blob: c0ae73b0691c03d196fff1584cb475cb5302d306 [file] [log] [blame]
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* The caprices of the preprocessor require that this be declared right here */
#define CREATE_TRACE_POINTS
#include "dm_services_types.h"
#include "dc.h"
#include "dc_link_dp.h"
#include "dc/inc/core_types.h"
#include "dal_asic_id.h"
#include "dmub/dmub_srv.h"
#include "dc/inc/hw/dmcu.h"
#include "dc/inc/hw/abm.h"
#include "dc/dc_dmub_srv.h"
#include "dc/dc_edid_parser.h"
#include "dc/dc_stat.h"
#include "amdgpu_dm_trace.h"
#include "vid.h"
#include "amdgpu.h"
#include "amdgpu_display.h"
#include "amdgpu_ucode.h"
#include "atom.h"
#include "amdgpu_dm.h"
#ifdef CONFIG_DRM_AMD_DC_HDCP
#include "amdgpu_dm_hdcp.h"
#include <drm/drm_hdcp.h>
#endif
#include "amdgpu_pm.h"
#include "amd_shared.h"
#include "amdgpu_dm_irq.h"
#include "dm_helpers.h"
#include "amdgpu_dm_mst_types.h"
#if defined(CONFIG_DEBUG_FS)
#include "amdgpu_dm_debugfs.h"
#endif
#include "amdgpu_dm_psr.h"
#include "ivsrcid/ivsrcid_vislands30.h"
#include "i2caux_interface.h"
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/types.h>
#include <linux/pm_runtime.h>
#include <linux/pci.h>
#include <linux/firmware.h>
#include <linux/component.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_uapi.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_dp_mst_helper.h>
#include <drm/drm_fb_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_edid.h>
#include <drm/drm_vblank.h>
#include <drm/drm_audio_component.h>
#if defined(CONFIG_DRM_AMD_DC_DCN)
#include "ivsrcid/dcn/irqsrcs_dcn_1_0.h"
#include "dcn/dcn_1_0_offset.h"
#include "dcn/dcn_1_0_sh_mask.h"
#include "soc15_hw_ip.h"
#include "vega10_ip_offset.h"
#include "soc15_common.h"
#endif
#include "modules/inc/mod_freesync.h"
#include "modules/power/power_helpers.h"
#include "modules/inc/mod_info_packet.h"
#define FIRMWARE_RENOIR_DMUB "amdgpu/renoir_dmcub.bin"
MODULE_FIRMWARE(FIRMWARE_RENOIR_DMUB);
#define FIRMWARE_SIENNA_CICHLID_DMUB "amdgpu/sienna_cichlid_dmcub.bin"
MODULE_FIRMWARE(FIRMWARE_SIENNA_CICHLID_DMUB);
#define FIRMWARE_NAVY_FLOUNDER_DMUB "amdgpu/navy_flounder_dmcub.bin"
MODULE_FIRMWARE(FIRMWARE_NAVY_FLOUNDER_DMUB);
#define FIRMWARE_GREEN_SARDINE_DMUB "amdgpu/green_sardine_dmcub.bin"
MODULE_FIRMWARE(FIRMWARE_GREEN_SARDINE_DMUB);
#define FIRMWARE_VANGOGH_DMUB "amdgpu/vangogh_dmcub.bin"
MODULE_FIRMWARE(FIRMWARE_VANGOGH_DMUB);
#define FIRMWARE_DIMGREY_CAVEFISH_DMUB "amdgpu/dimgrey_cavefish_dmcub.bin"
MODULE_FIRMWARE(FIRMWARE_DIMGREY_CAVEFISH_DMUB);
#define FIRMWARE_BEIGE_GOBY_DMUB "amdgpu/beige_goby_dmcub.bin"
MODULE_FIRMWARE(FIRMWARE_BEIGE_GOBY_DMUB);
#define FIRMWARE_YELLOW_CARP_DMUB "amdgpu/yellow_carp_dmcub.bin"
MODULE_FIRMWARE(FIRMWARE_YELLOW_CARP_DMUB);
#define FIRMWARE_RAVEN_DMCU "amdgpu/raven_dmcu.bin"
MODULE_FIRMWARE(FIRMWARE_RAVEN_DMCU);
#define FIRMWARE_NAVI12_DMCU "amdgpu/navi12_dmcu.bin"
MODULE_FIRMWARE(FIRMWARE_NAVI12_DMCU);
/* Number of bytes in PSP header for firmware. */
#define PSP_HEADER_BYTES 0x100
/* Number of bytes in PSP footer for firmware. */
#define PSP_FOOTER_BYTES 0x100
/**
* DOC: overview
*
* The AMDgpu display manager, **amdgpu_dm** (or even simpler,
* **dm**) sits between DRM and DC. It acts as a liaison, converting DRM
* requests into DC requests, and DC responses into DRM responses.
*
* The root control structure is &struct amdgpu_display_manager.
*/
/* basic init/fini API */
static int amdgpu_dm_init(struct amdgpu_device *adev);
static void amdgpu_dm_fini(struct amdgpu_device *adev);
static bool is_freesync_video_mode(const struct drm_display_mode *mode, struct amdgpu_dm_connector *aconnector);
static enum drm_mode_subconnector get_subconnector_type(struct dc_link *link)
{
switch (link->dpcd_caps.dongle_type) {
case DISPLAY_DONGLE_NONE:
return DRM_MODE_SUBCONNECTOR_Native;
case DISPLAY_DONGLE_DP_VGA_CONVERTER:
return DRM_MODE_SUBCONNECTOR_VGA;
case DISPLAY_DONGLE_DP_DVI_CONVERTER:
case DISPLAY_DONGLE_DP_DVI_DONGLE:
return DRM_MODE_SUBCONNECTOR_DVID;
case DISPLAY_DONGLE_DP_HDMI_CONVERTER:
case DISPLAY_DONGLE_DP_HDMI_DONGLE:
return DRM_MODE_SUBCONNECTOR_HDMIA;
case DISPLAY_DONGLE_DP_HDMI_MISMATCHED_DONGLE:
default:
return DRM_MODE_SUBCONNECTOR_Unknown;
}
}
static void update_subconnector_property(struct amdgpu_dm_connector *aconnector)
{
struct dc_link *link = aconnector->dc_link;
struct drm_connector *connector = &aconnector->base;
enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
return;
if (aconnector->dc_sink)
subconnector = get_subconnector_type(link);
drm_object_property_set_value(&connector->base,
connector->dev->mode_config.dp_subconnector_property,
subconnector);
}
/*
* initializes drm_device display related structures, based on the information
* provided by DAL. The drm strcutures are: drm_crtc, drm_connector,
* drm_encoder, drm_mode_config
*
* Returns 0 on success
*/
static int amdgpu_dm_initialize_drm_device(struct amdgpu_device *adev);
/* removes and deallocates the drm structures, created by the above function */
static void amdgpu_dm_destroy_drm_device(struct amdgpu_display_manager *dm);
static int amdgpu_dm_plane_init(struct amdgpu_display_manager *dm,
struct drm_plane *plane,
unsigned long possible_crtcs,
const struct dc_plane_cap *plane_cap);
static int amdgpu_dm_crtc_init(struct amdgpu_display_manager *dm,
struct drm_plane *plane,
uint32_t link_index);
static int amdgpu_dm_connector_init(struct amdgpu_display_manager *dm,
struct amdgpu_dm_connector *amdgpu_dm_connector,
uint32_t link_index,
struct amdgpu_encoder *amdgpu_encoder);
static int amdgpu_dm_encoder_init(struct drm_device *dev,
struct amdgpu_encoder *aencoder,
uint32_t link_index);
static int amdgpu_dm_connector_get_modes(struct drm_connector *connector);
static void amdgpu_dm_atomic_commit_tail(struct drm_atomic_state *state);
static int amdgpu_dm_atomic_check(struct drm_device *dev,
struct drm_atomic_state *state);
static void handle_cursor_update(struct drm_plane *plane,
struct drm_plane_state *old_plane_state);
static const struct drm_format_info *
amd_get_format_info(const struct drm_mode_fb_cmd2 *cmd);
static bool
is_timing_unchanged_for_freesync(struct drm_crtc_state *old_crtc_state,
struct drm_crtc_state *new_crtc_state);
/*
* dm_vblank_get_counter
*
* @brief
* Get counter for number of vertical blanks
*
* @param
* struct amdgpu_device *adev - [in] desired amdgpu device
* int disp_idx - [in] which CRTC to get the counter from
*
* @return
* Counter for vertical blanks
*/
static u32 dm_vblank_get_counter(struct amdgpu_device *adev, int crtc)
{
if (crtc >= adev->mode_info.num_crtc)
return 0;
else {
struct amdgpu_crtc *acrtc = adev->mode_info.crtcs[crtc];
if (acrtc->dm_irq_params.stream == NULL) {
DRM_ERROR("dc_stream_state is NULL for crtc '%d'!\n",
crtc);
return 0;
}
return dc_stream_get_vblank_counter(acrtc->dm_irq_params.stream);
}
}
static int dm_crtc_get_scanoutpos(struct amdgpu_device *adev, int crtc,
u32 *vbl, u32 *position)
{
uint32_t v_blank_start, v_blank_end, h_position, v_position;
if ((crtc < 0) || (crtc >= adev->mode_info.num_crtc))
return -EINVAL;
else {
struct amdgpu_crtc *acrtc = adev->mode_info.crtcs[crtc];
if (acrtc->dm_irq_params.stream == NULL) {
DRM_ERROR("dc_stream_state is NULL for crtc '%d'!\n",
crtc);
return 0;
}
/*
* TODO rework base driver to use values directly.
* for now parse it back into reg-format
*/
dc_stream_get_scanoutpos(acrtc->dm_irq_params.stream,
&v_blank_start,
&v_blank_end,
&h_position,
&v_position);
*position = v_position | (h_position << 16);
*vbl = v_blank_start | (v_blank_end << 16);
}
return 0;
}
static bool dm_is_idle(void *handle)
{
/* XXX todo */
return true;
}
static int dm_wait_for_idle(void *handle)
{
/* XXX todo */
return 0;
}
static bool dm_check_soft_reset(void *handle)
{
return false;
}
static int dm_soft_reset(void *handle)
{
/* XXX todo */
return 0;
}
static struct amdgpu_crtc *
get_crtc_by_otg_inst(struct amdgpu_device *adev,
int otg_inst)
{
struct drm_device *dev = adev_to_drm(adev);
struct drm_crtc *crtc;
struct amdgpu_crtc *amdgpu_crtc;
if (WARN_ON(otg_inst == -1))
return adev->mode_info.crtcs[0];
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
amdgpu_crtc = to_amdgpu_crtc(crtc);
if (amdgpu_crtc->otg_inst == otg_inst)
return amdgpu_crtc;
}
return NULL;
}
static inline bool amdgpu_dm_vrr_active_irq(struct amdgpu_crtc *acrtc)
{
return acrtc->dm_irq_params.freesync_config.state ==
VRR_STATE_ACTIVE_VARIABLE ||
acrtc->dm_irq_params.freesync_config.state ==
VRR_STATE_ACTIVE_FIXED;
}
static inline bool amdgpu_dm_vrr_active(struct dm_crtc_state *dm_state)
{
return dm_state->freesync_config.state == VRR_STATE_ACTIVE_VARIABLE ||
dm_state->freesync_config.state == VRR_STATE_ACTIVE_FIXED;
}
static inline bool is_dc_timing_adjust_needed(struct dm_crtc_state *old_state,
struct dm_crtc_state *new_state)
{
if (new_state->freesync_config.state == VRR_STATE_ACTIVE_FIXED)
return true;
else if (amdgpu_dm_vrr_active(old_state) != amdgpu_dm_vrr_active(new_state))
return true;
else
return false;
}
/**
* dm_pflip_high_irq() - Handle pageflip interrupt
* @interrupt_params: ignored
*
* Handles the pageflip interrupt by notifying all interested parties
* that the pageflip has been completed.
*/
static void dm_pflip_high_irq(void *interrupt_params)
{
struct amdgpu_crtc *amdgpu_crtc;
struct common_irq_params *irq_params = interrupt_params;
struct amdgpu_device *adev = irq_params->adev;
unsigned long flags;
struct drm_pending_vblank_event *e;
uint32_t vpos, hpos, v_blank_start, v_blank_end;
bool vrr_active;
amdgpu_crtc = get_crtc_by_otg_inst(adev, irq_params->irq_src - IRQ_TYPE_PFLIP);
/* IRQ could occur when in initial stage */
/* TODO work and BO cleanup */
if (amdgpu_crtc == NULL) {
DC_LOG_PFLIP("CRTC is null, returning.\n");
return;
}
spin_lock_irqsave(&adev_to_drm(adev)->event_lock, flags);
if (amdgpu_crtc->pflip_status != AMDGPU_FLIP_SUBMITTED){
DC_LOG_PFLIP("amdgpu_crtc->pflip_status = %d !=AMDGPU_FLIP_SUBMITTED(%d) on crtc:%d[%p] \n",
amdgpu_crtc->pflip_status,
AMDGPU_FLIP_SUBMITTED,
amdgpu_crtc->crtc_id,
amdgpu_crtc);
spin_unlock_irqrestore(&adev_to_drm(adev)->event_lock, flags);
return;
}
/* page flip completed. */
e = amdgpu_crtc->event;
amdgpu_crtc->event = NULL;
WARN_ON(!e);
vrr_active = amdgpu_dm_vrr_active_irq(amdgpu_crtc);
/* Fixed refresh rate, or VRR scanout position outside front-porch? */
if (!vrr_active ||
!dc_stream_get_scanoutpos(amdgpu_crtc->dm_irq_params.stream, &v_blank_start,
&v_blank_end, &hpos, &vpos) ||
(vpos < v_blank_start)) {
/* Update to correct count and vblank timestamp if racing with
* vblank irq. This also updates to the correct vblank timestamp
* even in VRR mode, as scanout is past the front-porch atm.
*/
drm_crtc_accurate_vblank_count(&amdgpu_crtc->base);
/* Wake up userspace by sending the pageflip event with proper
* count and timestamp of vblank of flip completion.
*/
if (e) {
drm_crtc_send_vblank_event(&amdgpu_crtc->base, e);
/* Event sent, so done with vblank for this flip */
drm_crtc_vblank_put(&amdgpu_crtc->base);
}
} else if (e) {
/* VRR active and inside front-porch: vblank count and
* timestamp for pageflip event will only be up to date after
* drm_crtc_handle_vblank() has been executed from late vblank
* irq handler after start of back-porch (vline 0). We queue the
* pageflip event for send-out by drm_crtc_handle_vblank() with
* updated timestamp and count, once it runs after us.
*
* We need to open-code this instead of using the helper
* drm_crtc_arm_vblank_event(), as that helper would
* call drm_crtc_accurate_vblank_count(), which we must
* not call in VRR mode while we are in front-porch!
*/
/* sequence will be replaced by real count during send-out. */
e->sequence = drm_crtc_vblank_count(&amdgpu_crtc->base);
e->pipe = amdgpu_crtc->crtc_id;
list_add_tail(&e->base.link, &adev_to_drm(adev)->vblank_event_list);
e = NULL;
}
/* Keep track of vblank of this flip for flip throttling. We use the
* cooked hw counter, as that one incremented at start of this vblank
* of pageflip completion, so last_flip_vblank is the forbidden count
* for queueing new pageflips if vsync + VRR is enabled.
*/
amdgpu_crtc->dm_irq_params.last_flip_vblank =
amdgpu_get_vblank_counter_kms(&amdgpu_crtc->base);
amdgpu_crtc->pflip_status = AMDGPU_FLIP_NONE;
spin_unlock_irqrestore(&adev_to_drm(adev)->event_lock, flags);
DC_LOG_PFLIP("crtc:%d[%p], pflip_stat:AMDGPU_FLIP_NONE, vrr[%d]-fp %d\n",
amdgpu_crtc->crtc_id, amdgpu_crtc,
vrr_active, (int) !e);
}
static void dm_vupdate_high_irq(void *interrupt_params)
{
struct common_irq_params *irq_params = interrupt_params;
struct amdgpu_device *adev = irq_params->adev;
struct amdgpu_crtc *acrtc;
struct drm_device *drm_dev;
struct drm_vblank_crtc *vblank;
ktime_t frame_duration_ns, previous_timestamp;
unsigned long flags;
int vrr_active;
acrtc = get_crtc_by_otg_inst(adev, irq_params->irq_src - IRQ_TYPE_VUPDATE);
if (acrtc) {
vrr_active = amdgpu_dm_vrr_active_irq(acrtc);
drm_dev = acrtc->base.dev;
vblank = &drm_dev->vblank[acrtc->base.index];
previous_timestamp = atomic64_read(&irq_params->previous_timestamp);
frame_duration_ns = vblank->time - previous_timestamp;
if (frame_duration_ns > 0) {
trace_amdgpu_refresh_rate_track(acrtc->base.index,
frame_duration_ns,
ktime_divns(NSEC_PER_SEC, frame_duration_ns));
atomic64_set(&irq_params->previous_timestamp, vblank->time);
}
DC_LOG_VBLANK("crtc:%d, vupdate-vrr:%d\n",
acrtc->crtc_id,
vrr_active);
/* Core vblank handling is done here after end of front-porch in
* vrr mode, as vblank timestamping will give valid results
* while now done after front-porch. This will also deliver
* page-flip completion events that have been queued to us
* if a pageflip happened inside front-porch.
*/
if (vrr_active) {
drm_crtc_handle_vblank(&acrtc->base);
/* BTR processing for pre-DCE12 ASICs */
if (acrtc->dm_irq_params.stream &&
adev->family < AMDGPU_FAMILY_AI) {
spin_lock_irqsave(&adev_to_drm(adev)->event_lock, flags);
mod_freesync_handle_v_update(
adev->dm.freesync_module,
acrtc->dm_irq_params.stream,
&acrtc->dm_irq_params.vrr_params);
dc_stream_adjust_vmin_vmax(
adev->dm.dc,
acrtc->dm_irq_params.stream,
&acrtc->dm_irq_params.vrr_params.adjust);
spin_unlock_irqrestore(&adev_to_drm(adev)->event_lock, flags);
}
}
}
}
/**
* dm_crtc_high_irq() - Handles CRTC interrupt
* @interrupt_params: used for determining the CRTC instance
*
* Handles the CRTC/VSYNC interrupt by notfying DRM's VBLANK
* event handler.
