutex.h> |
| |
| /* Following macros takes channel parameter starting from 0 to 2 */ |
| #define ADM1031_REG_FAN_SPEED(nr) (0x08 + (nr)) |
| #define ADM1031_REG_FAN_DIV(nr) (0x20 + (nr)) |
| #define ADM1031_REG_PWM (0x22) |
| #define ADM1031_REG_FAN_MIN(nr) (0x10 + (nr)) |
| #define ADM1031_REG_FAN_FILTER (0x23) |
| |
| #define ADM1031_REG_TEMP_OFFSET(nr) (0x0d + (nr)) |
| #define ADM1031_REG_TEMP_MAX(nr) (0x14 + 4 * (nr)) |
| #define ADM1031_REG_TEMP_MIN(nr) (0x15 + 4 * (nr)) |
| #define ADM1031_REG_TEMP_CRIT(nr) (0x16 + 4 * (nr)) |
| |
| #define ADM1031_REG_TEMP(nr) (0x0a + (nr)) |
| #define ADM1031_REG_AUTO_TEMP(nr) (0x24 + (nr)) |
| |
| #define ADM1031_REG_STATUS(nr) (0x2 + (nr)) |
| |
| #define ADM1031_REG_CONF1 0x00 |
| #define ADM1031_REG_CONF2 0x01 |
| #define ADM1031_REG_EXT_TEMP 0x06 |
| |
| #define ADM1031_CONF1_MONITOR_ENABLE 0x01 /* Monitoring enable */ |
| #define ADM1031_CONF1_PWM_INVERT 0x08 /* PWM Invert */ |
| #define ADM1031_CONF1_AUTO_MODE 0x80 /* Auto FAN */ |
| |
| #define ADM1031_CONF2_PWM1_ENABLE 0x01 |
| #define ADM1031_CONF2_PWM2_ENABLE 0x02 |
| #define ADM1031_CONF2_TACH1_ENABLE 0x04 |
| #define ADM1031_CONF2_TACH2_ENABLE 0x08 |
| #define ADM1031_CONF2_TEMP_ENABLE(chan) (0x10 << (chan)) |
| |
| #define ADM1031_UPDATE_RATE_MASK 0x1c |
| #define ADM1031_UPDATE_RATE_SHIFT 2 |
| |
| /* Addresses to scan */ |
| static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END }; |
| |
| enum chips { adm1030, adm1031 }; |
| |
| typedef u8 auto_chan_table_t[8][2]; |
| |
| /* Each client has this additional data */ |
| struct adm1031_data { |
| struct i2c_client *client; |
| const struct attribute_group *groups[3]; |
| struct mutex update_lock; |
| int chip_type; |
| bool valid; /* true if following fields are valid */ |
| unsigned long last_updated; /* In jiffies */ |
| unsigned int update_interval; /* In milliseconds */ |
| /* |
| * The chan_select_table contains the possible configurations for |
| * auto fan control. |
| */ |
| const auto_chan_table_t *chan_select_table; |
| u16 alarm; |
| u8 conf1; |
| u8 conf2; |
| u8 fan[2]; |
| u8 fan_div[2]; |
| u8 fan_min[2]; |
| u8 pwm[2]; |
| u8 old_pwm[2]; |
| s8 temp[3]; |
| u8 ext_temp[3]; |
| u8 auto_temp[3]; |
| u8 auto_temp_min[3]; |
| u8 auto_temp_off[3]; |
| u8 auto_temp_max[3]; |
| s8 temp_offset[3]; |
| s8 temp_min[3]; |
| s8 temp_max[3]; |
| s8 temp_crit[3]; |
| }; |
| |
| static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg) |
| { |
| return i2c_smbus_read_byte_data(client, reg); |
| } |
| |
| static inline int |
| adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value) |
| { |
| return i2c_smbus_write_byte_data(client, reg, value); |
| } |
| |
| static struct adm1031_data *adm1031_update_device(struct device *dev) |
| { |
| struct adm1031_data *data = dev_get_drvdata(dev); |
| struct i2c_client *client = data->client; |
| unsigned long next_update; |
| int chan; |
| |
| mutex_lock(&data->update_lock); |
| |
| next_update = data->last_updated |
| + msecs_to_jiffies(data->update_interval); |
| if (time_after(jiffies, next_update) || !data->valid) { |
| |
| dev_dbg(&client->dev, "Starting adm1031 update\n"); |
| for (chan = 0; |
| chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) { |
| u8 oldh, newh; |
| |
| oldh = |
| adm1031_read_value(client, ADM1031_REG_TEMP(chan)); |
| data->ext_temp[chan] = |
| adm1031_read_value(client, ADM1031_REG_EXT_TEMP); |
| newh = |
| adm1031_read_value(client, ADM1031_REG_TEMP(chan)); |
| if (newh != oldh) { |
| data->ext_temp[chan] = |
| adm1031_read_value(client, |
| ADM1031_REG_EXT_TEMP); |
| #ifdef DEBUG |
| oldh = |
| adm1031_read_value(client, |
| ADM1031_REG_TEMP(chan)); |
| |
| /* oldh is actually newer */ |
| if (newh != oldh) |
| dev_warn(&client->dev, |
| "Remote temperature may be wrong.\n"); |
| #endif |
| } |
| data->temp[chan] = newh; |
| |
| data->temp_offset[chan] = |
| adm1031_read_value(client, |
| ADM1031_REG_TEMP_OFFSET(chan)); |
| data->temp_min[chan] = |
| adm1031_read_value(client, |
| ADM1031_REG_TEMP_MIN(chan)); |
| data->temp_max[chan] = |
| adm1031_read_value(client, |
| ADM1031_REG_TEMP_MAX(chan)); |
| data->temp_crit[chan] = |
| adm1031_read_value(client, |
| ADM1031_REG_TEMP_CRIT(chan)); |
