| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * PCI Virtual Channel support |
| * |
| * Copyright (C) 2013 Red Hat, Inc. All rights reserved. |
| * Author: Alex Williamson <alex.williamson@redhat.com> |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/device.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/pci_regs.h> |
| #include <linux/types.h> |
| |
| #include "pci.h" |
| |
| /** |
| * pci_vc_save_restore_dwords - Save or restore a series of dwords |
| * @dev: device |
| * @pos: starting config space position |
| * @buf: buffer to save to or restore from |
| * @dwords: number of dwords to save/restore |
| * @save: whether to save or restore |
| */ |
| static void pci_vc_save_restore_dwords(struct pci_dev *dev, int pos, |
| u32 *buf, int dwords, bool save) |
| { |
| int i; |
| |
| for (i = 0; i < dwords; i++, buf++) { |
| if (save) |
| pci_read_config_dword(dev, pos + (i * 4), buf); |
| else |
| pci_write_config_dword(dev, pos + (i * 4), *buf); |
| } |
| } |
| |
| /** |
| * pci_vc_load_arb_table - load and wait for VC arbitration table |
| * @dev: device |
| * @pos: starting position of VC capability (VC/VC9/MFVC) |
| * |
| * Set Load VC Arbitration Table bit requesting hardware to apply the VC |
| * Arbitration Table (previously loaded). When the VC Arbitration Table |
| * Status clears, hardware has latched the table into VC arbitration logic. |
| */ |
| static void pci_vc_load_arb_table(struct pci_dev *dev, int pos) |
| { |
| u16 ctrl; |
| |
| pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL, &ctrl); |
| pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL, |
| ctrl | PCI_VC_PORT_CTRL_LOAD_TABLE); |
| if (pci_wait_for_pending(dev, pos + PCI_VC_PORT_STATUS, |
| PCI_VC_PORT_STATUS_TABLE)) |
| return; |
| |
| pci_err(dev, "VC arbitration table failed to load\n"); |
| } |
| |
| /** |
| * pci_vc_load_port_arb_table - Load and wait for VC port arbitration table |
| * @dev: device |
| * @pos: starting position of VC capability (VC/VC9/MFVC) |
| * @res: VC resource number, ie. VCn (0-7) |
| * |
| * Set Load Port Arbitration Table bit requesting hardware to apply the Port |
| * Arbitration Table (previously loaded). When the Port Arbitration Table |
| * Status clears, hardware has latched the table into port arbitration logic. |
| */ |
| static void pci_vc_load_port_arb_table(struct pci_dev *dev, int pos, int res) |
| { |
| int ctrl_pos, status_pos; |
| u32 ctrl; |
| |
| ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF); |
| status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF); |
| |
| pci_read_config_dword(dev, ctrl_pos, &ctrl); |
| pci_write_config_dword(dev, ctrl_pos, |
| ctrl | PCI_VC_RES_CTRL_LOAD_TABLE); |
| |
| if (pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_TABLE)) |
| return; |
| |
| pci_err(dev, "VC%d port arbitration table failed to load\n", res); |
| } |
| |
| /** |
| * pci_vc_enable - Enable virtual channel |
| * @dev: device |
| * @pos: starting position of VC capability (VC/VC9/MFVC) |
| * @res: VC res number, ie. VCn (0-7) |
| * |
| * A VC is enabled by setting the enable bit in matching resource control |
| * registers on both sides of a link. We therefore need to find the opposite |
| * end of the link. To keep this simple we enable from the downstream device. |