*/
static void dm_crtc_high_irq(void *interrupt_params)
{
struct common_irq_params *irq_params = interrupt_params;
struct amdgpu_device *adev = irq_params->adev;
struct amdgpu_crtc *acrtc;
unsigned long flags;
int vrr_active;
acrtc = get_crtc_by_otg_inst(adev, irq_params->irq_src - IRQ_TYPE_VBLANK);
if (!acrtc)
return;
vrr_active = amdgpu_dm_vrr_active_irq(acrtc);
DC_LOG_VBLANK("crtc:%d, vupdate-vrr:%d, planes:%d\n", acrtc->crtc_id,
vrr_active, acrtc->dm_irq_params.active_planes);
/**
* Core vblank handling at start of front-porch is only possible
* in non-vrr mode, as only there vblank timestamping will give
* valid results while done in front-porch. Otherwise defer it
* to dm_vupdate_high_irq after end of front-porch.
*/
if (!vrr_active)
drm_crtc_handle_vblank(&acrtc->base);
/**
* Following stuff must happen at start of vblank, for crc
* computation and below-the-range btr support in vrr mode.
*/
amdgpu_dm_crtc_handle_crc_irq(&acrtc->base);
/* BTR updates need to happen before VUPDATE on Vega and above. */
if (adev->family < AMDGPU_FAMILY_AI)
return;
spin_lock_irqsave(&adev_to_drm(adev)->event_lock, flags);
if (acrtc->dm_irq_params.stream &&
acrtc->dm_irq_params.vrr_params.supported &&
acrtc->dm_irq_params.freesync_config.state ==
VRR_STATE_ACTIVE_VARIABLE) {
mod_freesync_handle_v_update(adev->dm.freesync_module,
acrtc->dm_irq_params.stream,
&acrtc->dm_irq_params.vrr_params);
dc_stream_adjust_vmin_vmax(adev->dm.dc, acrtc->dm_irq_params.stream,
&acrtc->dm_irq_params.vrr_params.adjust);
}
/*
* If there aren't any active_planes then DCH HUBP may be clock-gated.
* In that case, pageflip completion interrupts won't fire and pageflip
* completion events won't get delivered. Prevent this by sending
* pending pageflip events from here if a flip is still pending.
*
* If any planes are enabled, use dm_pflip_high_irq() instead, to
* avoid race conditions between flip programming and completion,
* which could cause too early flip completion events.
*/
if (adev->family >= AMDGPU_FAMILY_RV &&
acrtc->pflip_status == AMDGPU_FLIP_SUBMITTED &&
acrtc->dm_irq_params.active_planes == 0) {
if (acrtc->event) {
drm_crtc_send_vblank_event(&acrtc->base, acrtc->event);
acrtc->event = NULL;
drm_crtc_vblank_put(&acrtc->base);
}
acrtc->pflip_status = AMDGPU_FLIP_NONE;
}
spin_unlock_irqrestore(&adev_to_drm(adev)->event_lock, flags);
}
#if defined(CONFIG_DRM_AMD_DC_DCN)
#if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
/**
* dm_dcn_vertical_interrupt0_high_irq() - Handles OTG Vertical interrupt0 for
* DCN generation ASICs
* @interrupt_params: interrupt parameters
*
* Used to set crc window/read out crc value at vertical line 0 position
*/
static void dm_dcn_vertical_interrupt0_high_irq(void *interrupt_params)
{
struct common_irq_params *irq_params = interrupt_params;
struct amdgpu_device *adev = irq_params->adev;
struct amdgpu_crtc *acrtc;
acrtc = get_crtc_by_otg_inst(adev, irq_params->irq_src - IRQ_TYPE_VLINE0);
if (!acrtc)
return;
amdgpu_dm_crtc_handle_crc_window_irq(&acrtc->base);
}
#endif
/**
* dm_dmub_outbox1_low_irq() - Handles Outbox interrupt
* @interrupt_params: used for determining the Outbox instance
*
* Handles the Outbox Interrupt
* event handler.
*/
#define DMUB_TRACE_MAX_READ 64
static void dm_dmub_outbox1_low_irq(void *interrupt_params)
{
struct dmub_notification notify;
struct common_irq_params *irq_params = interrupt_params;
struct amdgpu_device *adev = irq_params->adev;
struct amdgpu_display_manager *dm = &adev->dm;
struct dmcub_trace_buf_entry entry = { 0 };
uint32_t count = 0;
if (dc_enable_dmub_notifications(adev->dm.dc)) {
if (irq_params->irq_src == DC_IRQ_SOURCE_DMCUB_OUTBOX) {
do {
dc_stat_get_dmub_notification(adev->dm.dc, &notify);
} while (notify.pending_notification);
if (adev->dm.dmub_notify)
memcpy(adev->dm.dmub_notify, &notify, sizeof(struct dmub_notification));
if (notify.type == DMUB_NOTIFICATION_AUX_REPLY)
complete(&adev->dm.dmub_aux_transfer_done);
// TODO : HPD Implementation
} else {
DRM_ERROR("DM: Failed to receive correct outbox IRQ !");
}
}
do {
if (dc_dmub_srv_get_dmub_outbox0_msg(dm->dc, &entry)) {
trace_amdgpu_dmub_trace_high_irq(entry.trace_code, entry.tick_count,
entry.param0, entry.param1);
DRM_DEBUG_DRIVER("trace_code:%u, tick_count:%u, param0:%u, param1:%u\n",
entry.trace_code, entry.tick_count, entry.param0, entry.param1);
} else
break;
count++;
} while (count <= DMUB_TRACE_MAX_READ);
ASSERT(count <= DMUB_TRACE_MAX_READ);
}
#endif
static int dm_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
return 0;
}
static int dm_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
return 0;
}
/* Prototypes of private functions */
static int dm_early_init(void* handle);
/* Allocate memory for FBC compressed data */
static void amdgpu_dm_fbc_init(struct drm_connector *connector)
{
struct drm_device *dev = connector->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct dm_compressor_info *compressor = &adev->dm.compressor;
struct amdgpu_dm_connector *aconn = to_amdgpu_dm_connector(connector);
struct drm_display_mode *mode;
unsigned long max_size = 0;
if (adev->dm.dc->fbc_compressor == NULL)
return;
if (aconn->dc_link->connector_signal != SIGNAL_TYPE_EDP)
return;
if (compressor->bo_ptr)
return;
list_for_each_entry(mode, &connector->modes, head) {
if (max_size < mode->htotal * mode->vtotal)
max_size = mode->htotal * mode->vtotal;
}
if (max_size) {
int r = amdgpu_bo_create_kernel(adev, max_size * 4, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_GTT, &compressor->bo_ptr,
&compressor->gpu_addr, &compressor->cpu_addr);
if (r)
DRM_ERROR("DM: Failed to initialize FBC\n");
else {
adev->dm.dc->ctx->fbc_gpu_addr = compressor->gpu_addr;
DRM_INFO("DM: FBC alloc %lu\n", max_size*4);
}
}
}
static int amdgpu_dm_audio_component_get_eld(struct device *kdev, int port,
int pipe, bool *enabled,
unsigned char *buf, int max_bytes)
{
struct drm_device *dev = dev_get_drvdata(kdev);
struct amdgpu_device *adev = drm_to_adev(dev);
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
struct amdgpu_dm_connector *aconnector;
int ret = 0;
*enabled = false;
mutex_lock(&adev->dm.audio_lock);
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
aconnector = to_amdgpu_dm_connector(connector);
if (aconnector->audio_inst != port)
continue;
*enabled = true;
ret = drm_eld_size(connector->eld);
memcpy(buf, connector->eld, min(max_bytes, ret));
break;
}
drm_connector_list_iter_end(&conn_iter);
mutex_unlock(&adev->dm.audio_lock);
DRM_DEBUG_KMS("Get ELD : idx=%d ret=%d en=%d\n", port, ret, *enabled);
return ret;
}
static const struct drm_audio_component_ops amdgpu_dm_audio_component_ops = {
.get_eld = amdgpu_dm_audio_component_get_eld,
};
static int amdgpu_dm_audio_component_bind(struct device *kdev,
struct device *hda_kdev, void *data)
{
struct drm_device *dev = dev_get_drvdata(kdev);
struct amdgpu_device *adev = drm_to_adev(dev);
struct drm_audio_component *acomp = data;
acomp->ops = &amdgpu_dm_audio_component_ops;
acomp->dev = kdev;
adev->dm.audio_component = acomp;
return 0;
}
static void amdgpu_dm_audio_component_unbind(struct device *kdev,
struct device *hda_kdev, void *data)
{
struct drm_device *dev = dev_get_drvdata(kdev);
struct amdgpu_device *adev = drm_to_adev(dev);
struct drm_audio_component *acomp = data;
acomp->ops = NULL;
acomp->dev = NULL;
adev->dm.audio_component = NULL;
}
static const struct component_ops amdgpu_dm_audio_component_bind_ops = {
.bind = amdgpu_dm_audio_component_bind,
.unbind = amdgpu_dm_audio_component_unbind,
};
static int amdgpu_dm_audio_init(struct amdgpu_device *adev)
{
int i, ret;
if (!amdgpu_audio)
return 0;
adev->mode_info.audio.enabled = true;
adev->mode_info.audio.num_pins = adev->dm.dc->res_pool->audio_count;
for (i = 0; i < adev->mode_info.audio.num_pins; i++) {
adev->mode_info.audio.pin[i].channels = -1;
adev->mode_info.audio.pin[i].rate = -1;
adev->mode_info.audio.pin[i].bits_per_sample = -1;
adev->mode_info.audio.pin[i].status_bits = 0;
adev->mode_info.audio.pin[i].category_code = 0;
adev->mode_info.audio.pin[i].connected = false;
adev->mode_info.audio.pin[i].id =
adev->dm.dc->res_pool->audios[i]->inst;
adev->mode_info.audio.pin[i].offset = 0;
}
ret = component_add(adev->dev, &amdgpu_dm_audio_component_bind_ops);
if (ret < 0)
return ret;
adev->dm.audio_registered = true;
return 0;
}
static void amdgpu_dm_audio_fini(struct amdgpu_device *adev)
{
if (!amdgpu_audio)
return;
if (!adev->mode_info.audio.enabled)
return;
if (adev->dm.audio_registered) {
component_del(adev->dev, &amdgpu_dm_audio_component_bind_ops);
adev->dm.audio_registered = false;
}
/* TODO: Disable audio? */
adev->mode_info.audio.enabled = false;
}
static void amdgpu_dm_audio_eld_notify(struct amdgpu_device *adev, int pin)
{
struct drm_audio_component *acomp = adev->dm.audio_component;
if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify) {
DRM_DEBUG_KMS("Notify ELD: %d\n", pin);
acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
pin, -1);
}
}
static int dm_dmub_hw_init(struct amdgpu_device *adev)
{
const struct dmcub_firmware_header_v1_0 *hdr;
struct dmub_srv *dmub_srv = adev->dm.dmub_srv;
struct dmub_srv_fb_info *fb_info = adev->dm.dmub_fb_info;
const struct firmware *dmub_fw = adev->dm.dmub_fw;
struct dmcu *dmcu = adev->dm.dc->res_pool->dmcu;
struct abm *abm = adev->dm.dc->res_pool->abm;
struct dmub_srv_hw_params hw_params;
enum dmub_status status;
const unsigned char *fw_inst_const, *fw_bss_data;
uint32_t i, fw_inst_const_size, fw_bss_data_size;
bool has_hw_support;
if (!dmub_srv)
/* DMUB isn't supported on the ASIC. */
return 0;
if (!fb_info) {
DRM_ERROR("No framebuffer info for DMUB service.\n");
return -EINVAL;
}
if (!dmub_fw) {
/* Firmware required for DMUB support. */
DRM_ERROR("No firmware provided for DMUB.\n");
return -EINVAL;
}
status = dmub_srv_has_hw_support(dmub_srv, &has_hw_support);
if (status != DMUB_STATUS_OK) {
DRM_ERROR("Error checking HW support for DMUB: %d\n", status);
return -EINVAL;
}
if (!has_hw_support) {
DRM_INFO("DMUB unsupported on ASIC\n");
return 0;
}
hdr = (const struct dmcub_firmware_header_v1_0 *)dmub_fw->data;
fw_inst_const = dmub_fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes) +
PSP_HEADER_BYTES;
fw_bss_data = dmub_fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes) +
le32_to_cpu(hdr->inst_const_bytes);
/* Copy firmware and bios info into FB memory. */
fw_inst_const_size = le32_to_cpu(hdr->inst_const_bytes) -
PSP_HEADER_BYTES - PSP_FOOTER_BYTES;
fw_bss_data_size = le32_to_cpu(hdr->bss_data_bytes);
/* if adev->firmware.load_type == AMDGPU_FW_LOAD_PSP,
* amdgpu_ucode_init_single_fw will load dmub firmware
* fw_inst_const part to cw0; otherwise, the firmware back door load
* will be done by dm_dmub_hw_init
*/
if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
memcpy(fb_info->fb[DMUB_WINDOW_0_INST_CONST].cpu_addr, fw_inst_const,
fw_inst_const_size);
}
if (fw_bss_data_size)
memcpy(fb_info->fb[DMUB_WINDOW_2_BSS_DATA].cpu_addr,
fw_bss_data, fw_bss_data_size);
/* Copy firmware bios info into FB memory. */
memcpy(fb_info->fb[DMUB_WINDOW_3_VBIOS].cpu_addr, adev->bios,
adev->bios_size);
/* Reset regions that need to be reset. */
memset(fb_info->fb[DMUB_WINDOW_4_MAILBOX].cpu_addr, 0,
fb_info->fb[DMUB_WINDOW_4_MAILBOX].size);
memset(fb_info->fb[DMUB_WINDOW_5_TRACEBUFF].cpu_addr, 0,
fb_info->fb[DMUB_WINDOW_5_TRACEBUFF].size);
memset(fb_info->fb[DMUB_WINDOW_6_FW_STATE].cpu_addr, 0,
fb_info->fb[DMUB_WINDOW_6_FW_STATE].size);
/* Initialize hardware. */
memset(&hw_params, 0, sizeof(hw_params));
hw_params.fb_base = adev->gmc.fb_start;
hw_params.fb_offset = adev->gmc.aper_base;
/* backdoor load firmware and trigger dmub running */
if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP)
hw_params.load_inst_const = true;
if (dmcu)
hw_params.psp_version = dmcu->psp_version;
for (i = 0; i < fb_info->num_fb; ++i)
hw_params.fb[i] = &fb_info->fb[i];
status = dmub_srv_hw_init(dmub_srv, &hw_params);
if (status != DMUB_STATUS_OK) {
DRM_ERROR("Error initializing DMUB HW: %d\n", status);
return -EINVAL;
}
/* Wait for firmware load to finish. */
status = dmub_srv_wait_for_auto_load(dmub_srv, 100000);
if (status != DMUB_STATUS_OK)
DRM_WARN("Wait for DMUB auto-load failed: %d\n", status);
/* Init DMCU and ABM if available. */
if (dmcu && abm) {
dmcu->funcs->dmcu_init(dmcu);
abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
}
if (!adev->dm.dc->ctx->dmub_srv)
adev->dm.dc->ctx->dmub_srv = dc_dmub_srv_create(adev->dm.dc, dmub_srv);
if (!adev->dm.dc->ctx->dmub_srv) {
DRM_ERROR("Couldn't allocate DC DMUB server!\n");
return -ENOMEM;
}
DRM_INFO("DMUB hardware initialized: version=0x%08X\n",
adev->dm.dmcub_fw_version);
return 0;
}
#if defined(CONFIG_DRM_AMD_DC_DCN)
static void mmhub_read_system_context(struct amdgpu_device *adev, struct dc_phy_addr_space_config *pa_config)
{
uint64_t pt_base;
uint32_t logical_addr_low;
uint32_t logical_addr_high;
uint32_t agp_base, agp_bot, agp_top;
PHYSICAL_ADDRESS_LOC page_table_start, page_table_end, page_table_base;
logical_addr_low = min(adev->gmc.fb_start, adev->gmc.agp_start) >> 18;
pt_base = amdgpu_gmc_pd_addr(adev->gart.bo);
if (adev->apu_flags & AMD_APU_IS_RAVEN2)
/*
* Raven2 has a HW issue that it is unable to use the vram which
* is out of MC_VM_SYSTEM_APERTURE_HIGH_ADDR. So here is the
* workaround that increase system aperture high address (add 1)
* to get rid of the VM fault and hardware hang.