| data->auto_temp[chan] = |
| adm1031_read_value(client, |
| ADM1031_REG_AUTO_TEMP(chan)); |
| |
| } |
| |
| data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1); |
| data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2); |
| |
| data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0)) |
| | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8); |
| if (data->chip_type == adm1030) |
| data->alarm &= 0xc0ff; |
| |
| for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2); |
| chan++) { |
| data->fan_div[chan] = |
| adm1031_read_value(client, |
| ADM1031_REG_FAN_DIV(chan)); |
| data->fan_min[chan] = |
| adm1031_read_value(client, |
| ADM1031_REG_FAN_MIN(chan)); |
| data->fan[chan] = |
| adm1031_read_value(client, |
| ADM1031_REG_FAN_SPEED(chan)); |
| data->pwm[chan] = |
| (adm1031_read_value(client, |
| ADM1031_REG_PWM) >> (4 * chan)) & 0x0f; |
| } |
| data->last_updated = jiffies; |
| data->valid = true; |
| } |
| |
| mutex_unlock(&data->update_lock); |
| |
| return data; |
| } |
| |
| #define TEMP_TO_REG(val) (((val) < 0 ? ((val - 500) / 1000) : \ |
| ((val + 500) / 1000))) |
| |
| #define TEMP_FROM_REG(val) ((val) * 1000) |
| |
| #define TEMP_FROM_REG_EXT(val, ext) (TEMP_FROM_REG(val) + (ext) * 125) |
| |
| #define TEMP_OFFSET_TO_REG(val) (TEMP_TO_REG(val) & 0x8f) |
| #define TEMP_OFFSET_FROM_REG(val) TEMP_FROM_REG((val) < 0 ? \ |
| (val) | 0x70 : (val)) |
| |
| #define FAN_FROM_REG(reg, div) ((reg) ? \ |
| (11250 * 60) / ((reg) * (div)) : 0) |
| |
| static int FAN_TO_REG(int reg, int div) |
| { |
| int tmp; |
| tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div); |
| return tmp > 255 ? 255 : tmp; |
| } |
| |
| #define FAN_DIV_FROM_REG(reg) (1<<(((reg)&0xc0)>>6)) |
| |
| #define PWM_TO_REG(val) (clamp_val((val), 0, 255) >> 4) |
| #define PWM_FROM_REG(val) ((val) << 4) |
| |
| #define FAN_CHAN_FROM_REG(reg) (((reg) >> 5) & 7) |
| #define FAN_CHAN_TO_REG(val, reg) \ |
| (((reg) & 0x1F) | (((val) << 5) & 0xe0)) |
| |
| #define AUTO_TEMP_MIN_TO_REG(val, reg) \ |
| ((((val) / 500) & 0xf8) | ((reg) & 0x7)) |
| #define AUTO_TEMP_RANGE_FROM_REG(reg) (5000 * (1 << ((reg) & 0x7))) |
| #define AUTO_TEMP_MIN_FROM_REG(reg) (1000 * ((((reg) >> 3) & 0x1f) << 2)) |
| |
| #define AUTO_TEMP_MIN_FROM_REG_DEG(reg) ((((reg) >> 3) & 0x1f) << 2) |
| |
| #define AUTO_TEMP_OFF_FROM_REG(reg) \ |
| (AUTO_TEMP_MIN_FROM_REG(reg) - 5000) |
| |
| #define AUTO_TEMP_MAX_FROM_REG(reg) \ |
| (AUTO_TEMP_RANGE_FROM_REG(reg) + \ |
| AUTO_TEMP_MIN_FROM_REG(reg)) |
| |
| static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm) |
| { |
| int ret; |
| int range = ((val - AUTO_TEMP_MIN_FROM_REG(reg)) * 10) / (16 - pwm); |
| |
| ret = ((reg & 0xf8) | |
| (range < 10000 ? 0 : |
| range < 20000 ? 1 : |
| range < 40000 ? 2 : range < 80000 ? 3 : 4)); |
| return ret; |
| } |
| |
| /* FAN auto control */ |
| #define GET_FAN_AUTO_BITFIELD(data, idx) \ |
| (*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2] |
| |
| /* |
| * The tables below contains the possible values for the auto fan |
| * control bitfields. the index in the table is the register value. |
| * MSb is the auto fan control enable bit, so the four first entries |
| * in the table disables auto fan control when both bitfields are zero. |
| */ |
| static const auto_chan_table_t auto_channel_select_table_adm1031 = { |
| { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, |
| { 2 /* 0b010 */ , 4 /* 0b100 */ }, |
| { 2 /* 0b010 */ , 2 /* 0b010 */ }, |
| { 4 /* 0b100 */ , 4 /* 0b100 */ }, |
| { 7 /* 0b111 */ , 7 /* 0b111 */ }, |
| }; |
| |
| static const auto_chan_table_t auto_channel_select_table_adm1030 = { |
| { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, |
| { 2 /* 0b10 */ , 0 }, |
| { 0xff /* invalid */ , 0 }, |
| { 0xff /* invalid */ , 0 }, |
| { 3 /* 0b11 */ , 0 }, |
| }; |
| |
| /* |
| * That function checks if a bitfield is valid and returns the other bitfield |
| * nearest match if no exact match where found. |
| */ |
| static int |
| get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg) |
| { |
| int i; |
| int first_match = -1, exact_match = -1; |
| u8 other_reg_val = |
| (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1]; |