| * RC devices do not have an upstream device, nor does it seem that VC9 do |
| * (spec is unclear). Once we find the upstream device, match the VC ID to |
| * get the correct resource, disable and enable on both ends. |
| */ |
| static void pci_vc_enable(struct pci_dev *dev, int pos, int res) |
| { |
| int ctrl_pos, status_pos, id, pos2, evcc, i, ctrl_pos2, status_pos2; |
| u32 ctrl, header, cap1, ctrl2; |
| struct pci_dev *link = NULL; |
| |
| /* Enable VCs from the downstream device */ |
| if (!pci_is_pcie(dev) || !pcie_downstream_port(dev)) |
| return; |
| |
| ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF); |
| status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF); |
| |
| pci_read_config_dword(dev, ctrl_pos, &ctrl); |
| id = ctrl & PCI_VC_RES_CTRL_ID; |
| |
| pci_read_config_dword(dev, pos, &header); |
| |
| /* If there is no opposite end of the link, skip to enable */ |
| if (PCI_EXT_CAP_ID(header) == PCI_EXT_CAP_ID_VC9 || |
| pci_is_root_bus(dev->bus)) |
| goto enable; |
| |
| pos2 = pci_find_ext_capability(dev->bus->self, PCI_EXT_CAP_ID_VC); |
| if (!pos2) |
| goto enable; |
| |
| pci_read_config_dword(dev->bus->self, pos2 + PCI_VC_PORT_CAP1, &cap1); |
| evcc = cap1 & PCI_VC_CAP1_EVCC; |
| |
| /* VC0 is hardwired enabled, so we can start with 1 */ |
| for (i = 1; i < evcc + 1; i++) { |
| ctrl_pos2 = pos2 + PCI_VC_RES_CTRL + |
| (i * PCI_CAP_VC_PER_VC_SIZEOF); |
| status_pos2 = pos2 + PCI_VC_RES_STATUS + |
| (i * PCI_CAP_VC_PER_VC_SIZEOF); |
| pci_read_config_dword(dev->bus->self, ctrl_pos2, &ctrl2); |
| if ((ctrl2 & PCI_VC_RES_CTRL_ID) == id) { |
| link = dev->bus->self; |
| break; |
| } |
| } |
| |
| if (!link) |
| goto enable; |
| |
| /* Disable if enabled */ |
| if (ctrl2 & PCI_VC_RES_CTRL_ENABLE) { |
| ctrl2 &= ~PCI_VC_RES_CTRL_ENABLE; |
| pci_write_config_dword(link, ctrl_pos2, ctrl2); |
| } |
| |
| /* Enable on both ends */ |
| ctrl2 |= PCI_VC_RES_CTRL_ENABLE; |
| pci_write_config_dword(link, ctrl_pos2, ctrl2); |
| enable: |
| ctrl |= PCI_VC_RES_CTRL_ENABLE; |
| pci_write_config_dword(dev, ctrl_pos, ctrl); |
| |
| if (!pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_NEGO)) |
| pci_err(dev, "VC%d negotiation stuck pending\n", id); |
| |
| if (link && !pci_wait_for_pending(link, status_pos2, |
| PCI_VC_RES_STATUS_NEGO)) |
| pci_err(link, "VC%d negotiation stuck pending\n", id); |
| } |
| |
| /** |
| * pci_vc_do_save_buffer - Size, save, or restore VC state |
| * @dev: device |
| * @pos: starting position of VC capability (VC/VC9/MFVC) |
| * @save_state: buffer for save/restore |
| * @save: if provided a buffer, this indicates what to do with it |
| * |
| * Walking Virtual Channel config space to size, save, or restore it |
| * is complicated, so we do it all from one function to reduce code and |
| * guarantee ordering matches in the buffer. When called with NULL |
| * @save_state, return the size of the necessary save buffer. When called |
| * with a non-NULL @save_state, @save determines whether we save to the |
| * buffer or restore from it. |
| */ |
| static int pci_vc_do_save_buffer(struct pci_dev *dev, int pos, |
| struct pci_cap_saved_state *save_state, |
| bool save) |
| { |
| u32 cap1; |
| char evcc, lpevcc, parb_size; |
| int i, len = 0; |
| u8 *buf = save_state ? (u8 *)save_state->cap.data : NULL; |