*/
logical_addr_high = max((adev->gmc.fb_end >> 18) + 0x1, adev->gmc.agp_end >> 18);
else
logical_addr_high = max(adev->gmc.fb_end, adev->gmc.agp_end) >> 18;
agp_base = 0;
agp_bot = adev->gmc.agp_start >> 24;
agp_top = adev->gmc.agp_end >> 24;
page_table_start.high_part = (u32)(adev->gmc.gart_start >> 44) & 0xF;
page_table_start.low_part = (u32)(adev->gmc.gart_start >> 12);
page_table_end.high_part = (u32)(adev->gmc.gart_end >> 44) & 0xF;
page_table_end.low_part = (u32)(adev->gmc.gart_end >> 12);
page_table_base.high_part = upper_32_bits(pt_base) & 0xF;
page_table_base.low_part = lower_32_bits(pt_base);
pa_config->system_aperture.start_addr = (uint64_t)logical_addr_low << 18;
pa_config->system_aperture.end_addr = (uint64_t)logical_addr_high << 18;
pa_config->system_aperture.agp_base = (uint64_t)agp_base << 24 ;
pa_config->system_aperture.agp_bot = (uint64_t)agp_bot << 24;
pa_config->system_aperture.agp_top = (uint64_t)agp_top << 24;
pa_config->system_aperture.fb_base = adev->gmc.fb_start;
pa_config->system_aperture.fb_offset = adev->gmc.aper_base;
pa_config->system_aperture.fb_top = adev->gmc.fb_end;
pa_config->gart_config.page_table_start_addr = page_table_start.quad_part << 12;
pa_config->gart_config.page_table_end_addr = page_table_end.quad_part << 12;
pa_config->gart_config.page_table_base_addr = page_table_base.quad_part;
pa_config->is_hvm_enabled = 0;
}
#endif
#if defined(CONFIG_DRM_AMD_DC_DCN)
static void event_mall_stutter(struct work_struct *work)
{
struct vblank_workqueue *vblank_work = container_of(work, struct vblank_workqueue, mall_work);
struct amdgpu_display_manager *dm = vblank_work->dm;
mutex_lock(&dm->dc_lock);
if (vblank_work->enable)
dm->active_vblank_irq_count++;
else if(dm->active_vblank_irq_count)
dm->active_vblank_irq_count--;
dc_allow_idle_optimizations(dm->dc, dm->active_vblank_irq_count == 0);
DRM_DEBUG_KMS("Allow idle optimizations (MALL): %d\n", dm->active_vblank_irq_count == 0);
mutex_unlock(&dm->dc_lock);
}
static struct vblank_workqueue *vblank_create_workqueue(struct amdgpu_device *adev, struct dc *dc)
{
int max_caps = dc->caps.max_links;
struct vblank_workqueue *vblank_work;
int i = 0;
vblank_work = kcalloc(max_caps, sizeof(*vblank_work), GFP_KERNEL);
if (ZERO_OR_NULL_PTR(vblank_work)) {
kfree(vblank_work);
return NULL;
}
for (i = 0; i < max_caps; i++)
INIT_WORK(&vblank_work[i].mall_work, event_mall_stutter);
return vblank_work;
}
#endif
static int amdgpu_dm_init(struct amdgpu_device *adev)
{
struct dc_init_data init_data;
#ifdef CONFIG_DRM_AMD_DC_HDCP
struct dc_callback_init init_params;
#endif
int r;
adev->dm.ddev = adev_to_drm(adev);
adev->dm.adev = adev;
/* Zero all the fields */
memset(&init_data, 0, sizeof(init_data));
#ifdef CONFIG_DRM_AMD_DC_HDCP
memset(&init_params, 0, sizeof(init_params));
#endif
mutex_init(&adev->dm.dc_lock);
mutex_init(&adev->dm.audio_lock);
#if defined(CONFIG_DRM_AMD_DC_DCN)
spin_lock_init(&adev->dm.vblank_lock);
#endif
if(amdgpu_dm_irq_init(adev)) {
DRM_ERROR("amdgpu: failed to initialize DM IRQ support.\n");
goto error;
}
init_data.asic_id.chip_family = adev->family;
init_data.asic_id.pci_revision_id = adev->pdev->revision;
init_data.asic_id.hw_internal_rev = adev->external_rev_id;
init_data.asic_id.vram_width = adev->gmc.vram_width;
/* TODO: initialize init_data.asic_id.vram_type here!!!! */
init_data.asic_id.atombios_base_address =
adev->mode_info.atom_context->bios;
init_data.driver = adev;
adev->dm.cgs_device = amdgpu_cgs_create_device(adev);
if (!adev->dm.cgs_device) {
DRM_ERROR("amdgpu: failed to create cgs device.\n");
goto error;
}
init_data.cgs_device = adev->dm.cgs_device;
init_data.dce_environment = DCE_ENV_PRODUCTION_DRV;
switch (adev->asic_type) {
case CHIP_CARRIZO:
case CHIP_STONEY:
case CHIP_RAVEN:
case CHIP_RENOIR:
init_data.flags.gpu_vm_support = true;
if (ASICREV_IS_GREEN_SARDINE(adev->external_rev_id))
init_data.flags.disable_dmcu = true;
break;
case CHIP_VANGOGH:
case CHIP_YELLOW_CARP:
init_data.flags.gpu_vm_support = true;
break;
default:
break;
}
if (amdgpu_dc_feature_mask & DC_FBC_MASK)
init_data.flags.fbc_support = true;
if (amdgpu_dc_feature_mask & DC_MULTI_MON_PP_MCLK_SWITCH_MASK)
init_data.flags.multi_mon_pp_mclk_switch = true;
if (amdgpu_dc_feature_mask & DC_DISABLE_FRACTIONAL_PWM_MASK)
init_data.flags.disable_fractional_pwm = true;
if (amdgpu_dc_feature_mask & DC_EDP_NO_POWER_SEQUENCING)
init_data.flags.edp_no_power_sequencing = true;
init_data.flags.power_down_display_on_boot = true;
INIT_LIST_HEAD(&adev->dm.da_list);
/* Display Core create. */
adev->dm.dc = dc_create(&init_data);
if (adev->dm.dc) {
DRM_INFO("Display Core initialized with v%s!\n", DC_VER);
} else {
DRM_INFO("Display Core failed to initialize with v%s!\n", DC_VER);
goto error;
}
if (amdgpu_dc_debug_mask & DC_DISABLE_PIPE_SPLIT) {
adev->dm.dc->debug.force_single_disp_pipe_split = false;
adev->dm.dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
}
if (adev->asic_type != CHIP_CARRIZO && adev->asic_type != CHIP_STONEY)
adev->dm.dc->debug.disable_stutter = amdgpu_pp_feature_mask & PP_STUTTER_MODE ? false : true;
if (amdgpu_dc_debug_mask & DC_DISABLE_STUTTER)
adev->dm.dc->debug.disable_stutter = true;
if (amdgpu_dc_debug_mask & DC_DISABLE_DSC)
adev->dm.dc->debug.disable_dsc = true;
if (amdgpu_dc_debug_mask & DC_DISABLE_CLOCK_GATING)
adev->dm.dc->debug.disable_clock_gate = true;
r = dm_dmub_hw_init(adev);
if (r) {
DRM_ERROR("DMUB interface failed to initialize: status=%d\n", r);
goto error;
}
dc_hardware_init(adev->dm.dc);
#if defined(CONFIG_DRM_AMD_DC_DCN)
if (adev->apu_flags) {
struct dc_phy_addr_space_config pa_config;
mmhub_read_system_context(adev, &pa_config);
// Call the DC init_memory func
dc_setup_system_context(adev->dm.dc, &pa_config);
}
#endif
adev->dm.freesync_module = mod_freesync_create(adev->dm.dc);
if (!adev->dm.freesync_module) {
DRM_ERROR(
"amdgpu: failed to initialize freesync_module.\n");
} else
DRM_DEBUG_DRIVER("amdgpu: freesync_module init done %p.\n",
adev->dm.freesync_module);
amdgpu_dm_init_color_mod();
#if defined(CONFIG_DRM_AMD_DC_DCN)
if (adev->dm.dc->caps.max_links > 0) {
adev->dm.vblank_workqueue = vblank_create_workqueue(adev, adev->dm.dc);
if (!adev->dm.vblank_workqueue)
DRM_ERROR("amdgpu: failed to initialize vblank_workqueue.\n");
else
DRM_DEBUG_DRIVER("amdgpu: vblank_workqueue init done %p.\n", adev->dm.vblank_workqueue);
}
#endif
#ifdef CONFIG_DRM_AMD_DC_HDCP
if (adev->dm.dc->caps.max_links > 0 && adev->asic_type >= CHIP_RAVEN) {
adev->dm.hdcp_workqueue = hdcp_create_workqueue(adev, &init_params.cp_psp, adev->dm.dc);
if (!adev->dm.hdcp_workqueue)
DRM_ERROR("amdgpu: failed to initialize hdcp_workqueue.\n");
else
DRM_DEBUG_DRIVER("amdgpu: hdcp_workqueue init done %p.\n", adev->dm.hdcp_workqueue);
dc_init_callbacks(adev->dm.dc, &init_params);
}
#endif
#if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
adev->dm.crc_rd_wrk = amdgpu_dm_crtc_secure_display_create_work();
#endif
if (dc_enable_dmub_notifications(adev->dm.dc)) {
init_completion(&adev->dm.dmub_aux_transfer_done);
adev->dm.dmub_notify = kzalloc(sizeof(struct dmub_notification), GFP_KERNEL);
if (!adev->dm.dmub_notify) {
DRM_INFO("amdgpu: fail to allocate adev->dm.dmub_notify");
goto error;
}
amdgpu_dm_outbox_init(adev);
}
if (amdgpu_dm_initialize_drm_device(adev)) {
DRM_ERROR(
"amdgpu: failed to initialize sw for display support.\n");
goto error;
}
/* create fake encoders for MST */
dm_dp_create_fake_mst_encoders(adev);
/* TODO: Add_display_info? */
/* TODO use dynamic cursor width */
adev_to_drm(adev)->mode_config.cursor_width = adev->dm.dc->caps.max_cursor_size;
adev_to_drm(adev)->mode_config.cursor_height = adev->dm.dc->caps.max_cursor_size;
if (drm_vblank_init(adev_to_drm(adev), adev->dm.display_indexes_num)) {
DRM_ERROR(
"amdgpu: failed to initialize sw for display support.\n");
goto error;
}
DRM_DEBUG_DRIVER("KMS initialized.\n");
return 0;
error:
amdgpu_dm_fini(adev);
return -EINVAL;
}
static int amdgpu_dm_early_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
amdgpu_dm_audio_fini(adev);
return 0;
}
static void amdgpu_dm_fini(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->dm.display_indexes_num; i++) {
drm_encoder_cleanup(&adev->dm.mst_encoders[i].base);
}
amdgpu_dm_destroy_drm_device(&adev->dm);
#if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
if (adev->dm.crc_rd_wrk) {
flush_work(&adev->dm.crc_rd_wrk->notify_ta_work);
kfree(adev->dm.crc_rd_wrk);
adev->dm.crc_rd_wrk = NULL;
}
#endif
#ifdef CONFIG_DRM_AMD_DC_HDCP
if (adev->dm.hdcp_workqueue) {
hdcp_destroy(&adev->dev->kobj, adev->dm.hdcp_workqueue);
adev->dm.hdcp_workqueue = NULL;
}
if (adev->dm.dc)
dc_deinit_callbacks(adev->dm.dc);
#endif
#if defined(CONFIG_DRM_AMD_DC_DCN)
if (adev->dm.vblank_workqueue) {
adev->dm.vblank_workqueue->dm = NULL;
kfree(adev->dm.vblank_workqueue);
adev->dm.vblank_workqueue = NULL;
}
#endif
dc_dmub_srv_destroy(&adev->dm.dc->ctx->dmub_srv);
if (dc_enable_dmub_notifications(adev->dm.dc)) {
kfree(adev->dm.dmub_notify);
adev->dm.dmub_notify = NULL;
}
if (adev->dm.dmub_bo)
amdgpu_bo_free_kernel(&adev->dm.dmub_bo,
&adev->dm.dmub_bo_gpu_addr,
&adev->dm.dmub_bo_cpu_addr);
/* DC Destroy TODO: Replace destroy DAL */
if (adev->dm.dc)
dc_destroy(&adev->dm.dc);
/*
* TODO: pageflip, vlank interrupt
*
* amdgpu_dm_irq_fini(adev);
*/
if (adev->dm.cgs_device) {
amdgpu_cgs_destroy_device(adev->dm.cgs_device);
adev->dm.cgs_device = NULL;
}
if (adev->dm.freesync_module) {
mod_freesync_destroy(adev->dm.freesync_module);
adev->dm.freesync_module = NULL;
}
mutex_destroy(&adev->dm.audio_lock);
mutex_destroy(&adev->dm.dc_lock);
return;
}
static int load_dmcu_fw(struct amdgpu_device *adev)
{
const char *fw_name_dmcu = NULL;
int r;
const struct dmcu_firmware_header_v1_0 *hdr;
switch(adev->asic_type) {
#if defined(CONFIG_DRM_AMD_DC_SI)
case CHIP_TAHITI:
case CHIP_PITCAIRN:
case CHIP_VERDE:
case CHIP_OLAND:
#endif
case CHIP_BONAIRE:
case CHIP_HAWAII:
case CHIP_KAVERI:
case CHIP_KABINI:
case CHIP_MULLINS:
case CHIP_TONGA:
case CHIP_FIJI:
case CHIP_CARRIZO:
case CHIP_STONEY:
case CHIP_POLARIS11:
case CHIP_POLARIS10:
case CHIP_POLARIS12:
case CHIP_VEGAM:
case CHIP_VEGA10:
case CHIP_VEGA12:
case CHIP_VEGA20:
case CHIP_NAVI10:
case CHIP_NAVI14:
case CHIP_RENOIR:
case CHIP_SIENNA_CICHLID:
case CHIP_NAVY_FLOUNDER:
case CHIP_DIMGREY_CAVEFISH:
case CHIP_BEIGE_GOBY:
case CHIP_VANGOGH:
case CHIP_YELLOW_CARP:
return 0;
case CHIP_NAVI12:
fw_name_dmcu = FIRMWARE_NAVI12_DMCU;
break;
case CHIP_RAVEN:
if (ASICREV_IS_PICASSO(adev->external_rev_id))
fw_name_dmcu = FIRMWARE_RAVEN_DMCU;
else if (ASICREV_IS_RAVEN2(adev->external_rev_id))
fw_name_dmcu = FIRMWARE_RAVEN_DMCU;
else
return 0;
break;
default:
DRM_ERROR("Unsupported ASIC type: 0x%X\n", adev->asic_type);
return -EINVAL;
}
if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
DRM_DEBUG_KMS("dm: DMCU firmware not supported on direct or SMU loading\n");
return 0;
}
r = request_firmware_direct(&adev->dm.fw_dmcu, fw_name_dmcu, adev->dev);
if (r == -ENOENT) {
/* DMCU firmware is not necessary, so don't raise a fuss if it's missing */
DRM_DEBUG_KMS("dm: DMCU firmware not found\n");
adev->dm.fw_dmcu = NULL;
return 0;
}
if (r) {
dev_err(adev->dev, "amdgpu_dm: Can't load firmware \"%s\"\n",
fw_name_dmcu);
return r;
}
r = amdgpu_ucode_validate(adev->dm.fw_dmcu);
if (r) {
dev_err(adev->dev, "amdgpu_dm: Can't validate firmware \"%s\"\n",
fw_name_dmcu);
release_firmware(adev->dm.fw_dmcu);
adev->dm.fw_dmcu = NULL;
return r;
}
hdr = (const struct dmcu_firmware_header_v1_0 *)adev->dm.fw_dmcu->data;
adev->firmware.ucode[AMDGPU_UCODE_ID_DMCU_ERAM].ucode_id = AMDGPU_UCODE_ID_DMCU_ERAM;
adev->firmware.ucode[AMDGPU_UCODE_ID_DMCU_ERAM].fw = adev->dm.fw_dmcu;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(hdr->header.ucode_size_bytes) - le32_to_cpu(hdr->intv_size_bytes), PAGE_SIZE);
adev->firmware.ucode[AMDGPU_UCODE_ID_DMCU_INTV].ucode_id = AMDGPU_UCODE_ID_DMCU_INTV;
adev->firmware.ucode[AMDGPU_UCODE_ID_DMCU_INTV].fw = adev->dm.fw_dmcu;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(hdr->intv_size_bytes), PAGE_SIZE);
adev->dm.dmcu_fw_version = le32_to_cpu(hdr->header.ucode_version);
DRM_DEBUG_KMS("PSP loading DMCU firmware\n");
return 0;
}
static uint32_t amdgpu_dm_dmub_reg_read(void *ctx, uint32_t address)
{
struct amdgpu_device *adev = ctx;
return dm_read_reg(adev->dm.dc->ctx, address);
}
static void amdgpu_dm_dmub_reg_write(void *ctx, uint32_t address,
uint32_t value)
{
struct amdgpu_device *adev = ctx;
return dm_write_reg(adev->dm.dc->ctx, address, value);
}
static int dm_dmub_sw_init(struct amdgpu_device *adev)
{
struct dmub_srv_create_params create_params;
struct dmub_srv_region_params region_params;
struct dmub_srv_region_info region_info;
struct dmub_srv_fb_params fb_params;
struct dmub_srv_fb_info *fb_info;
struct dmub_srv *dmub_srv;
const struct dmcub_firmware_header_v1_0 *hdr;
const char *fw_name_dmub;
enum dmub_asic dmub_asic;
enum dmub_status status;
int r;
switch (adev->asic_type) {
case CHIP_RENOIR:
dmub_asic = DMUB_ASIC_DCN21;
fw_name_dmub = FIRMWARE_RENOIR_DMUB;
if (ASICREV_IS_GREEN_SARDINE(adev->external_rev_id))
fw_name_dmub = FIRMWARE_GREEN_SARDINE_DMUB;
break;
case CHIP_SIENNA_CICHLID:
dmub_asic = DMUB_ASIC_DCN30;
fw_name_dmub = FIRMWARE_SIENNA_CICHLID_DMUB;
break;
case CHIP_NAVY_FLOUNDER:
dmub_asic = DMUB_ASIC_DCN30;
fw_name_dmub = FIRMWARE_NAVY_FLOUNDER_DMUB;
break;
case CHIP_VANGOGH:
dmub_asic = DMUB_ASIC_DCN301;
fw_name_dmub = FIRMWARE_VANGOGH_DMUB;
break;
case CHIP_DIMGREY_CAVEFISH:
dmub_asic = DMUB_ASIC_DCN302;
fw_name_dmub = FIRMWARE_DIMGREY_CAVEFISH_DMUB;
break;
case CHIP_BEIGE_GOBY:
dmub_asic = DMUB_ASIC_DCN303;
fw_name_dmub = FIRMWARE_BEIGE_GOBY_DMUB;
break;
case CHIP_YELLOW_CARP:
dmub_asic = DMUB_ASIC_DCN31;
fw_name_dmub = FIRMWARE_YELLOW_CARP_DMUB;
break;
default:
/* ASIC doesn't support DMUB. */
return 0;
}
r = request_firmware_direct(&adev->dm.dmub_fw, fw_name_dmub, adev->dev);
if (r) {
DRM_ERROR("DMUB firmware loading failed: %d\n", r);
return 0;
}
r = amdgpu_ucode_validate(adev->dm.dmub_fw);
if (r) {
DRM_ERROR("Couldn't validate DMUB firmware: %d\n", r);
return 0;
}
hdr = (const struct dmcub_firmware_header_v1_0 *)adev->dm.dmub_fw->data;
adev->dm.dmcub_fw_version = le32_to_cpu(hdr->header.ucode_version);
if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
adev->firmware.ucode[AMDGPU_UCODE_ID_DMCUB].ucode_id =
AMDGPU_UCODE_ID_DMCUB;
adev->firmware.ucode[AMDGPU_UCODE_ID_DMCUB].fw =
adev->dm.dmub_fw;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(hdr->inst_const_bytes), PAGE_SIZE);
DRM_INFO("Loading DMUB firmware via PSP: version=0x%08X\n",
adev->dm.dmcub_fw_version);
}
adev->dm.dmub_srv = kzalloc(sizeof(*adev->dm.dmub_srv), GFP_KERNEL);
dmub_srv = adev->dm.dmub_srv;
if (!dmub_srv) {
DRM_ERROR("Failed to allocate DMUB service!\n");
return -ENOMEM;
}
memset(&create_params, 0, sizeof(create_params));
create_params.user_ctx = adev;
create_params.funcs.reg_read = amdgpu_dm_dmub_reg_read;
create_params.funcs.reg_write = amdgpu_dm_dmub_reg_write;
create_params.asic = dmub_asic;
/* Create the DMUB service. */
status = dmub_srv_create(dmub_srv, &create_params);
if (status != DMUB_STATUS_OK) {
DRM_ERROR("Error creating DMUB service: %d\n", status);
return -EINVAL;
}
/* Calculate the size of all the regions for the DMUB service. */
memset(&region_params, 0, sizeof(region_params));
region_params.inst_const_size = le32_to_cpu(hdr->inst_const_bytes) -
PSP_HEADER_BYTES - PSP_FOOTER_BYTES;
region_params.bss_data_size = le32_to_cpu(hdr->bss_data_bytes);
region_params.vbios_size = adev->bios_size;
region_params.fw_bss_data = region_params.bss_data_size ?
adev->dm.dmub_fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes) +
le32_to_cpu(hdr->inst_const_bytes) : NULL;
region_params.fw_inst_const =
adev->dm.dmub_fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes) +
PSP_HEADER_BYTES;
status = dmub_srv_calc_region_info(dmub_srv, &region_params,
&region_info);
if (status != DMUB_STATUS_OK) {
DRM_ERROR("Error calculating DMUB region info: %d\n", status);
return -EINVAL;
}
/*
* Allocate a framebuffer based on the total size of all the regions.