| |
| if (val == 0) |
| return 0; |
| |
| for (i = 0; i < 8; i++) { |
| if ((val == (*data->chan_select_table)[i][chan]) && |
| ((*data->chan_select_table)[i][chan ? 0 : 1] == |
| other_reg_val)) { |
| /* We found an exact match */ |
| exact_match = i; |
| break; |
| } else if (val == (*data->chan_select_table)[i][chan] && |
| first_match == -1) { |
| /* |
| * Save the first match in case of an exact match has |
| * not been found |
| */ |
| first_match = i; |
| } |
| } |
| |
| if (exact_match >= 0) |
| return exact_match; |
| else if (first_match >= 0) |
| return first_match; |
| |
| return -EINVAL; |
| } |
| |
| static ssize_t fan_auto_channel_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| int nr = to_sensor_dev_attr(attr)->index; |
| struct adm1031_data *data = adm1031_update_device(dev); |
| return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr)); |
| } |
| |
| static ssize_t |
| fan_auto_channel_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct adm1031_data *data = dev_get_drvdata(dev); |
| struct i2c_client *client = data->client; |
| int nr = to_sensor_dev_attr(attr)->index; |
| long val; |
| u8 reg; |
| int ret; |
| u8 old_fan_mode; |
| |
| ret = kstrtol(buf, 10, &val); |
| if (ret) |
| return ret; |
| |
| old_fan_mode = data->conf1; |
| |
| mutex_lock(&data->update_lock); |
| |
| ret = get_fan_auto_nearest(data, nr, val, data->conf1); |
| if (ret < 0) { |
| mutex_unlock(&data->update_lock); |
| return ret; |
| } |
| reg = ret; |
| data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1); |
| if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^ |
| (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) { |
| if (data->conf1 & ADM1031_CONF1_AUTO_MODE) { |
| /* |
| * Switch to Auto Fan Mode |
| * Save PWM registers |
| * Set PWM registers to 33% Both |
| */ |
| data->old_pwm[0] = data->pwm[0]; |
| data->old_pwm[1] = data->pwm[1]; |
| adm1031_write_value(client, ADM1031_REG_PWM, 0x55); |
| } else { |
| /* Switch to Manual Mode */ |
| data->pwm[0] = data->old_pwm[0]; |
| data->pwm[1] = data->old_pwm[1]; |
| /* Restore PWM registers */ |
| adm1031_write_value(client, ADM1031_REG_PWM, |
| data->pwm[0] | (data->pwm[1] << 4)); |
| } |
| } |
| data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1); |
| adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| static SENSOR_DEVICE_ATTR_RW(auto_fan1_channel, fan_auto_channel, 0); |
| static SENSOR_DEVICE_ATTR_RW(auto_fan2_channel, fan_auto_channel, 1); |
| |
| /* Auto Temps */ |
| static ssize_t auto_temp_off_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| int nr = to_sensor_dev_attr(attr)->index; |
| struct adm1031_data *data = adm1031_update_device(dev); |
| return sprintf(buf, "%d\n", |
| AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr])); |
| } |
| static ssize_t auto_temp_min_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| int nr = to_sensor_dev_attr(attr)->index; |
| struct adm1031_data *data = adm1031_update_device(dev); |
| return sprintf(buf, "%d\n", |
| AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr])); |
| } |
| static ssize_t |
| auto_temp_min_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct adm1031_data *data = dev_get_drvdata(dev); |
| struct i2c_client *client = data->client; |
| int nr = to_sensor_dev_attr(attr)->index; |
| long val; |
| int ret; |
| |
| ret = kstrtol(buf, 10, &val); |
| if (ret) |
| return ret; |
| |
| val = clamp_val(val, 0, 127000); |
| mutex_lock(&data->update_lock); |
| data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]); |
| adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr), |
| data->auto_temp[nr]); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| static ssize_t auto_temp_max_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| int nr = to_sensor_dev_attr(attr)->index; |
| struct adm1031_data *data = adm1031_update_device(dev); |
| return sprintf(buf, "%d\n", |
| AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr])); |
| } |
| static ssize_t |
| auto_temp_max_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct adm1031_data *data = dev_get_drvdata(dev); |
| struct i2c_client *client = data->client; |
| int nr = to_sensor_dev_attr(attr)->index; |