| |
| /* Sanity check buffer size for save/restore */ |
| if (buf && save_state->cap.size != |
| pci_vc_do_save_buffer(dev, pos, NULL, save)) { |
| pci_err(dev, "VC save buffer size does not match @0x%x\n", pos); |
| return -ENOMEM; |
| } |
| |
| pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP1, &cap1); |
| /* Extended VC Count (not counting VC0) */ |
| evcc = cap1 & PCI_VC_CAP1_EVCC; |
| /* Low Priority Extended VC Count (not counting VC0) */ |
| lpevcc = FIELD_GET(PCI_VC_CAP1_LPEVCC, cap1); |
| /* Port Arbitration Table Entry Size (bits) */ |
| parb_size = 1 << FIELD_GET(PCI_VC_CAP1_ARB_SIZE, cap1); |
| |
| /* |
| * Port VC Control Register contains VC Arbitration Select, which |
| * cannot be modified when more than one LPVC is in operation. We |
| * therefore save/restore it first, as only VC0 should be enabled |
| * after device reset. |
| */ |
| if (buf) { |
| if (save) |
| pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL, |
| (u16 *)buf); |
| else |
| pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL, |
| *(u16 *)buf); |
| buf += 4; |
| } |
| len += 4; |
| |
| /* |
| * If we have any Low Priority VCs and a VC Arbitration Table Offset |
| * in Port VC Capability Register 2 then save/restore it next. |
| */ |
| if (lpevcc) { |
| u32 cap2; |
| int vcarb_offset; |
| |
| pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP2, &cap2); |
| vcarb_offset = FIELD_GET(PCI_VC_CAP2_ARB_OFF, cap2) * 16; |
| |
| if (vcarb_offset) { |
| int size, vcarb_phases = 0; |
| |
| if (cap2 & PCI_VC_CAP2_128_PHASE) |
| vcarb_phases = 128; |
| else if (cap2 & PCI_VC_CAP2_64_PHASE) |
| vcarb_phases = 64; |
| else if (cap2 & PCI_VC_CAP2_32_PHASE) |
| vcarb_phases = 32; |
| |
| /* Fixed 4 bits per phase per lpevcc (plus VC0) */ |
| size = ((lpevcc + 1) * vcarb_phases * 4) / 8; |
| |
| if (size && buf) { |
| pci_vc_save_restore_dwords(dev, |
| pos + vcarb_offset, |
| (u32 *)buf, |
| size / 4, save); |
| /* |
| * On restore, we need to signal hardware to |
| * re-load the VC Arbitration Table. |
| */ |
| if (!save) |
| pci_vc_load_arb_table(dev, pos); |
| |
| buf += size; |
| } |
| len += size; |
| } |
| } |
| |
| /* |
| * In addition to each VC Resource Control Register, we may have a |
| * Port Arbitration Table attached to each VC. The Port Arbitration |
| * Table Offset in each VC Resource Capability Register tells us if |
| * it exists. The entry size is global from the Port VC Capability |
| * Register1 above. The number of phases is determined per VC. |
| */ |
| for (i = 0; i < evcc + 1; i++) { |
| u32 cap; |
| int parb_offset; |
| |
| pci_read_config_dword(dev, pos + PCI_VC_RES_CAP + |
| (i * PCI_CAP_VC_PER_VC_SIZEOF), &cap); |
| parb_offset = FIELD_GET(PCI_VC_RES_CAP_ARB_OFF, cap) * 16; |
| if (parb_offset) { |
| int size, parb_phases = 0; |
| |
| if (cap & PCI_VC_RES_CAP_256_PHASE) |
| parb_phases = 256; |
| else if (cap & (PCI_VC_RES_CAP_128_PHASE | |
| PCI_VC_RES_CAP_128_PHASE_TB)) |
| parb_phases = 128; |
| else if (cap & PCI_VC_RES_CAP_64_PHASE) |
| parb_phases = 64; |
| else if (cap & PCI_VC_RES_CAP_32_PHASE) |
| parb_phases = 32; |
| |
| size = (parb_size * parb_phases) / 8; |
| |
| if (size && buf) { |
| pci_vc_save_restore_dwords(dev, |
| pos + parb_offset, |
| (u32 *)buf, |
| size / 4, save); |
| buf += size; |