* TODO: Move this into GART.
*/
r = amdgpu_bo_create_kernel(adev, region_info.fb_size, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_VRAM, &adev->dm.dmub_bo,
&adev->dm.dmub_bo_gpu_addr,
&adev->dm.dmub_bo_cpu_addr);
if (r)
return r;
/* Rebase the regions on the framebuffer address. */
memset(&fb_params, 0, sizeof(fb_params));
fb_params.cpu_addr = adev->dm.dmub_bo_cpu_addr;
fb_params.gpu_addr = adev->dm.dmub_bo_gpu_addr;
fb_params.region_info = &region_info;
adev->dm.dmub_fb_info =
kzalloc(sizeof(*adev->dm.dmub_fb_info), GFP_KERNEL);
fb_info = adev->dm.dmub_fb_info;
if (!fb_info) {
DRM_ERROR(
"Failed to allocate framebuffer info for DMUB service!\n");
return -ENOMEM;
}
status = dmub_srv_calc_fb_info(dmub_srv, &fb_params, fb_info);
if (status != DMUB_STATUS_OK) {
DRM_ERROR("Error calculating DMUB FB info: %d\n", status);
return -EINVAL;
}
return 0;
}
static int dm_sw_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int r;
r = dm_dmub_sw_init(adev);
if (r)
return r;
return load_dmcu_fw(adev);
}
static int dm_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
kfree(adev->dm.dmub_fb_info);
adev->dm.dmub_fb_info = NULL;
if (adev->dm.dmub_srv) {
dmub_srv_destroy(adev->dm.dmub_srv);
adev->dm.dmub_srv = NULL;
}
release_firmware(adev->dm.dmub_fw);
adev->dm.dmub_fw = NULL;
release_firmware(adev->dm.fw_dmcu);
adev->dm.fw_dmcu = NULL;
return 0;
}
static int detect_mst_link_for_all_connectors(struct drm_device *dev)
{
struct amdgpu_dm_connector *aconnector;
struct drm_connector *connector;
struct drm_connector_list_iter iter;
int ret = 0;
drm_connector_list_iter_begin(dev, &iter);
drm_for_each_connector_iter(connector, &iter) {
aconnector = to_amdgpu_dm_connector(connector);
if (aconnector->dc_link->type == dc_connection_mst_branch &&
aconnector->mst_mgr.aux) {
DRM_DEBUG_DRIVER("DM_MST: starting TM on aconnector: %p [id: %d]\n",
aconnector,
aconnector->base.base.id);
ret = drm_dp_mst_topology_mgr_set_mst(&aconnector->mst_mgr, true);
if (ret < 0) {
DRM_ERROR("DM_MST: Failed to start MST\n");
aconnector->dc_link->type =
dc_connection_single;
break;
}
}
}
drm_connector_list_iter_end(&iter);
return ret;
}
static int dm_late_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct dmcu_iram_parameters params;
unsigned int linear_lut[16];
int i;
struct dmcu *dmcu = NULL;
dmcu = adev->dm.dc->res_pool->dmcu;
for (i = 0; i < 16; i++)
linear_lut[i] = 0xFFFF * i / 15;
params.set = 0;
params.backlight_ramping_start = 0xCCCC;
params.backlight_ramping_reduction = 0xCCCCCCCC;
params.backlight_lut_array_size = 16;
params.backlight_lut_array = linear_lut;
/* Min backlight level after ABM reduction, Don't allow below 1%
* 0xFFFF x 0.01 = 0x28F
*/
params.min_abm_backlight = 0x28F;
/* In the case where abm is implemented on dmcub,
* dmcu object will be null.
* ABM 2.4 and up are implemented on dmcub.
*/
if (dmcu) {
if (!dmcu_load_iram(dmcu, params))
return -EINVAL;
} else if (adev->dm.dc->ctx->dmub_srv) {
struct dc_link *edp_links[MAX_NUM_EDP];
int edp_num;
get_edp_links(adev->dm.dc, edp_links, &edp_num);
for (i = 0; i < edp_num; i++) {
if (!dmub_init_abm_config(adev->dm.dc->res_pool, params, i))
return -EINVAL;
}
}
return detect_mst_link_for_all_connectors(adev_to_drm(adev));
}
static void s3_handle_mst(struct drm_device *dev, bool suspend)
{
struct amdgpu_dm_connector *aconnector;
struct drm_connector *connector;
struct drm_connector_list_iter iter;
struct drm_dp_mst_topology_mgr *mgr;
int ret;
bool need_hotplug = false;
drm_connector_list_iter_begin(dev, &iter);
drm_for_each_connector_iter(connector, &iter) {
aconnector = to_amdgpu_dm_connector(connector);
if (aconnector->dc_link->type != dc_connection_mst_branch ||
aconnector->mst_port)
continue;
mgr = &aconnector->mst_mgr;
if (suspend) {
drm_dp_mst_topology_mgr_suspend(mgr);
} else {
ret = drm_dp_mst_topology_mgr_resume(mgr, true);
if (ret < 0) {
drm_dp_mst_topology_mgr_set_mst(mgr, false);
need_hotplug = true;
}
}
}
drm_connector_list_iter_end(&iter);
if (need_hotplug)
drm_kms_helper_hotplug_event(dev);
}
static int amdgpu_dm_smu_write_watermarks_table(struct amdgpu_device *adev)
{
struct smu_context *smu = &adev->smu;
int ret = 0;
if (!is_support_sw_smu(adev))
return 0;
/* This interface is for dGPU Navi1x.Linux dc-pplib interface depends
* on window driver dc implementation.
* For Navi1x, clock settings of dcn watermarks are fixed. the settings
* should be passed to smu during boot up and resume from s3.
* boot up: dc calculate dcn watermark clock settings within dc_create,
* dcn20_resource_construct
* then call pplib functions below to pass the settings to smu:
* smu_set_watermarks_for_clock_ranges
* smu_set_watermarks_table
* navi10_set_watermarks_table
* smu_write_watermarks_table
*
* For Renoir, clock settings of dcn watermark are also fixed values.
* dc has implemented different flow for window driver:
* dc_hardware_init / dc_set_power_state
* dcn10_init_hw
* notify_wm_ranges
* set_wm_ranges
* -- Linux
* smu_set_watermarks_for_clock_ranges
* renoir_set_watermarks_table
* smu_write_watermarks_table
*
* For Linux,
* dc_hardware_init -> amdgpu_dm_init
* dc_set_power_state --> dm_resume
*
* therefore, this function apply to navi10/12/14 but not Renoir
* *
*/
switch(adev->asic_type) {
case CHIP_NAVI10:
case CHIP_NAVI14:
case CHIP_NAVI12:
break;
default:
return 0;
}
ret = smu_write_watermarks_table(smu);
if (ret) {
DRM_ERROR("Failed to update WMTABLE!\n");
return ret;
}
return 0;
}
/**
* dm_hw_init() - Initialize DC device
* @handle: The base driver device containing the amdgpu_dm device.
*
* Initialize the &struct amdgpu_display_manager device. This involves calling
* the initializers of each DM component, then populating the struct with them.
*
* Although the function implies hardware initialization, both hardware and
* software are initialized here. Splitting them out to their relevant init
* hooks is a future TODO item.
*
* Some notable things that are initialized here:
*
* - Display Core, both software and hardware
* - DC modules that we need (freesync and color management)
* - DRM software states
* - Interrupt sources and handlers
* - Vblank support
* - Debug FS entries, if enabled
*/
static int dm_hw_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
/* Create DAL display manager */
amdgpu_dm_init(adev);
amdgpu_dm_hpd_init(adev);
return 0;
}
/**
* dm_hw_fini() - Teardown DC device
* @handle: The base driver device containing the amdgpu_dm device.
*
* Teardown components within &struct amdgpu_display_manager that require
* cleanup. This involves cleaning up the DRM device, DC, and any modules that
* were loaded. Also flush IRQ workqueues and disable them.
*/
static int dm_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
amdgpu_dm_hpd_fini(adev);
amdgpu_dm_irq_fini(adev);
amdgpu_dm_fini(adev);
return 0;
}
static int dm_enable_vblank(struct drm_crtc *crtc);
static void dm_disable_vblank(struct drm_crtc *crtc);
static void dm_gpureset_toggle_interrupts(struct amdgpu_device *adev,
struct dc_state *state, bool enable)
{
enum dc_irq_source irq_source;
struct amdgpu_crtc *acrtc;
int rc = -EBUSY;
int i = 0;
for (i = 0; i < state->stream_count; i++) {
acrtc = get_crtc_by_otg_inst(
adev, state->stream_status[i].primary_otg_inst);
if (acrtc && state->stream_status[i].plane_count != 0) {
irq_source = IRQ_TYPE_PFLIP + acrtc->otg_inst;
rc = dc_interrupt_set(adev->dm.dc, irq_source, enable) ? 0 : -EBUSY;
DRM_DEBUG_VBL("crtc %d - vupdate irq %sabling: r=%d\n",
acrtc->crtc_id, enable ? "en" : "dis", rc);
if (rc)
DRM_WARN("Failed to %s pflip interrupts\n",
enable ? "enable" : "disable");
if (enable) {
rc = dm_enable_vblank(&acrtc->base);
if (rc)
DRM_WARN("Failed to enable vblank interrupts\n");
} else {
dm_disable_vblank(&acrtc->base);
}
}
}
}
static enum dc_status amdgpu_dm_commit_zero_streams(struct dc *dc)
{
struct dc_state *context = NULL;
enum dc_status res = DC_ERROR_UNEXPECTED;
int i;
struct dc_stream_state *del_streams[MAX_PIPES];
int del_streams_count = 0;
memset(del_streams, 0, sizeof(del_streams));
context = dc_create_state(dc);
if (context == NULL)
goto context_alloc_fail;
dc_resource_state_copy_construct_current(dc, context);
/* First remove from context all streams */
for (i = 0; i < context->stream_count; i++) {
struct dc_stream_state *stream = context->streams[i];
del_streams[del_streams_count++] = stream;
}
/* Remove all planes for removed streams and then remove the streams */
for (i = 0; i < del_streams_count; i++) {
if (!dc_rem_all_planes_for_stream(dc, del_streams[i], context)) {
res = DC_FAIL_DETACH_SURFACES;
goto fail;
}
res = dc_remove_stream_from_ctx(dc, context, del_streams[i]);
if (res != DC_OK)
goto fail;
}
res = dc_validate_global_state(dc, context, false);
if (res != DC_OK) {
DRM_ERROR("%s:resource validation failed, dc_status:%d\n", __func__, res);
goto fail;
}
res = dc_commit_state(dc, context);
fail:
dc_release_state(context);
context_alloc_fail:
return res;
}
static int dm_suspend(void *handle)
{
struct amdgpu_device *adev = handle;
struct amdgpu_display_manager *dm = &adev->dm;
int ret = 0;
if (amdgpu_in_reset(adev)) {
mutex_lock(&dm->dc_lock);
#if defined(CONFIG_DRM_AMD_DC_DCN)
dc_allow_idle_optimizations(adev->dm.dc, false);
#endif
dm->cached_dc_state = dc_copy_state(dm->dc->current_state);
dm_gpureset_toggle_interrupts(adev, dm->cached_dc_state, false);
amdgpu_dm_commit_zero_streams(dm->dc);
amdgpu_dm_irq_suspend(adev);
return ret;
}
WARN_ON(adev->dm.cached_state);
adev->dm.cached_state = drm_atomic_helper_suspend(adev_to_drm(adev));
s3_handle_mst(adev_to_drm(adev), true);
amdgpu_dm_irq_suspend(adev);
dc_set_power_state(dm->dc, DC_ACPI_CM_POWER_STATE_D3);
return 0;
}
static struct amdgpu_dm_connector *
amdgpu_dm_find_first_crtc_matching_connector(struct drm_atomic_state *state,
struct drm_crtc *crtc)
{
uint32_t i;
struct drm_connector_state *new_con_state;
struct drm_connector *connector;
struct drm_crtc *crtc_from_state;
for_each_new_connector_in_state(state, connector, new_con_state, i) {
crtc_from_state = new_con_state->crtc;
if (crtc_from_state == crtc)
return to_amdgpu_dm_connector(connector);
}
return NULL;
}
static void emulated_link_detect(struct dc_link *link)
{
struct dc_sink_init_data sink_init_data = { 0 };
struct display_sink_capability sink_caps = { 0 };
enum dc_edid_status edid_status;
struct dc_context *dc_ctx = link->ctx;
struct dc_sink *sink = NULL;
struct dc_sink *prev_sink = NULL;
link->type = dc_connection_none;
prev_sink = link->local_sink;
if (prev_sink)
dc_sink_release(prev_sink);
switch (link->connector_signal) {
case SIGNAL_TYPE_HDMI_TYPE_A: {
sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C;
sink_caps.signal = SIGNAL_TYPE_HDMI_TYPE_A;
break;
}
case SIGNAL_TYPE_DVI_SINGLE_LINK: {
sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C;
sink_caps.signal = SIGNAL_TYPE_DVI_SINGLE_LINK;
break;
}
case SIGNAL_TYPE_DVI_DUAL_LINK: {
sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C;
sink_caps.signal = SIGNAL_TYPE_DVI_DUAL_LINK;
break;
}
case SIGNAL_TYPE_LVDS: {
sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C;
sink_caps.signal = SIGNAL_TYPE_LVDS;
break;
}
case SIGNAL_TYPE_EDP: {
sink_caps.transaction_type =
DDC_TRANSACTION_TYPE_I2C_OVER_AUX;
sink_caps.signal = SIGNAL_TYPE_EDP;
break;
}
case SIGNAL_TYPE_DISPLAY_PORT: {
sink_caps.transaction_type =
DDC_TRANSACTION_TYPE_I2C_OVER_AUX;
sink_caps.signal = SIGNAL_TYPE_VIRTUAL;
break;
}
default:
DC_ERROR("Invalid connector type! signal:%d\n",
link->connector_signal);
return;
}
sink_init_data.link = link;
sink_init_data.sink_signal = sink_caps.signal;
sink = dc_sink_create(&sink_init_data);
if (!sink) {
DC_ERROR("Failed to create sink!\n");
return;
}
/* dc_sink_create returns a new reference */
link->local_sink = sink;
edid_status = dm_helpers_read_local_edid(
link->ctx,
link,
sink);
if (edid_status != EDID_OK)
DC_ERROR("Failed to read EDID");
}
static void dm_gpureset_commit_state(struct dc_state *dc_state,
struct amdgpu_display_manager *dm)
{
struct {
struct dc_surface_update surface_updates[MAX_SURFACES];
struct dc_plane_info plane_infos[MAX_SURFACES];
struct dc_scaling_info scaling_infos[MAX_SURFACES];
struct dc_flip_addrs flip_addrs[MAX_SURFACES];
struct dc_stream_update stream_update;
} * bundle;
int k, m;
bundle = kzalloc(sizeof(*bundle), GFP_KERNEL);
if (!bundle) {
dm_error("Failed to allocate update bundle\n");
goto cleanup;
}
for (k = 0; k < dc_state->stream_count; k++) {
bundle->stream_update.stream = dc_state->streams[k];
for (m = 0; m < dc_state->stream_status->plane_count; m++) {
bundle->surface_updates[m].surface =
dc_state->stream_status->plane_states[m];
bundle->surface_updates[m].surface->force_full_update =
true;
}
dc_commit_updates_for_stream(
dm->dc, bundle->surface_updates,
dc_state->stream_status->plane_count,
dc_state->streams[k], &bundle->stream_update, dc_state);
}
cleanup:
kfree(bundle);
return;
}
static void dm_set_dpms_off(struct dc_link *link)
{
struct dc_stream_state *stream_state;
struct amdgpu_dm_connector *aconnector = link->priv;
struct amdgpu_device *adev = drm_to_adev(aconnector->base.dev);
struct dc_stream_update stream_update;
bool dpms_off = true;
memset(&stream_update, 0, sizeof(stream_update));
stream_update.dpms_off = &dpms_off;
mutex_lock(&adev->dm.dc_lock);
stream_state = dc_stream_find_from_link(link);
if (stream_state == NULL) {
DRM_DEBUG_DRIVER("Error finding stream state associated with link!\n");
mutex_unlock(&adev->dm.dc_lock);
return;
}
stream_update.stream = stream_state;
dc_commit_updates_for_stream(stream_state->ctx->dc, NULL, 0,
stream_state, &stream_update,
stream_state->ctx->dc->current_state);
mutex_unlock(&adev->dm.dc_lock);
}
static int dm_resume(void *handle)
{
struct amdgpu_device *adev = handle;
struct drm_device *ddev = adev_to_drm(adev);
struct amdgpu_display_manager *dm = &adev->dm;
struct amdgpu_dm_connector *aconnector;
struct drm_connector *connector;
struct drm_connector_list_iter iter;
struct drm_crtc *crtc;
struct drm_crtc_state *new_crtc_state;
struct dm_crtc_state *dm_new_crtc_state;
struct drm_plane *plane;
struct drm_plane_state *new_plane_state;
struct dm_plane_state *dm_new_plane_state;
struct dm_atomic_state *dm_state = to_dm_atomic_state(dm->atomic_obj.state);
enum dc_connection_type new_connection_type = dc_connection_none;
struct dc_state *dc_state;
int i, r, j;
if (amdgpu_in_reset(adev)) {
dc_state = dm->cached_dc_state;
r = dm_dmub_hw_init(adev);
if (r)
DRM_ERROR("DMUB interface failed to initialize: status=%d\n", r);
dc_set_power_state(dm->dc, DC_ACPI_CM_POWER_STATE_D0);
dc_resume(dm->dc);
amdgpu_dm_irq_resume_early(adev);
for (i = 0; i < dc_state->stream_count; i++) {
dc_state->streams[i]->mode_changed = true;
for (j = 0; j < dc_state->stream_status->plane_count; j++) {
dc_state->stream_status->plane_states[j]->update_flags.raw
= 0xffffffff;
}
}
#if defined(CONFIG_DRM_AMD_DC_DCN)
/*
* Resource allocation happens for link encoders for newer ASIC in
* dc_validate_global_state, so we need to revalidate it.