| long val; |
| int ret; |
| |
| ret = kstrtol(buf, 10, &val); |
| if (ret) |
| return ret; |
| |
| val = clamp_val(val, 0, 127000); |
| mutex_lock(&data->update_lock); |
| data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr], |
| data->pwm[nr]); |
| adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr), |
| data->temp_max[nr]); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| static SENSOR_DEVICE_ATTR_RO(auto_temp1_off, auto_temp_off, 0); |
| static SENSOR_DEVICE_ATTR_RW(auto_temp1_min, auto_temp_min, 0); |
| static SENSOR_DEVICE_ATTR_RW(auto_temp1_max, auto_temp_max, 0); |
| static SENSOR_DEVICE_ATTR_RO(auto_temp2_off, auto_temp_off, 1); |
| static SENSOR_DEVICE_ATTR_RW(auto_temp2_min, auto_temp_min, 1); |
| static SENSOR_DEVICE_ATTR_RW(auto_temp2_max, auto_temp_max, 1); |
| static SENSOR_DEVICE_ATTR_RO(auto_temp3_off, auto_temp_off, 2); |
| static SENSOR_DEVICE_ATTR_RW(auto_temp3_min, auto_temp_min, 2); |
| static SENSOR_DEVICE_ATTR_RW(auto_temp3_max, auto_temp_max, 2); |
| |
| /* pwm */ |
| static ssize_t pwm_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| int nr = to_sensor_dev_attr(attr)->index; |
| struct adm1031_data *data = adm1031_update_device(dev); |
| return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr])); |
| } |
| static ssize_t pwm_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct adm1031_data *data = dev_get_drvdata(dev); |
| struct i2c_client *client = data->client; |
| int nr = to_sensor_dev_attr(attr)->index; |
| long val; |
| int ret, reg; |
| |
| ret = kstrtol(buf, 10, &val); |
| if (ret) |
| return ret; |
| |
| mutex_lock(&data->update_lock); |
| if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) && |
| (((val>>4) & 0xf) != 5)) { |
| /* In automatic mode, the only PWM accepted is 33% */ |
| mutex_unlock(&data->update_lock); |
| return -EINVAL; |
| } |
| data->pwm[nr] = PWM_TO_REG(val); |
| reg = adm1031_read_value(client, ADM1031_REG_PWM); |
| adm1031_write_value(client, ADM1031_REG_PWM, |
| nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf) |
| : (data->pwm[nr] & 0xf) | (reg & 0xf0)); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0); |
| static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1); |
| static SENSOR_DEVICE_ATTR_RW(auto_fan1_min_pwm, pwm, 0); |
| static SENSOR_DEVICE_ATTR_RW(auto_fan2_min_pwm, pwm, 1); |
| |
| /* Fans */ |
| |
| /* |
| * That function checks the cases where the fan reading is not |
| * relevant. It is used to provide 0 as fan reading when the fan is |
| * not supposed to run |
| */ |
| static int trust_fan_readings(struct adm1031_data *data, int chan) |
| { |
| int res = 0; |
| |
| if (data->conf1 & ADM1031_CONF1_AUTO_MODE) { |
| switch (data->conf1 & 0x60) { |
| case 0x00: |
| /* |
| * remote temp1 controls fan1, |
| * remote temp2 controls fan2 |
| */ |
| res = data->temp[chan+1] >= |
| AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]); |
| break; |
| case 0x20: /* remote temp1 controls both fans */ |
| res = |
| data->temp[1] >= |
| AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]); |
| break; |
| case 0x40: /* remote temp2 controls both fans */ |
| res = |
| data->temp[2] >= |
| AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]); |
| break; |
| case 0x60: /* max controls both fans */ |
| res = |
| data->temp[0] >= |
| AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0]) |
| || data->temp[1] >= |
| AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]) |
| || (data->chip_type == adm1031 |
| && data->temp[2] >= |
| AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2])); |
| break; |
| } |
| } else { |
| res = data->pwm[chan] > 0; |
| } |
| return res; |
| } |
| |
| static ssize_t fan_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| int nr = to_sensor_dev_attr(attr)->index; |
| struct adm1031_data *data = adm1031_update_device(dev); |
| int value; |
| |
| value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr], |
| FAN_DIV_FROM_REG(data->fan_div[nr])) : 0; |
| return sprintf(buf, "%d\n", value); |
| } |
| |
| static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| int nr = to_sensor_dev_attr(attr)->index; |
| struct adm1031_data *data = adm1031_update_device(dev); |