| } |
| len += size; |
| } |
| |
| /* VC Resource Control Register */ |
| if (buf) { |
| int ctrl_pos = pos + PCI_VC_RES_CTRL + |
| (i * PCI_CAP_VC_PER_VC_SIZEOF); |
| if (save) |
| pci_read_config_dword(dev, ctrl_pos, |
| (u32 *)buf); |
| else { |
| u32 tmp, ctrl = *(u32 *)buf; |
| /* |
| * For an FLR case, the VC config may remain. |
| * Preserve enable bit, restore the rest. |
| */ |
| pci_read_config_dword(dev, ctrl_pos, &tmp); |
| tmp &= PCI_VC_RES_CTRL_ENABLE; |
| tmp |= ctrl & ~PCI_VC_RES_CTRL_ENABLE; |
| pci_write_config_dword(dev, ctrl_pos, tmp); |
| /* Load port arbitration table if used */ |
| if (ctrl & PCI_VC_RES_CTRL_ARB_SELECT) |
| pci_vc_load_port_arb_table(dev, pos, i); |
| /* Re-enable if needed */ |
| if ((ctrl ^ tmp) & PCI_VC_RES_CTRL_ENABLE) |
| pci_vc_enable(dev, pos, i); |
| } |
| buf += 4; |
| } |
| len += 4; |
| } |
| |
| return buf ? 0 : len; |
| } |
| |
| static struct { |
| u16 id; |
| const char *name; |
| } vc_caps[] = { { PCI_EXT_CAP_ID_MFVC, "MFVC" }, |
| { PCI_EXT_CAP_ID_VC, "VC" }, |
| { PCI_EXT_CAP_ID_VC9, "VC9" } }; |
| |
| /** |
| * pci_save_vc_state - Save VC state to pre-allocate save buffer |
| * @dev: device |
| * |
| * For each type of VC capability, VC/VC9/MFVC, find the capability and |
| * save it to the pre-allocated save buffer. |
| */ |
| int pci_save_vc_state(struct pci_dev *dev) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(vc_caps); i++) { |
| int pos, ret; |
| struct pci_cap_saved_state *save_state; |
| |
| pos = pci_find_ext_capability(dev, vc_caps[i].id); |
| if (!pos) |
| continue; |
| |
| save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id); |
| if (!save_state) { |
| pci_err(dev, "%s buffer not found in %s\n", |
| vc_caps[i].name, __func__); |
| return -ENOMEM; |
| } |
| |
| ret = pci_vc_do_save_buffer(dev, pos, save_state, true); |
| if (ret) { |
| pci_err(dev, "%s save unsuccessful %s\n", |
| vc_caps[i].name, __func__); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * pci_restore_vc_state - Restore VC state from save buffer |
| * @dev: device |
| * |
| * For each type of VC capability, VC/VC9/MFVC, find the capability and |
| * restore it from the previously saved buffer. |
| */ |
| void pci_restore_vc_state(struct pci_dev *dev) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(vc_caps); i++) { |
| int pos; |
| struct pci_cap_saved_state *save_state; |
| |
| pos = pci_find_ext_capability(dev, vc_caps[i].id); |
| save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id); |
| if (!save_state || !pos) |
| continue; |
| |
| pci_vc_do_save_buffer(dev, pos, save_state, false); |
| } |
| } |
| |
| /** |
| * pci_allocate_vc_save_buffers - Allocate save buffers for VC caps |
| * @dev: device |
| * |
| * For each type of VC capability, VC/VC9/MFVC, find the capability, size |
| * it, and allocate a buffer for save/restore. |
| */ |
| void pci_allocate_vc_save_buffers(struct pci_dev *dev) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(vc_caps); i++) { |
| int len, pos = pci_find_ext_capability(dev, vc_caps[i].id); |
| |
| if (!pos) |
| continue; |
| |
| len = pci_vc_do_save_buffer(dev, pos, NULL, false); |
| if (pci_add_ext_cap_save_buffer(dev, vc_caps[i].id, len)) |
| pci_err(dev, "unable to preallocate %s save buffer\n", |
| vc_caps[i].name); |
| } |
| } |