*
* This shouldn't fail (it passed once before), so warn if it does.
*/
WARN_ON(dc_validate_global_state(dm->dc, dc_state, false) != DC_OK);
#endif
WARN_ON(!dc_commit_state(dm->dc, dc_state));
dm_gpureset_commit_state(dm->cached_dc_state, dm);
dm_gpureset_toggle_interrupts(adev, dm->cached_dc_state, true);
dc_release_state(dm->cached_dc_state);
dm->cached_dc_state = NULL;
amdgpu_dm_irq_resume_late(adev);
mutex_unlock(&dm->dc_lock);
return 0;
}
/* Recreate dc_state - DC invalidates it when setting power state to S3. */
dc_release_state(dm_state->context);
dm_state->context = dc_create_state(dm->dc);
/* TODO: Remove dc_state->dccg, use dc->dccg directly. */
dc_resource_state_construct(dm->dc, dm_state->context);
/* Before powering on DC we need to re-initialize DMUB. */
r = dm_dmub_hw_init(adev);
if (r)
DRM_ERROR("DMUB interface failed to initialize: status=%d\n", r);
/* power on hardware */
dc_set_power_state(dm->dc, DC_ACPI_CM_POWER_STATE_D0);
/* program HPD filter */
dc_resume(dm->dc);
/*
* early enable HPD Rx IRQ, should be done before set mode as short
* pulse interrupts are used for MST
*/
amdgpu_dm_irq_resume_early(adev);
/* On resume we need to rewrite the MSTM control bits to enable MST*/
s3_handle_mst(ddev, false);
/* Do detection*/
drm_connector_list_iter_begin(ddev, &iter);
drm_for_each_connector_iter(connector, &iter) {
aconnector = to_amdgpu_dm_connector(connector);
/*
* this is the case when traversing through already created
* MST connectors, should be skipped
*/
if (aconnector->mst_port)
continue;
mutex_lock(&aconnector->hpd_lock);
if (!dc_link_detect_sink(aconnector->dc_link, &new_connection_type))
DRM_ERROR("KMS: Failed to detect connector\n");
if (aconnector->base.force && new_connection_type == dc_connection_none)
emulated_link_detect(aconnector->dc_link);
else
dc_link_detect(aconnector->dc_link, DETECT_REASON_HPD);
if (aconnector->fake_enable && aconnector->dc_link->local_sink)
aconnector->fake_enable = false;
if (aconnector->dc_sink)
dc_sink_release(aconnector->dc_sink);
aconnector->dc_sink = NULL;
amdgpu_dm_update_connector_after_detect(aconnector);
mutex_unlock(&aconnector->hpd_lock);
}
drm_connector_list_iter_end(&iter);
/* Force mode set in atomic commit */
for_each_new_crtc_in_state(dm->cached_state, crtc, new_crtc_state, i)
new_crtc_state->active_changed = true;
/*
* atomic_check is expected to create the dc states. We need to release
* them here, since they were duplicated as part of the suspend
* procedure.
*/
for_each_new_crtc_in_state(dm->cached_state, crtc, new_crtc_state, i) {
dm_new_crtc_state = to_dm_crtc_state(new_crtc_state);
if (dm_new_crtc_state->stream) {
WARN_ON(kref_read(&dm_new_crtc_state->stream->refcount) > 1);
dc_stream_release(dm_new_crtc_state->stream);
dm_new_crtc_state->stream = NULL;
}
}
for_each_new_plane_in_state(dm->cached_state, plane, new_plane_state, i) {
dm_new_plane_state = to_dm_plane_state(new_plane_state);
if (dm_new_plane_state->dc_state) {
WARN_ON(kref_read(&dm_new_plane_state->dc_state->refcount) > 1);
dc_plane_state_release(dm_new_plane_state->dc_state);
dm_new_plane_state->dc_state = NULL;
}
}
drm_atomic_helper_resume(ddev, dm->cached_state);
dm->cached_state = NULL;
amdgpu_dm_irq_resume_late(adev);
amdgpu_dm_smu_write_watermarks_table(adev);
return 0;
}
/**
* DOC: DM Lifecycle
*
* DM (and consequently DC) is registered in the amdgpu base driver as a IP
* block. When CONFIG_DRM_AMD_DC is enabled, the DM device IP block is added to
* the base driver's device list to be initialized and torn down accordingly.
*
* The functions to do so are provided as hooks in &struct amd_ip_funcs.
*/
static const struct amd_ip_funcs amdgpu_dm_funcs = {
.name = "dm",
.early_init = dm_early_init,
.late_init = dm_late_init,
.sw_init = dm_sw_init,
.sw_fini = dm_sw_fini,
.early_fini = amdgpu_dm_early_fini,
.hw_init = dm_hw_init,
.hw_fini = dm_hw_fini,
.suspend = dm_suspend,
.resume = dm_resume,
.is_idle = dm_is_idle,
.wait_for_idle = dm_wait_for_idle,
.check_soft_reset = dm_check_soft_reset,
.soft_reset = dm_soft_reset,
.set_clockgating_state = dm_set_clockgating_state,
.set_powergating_state = dm_set_powergating_state,
};
const struct amdgpu_ip_block_version dm_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_DCE,
.major = 1,
.minor = 0,
.rev = 0,
.funcs = &amdgpu_dm_funcs,
};
/**
* DOC: atomic
*
* *WIP*
*/
static const struct drm_mode_config_funcs amdgpu_dm_mode_funcs = {
.fb_create = amdgpu_display_user_framebuffer_create,
.get_format_info = amd_get_format_info,
.output_poll_changed = drm_fb_helper_output_poll_changed,
.atomic_check = amdgpu_dm_atomic_check,
.atomic_commit = drm_atomic_helper_commit,
};
static struct drm_mode_config_helper_funcs amdgpu_dm_mode_config_helperfuncs = {
.atomic_commit_tail = amdgpu_dm_atomic_commit_tail
};
static void update_connector_ext_caps(struct amdgpu_dm_connector *aconnector)
{
u32 max_cll, min_cll, max, min, q, r;
struct amdgpu_dm_backlight_caps *caps;
struct amdgpu_display_manager *dm;
struct drm_connector *conn_base;
struct amdgpu_device *adev;
struct dc_link *link = NULL;
static const u8 pre_computed_values[] = {
50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98};
if (!aconnector || !aconnector->dc_link)
return;
link = aconnector->dc_link;
if (link->connector_signal != SIGNAL_TYPE_EDP)
return;
conn_base = &aconnector->base;
adev = drm_to_adev(conn_base->dev);
dm = &adev->dm;
caps = &dm->backlight_caps;
caps->ext_caps = &aconnector->dc_link->dpcd_sink_ext_caps;
caps->aux_support = false;
max_cll = conn_base->hdr_sink_metadata.hdmi_type1.max_cll;
min_cll = conn_base->hdr_sink_metadata.hdmi_type1.min_cll;
if (caps->ext_caps->bits.oled == 1 /*||
caps->ext_caps->bits.sdr_aux_backlight_control == 1 ||
caps->ext_caps->bits.hdr_aux_backlight_control == 1*/)
caps->aux_support = true;
if (amdgpu_backlight == 0)
caps->aux_support = false;
else if (amdgpu_backlight == 1)
caps->aux_support = true;
/* From the specification (CTA-861-G), for calculating the maximum
* luminance we need to use:
* Luminance = 50*2**(CV/32)
* Where CV is a one-byte value.
* For calculating this expression we may need float point precision;
* to avoid this complexity level, we take advantage that CV is divided
* by a constant. From the Euclids division algorithm, we know that CV
* can be written as: CV = 32*q + r. Next, we replace CV in the
* Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
* need to pre-compute the value of r/32. For pre-computing the values
* We just used the following Ruby line:
* (0...32).each {|cv| puts (50*2**(cv/32.0)).round}
* The results of the above expressions can be verified at
* pre_computed_values.
*/
q = max_cll >> 5;
r = max_cll % 32;
max = (1 << q) * pre_computed_values[r];
// min luminance: maxLum * (CV/255)^2 / 100
q = DIV_ROUND_CLOSEST(min_cll, 255);
min = max * DIV_ROUND_CLOSEST((q * q), 100);
caps->aux_max_input_signal = max;
caps->aux_min_input_signal = min;
}
void amdgpu_dm_update_connector_after_detect(
struct amdgpu_dm_connector *aconnector)
{
struct drm_connector *connector = &aconnector->base;
struct drm_device *dev = connector->dev;
struct dc_sink *sink;
/* MST handled by drm_mst framework */
if (aconnector->mst_mgr.mst_state == true)
return;
sink = aconnector->dc_link->local_sink;
if (sink)
dc_sink_retain(sink);
/*
* Edid mgmt connector gets first update only in mode_valid hook and then
* the connector sink is set to either fake or physical sink depends on link status.
* Skip if already done during boot.
*/
if (aconnector->base.force != DRM_FORCE_UNSPECIFIED
&& aconnector->dc_em_sink) {
/*
* For S3 resume with headless use eml_sink to fake stream
* because on resume connector->sink is set to NULL
*/
mutex_lock(&dev->mode_config.mutex);
if (sink) {
if (aconnector->dc_sink) {
amdgpu_dm_update_freesync_caps(connector, NULL);
/*
* retain and release below are used to
* bump up refcount for sink because the link doesn't point
* to it anymore after disconnect, so on next crtc to connector
* reshuffle by UMD we will get into unwanted dc_sink release
*/
dc_sink_release(aconnector->dc_sink);
}
aconnector->dc_sink = sink;
dc_sink_retain(aconnector->dc_sink);
amdgpu_dm_update_freesync_caps(connector,
aconnector->edid);
} else {
amdgpu_dm_update_freesync_caps(connector, NULL);
if (!aconnector->dc_sink) {
aconnector->dc_sink = aconnector->dc_em_sink;
dc_sink_retain(aconnector->dc_sink);
}
}
mutex_unlock(&dev->mode_config.mutex);
if (sink)
dc_sink_release(sink);
return;
}
/*
* TODO: temporary guard to look for proper fix
* if this sink is MST sink, we should not do anything
*/
if (sink && sink->sink_signal == SIGNAL_TYPE_DISPLAY_PORT_MST) {
dc_sink_release(sink);
return;
}
if (aconnector->dc_sink == sink) {
/*
* We got a DP short pulse (Link Loss, DP CTS, etc...).
* Do nothing!!
*/
DRM_DEBUG_DRIVER("DCHPD: connector_id=%d: dc_sink didn't change.\n",
aconnector->connector_id);
if (sink)
dc_sink_release(sink);
return;
}
DRM_DEBUG_DRIVER("DCHPD: connector_id=%d: Old sink=%p New sink=%p\n",
aconnector->connector_id, aconnector->dc_sink, sink);
mutex_lock(&dev->mode_config.mutex);
/*
* 1. Update status of the drm connector
* 2. Send an event and let userspace tell us what to do
*/
if (sink) {
/*
* TODO: check if we still need the S3 mode update workaround.
* If yes, put it here.
*/
if (aconnector->dc_sink) {
amdgpu_dm_update_freesync_caps(connector, NULL);
dc_sink_release(aconnector->dc_sink);
}
aconnector->dc_sink = sink;
dc_sink_retain(aconnector->dc_sink);
if (sink->dc_edid.length == 0) {
aconnector->edid = NULL;
if (aconnector->dc_link->aux_mode) {
drm_dp_cec_unset_edid(
&aconnector->dm_dp_aux.aux);
}
} else {
aconnector->edid =
(struct edid *)sink->dc_edid.raw_edid;
drm_connector_update_edid_property(connector,
aconnector->edid);
if (aconnector->dc_link->aux_mode)
drm_dp_cec_set_edid(&aconnector->dm_dp_aux.aux,
aconnector->edid);
}
amdgpu_dm_update_freesync_caps(connector, aconnector->edid);
update_connector_ext_caps(aconnector);
} else {
drm_dp_cec_unset_edid(&aconnector->dm_dp_aux.aux);
amdgpu_dm_update_freesync_caps(connector, NULL);
drm_connector_update_edid_property(connector, NULL);
aconnector->num_modes = 0;
dc_sink_release(aconnector->dc_sink);
aconnector->dc_sink = NULL;
aconnector->edid = NULL;
#ifdef CONFIG_DRM_AMD_DC_HDCP
/* Set CP to DESIRED if it was ENABLED, so we can re-enable it again on hotplug */
if (connector->state->content_protection == DRM_MODE_CONTENT_PROTECTION_ENABLED)
connector->state->content_protection = DRM_MODE_CONTENT_PROTECTION_DESIRED;
#endif
}
mutex_unlock(&dev->mode_config.mutex);
update_subconnector_property(aconnector);
if (sink)
dc_sink_release(sink);
}
static void handle_hpd_irq(void *param)
{
struct amdgpu_dm_connector *aconnector = (struct amdgpu_dm_connector *)param;
struct drm_connector *connector = &aconnector->base;
struct drm_device *dev = connector->dev;
enum dc_connection_type new_connection_type = dc_connection_none;
struct amdgpu_device *adev = drm_to_adev(dev);
#ifdef CONFIG_DRM_AMD_DC_HDCP
struct dm_connector_state *dm_con_state = to_dm_connector_state(connector->state);
#endif
if (adev->dm.disable_hpd_irq)
return;
/*
* In case of failure or MST no need to update connector status or notify the OS
* since (for MST case) MST does this in its own context.
*/
mutex_lock(&aconnector->hpd_lock);
#ifdef CONFIG_DRM_AMD_DC_HDCP
if (adev->dm.hdcp_workqueue) {
hdcp_reset_display(adev->dm.hdcp_workqueue, aconnector->dc_link->link_index);
dm_con_state->update_hdcp = true;
}
#endif
if (aconnector->fake_enable)
aconnector->fake_enable = false;
if (!dc_link_detect_sink(aconnector->dc_link, &new_connection_type))
DRM_ERROR("KMS: Failed to detect connector\n");
if (aconnector->base.force && new_connection_type == dc_connection_none) {
emulated_link_detect(aconnector->dc_link);
drm_modeset_lock_all(dev);
dm_restore_drm_connector_state(dev, connector);
drm_modeset_unlock_all(dev);
if (aconnector->base.force == DRM_FORCE_UNSPECIFIED)
drm_kms_helper_hotplug_event(dev);
} else if (dc_link_detect(aconnector->dc_link, DETECT_REASON_HPD)) {
if (new_connection_type == dc_connection_none &&
aconnector->dc_link->type == dc_connection_none)
dm_set_dpms_off(aconnector->dc_link);
amdgpu_dm_update_connector_after_detect(aconnector);
drm_modeset_lock_all(dev);
dm_restore_drm_connector_state(dev, connector);
drm_modeset_unlock_all(dev);
if (aconnector->base.force == DRM_FORCE_UNSPECIFIED)
drm_kms_helper_hotplug_event(dev);
}
mutex_unlock(&aconnector->hpd_lock);
}
static void dm_handle_hpd_rx_irq(struct amdgpu_dm_connector *aconnector)
{
uint8_t esi[DP_PSR_ERROR_STATUS - DP_SINK_COUNT_ESI] = { 0 };
uint8_t dret;
bool new_irq_handled = false;
int dpcd_addr;
int dpcd_bytes_to_read;
const int max_process_count = 30;
int process_count = 0;
const struct dc_link_status *link_status = dc_link_get_status(aconnector->dc_link);
if (link_status->dpcd_caps->dpcd_rev.raw < 0x12) {
dpcd_bytes_to_read = DP_LANE0_1_STATUS - DP_SINK_COUNT;
/* DPCD 0x200 - 0x201 for downstream IRQ */
dpcd_addr = DP_SINK_COUNT;
} else {
dpcd_bytes_to_read = DP_PSR_ERROR_STATUS - DP_SINK_COUNT_ESI;
/* DPCD 0x2002 - 0x2005 for downstream IRQ */
dpcd_addr = DP_SINK_COUNT_ESI;
}
dret = drm_dp_dpcd_read(
&aconnector->dm_dp_aux.aux,
dpcd_addr,
esi,
dpcd_bytes_to_read);
while (dret == dpcd_bytes_to_read &&
process_count < max_process_count) {
uint8_t retry;
dret = 0;
process_count++;
DRM_DEBUG_DRIVER("ESI %02x %02x %02x\n", esi[0], esi[1], esi[2]);
/* handle HPD short pulse irq */
if (aconnector->mst_mgr.mst_state)
drm_dp_mst_hpd_irq(
&aconnector->mst_mgr,
esi,
&new_irq_handled);
if (new_irq_handled) {
/* ACK at DPCD to notify down stream */
const int ack_dpcd_bytes_to_write =
dpcd_bytes_to_read - 1;
for (retry = 0; retry < 3; retry++) {
uint8_t wret;
wret = drm_dp_dpcd_write(
&aconnector->dm_dp_aux.aux,
dpcd_addr + 1,
&esi[1],
ack_dpcd_bytes_to_write);
if (wret == ack_dpcd_bytes_to_write)
break;
}
/* check if there is new irq to be handled */
dret = drm_dp_dpcd_read(
&aconnector->dm_dp_aux.aux,
dpcd_addr,
esi,
dpcd_bytes_to_read);
new_irq_handled = false;
} else {
break;
}
}
if (process_count == max_process_count)
DRM_DEBUG_DRIVER("Loop exceeded max iterations\n");
}
static void handle_hpd_rx_irq(void *param)
{
struct amdgpu_dm_connector *aconnector = (struct amdgpu_dm_connector *)param;
struct drm_connector *connector = &aconnector->base;
struct drm_device *dev = connector->dev;
struct dc_link *dc_link = aconnector->dc_link;
bool is_mst_root_connector = aconnector->mst_mgr.mst_state;
bool result = false;
enum dc_connection_type new_connection_type = dc_connection_none;
struct amdgpu_device *adev = drm_to_adev(dev);
union hpd_irq_data hpd_irq_data;
bool lock_flag = 0;
memset(&hpd_irq_data, 0, sizeof(hpd_irq_data));
if (adev->dm.disable_hpd_irq)
return;
/*
* TODO:Temporary add mutex to protect hpd interrupt not have a gpio
* conflict, after implement i2c helper, this mutex should be
* retired.