| return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr])); |
| } |
| static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| int nr = to_sensor_dev_attr(attr)->index; |
| struct adm1031_data *data = adm1031_update_device(dev); |
| return sprintf(buf, "%d\n", |
| FAN_FROM_REG(data->fan_min[nr], |
| FAN_DIV_FROM_REG(data->fan_div[nr]))); |
| } |
| static ssize_t fan_min_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| struct adm1031_data *data = dev_get_drvdata(dev); |
| struct i2c_client *client = data->client; |
| int nr = to_sensor_dev_attr(attr)->index; |
| long val; |
| int ret; |
| |
| ret = kstrtol(buf, 10, &val); |
| if (ret) |
| return ret; |
| |
| mutex_lock(&data->update_lock); |
| if (val) { |
| data->fan_min[nr] = |
| FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr])); |
| } else { |
| data->fan_min[nr] = 0xff; |
| } |
| adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| static ssize_t fan_div_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| struct adm1031_data *data = dev_get_drvdata(dev); |
| struct i2c_client *client = data->client; |
| int nr = to_sensor_dev_attr(attr)->index; |
| long val; |
| u8 tmp; |
| int old_div; |
| int new_min; |
| int ret; |
| |
| ret = kstrtol(buf, 10, &val); |
| if (ret) |
| return ret; |
| |
| tmp = val == 8 ? 0xc0 : |
| val == 4 ? 0x80 : |
| val == 2 ? 0x40 : |
| val == 1 ? 0x00 : |
| 0xff; |
| if (tmp == 0xff) |
| return -EINVAL; |
| |
| mutex_lock(&data->update_lock); |
| /* Get fresh readings */ |
| data->fan_div[nr] = adm1031_read_value(client, |
| ADM1031_REG_FAN_DIV(nr)); |
| data->fan_min[nr] = adm1031_read_value(client, |
| ADM1031_REG_FAN_MIN(nr)); |
| |
| /* Write the new clock divider and fan min */ |
| old_div = FAN_DIV_FROM_REG(data->fan_div[nr]); |
| data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]); |
| new_min = data->fan_min[nr] * old_div / val; |
| data->fan_min[nr] = new_min > 0xff ? 0xff : new_min; |
| |
| adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr), |
| data->fan_div[nr]); |
| adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), |
| data->fan_min[nr]); |
| |
| /* Invalidate the cache: fan speed is no longer valid */ |
| data->valid = false; |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0); |
| static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0); |
| static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0); |
| static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1); |
| static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1); |
| static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1); |
| |
| /* Temps */ |
| static ssize_t temp_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| int nr = to_sensor_dev_attr(attr)->index; |
| struct adm1031_data *data = adm1031_update_device(dev); |
| int ext; |
| ext = nr == 0 ? |
| ((data->ext_temp[nr] >> 6) & 0x3) * 2 : |
| (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7)); |
| return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext)); |
| } |
| static ssize_t temp_offset_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| int nr = to_sensor_dev_attr(attr)->index; |
| struct adm1031_data *data = adm1031_update_device(dev); |
| return sprintf(buf, "%d\n", |
| TEMP_OFFSET_FROM_REG(data->temp_offset[nr])); |
| } |
| static ssize_t temp_min_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| int nr = to_sensor_dev_attr(attr)->index; |
| struct adm1031_data *data = adm1031_update_device(dev); |
| return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr])); |
| } |
| static ssize_t temp_max_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| int nr = to_sensor_dev_attr(attr)->index; |
| struct adm1031_data *data = adm1031_update_device(dev); |
| return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr])); |
| } |
| static ssize_t temp_crit_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| int nr = to_sensor_dev_attr(attr)->index; |
| struct adm1031_data *data = adm1031_update_device(dev); |
| return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr])); |
| } |
| static ssize_t temp_offset_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct adm1031_data *data = dev_get_drvdata(dev); |