*/
mutex_lock(&aconnector->hpd_lock);
read_hpd_rx_irq_data(dc_link, &hpd_irq_data);
if ((dc_link->cur_link_settings.lane_count != LANE_COUNT_UNKNOWN) ||
(dc_link->type == dc_connection_mst_branch)) {
if (hpd_irq_data.bytes.device_service_irq.bits.UP_REQ_MSG_RDY) {
result = true;
dm_handle_hpd_rx_irq(aconnector);
goto out;
} else if (hpd_irq_data.bytes.device_service_irq.bits.DOWN_REP_MSG_RDY) {
result = false;
dm_handle_hpd_rx_irq(aconnector);
goto out;
}
}
/*
* TODO: We need the lock to avoid touching DC state while it's being
* modified during automated compliance testing, or when link loss
* happens. While this should be split into subhandlers and proper
* interfaces to avoid having to conditionally lock like this in the
* outer layer, we need this workaround temporarily to allow MST
* lightup in some scenarios to avoid timeout.
*/
if (!amdgpu_in_reset(adev) &&
(hpd_rx_irq_check_link_loss_status(dc_link, &hpd_irq_data) ||
hpd_irq_data.bytes.device_service_irq.bits.AUTOMATED_TEST)) {
mutex_lock(&adev->dm.dc_lock);
lock_flag = 1;
}
#ifdef CONFIG_DRM_AMD_DC_HDCP
result = dc_link_handle_hpd_rx_irq(dc_link, &hpd_irq_data, NULL);
#else
result = dc_link_handle_hpd_rx_irq(dc_link, NULL, NULL);
#endif
if (!amdgpu_in_reset(adev) && lock_flag)
mutex_unlock(&adev->dm.dc_lock);
out:
if (result && !is_mst_root_connector) {
/* Downstream Port status changed. */
if (!dc_link_detect_sink(dc_link, &new_connection_type))
DRM_ERROR("KMS: Failed to detect connector\n");
if (aconnector->base.force && new_connection_type == dc_connection_none) {
emulated_link_detect(dc_link);
if (aconnector->fake_enable)
aconnector->fake_enable = false;
amdgpu_dm_update_connector_after_detect(aconnector);
drm_modeset_lock_all(dev);
dm_restore_drm_connector_state(dev, connector);
drm_modeset_unlock_all(dev);
drm_kms_helper_hotplug_event(dev);
} else if (dc_link_detect(dc_link, DETECT_REASON_HPDRX)) {
if (aconnector->fake_enable)
aconnector->fake_enable = false;
amdgpu_dm_update_connector_after_detect(aconnector);
drm_modeset_lock_all(dev);
dm_restore_drm_connector_state(dev, connector);
drm_modeset_unlock_all(dev);
drm_kms_helper_hotplug_event(dev);
}
}
#ifdef CONFIG_DRM_AMD_DC_HDCP
if (hpd_irq_data.bytes.device_service_irq.bits.CP_IRQ) {
if (adev->dm.hdcp_workqueue)
hdcp_handle_cpirq(adev->dm.hdcp_workqueue, aconnector->base.index);
}
#endif
if (dc_link->type != dc_connection_mst_branch)
drm_dp_cec_irq(&aconnector->dm_dp_aux.aux);
mutex_unlock(&aconnector->hpd_lock);
}
static void register_hpd_handlers(struct amdgpu_device *adev)
{
struct drm_device *dev = adev_to_drm(adev);
struct drm_connector *connector;
struct amdgpu_dm_connector *aconnector;
const struct dc_link *dc_link;
struct dc_interrupt_params int_params = {0};
int_params.requested_polarity = INTERRUPT_POLARITY_DEFAULT;
int_params.current_polarity = INTERRUPT_POLARITY_DEFAULT;
list_for_each_entry(connector,
&dev->mode_config.connector_list, head) {
aconnector = to_amdgpu_dm_connector(connector);
dc_link = aconnector->dc_link;
if (DC_IRQ_SOURCE_INVALID != dc_link->irq_source_hpd) {
int_params.int_context = INTERRUPT_LOW_IRQ_CONTEXT;
int_params.irq_source = dc_link->irq_source_hpd;
amdgpu_dm_irq_register_interrupt(adev, &int_params,
handle_hpd_irq,
(void *) aconnector);
}
if (DC_IRQ_SOURCE_INVALID != dc_link->irq_source_hpd_rx) {
/* Also register for DP short pulse (hpd_rx). */
int_params.int_context = INTERRUPT_LOW_IRQ_CONTEXT;
int_params.irq_source = dc_link->irq_source_hpd_rx;
amdgpu_dm_irq_register_interrupt(adev, &int_params,
handle_hpd_rx_irq,
(void *) aconnector);
}
}
}
#if defined(CONFIG_DRM_AMD_DC_SI)
/* Register IRQ sources and initialize IRQ callbacks */
static int dce60_register_irq_handlers(struct amdgpu_device *adev)
{
struct dc *dc = adev->dm.dc;
struct common_irq_params *c_irq_params;
struct dc_interrupt_params int_params = {0};
int r;
int i;
unsigned client_id = AMDGPU_IRQ_CLIENTID_LEGACY;
int_params.requested_polarity = INTERRUPT_POLARITY_DEFAULT;
int_params.current_polarity = INTERRUPT_POLARITY_DEFAULT;
/*
* Actions of amdgpu_irq_add_id():
* 1. Register a set() function with base driver.
* Base driver will call set() function to enable/disable an
* interrupt in DC hardware.
* 2. Register amdgpu_dm_irq_handler().
* Base driver will call amdgpu_dm_irq_handler() for ALL interrupts
* coming from DC hardware.
* amdgpu_dm_irq_handler() will re-direct the interrupt to DC
* for acknowledging and handling. */
/* Use VBLANK interrupt */
for (i = 0; i < adev->mode_info.num_crtc; i++) {
r = amdgpu_irq_add_id(adev, client_id, i+1 , &adev->crtc_irq);
if (r) {
DRM_ERROR("Failed to add crtc irq id!\n");
return r;
}
int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT;
int_params.irq_source =
dc_interrupt_to_irq_source(dc, i+1 , 0);
c_irq_params = &adev->dm.vblank_params[int_params.irq_source - DC_IRQ_SOURCE_VBLANK1];
c_irq_params->adev = adev;
c_irq_params->irq_src = int_params.irq_source;
amdgpu_dm_irq_register_interrupt(adev, &int_params,
dm_crtc_high_irq, c_irq_params);
}
/* Use GRPH_PFLIP interrupt */
for (i = VISLANDS30_IV_SRCID_D1_GRPH_PFLIP;
i <= VISLANDS30_IV_SRCID_D6_GRPH_PFLIP; i += 2) {
r = amdgpu_irq_add_id(adev, client_id, i, &adev->pageflip_irq);
if (r) {
DRM_ERROR("Failed to add page flip irq id!\n");
return r;
}
int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT;
int_params.irq_source =
dc_interrupt_to_irq_source(dc, i, 0);
c_irq_params = &adev->dm.pflip_params[int_params.irq_source - DC_IRQ_SOURCE_PFLIP_FIRST];
c_irq_params->adev = adev;
c_irq_params->irq_src = int_params.irq_source;
amdgpu_dm_irq_register_interrupt(adev, &int_params,
dm_pflip_high_irq, c_irq_params);
}
/* HPD */
r = amdgpu_irq_add_id(adev, client_id,
VISLANDS30_IV_SRCID_HOTPLUG_DETECT_A, &adev->hpd_irq);
if (r) {
DRM_ERROR("Failed to add hpd irq id!\n");
return r;
}
register_hpd_handlers(adev);
return 0;
}
#endif
/* Register IRQ sources and initialize IRQ callbacks */
static int dce110_register_irq_handlers(struct amdgpu_device *adev)
{
struct dc *dc = adev->dm.dc;
struct common_irq_params *c_irq_params;
struct dc_interrupt_params int_params = {0};
int r;
int i;
unsigned client_id = AMDGPU_IRQ_CLIENTID_LEGACY;
if (adev->asic_type >= CHIP_VEGA10)
client_id = SOC15_IH_CLIENTID_DCE;
int_params.requested_polarity = INTERRUPT_POLARITY_DEFAULT;
int_params.current_polarity = INTERRUPT_POLARITY_DEFAULT;
/*
* Actions of amdgpu_irq_add_id():
* 1. Register a set() function with base driver.
* Base driver will call set() function to enable/disable an
* interrupt in DC hardware.
* 2. Register amdgpu_dm_irq_handler().
* Base driver will call amdgpu_dm_irq_handler() for ALL interrupts
* coming from DC hardware.
* amdgpu_dm_irq_handler() will re-direct the interrupt to DC
* for acknowledging and handling. */
/* Use VBLANK interrupt */
for (i = VISLANDS30_IV_SRCID_D1_VERTICAL_INTERRUPT0; i <= VISLANDS30_IV_SRCID_D6_VERTICAL_INTERRUPT0; i++) {
r = amdgpu_irq_add_id(adev, client_id, i, &adev->crtc_irq);
if (r) {
DRM_ERROR("Failed to add crtc irq id!\n");
return r;
}
int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT;
int_params.irq_source =
dc_interrupt_to_irq_source(dc, i, 0);
c_irq_params = &adev->dm.vblank_params[int_params.irq_source - DC_IRQ_SOURCE_VBLANK1];
c_irq_params->adev = adev;
c_irq_params->irq_src = int_params.irq_source;
amdgpu_dm_irq_register_interrupt(adev, &int_params,
dm_crtc_high_irq, c_irq_params);
}
/* Use VUPDATE interrupt */
for (i = VISLANDS30_IV_SRCID_D1_V_UPDATE_INT; i <= VISLANDS30_IV_SRCID_D6_V_UPDATE_INT; i += 2) {
r = amdgpu_irq_add_id(adev, client_id, i, &adev->vupdate_irq);
if (r) {
DRM_ERROR("Failed to add vupdate irq id!\n");
return r;
}
int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT;
int_params.irq_source =
dc_interrupt_to_irq_source(dc, i, 0);
c_irq_params = &adev->dm.vupdate_params[int_params.irq_source - DC_IRQ_SOURCE_VUPDATE1];
c_irq_params->adev = adev;
c_irq_params->irq_src = int_params.irq_source;
amdgpu_dm_irq_register_interrupt(adev, &int_params,
dm_vupdate_high_irq, c_irq_params);
}
/* Use GRPH_PFLIP interrupt */
for (i = VISLANDS30_IV_SRCID_D1_GRPH_PFLIP;
i <= VISLANDS30_IV_SRCID_D6_GRPH_PFLIP; i += 2) {
r = amdgpu_irq_add_id(adev, client_id, i, &adev->pageflip_irq);
if (r) {
DRM_ERROR("Failed to add page flip irq id!\n");
return r;
}
int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT;
int_params.irq_source =
dc_interrupt_to_irq_source(dc, i, 0);
c_irq_params = &adev->dm.pflip_params[int_params.irq_source - DC_IRQ_SOURCE_PFLIP_FIRST];
c_irq_params->adev = adev;
c_irq_params->irq_src = int_params.irq_source;
amdgpu_dm_irq_register_interrupt(adev, &int_params,
dm_pflip_high_irq, c_irq_params);
}
/* HPD */
r = amdgpu_irq_add_id(adev, client_id,
VISLANDS30_IV_SRCID_HOTPLUG_DETECT_A, &adev->hpd_irq);
if (r) {
DRM_ERROR("Failed to add hpd irq id!\n");
return r;
}
register_hpd_handlers(adev);
return 0;
}
#if defined(CONFIG_DRM_AMD_DC_DCN)
/* Register IRQ sources and initialize IRQ callbacks */
static int dcn10_register_irq_handlers(struct amdgpu_device *adev)
{
struct dc *dc = adev->dm.dc;
struct common_irq_params *c_irq_params;
struct dc_interrupt_params int_params = {0};
int r;
int i;
#if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
static const unsigned int vrtl_int_srcid[] = {
DCN_1_0__SRCID__OTG1_VERTICAL_INTERRUPT0_CONTROL,
DCN_1_0__SRCID__OTG2_VERTICAL_INTERRUPT0_CONTROL,
DCN_1_0__SRCID__OTG3_VERTICAL_INTERRUPT0_CONTROL,
DCN_1_0__SRCID__OTG4_VERTICAL_INTERRUPT0_CONTROL,
DCN_1_0__SRCID__OTG5_VERTICAL_INTERRUPT0_CONTROL,
DCN_1_0__SRCID__OTG6_VERTICAL_INTERRUPT0_CONTROL
};
#endif
int_params.requested_polarity = INTERRUPT_POLARITY_DEFAULT;
int_params.current_polarity = INTERRUPT_POLARITY_DEFAULT;
/*
* Actions of amdgpu_irq_add_id():
* 1. Register a set() function with base driver.
* Base driver will call set() function to enable/disable an
* interrupt in DC hardware.
* 2. Register amdgpu_dm_irq_handler().
* Base driver will call amdgpu_dm_irq_handler() for ALL interrupts
* coming from DC hardware.
* amdgpu_dm_irq_handler() will re-direct the interrupt to DC
* for acknowledging and handling.
*/
/* Use VSTARTUP interrupt */
for (i = DCN_1_0__SRCID__DC_D1_OTG_VSTARTUP;
i <= DCN_1_0__SRCID__DC_D1_OTG_VSTARTUP + adev->mode_info.num_crtc - 1;
i++) {
r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_DCE, i, &adev->crtc_irq);
if (r) {
DRM_ERROR("Failed to add crtc irq id!\n");
return r;
}
int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT;
int_params.irq_source =
dc_interrupt_to_irq_source(dc, i, 0);
c_irq_params = &adev->dm.vblank_params[int_params.irq_source - DC_IRQ_SOURCE_VBLANK1];
c_irq_params->adev = adev;
c_irq_params->irq_src = int_params.irq_source;
amdgpu_dm_irq_register_interrupt(
adev, &int_params, dm_crtc_high_irq, c_irq_params);
}
/* Use otg vertical line interrupt */
#if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
for (i = 0; i <= adev->mode_info.num_crtc - 1; i++) {
r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_DCE,
vrtl_int_srcid[i], &adev->vline0_irq);
if (r) {
DRM_ERROR("Failed to add vline0 irq id!\n");
return r;
}
int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT;
int_params.irq_source =
dc_interrupt_to_irq_source(dc, vrtl_int_srcid[i], 0);
if (int_params.irq_source == DC_IRQ_SOURCE_INVALID) {
DRM_ERROR("Failed to register vline0 irq %d!\n", vrtl_int_srcid[i]);
break;
}
c_irq_params = &adev->dm.vline0_params[int_params.irq_source
- DC_IRQ_SOURCE_DC1_VLINE0];
c_irq_params->adev = adev;
c_irq_params->irq_src = int_params.irq_source;
amdgpu_dm_irq_register_interrupt(adev, &int_params,
dm_dcn_vertical_interrupt0_high_irq, c_irq_params);
}
#endif
/* Use VUPDATE_NO_LOCK interrupt on DCN, which seems to correspond to
* the regular VUPDATE interrupt on DCE. We want DC_IRQ_SOURCE_VUPDATEx
* to trigger at end of each vblank, regardless of state of the lock,
* matching DCE behaviour.