| struct i2c_client *client = data->client; |
| int nr = to_sensor_dev_attr(attr)->index; |
| long val; |
| int ret; |
| |
| ret = kstrtol(buf, 10, &val); |
| if (ret) |
| return ret; |
| |
| val = clamp_val(val, -15000, 15000); |
| mutex_lock(&data->update_lock); |
| data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val); |
| adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr), |
| data->temp_offset[nr]); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| static ssize_t temp_min_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| struct adm1031_data *data = dev_get_drvdata(dev); |
| struct i2c_client *client = data->client; |
| int nr = to_sensor_dev_attr(attr)->index; |
| long val; |
| int ret; |
| |
| ret = kstrtol(buf, 10, &val); |
| if (ret) |
| return ret; |
| |
| val = clamp_val(val, -55000, 127000); |
| mutex_lock(&data->update_lock); |
| data->temp_min[nr] = TEMP_TO_REG(val); |
| adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr), |
| data->temp_min[nr]); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| static ssize_t temp_max_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| struct adm1031_data *data = dev_get_drvdata(dev); |
| struct i2c_client *client = data->client; |
| int nr = to_sensor_dev_attr(attr)->index; |
| long val; |
| int ret; |
| |
| ret = kstrtol(buf, 10, &val); |
| if (ret) |
| return ret; |
| |
| val = clamp_val(val, -55000, 127000); |
| mutex_lock(&data->update_lock); |
| data->temp_max[nr] = TEMP_TO_REG(val); |
| adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr), |
| data->temp_max[nr]); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| static ssize_t temp_crit_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| struct adm1031_data *data = dev_get_drvdata(dev); |
| struct i2c_client *client = data->client; |
| int nr = to_sensor_dev_attr(attr)->index; |
| long val; |
| int ret; |
| |
| ret = kstrtol(buf, 10, &val); |
| if (ret) |
| return ret; |
| |
| val = clamp_val(val, -55000, 127000); |
| mutex_lock(&data->update_lock); |
| data->temp_crit[nr] = TEMP_TO_REG(val); |
| adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr), |
| data->temp_crit[nr]); |
| mutex_unlock(&data->update_lock); |
| return count; |
| } |
| |
| static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0); |
| static SENSOR_DEVICE_ATTR_RW(temp1_offset, temp_offset, 0); |
| static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0); |
| static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0); |
| static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp_crit, 0); |
| static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1); |
| static SENSOR_DEVICE_ATTR_RW(temp2_offset, temp_offset, 1); |
| static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1); |
| static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1); |
| static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp_crit, 1); |
| static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2); |
| static SENSOR_DEVICE_ATTR_RW(temp3_offset, temp_offset, 2); |
| static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2); |
| static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2); |
| static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp_crit, 2); |
| |
| /* Alarms */ |
| static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct adm1031_data *data = adm1031_update_device(dev); |
| return sprintf(buf, "%d\n", data->alarm); |
| } |
| |
| static DEVICE_ATTR_RO(alarms); |
| |
| static ssize_t alarm_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| int bitnr = to_sensor_dev_attr(attr)->index; |
| struct adm1031_data *data = adm1031_update_device(dev); |
| return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1); |
| } |
| |
| static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 0); |
| static SENSOR_DEVICE_ATTR_RO(fan1_fault, alarm, 1); |
| static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 2); |
| static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3); |
| static SENSOR_DEVICE_ATTR_RO(temp2_crit_alarm, alarm, 4); |
| static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 5); |
| static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6); |
| static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 7); |
| static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 8); |
| static SENSOR_DEVICE_ATTR_RO(fan2_fault, alarm, 9); |
| static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, alarm, 10); |
| static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, alarm, 11); |
| static SENSOR_DEVICE_ATTR_RO(temp3_crit_alarm, alarm, 12); |
| static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 13); |
| static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 14); |
| |
| /* Update Interval */ |
| static const unsigned int update_intervals[] = { |
| 16000, 8000, 4000, 2000, 1000, 500, 250, 125, |
| }; |
| |
| static ssize_t update_interval_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct adm1031_data *data = dev_get_drvdata(dev); |
| |
| return sprintf(buf, "%u\n", data->update_interval); |
| } |
| |
| static ssize_t update_interval_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct adm1031_data *data = dev_get_drvdata(dev); |
| struct i2c_client *client = data->client; |
| unsigned long val; |
| int i, err; |
| u8 reg; |
| |
| err = kstrtoul(buf, 10, &val); |
| if (err) |
| return err; |
| |
| /* |
| * Find the nearest update interval from the table. |
| * Use it to determine the matching update rate. |
| */ |
| for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) { |
| if (val >= update_intervals[i]) |
| break; |
| } |
| /* if not found, we point to the last entry (lowest update interval) */ |
| |
| /* set the new update rate while preserving other settings */ |
| reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER); |
| reg &= ~ADM1031_UPDATE_RATE_MASK; |
| reg |= i << ADM1031_UPDATE_RATE_SHIFT; |
| adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg); |
| |
| mutex_lock(&data->update_lock); |
| data->update_interval = update_intervals[i]; |
| mutex_unlock(&data->update_lock); |
| |
| return count; |
| } |
| |
| static DEVICE_ATTR_RW(update_interval); |
| |
| static struct attribute *adm1031_attributes[] = { |
| &sensor_dev_attr_fan1_input.dev_attr.attr, |
| &sensor_dev_attr_fan1_div.dev_attr.attr, |
| &sensor_dev_attr_fan1_min.dev_attr.attr, |
| &sensor_dev_attr_fan1_alarm.dev_attr.attr, |
| &sensor_dev_attr_fan1_fault.dev_attr.attr, |
| &sensor_dev_attr_pwm1.dev_attr.attr, |
| &sensor_dev_attr_auto_fan1_channel.dev_attr.attr, |
| &sensor_dev_attr_temp1_input.dev_attr.attr, |
| &sensor_dev_attr_temp1_offset.dev_attr.attr, |
| &sensor_dev_attr_temp1_min.dev_attr.attr, |
| &sensor_dev_attr_temp1_min_alarm.dev_attr.attr, |
| &sensor_dev_attr_temp1_max.dev_attr.attr, |
| &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, |
| &sensor_dev_attr_temp1_crit.dev_attr.attr, |
| &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, |
| &sensor_dev_attr_temp2_input.dev_attr.attr, |
| &sensor_dev_attr_temp2_offset.dev_attr.attr, |
| &sensor_dev_attr_temp2_min.dev_attr.attr, |
| &sensor_dev_attr_temp2_min_alarm.dev_attr.attr, |
| &sensor_dev_attr_temp2_max.dev_attr.attr, |
| &sensor_dev_attr_temp2_max_alarm.dev_attr.attr, |
| &sensor_dev_attr_temp2_crit.dev_attr.attr, |
| &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr, |
| &sensor_dev_attr_temp2_fault.dev_attr.attr, |
| |
| &sensor_dev_attr_auto_temp1_off.dev_attr.attr, |
| &sensor_dev_attr_auto_temp1_min.dev_attr.attr, |
| &sensor_dev_attr_auto_temp1_max.dev_attr.attr, |
| |
| &sensor_dev_attr_auto_temp2_off.dev_attr.attr, |
| &sensor_dev_attr_auto_temp2_min.dev_attr.attr, |
| &sensor_dev_attr_auto_temp2_max.dev_attr.attr, |
| |
| &sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr, |
| |
| &dev_attr_update_interval.attr, |
| &dev_attr_alarms.attr, |
| |
| NULL |
| }; |
| |
| static const struct attribute_group adm1031_group = { |
| .attrs = adm1031_attributes, |
| }; |
| |
| static struct attribute *adm1031_attributes_opt[] = { |
| &sensor_dev_attr_fan2_input.dev_attr.attr, |
| &sensor_dev_attr_fan2_div.dev_attr.attr, |
| &sensor_dev_attr_fan2_min.dev_attr.attr, |
| &sensor_dev_attr_fan2_alarm.dev_attr.attr, |
| &sensor_dev_attr_fan2_fault.dev_attr.attr, |
| &sensor_dev_attr_pwm2.dev_attr.attr, |
| &sensor_dev_attr_auto_fan2_channel.dev_attr.attr, |