*/
for (i = DCN_1_0__SRCID__OTG0_IHC_V_UPDATE_NO_LOCK_INTERRUPT;
i <= DCN_1_0__SRCID__OTG0_IHC_V_UPDATE_NO_LOCK_INTERRUPT + adev->mode_info.num_crtc - 1;
i++) {
r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_DCE, i, &adev->vupdate_irq);
if (r) {
DRM_ERROR("Failed to add vupdate irq id!\n");
return r;
}
int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT;
int_params.irq_source =
dc_interrupt_to_irq_source(dc, i, 0);
c_irq_params = &adev->dm.vupdate_params[int_params.irq_source - DC_IRQ_SOURCE_VUPDATE1];
c_irq_params->adev = adev;
c_irq_params->irq_src = int_params.irq_source;
amdgpu_dm_irq_register_interrupt(adev, &int_params,
dm_vupdate_high_irq, c_irq_params);
}
/* Use GRPH_PFLIP interrupt */
for (i = DCN_1_0__SRCID__HUBP0_FLIP_INTERRUPT;
i <= DCN_1_0__SRCID__HUBP0_FLIP_INTERRUPT + adev->mode_info.num_crtc - 1;
i++) {
r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_DCE, i, &adev->pageflip_irq);
if (r) {
DRM_ERROR("Failed to add page flip irq id!\n");
return r;
}
int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT;
int_params.irq_source =
dc_interrupt_to_irq_source(dc, i, 0);
c_irq_params = &adev->dm.pflip_params[int_params.irq_source - DC_IRQ_SOURCE_PFLIP_FIRST];
c_irq_params->adev = adev;
c_irq_params->irq_src = int_params.irq_source;
amdgpu_dm_irq_register_interrupt(adev, &int_params,
dm_pflip_high_irq, c_irq_params);
}
/* HPD */
r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_DCE, DCN_1_0__SRCID__DC_HPD1_INT,
&adev->hpd_irq);
if (r) {
DRM_ERROR("Failed to add hpd irq id!\n");
return r;
}
register_hpd_handlers(adev);
return 0;
}
/* Register Outbox IRQ sources and initialize IRQ callbacks */
static int register_outbox_irq_handlers(struct amdgpu_device *adev)
{
struct dc *dc = adev->dm.dc;
struct common_irq_params *c_irq_params;
struct dc_interrupt_params int_params = {0};
int r, i;
int_params.requested_polarity = INTERRUPT_POLARITY_DEFAULT;
int_params.current_polarity = INTERRUPT_POLARITY_DEFAULT;
r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_DCE, DCN_1_0__SRCID__DMCUB_OUTBOX_LOW_PRIORITY_READY_INT,
&adev->dmub_outbox_irq);
if (r) {
DRM_ERROR("Failed to add outbox irq id!\n");
return r;
}
if (dc->ctx->dmub_srv) {
i = DCN_1_0__SRCID__DMCUB_OUTBOX_LOW_PRIORITY_READY_INT;
int_params.int_context = INTERRUPT_LOW_IRQ_CONTEXT;
int_params.irq_source =
dc_interrupt_to_irq_source(dc, i, 0);
c_irq_params = &adev->dm.dmub_outbox_params[0];
c_irq_params->adev = adev;
c_irq_params->irq_src = int_params.irq_source;
amdgpu_dm_irq_register_interrupt(adev, &int_params,
dm_dmub_outbox1_low_irq, c_irq_params);
}
return 0;
}
#endif
/*
* Acquires the lock for the atomic state object and returns
* the new atomic state.
*
* This should only be called during atomic check.
*/
static int dm_atomic_get_state(struct drm_atomic_state *state,
struct dm_atomic_state **dm_state)
{
struct drm_device *dev = state->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_display_manager *dm = &adev->dm;
struct drm_private_state *priv_state;
if (*dm_state)
return 0;
priv_state = drm_atomic_get_private_obj_state(state, &dm->atomic_obj);
if (IS_ERR(priv_state))
return PTR_ERR(priv_state);
*dm_state = to_dm_atomic_state(priv_state);
return 0;
}
static struct dm_atomic_state *
dm_atomic_get_new_state(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_display_manager *dm = &adev->dm;
struct drm_private_obj *obj;
struct drm_private_state *new_obj_state;
int i;
for_each_new_private_obj_in_state(state, obj, new_obj_state, i) {
if (obj->funcs == dm->atomic_obj.funcs)
return to_dm_atomic_state(new_obj_state);
}
return NULL;
}
static struct drm_private_state *
dm_atomic_duplicate_state(struct drm_private_obj *obj)
{
struct dm_atomic_state *old_state, *new_state;
new_state = kzalloc(sizeof(*new_state), GFP_KERNEL);
if (!new_state)
return NULL;
__drm_atomic_helper_private_obj_duplicate_state(obj, &new_state->base);
old_state = to_dm_atomic_state(obj->state);
if (old_state && old_state->context)
new_state->context = dc_copy_state(old_state->context);
if (!new_state->context) {
kfree(new_state);
return NULL;
}
return &new_state->base;
}
static void dm_atomic_destroy_state(struct drm_private_obj *obj,
struct drm_private_state *state)
{
struct dm_atomic_state *dm_state = to_dm_atomic_state(state);
if (dm_state && dm_state->context)
dc_release_state(dm_state->context);
kfree(dm_state);
}
static struct drm_private_state_funcs dm_atomic_state_funcs = {
.atomic_duplicate_state = dm_atomic_duplicate_state,
.atomic_destroy_state = dm_atomic_destroy_state,
};
static int amdgpu_dm_mode_config_init(struct amdgpu_device *adev)
{
struct dm_atomic_state *state;
int r;
adev->mode_info.mode_config_initialized = true;
adev_to_drm(adev)->mode_config.funcs = (void *)&amdgpu_dm_mode_funcs;
adev_to_drm(adev)->mode_config.helper_private = &amdgpu_dm_mode_config_helperfuncs;
adev_to_drm(adev)->mode_config.max_width = 16384;
adev_to_drm(adev)->mode_config.max_height = 16384;
adev_to_drm(adev)->mode_config.preferred_depth = 24;
adev_to_drm(adev)->mode_config.prefer_shadow = 1;
/* indicates support for immediate flip */
adev_to_drm(adev)->mode_config.async_page_flip = true;
adev_to_drm(adev)->mode_config.fb_base = adev->gmc.aper_base;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return -ENOMEM;
state->context = dc_create_state(adev->dm.dc);
if (!state->context) {
kfree(state);
return -ENOMEM;
}
dc_resource_state_copy_construct_current(adev->dm.dc, state->context);
drm_atomic_private_obj_init(adev_to_drm(adev),
&adev->dm.atomic_obj,
&state->base,
&dm_atomic_state_funcs);
r = amdgpu_display_modeset_create_props(adev);
if (r) {
dc_release_state(state->context);
kfree(state);
return r;
}
r = amdgpu_dm_audio_init(adev);
if (r) {
dc_release_state(state->context);
kfree(state);
return r;
}
return 0;
}
#define AMDGPU_DM_DEFAULT_MIN_BACKLIGHT 12
#define AMDGPU_DM_DEFAULT_MAX_BACKLIGHT 255
#define AUX_BL_DEFAULT_TRANSITION_TIME_MS 50
#if defined(CONFIG_BACKLIGHT_CLASS_DEVICE) ||\
defined(CONFIG_BACKLIGHT_CLASS_DEVICE_MODULE)
static void amdgpu_dm_update_backlight_caps(struct amdgpu_display_manager *dm)
{
#if defined(CONFIG_ACPI)
struct amdgpu_dm_backlight_caps caps;
memset(&caps, 0, sizeof(caps));
if (dm->backlight_caps.caps_valid)
return;
amdgpu_acpi_get_backlight_caps(&caps);
if (caps.caps_valid) {
dm->backlight_caps.caps_valid = true;
if (caps.aux_support)
return;
dm->backlight_caps.min_input_signal = caps.min_input_signal;
dm->backlight_caps.max_input_signal = caps.max_input_signal;
} else {
dm->backlight_caps.min_input_signal =
AMDGPU_DM_DEFAULT_MIN_BACKLIGHT;
dm->backlight_caps.max_input_signal =
AMDGPU_DM_DEFAULT_MAX_BACKLIGHT;
}
#else
if (dm->backlight_caps.aux_support)
return;
dm->backlight_caps.min_input_signal = AMDGPU_DM_DEFAULT_MIN_BACKLIGHT;
dm->backlight_caps.max_input_signal = AMDGPU_DM_DEFAULT_MAX_BACKLIGHT;
#endif
}
static int get_brightness_range(const struct amdgpu_dm_backlight_caps *caps,
unsigned *min, unsigned *max)
{
if (!caps)
return 0;
if (caps->aux_support) {
// Firmware limits are in nits, DC API wants millinits.
*max = 1000 * caps->aux_max_input_signal;
*min = 1000 * caps->aux_min_input_signal;
} else {
// Firmware limits are 8-bit, PWM control is 16-bit.
*max = 0x101 * caps->max_input_signal;
*min = 0x101 * caps->min_input_signal;
}
return 1;
}
static u32 convert_brightness_from_user(const struct amdgpu_dm_backlight_caps *caps,
uint32_t brightness)
{
unsigned min, max;
if (!get_brightness_range(caps, &min, &max))
return brightness;
// Rescale 0..255 to min..max
return min + DIV_ROUND_CLOSEST((max - min) * brightness,
AMDGPU_MAX_BL_LEVEL);
}
static u32 convert_brightness_to_user(const struct amdgpu_dm_backlight_caps *caps,
uint32_t brightness)
{
unsigned min, max;
if (!get_brightness_range(caps, &min, &max))
return brightness;
if (brightness < min)
return 0;
// Rescale min..max to 0..255
return DIV_ROUND_CLOSEST(AMDGPU_MAX_BL_LEVEL * (brightness - min),
max - min);
}
static int amdgpu_dm_backlight_set_level(struct amdgpu_display_manager *dm,
u32 user_brightness)
{
struct amdgpu_dm_backlight_caps caps;
struct dc_link *link[AMDGPU_DM_MAX_NUM_EDP];
u32 brightness[AMDGPU_DM_MAX_NUM_EDP];
bool rc;
int i;
amdgpu_dm_update_backlight_caps(dm);
caps = dm->backlight_caps;
for (i = 0; i < dm->num_of_edps; i++) {
dm->brightness[i] = user_brightness;
brightness[i] = convert_brightness_from_user(&caps, dm->brightness[i]);
link[i] = (struct dc_link *)dm->backlight_link[i];
}
/* Change brightness based on AUX property */
if (caps.aux_support) {
for (i = 0; i < dm->num_of_edps; i++) {
rc = dc_link_set_backlight_level_nits(link[i], true, brightness[i],
AUX_BL_DEFAULT_TRANSITION_TIME_MS);
if (!rc) {
DRM_DEBUG("DM: Failed to update backlight via AUX on eDP[%d]\n", i);
break;
}
}
} else {
for (i = 0; i < dm->num_of_edps; i++) {
rc = dc_link_set_backlight_level(dm->backlight_link[i], brightness[i], 0);
if (!rc) {
DRM_DEBUG("DM: Failed to update backlight on eDP[%d]\n", i);
break;
}
}
}
return rc ? 0 : 1;
}
static int amdgpu_dm_backlight_update_status(struct backlight_device *bd)
{
struct amdgpu_display_manager *dm = bl_get_data(bd);
amdgpu_dm_backlight_set_level(dm, bd->props.brightness);
return 0;
}
static u32 amdgpu_dm_backlight_get_level(struct amdgpu_display_manager *dm)
{
struct amdgpu_dm_backlight_caps caps;
amdgpu_dm_update_backlight_caps(dm);
caps = dm->backlight_caps;
if (caps.aux_support) {
struct dc_link *link = (struct dc_link *)dm->backlight_link[0];
u32 avg, peak;
bool rc;
rc = dc_link_get_backlight_level_nits(link, &avg, &peak);
if (!rc)
return dm->brightness[0];
return convert_brightness_to_user(&caps, avg);
} else {
int ret = dc_link_get_backlight_level(dm->backlight_link[0]);
if (ret == DC_ERROR_UNEXPECTED)
return dm->brightness[0];
return convert_brightness_to_user(&caps, ret);
}
}
static int amdgpu_dm_backlight_get_brightness(struct backlight_device *bd)
{
struct amdgpu_display_manager *dm = bl_get_data(bd);
return amdgpu_dm_backlight_get_level(dm);
}
static const struct backlight_ops amdgpu_dm_backlight_ops = {
.options = BL_CORE_SUSPENDRESUME,
.get_brightness = amdgpu_dm_backlight_get_brightness,
.update_status = amdgpu_dm_backlight_update_status,
};
static void
amdgpu_dm_register_backlight_device(struct amdgpu_display_manager *dm)
{
char bl_name[16];
struct backlight_properties props = { 0 };
int i;
amdgpu_dm_update_backlight_caps(dm);
for (i = 0; i < dm->num_of_edps; i++)
dm->brightness[i] = AMDGPU_MAX_BL_LEVEL;
props.max_brightness = AMDGPU_MAX_BL_LEVEL;
props.brightness = AMDGPU_MAX_BL_LEVEL;
props.type = BACKLIGHT_RAW;
snprintf(bl_name, sizeof(bl_name), "amdgpu_bl%d",
adev_to_drm(dm->adev)->primary->index);
dm->backlight_dev = backlight_device_register(bl_name,
adev_to_drm(dm->adev)->dev,
dm,
&amdgpu_dm_backlight_ops,
&props);
if (IS_ERR(dm->backlight_dev))
DRM_ERROR("DM: Backlight registration failed!\n");
else
DRM_DEBUG_DRIVER("DM: Registered Backlight device: %s\n", bl_name);
}
#endif
static int initialize_plane(struct amdgpu_display_manager *dm,
struct amdgpu_mode_info *mode_info, int plane_id,
enum drm_plane_type plane_type,
const struct dc_plane_cap *plane_cap)
{
struct drm_plane *plane;
unsigned long possible_crtcs;
int ret = 0;
plane = kzalloc(sizeof(struct drm_plane), GFP_KERNEL);
if (!plane) {
DRM_ERROR("KMS: Failed to allocate plane\n");
return -ENOMEM;
}
plane->type = plane_type;
/*
* HACK: IGT tests expect that the primary plane for a CRTC
* can only have one possible CRTC. Only expose support for
* any CRTC if they're not going to be used as a primary plane
* for a CRTC - like overlay or underlay planes.
*/
possible_crtcs = 1 << plane_id;
if (plane_id >= dm->dc->caps.max_streams)
possible_crtcs = 0xff;
ret = amdgpu_dm_plane_init(dm, plane, possible_crtcs, plane_cap);
if (ret) {
DRM_ERROR("KMS: Failed to initialize plane\n");
kfree(plane);
return ret;
}
if (mode_info)
mode_info->planes[plane_id] = plane;
return ret;
}
static void register_backlight_device(struct amdgpu_display_manager *dm,
struct dc_link *link)
{
#if defined(CONFIG_BACKLIGHT_CLASS_DEVICE) ||\
defined(CONFIG_BACKLIGHT_CLASS_DEVICE_MODULE)
if ((link->connector_signal & (SIGNAL_TYPE_EDP | SIGNAL_TYPE_LVDS)) &&
link->type != dc_connection_none) {
/*
* Event if registration failed, we should continue with
* DM initialization because not having a backlight control
* is better then a black screen.
*/
if (!dm->backlight_dev)
amdgpu_dm_register_backlight_device(dm);
if (dm->backlight_dev) {
dm->backlight_link[dm->num_of_edps] = link;
dm->num_of_edps++;
}
}
#endif
}
/*
* In this architecture, the association
* connector -> encoder -> crtc
* id not really requried. The crtc and connector will hold the
* display_index as an abstraction to use with DAL component
*
* Returns 0 on success
*/
static int amdgpu_dm_initialize_drm_device(struct amdgpu_device *adev)
{
struct amdgpu_display_manager *dm = &adev->dm;
int32_t i;
struct amdgpu_dm_connector *aconnector = NULL;
struct amdgpu_encoder *aencoder = NULL;
struct amdgpu_mode_info *mode_info = &adev->mode_info;
uint32_t link_cnt;
int32_t primary_planes;
enum dc_connection_type new_connection_type = dc_connection_none;
const struct dc_plane_cap *plane;
dm->display_indexes_num = dm->dc->caps.max_streams;
/* Update the actual used number of crtc */
adev->mode_info.num_crtc = adev->dm.display_indexes_num;
link_cnt = dm->dc->caps.max_links;
if (amdgpu_dm_mode_config_init(dm->adev)) {
DRM_ERROR("DM: Failed to initialize mode config\n");
return -EINVAL;
}
/* There is one primary plane per CRTC */
primary_planes = dm->dc->caps.max_streams;
ASSERT(primary_planes <= AMDGPU_MAX_PLANES);
/*
* Initialize primary planes, implicit planes for legacy IOCTLS.
* Order is reversed to match iteration order in atomic check.
*/
for (i = (primary_planes - 1); i >= 0; i--) {
plane = &dm->dc->caps.planes[i];
if (initialize_plane(dm, mode_info, i,
DRM_PLANE_TYPE_PRIMARY, plane)) {
DRM_ERROR("KMS: Failed to initialize primary plane\n");
goto fail;
}
}
/*
* Initialize overlay planes, index starting after primary planes.
* These planes have a higher DRM index than the primary planes since
* they should be considered as having a higher z-order.
* Order is reversed to match iteration order in atomic check.
*
* Only support DCN for now, and only expose one so we don't encourage
* userspace to use up all the pipes.