| &sensor_dev_attr_temp3_input.dev_attr.attr, |
| &sensor_dev_attr_temp3_offset.dev_attr.attr, |
| &sensor_dev_attr_temp3_min.dev_attr.attr, |
| &sensor_dev_attr_temp3_min_alarm.dev_attr.attr, |
| &sensor_dev_attr_temp3_max.dev_attr.attr, |
| &sensor_dev_attr_temp3_max_alarm.dev_attr.attr, |
| &sensor_dev_attr_temp3_crit.dev_attr.attr, |
| &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr, |
| &sensor_dev_attr_temp3_fault.dev_attr.attr, |
| &sensor_dev_attr_auto_temp3_off.dev_attr.attr, |
| &sensor_dev_attr_auto_temp3_min.dev_attr.attr, |
| &sensor_dev_attr_auto_temp3_max.dev_attr.attr, |
| &sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr, |
| NULL |
| }; |
| |
| static const struct attribute_group adm1031_group_opt = { |
| .attrs = adm1031_attributes_opt, |
| }; |
| |
| /* Return 0 if detection is successful, -ENODEV otherwise */ |
| static int adm1031_detect(struct i2c_client *client, |
| struct i2c_board_info *info) |
| { |
| struct i2c_adapter *adapter = client->adapter; |
| const char *name; |
| int id, co; |
| |
| if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) |
| return -ENODEV; |
| |
| id = i2c_smbus_read_byte_data(client, 0x3d); |
| co = i2c_smbus_read_byte_data(client, 0x3e); |
| |
| if (!((id == 0x31 || id == 0x30) && co == 0x41)) |
| return -ENODEV; |
| name = (id == 0x30) ? "adm1030" : "adm1031"; |
| |
| strscpy(info->type, name, I2C_NAME_SIZE); |
| |
| return 0; |
| } |
| |
| static void adm1031_init_client(struct i2c_client *client) |
| { |
| unsigned int read_val; |
| unsigned int mask; |
| int i; |
| struct adm1031_data *data = i2c_get_clientdata(client); |
| |
| mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE); |
| if (data->chip_type == adm1031) { |
| mask |= (ADM1031_CONF2_PWM2_ENABLE | |
| ADM1031_CONF2_TACH2_ENABLE); |
| } |
| /* Initialize the ADM1031 chip (enables fan speed reading ) */ |
| read_val = adm1031_read_value(client, ADM1031_REG_CONF2); |
| if ((read_val | mask) != read_val) |
| adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask); |
| |
| read_val = adm1031_read_value(client, ADM1031_REG_CONF1); |
| if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) { |
| adm1031_write_value(client, ADM1031_REG_CONF1, |
| read_val | ADM1031_CONF1_MONITOR_ENABLE); |
| } |
| |
| /* Read the chip's update rate */ |
| mask = ADM1031_UPDATE_RATE_MASK; |
| read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER); |
| i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT; |
| /* Save it as update interval */ |
| data->update_interval = update_intervals[i]; |
| } |
| |
| static const struct i2c_device_id adm1031_id[]; |
| |
| static int adm1031_probe(struct i2c_client *client) |
| { |
| struct device *dev = &client->dev; |
| struct device *hwmon_dev; |
| struct adm1031_data *data; |
| |
| data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| i2c_set_clientdata(client, data); |
| data->client = client; |
| data->chip_type = i2c_match_id(adm1031_id, client)->driver_data; |
| mutex_init(&data->update_lock); |
| |
| if (data->chip_type == adm1030) |
| data->chan_select_table = &auto_channel_select_table_adm1030; |
| else |
| data->chan_select_table = &auto_channel_select_table_adm1031; |
| |
| /* Initialize the ADM1031 chip */ |
| adm1031_init_client(client); |
| |
| /* sysfs hooks */ |
| data->groups[0] = &adm1031_group; |
| if (data->chip_type == adm1031) |
| data->groups[1] = &adm1031_group_opt; |
| |
| hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, |
| data, data->groups); |
| return PTR_ERR_OR_ZERO(hwmon_dev); |
| } |
| |
| static const struct i2c_device_id adm1031_id[] = { |
| { "adm1030", adm1030 }, |
| { "adm1031", adm1031 }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(i2c, adm1031_id); |
| |
| static struct i2c_driver adm1031_driver = { |
| .class = I2C_CLASS_HWMON, |
| .driver = { |
| .name = "adm1031", |
| }, |
| .probe = adm1031_probe, |
| .id_table = adm1031_id, |
| .detect = adm1031_detect, |
| .address_list = normal_i2c, |
| }; |
| |
| module_i2c_driver(adm1031_driver); |
| |
| MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>"); |
| MODULE_DESCRIPTION("ADM1031/ADM1030 driver"); |
| MODULE_LICENSE("GPL"); |