*/
for (i = 0; i < dm->dc->caps.max_planes; ++i) {
struct dc_plane_cap *plane = &dm->dc->caps.planes[i];
if (plane->type != DC_PLANE_TYPE_DCN_UNIVERSAL)
continue;
if (!plane->blends_with_above || !plane->blends_with_below)
continue;
if (!plane->pixel_format_support.argb8888)
continue;
if (initialize_plane(dm, NULL, primary_planes + i,
DRM_PLANE_TYPE_OVERLAY, plane)) {
DRM_ERROR("KMS: Failed to initialize overlay plane\n");
goto fail;
}
/* Only create one overlay plane. */
break;
}
for (i = 0; i < dm->dc->caps.max_streams; i++)
if (amdgpu_dm_crtc_init(dm, mode_info->planes[i], i)) {
DRM_ERROR("KMS: Failed to initialize crtc\n");
goto fail;
}
#if defined(CONFIG_DRM_AMD_DC_DCN)
/* Use Outbox interrupt */
switch (adev->asic_type) {
case CHIP_SIENNA_CICHLID:
case CHIP_NAVY_FLOUNDER:
case CHIP_YELLOW_CARP:
case CHIP_RENOIR:
if (register_outbox_irq_handlers(dm->adev)) {
DRM_ERROR("DM: Failed to initialize IRQ\n");
goto fail;
}
break;
default:
DRM_DEBUG_KMS("Unsupported ASIC type for outbox: 0x%X\n", adev->asic_type);
}
#endif
/* loops over all connectors on the board */
for (i = 0; i < link_cnt; i++) {
struct dc_link *link = NULL;
if (i > AMDGPU_DM_MAX_DISPLAY_INDEX) {
DRM_ERROR(
"KMS: Cannot support more than %d display indexes\n",
AMDGPU_DM_MAX_DISPLAY_INDEX);
continue;
}
aconnector = kzalloc(sizeof(*aconnector), GFP_KERNEL);
if (!aconnector)
goto fail;
aencoder = kzalloc(sizeof(*aencoder), GFP_KERNEL);
if (!aencoder)
goto fail;
if (amdgpu_dm_encoder_init(dm->ddev, aencoder, i)) {
DRM_ERROR("KMS: Failed to initialize encoder\n");
goto fail;
}
if (amdgpu_dm_connector_init(dm, aconnector, i, aencoder)) {
DRM_ERROR("KMS: Failed to initialize connector\n");
goto fail;
}
link = dc_get_link_at_index(dm->dc, i);
if (!dc_link_detect_sink(link, &new_connection_type))
DRM_ERROR("KMS: Failed to detect connector\n");
if (aconnector->base.force && new_connection_type == dc_connection_none) {
emulated_link_detect(link);
amdgpu_dm_update_connector_after_detect(aconnector);
} else if (dc_link_detect(link, DETECT_REASON_BOOT)) {
amdgpu_dm_update_connector_after_detect(aconnector);
register_backlight_device(dm, link);
if (amdgpu_dc_feature_mask & DC_PSR_MASK)
amdgpu_dm_set_psr_caps(link);
}
}
/* Software is initialized. Now we can register interrupt handlers. */
switch (adev->asic_type) {
#if defined(CONFIG_DRM_AMD_DC_SI)
case CHIP_TAHITI:
case CHIP_PITCAIRN:
case CHIP_VERDE:
case CHIP_OLAND:
if (dce60_register_irq_handlers(dm->adev)) {
DRM_ERROR("DM: Failed to initialize IRQ\n");
goto fail;
}
break;
#endif
case CHIP_BONAIRE:
case CHIP_HAWAII:
case CHIP_KAVERI:
case CHIP_KABINI:
case CHIP_MULLINS:
case CHIP_TONGA:
case CHIP_FIJI:
case CHIP_CARRIZO:
case CHIP_STONEY:
case CHIP_POLARIS11:
case CHIP_POLARIS10:
case CHIP_POLARIS12:
case CHIP_VEGAM:
case CHIP_VEGA10:
case CHIP_VEGA12:
case CHIP_VEGA20:
if (dce110_register_irq_handlers(dm->adev)) {
DRM_ERROR("DM: Failed to initialize IRQ\n");
goto fail;
}
break;
#if defined(CONFIG_DRM_AMD_DC_DCN)
case CHIP_RAVEN:
case CHIP_NAVI12:
case CHIP_NAVI10:
case CHIP_NAVI14:
case CHIP_RENOIR:
case CHIP_SIENNA_CICHLID:
case CHIP_NAVY_FLOUNDER:
case CHIP_DIMGREY_CAVEFISH:
case CHIP_BEIGE_GOBY:
case CHIP_VANGOGH:
case CHIP_YELLOW_CARP:
if (dcn10_register_irq_handlers(dm->adev)) {
DRM_ERROR("DM: Failed to initialize IRQ\n");
goto fail;
}
break;
#endif
default:
DRM_ERROR("Unsupported ASIC type: 0x%X\n", adev->asic_type);
goto fail;
}
return 0;
fail:
kfree(aencoder);
kfree(aconnector);
return -EINVAL;
}
static void amdgpu_dm_destroy_drm_device(struct amdgpu_display_manager *dm)
{
drm_atomic_private_obj_fini(&dm->atomic_obj);
return;
}
/******************************************************************************
* amdgpu_display_funcs functions
*****************************************************************************/
/*
* dm_bandwidth_update - program display watermarks
*
* @adev: amdgpu_device pointer
*
* Calculate and program the display watermarks and line buffer allocation.
*/
static void dm_bandwidth_update(struct amdgpu_device *adev)
{
/* TODO: implement later */
}
static const struct amdgpu_display_funcs dm_display_funcs = {
.bandwidth_update = dm_bandwidth_update, /* called unconditionally */
.vblank_get_counter = dm_vblank_get_counter,/* called unconditionally */
.backlight_set_level = NULL, /* never called for DC */
.backlight_get_level = NULL, /* never called for DC */
.hpd_sense = NULL,/* called unconditionally */
.hpd_set_polarity = NULL, /* called unconditionally */
.hpd_get_gpio_reg = NULL, /* VBIOS parsing. DAL does it. */
.page_flip_get_scanoutpos =
dm_crtc_get_scanoutpos,/* called unconditionally */
.add_encoder = NULL, /* VBIOS parsing. DAL does it. */
.add_connector = NULL, /* VBIOS parsing. DAL does it. */
};
#if defined(CONFIG_DEBUG_KERNEL_DC)
static ssize_t s3_debug_store(struct device *device,
struct device_attribute *attr,
const char *buf,
size_t count)
{
int ret;
int s3_state;
struct drm_device *drm_dev = dev_get_drvdata(device);
struct amdgpu_device *adev = drm_to_adev(drm_dev);
ret = kstrtoint(buf, 0, &s3_state);
if (ret == 0) {
if (s3_state) {
dm_resume(adev);
drm_kms_helper_hotplug_event(adev_to_drm(adev));
} else
dm_suspend(adev);
}
return ret == 0 ? count : 0;
}
DEVICE_ATTR_WO(s3_debug);
#endif
static int dm_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
switch (adev->asic_type) {
#if defined(CONFIG_DRM_AMD_DC_SI)
case CHIP_TAHITI:
case CHIP_PITCAIRN:
case CHIP_VERDE:
adev->mode_info.num_crtc = 6;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 6;
break;
case CHIP_OLAND:
adev->mode_info.num_crtc = 2;
adev->mode_info.num_hpd = 2;
adev->mode_info.num_dig = 2;
break;
#endif
case CHIP_BONAIRE:
case CHIP_HAWAII:
adev->mode_info.num_crtc = 6;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 6;
break;
case CHIP_KAVERI:
adev->mode_info.num_crtc = 4;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 7;
break;
case CHIP_KABINI:
case CHIP_MULLINS:
adev->mode_info.num_crtc = 2;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 6;
break;
case CHIP_FIJI:
case CHIP_TONGA:
adev->mode_info.num_crtc = 6;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 7;
break;
case CHIP_CARRIZO:
adev->mode_info.num_crtc = 3;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 9;
break;
case CHIP_STONEY:
adev->mode_info.num_crtc = 2;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 9;
break;
case CHIP_POLARIS11:
case CHIP_POLARIS12:
adev->mode_info.num_crtc = 5;
adev->mode_info.num_hpd = 5;
adev->mode_info.num_dig = 5;
break;
case CHIP_POLARIS10:
case CHIP_VEGAM:
adev->mode_info.num_crtc = 6;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 6;
break;
case CHIP_VEGA10:
case CHIP_VEGA12:
case CHIP_VEGA20:
adev->mode_info.num_crtc = 6;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 6;
break;
#if defined(CONFIG_DRM_AMD_DC_DCN)
case CHIP_RAVEN:
case CHIP_RENOIR:
case CHIP_VANGOGH:
adev->mode_info.num_crtc = 4;
adev->mode_info.num_hpd = 4;
adev->mode_info.num_dig = 4;
break;
case CHIP_NAVI10:
case CHIP_NAVI12:
case CHIP_SIENNA_CICHLID:
case CHIP_NAVY_FLOUNDER:
adev->mode_info.num_crtc = 6;
adev->mode_info.num_hpd = 6;
adev->mode_info.num_dig = 6;
break;
case CHIP_YELLOW_CARP:
adev->mode_info.num_crtc = 4;
adev->mode_info.num_hpd = 4;
adev->mode_info.num_dig = 4;
break;
case CHIP_NAVI14:
case CHIP_DIMGREY_CAVEFISH:
adev->mode_info.num_crtc = 5;
adev->mode_info.num_hpd = 5;
adev->mode_info.num_dig = 5;
break;
case CHIP_BEIGE_GOBY:
adev->mode_info.num_crtc = 2;
adev->mode_info.num_hpd = 2;
adev->mode_info.num_dig = 2;
break;
#endif
default:
DRM_ERROR("Unsupported ASIC type: 0x%X\n", adev->asic_type);
return -EINVAL;
}
amdgpu_dm_set_irq_funcs(adev);
if (adev->mode_info.funcs == NULL)
adev->mode_info.funcs = &dm_display_funcs;
/*
* Note: Do NOT change adev->audio_endpt_rreg and
* adev->audio_endpt_wreg because they are initialised in
* amdgpu_device_init()
*/
#if defined(CONFIG_DEBUG_KERNEL_DC)
device_create_file(
adev_to_drm(adev)->dev,
&dev_attr_s3_debug);
#endif
return 0;
}
static bool modeset_required(struct drm_crtc_state *crtc_state,
struct dc_stream_state *new_stream,
struct dc_stream_state *old_stream)
{
return crtc_state->active && drm_atomic_crtc_needs_modeset(crtc_state);
}
static bool modereset_required(struct drm_crtc_state *crtc_state)
{
return !crtc_state->active && drm_atomic_crtc_needs_modeset(crtc_state);
}
static void amdgpu_dm_encoder_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
kfree(encoder);
}
static const struct drm_encoder_funcs amdgpu_dm_encoder_funcs = {
.destroy = amdgpu_dm_encoder_destroy,
};
static void get_min_max_dc_plane_scaling(struct drm_device *dev,
struct drm_framebuffer *fb,
int *min_downscale, int *max_upscale)
{
struct amdgpu_device *adev = drm_to_adev(dev);
struct dc *dc = adev->dm.dc;
/* Caps for all supported planes are the same on DCE and DCN 1 - 3 */
struct dc_plane_cap *plane_cap = &dc->caps.planes[0];
switch (fb->format->format) {
case DRM_FORMAT_P010:
case DRM_FORMAT_NV12:
case DRM_FORMAT_NV21:
*max_upscale = plane_cap->max_upscale_factor.nv12;
*min_downscale = plane_cap->max_downscale_factor.nv12;
break;
case DRM_FORMAT_XRGB16161616F:
case DRM_FORMAT_ARGB16161616F:
case DRM_FORMAT_XBGR16161616F:
case DRM_FORMAT_ABGR16161616F:
*max_upscale = plane_cap->max_upscale_factor.fp16;
*min_downscale = plane_cap->max_downscale_factor.fp16;
break;
default:
*max_upscale = plane_cap->max_upscale_factor.argb8888;
*min_downscale = plane_cap->max_downscale_factor.argb8888;
break;
}
/*
* A factor of 1 in the plane_cap means to not allow scaling, ie. use a
* scaling factor of 1.0 == 1000 units.
*/
if (*max_upscale == 1)
*max_upscale = 1000;
if (*min_downscale == 1)
*min_downscale = 1000;
}
static int fill_dc_scaling_info(const struct drm_plane_state *state,
struct dc_scaling_info *scaling_info)
{
int scale_w, scale_h, min_downscale, max_upscale;
memset(scaling_info, 0, sizeof(*scaling_info));
/* Source is fixed 16.16 but we ignore mantissa for now... */
scaling_info->src_rect.x = state->src_x >> 16;
scaling_info->src_rect.y = state->src_y >> 16;
/*
* For reasons we don't (yet) fully understand a non-zero
* src_y coordinate into an NV12 buffer can cause a
* system hang. To avoid hangs (and maybe be overly cautious)
* let's reject both non-zero src_x and src_y.
*
* We currently know of only one use-case to reproduce a
* scenario with non-zero src_x and src_y for NV12, which
* is to gesture the YouTube Android app into full screen
* on ChromeOS.
*/
if (state->fb &&
state->fb->format->format == DRM_FORMAT_NV12 &&
(scaling_info->src_rect.x != 0 ||
scaling_info->src_rect.y != 0))
return -EINVAL;
scaling_info->src_rect.width = state->src_w >> 16;
if (scaling_info->src_rect.width == 0)
return -EINVAL;
scaling_info->src_rect.height = state->src_h >> 16;
if (scaling_info->src_rect.height == 0)
return -EINVAL;
scaling_info->dst_rect.x = state->crtc_x;
scaling_info->dst_rect.y = state->crtc_y;
if (state->crtc_w == 0)
return -EINVAL;
scaling_info->dst_rect.width = state->crtc_w;
if (state->crtc_h == 0)
return -EINVAL;
scaling_info->dst_rect.height = state->crtc_h;
/* DRM doesn't specify clipping on destination output. */
scaling_info->clip_rect = scaling_info->dst_rect;
/* Validate scaling per-format with DC plane caps */
if (state->plane && state->plane->dev && state->fb) {
get_min_max_dc_plane_scaling(state->plane->dev, state->fb,
&min_downscale, &max_upscale);
} else {
min_downscale = 250;
max_upscale = 16000;
}
scale_w = scaling_info->dst_rect.width * 1000 /
scaling_info->src_rect.width;
if (scale_w < min_downscale || scale_w > max_upscale)
return -EINVAL;
scale_h = scaling_info->dst_rect.height * 1000 /
scaling_info->src_rect.height;
if (scale_h < min_downscale || scale_h > max_upscale)
return -EINVAL;
/*
* The "scaling_quality" can be ignored for now, quality = 0 has DC
* assume reasonable defaults based on the format.
*/
return 0;
}
static void
fill_gfx8_tiling_info_from_flags(union dc_tiling_info *tiling_info,
uint64_t tiling_flags)
{
/* Fill GFX8 params */
if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == DC_ARRAY_2D_TILED_THIN1) {
unsigned int bankw, bankh, mtaspect, tile_split, num_banks;
bankw = AMDGPU_TILING_GET(tiling_flags, BANK_WIDTH);
bankh = AMDGPU_TILING_GET(tiling_flags, BANK_HEIGHT);
mtaspect = AMDGPU_TILING_GET(tiling_flags, MACRO_TILE_ASPECT);
tile_split = AMDGPU_TILING_GET(tiling_flags, TILE_SPLIT);
num_banks = AMDGPU_TILING_GET(tiling_flags, NUM_BANKS);
/* XXX fix me for VI */
tiling_info->gfx8.num_banks = num_banks;
tiling_info->gfx8.array_mode =
DC_ARRAY_2D_TILED_THIN1;
tiling_info->gfx8.tile_split = tile_split;
tiling_info->gfx8.bank_width = bankw;
tiling_info->gfx8.bank_height = bankh;
tiling_info->gfx8.tile_aspect = mtaspect;
tiling_info->gfx8.tile_mode =
DC_ADDR_SURF_MICRO_TILING_DISPLAY;
} else if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE)
== DC_ARRAY_1D_TILED_THIN1) {
tiling_info->gfx8.array_mode = DC_ARRAY_1D_TILED_THIN1;
}
tiling_info->gfx8.pipe_config =
AMDGPU_TILING_GET(tiling_flags, PIPE_CONFIG);
}
static void
fill_gfx9_tiling_info_from_device(const struct amdgpu_device *adev,
union dc_tiling_info *tiling_info)
{
tiling_info->gfx9.num_pipes =
adev->gfx.config.gb_addr_config_fields.num_pipes;
tiling_info->gfx9.num_banks =
adev->gfx.config.gb_addr_config_fields.num_banks;
tiling_info->gfx9.pipe_interleave =
adev->gfx.config.gb_addr_config_fields.pipe_interleave_size;
tiling_info->gfx9.num_shader_engines =
adev->gfx.config.gb_addr_config_fields.num_se;
tiling_info->gfx9.max_compressed_frags =
adev->gfx.config.gb_addr_config_fields.max_compress_frags;
tiling_info->gfx9.num_rb_per_se =
adev->gfx.config.gb_addr_config_fields.num_rb_per_se;
tiling_info->gfx9.shaderEnable = 1;
if (adev->asic_type == CHIP_SIENNA_CICHLID ||
adev->asic_type == CHIP_NAVY_FLOUNDER ||
adev->asic_type == CHIP_DIMGREY_CAVEFISH ||
adev->asic_type == CHIP_BEIGE_GOBY ||
adev->asic_type == CHIP_YELLOW_CARP ||
adev->asic_type == CHIP_VANGOGH)
tiling_info->gfx9.num_pkrs = adev->gfx.config.gb_addr_config_fields.num_pkrs;
}
static int
validate_dcc(struct amdgpu_device *adev,
const enum surface_pixel_format format,
const enum dc_rotation_angle rotation,
const union dc_tiling_info *tiling_info,
const struct dc_plane_dcc_param *dcc,
const struct dc_plane_address *address,
const struct plane_size *plane_size)
{
struct dc *dc = adev->dm.dc;
struct dc_dcc_surface_param input;
struct dc_surface_dcc_cap output;
memset(&input, 0, sizeof(input));
memset(&output, 0, sizeof(output));
if (!dcc->enable)
return 0;
if (format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN ||
!dc->cap_funcs.get_dcc_compression_cap)
return -EINVAL;
input.format = format;
input.surface_size.width = plane_size->surface_size.width;
input.surface_size.height = plane_size->surface_size.height;
input.swizzle_mode = tiling_info->gfx9.swizzle;
if (rotation == ROTATION_ANGLE_0 || rotation == ROTATION_ANGLE_180)
input.scan = SCAN_DIRECTION_HORIZONTAL;
else if (rotation == ROTATION_ANGLE_90 || rotation == ROTATION_ANGLE_270)
input.scan = SCAN_DIRECTION_VERTICAL;
if (!dc->cap_funcs.get_dcc_compression_cap(dc, &input, &output))
return -EINVAL;
if (!output.capable)
return -EINVAL;
if (dcc->independent_64b_blks == 0 &&
output.grph.rgb.independent_64b_blks != 0)
return -EINVAL;
return 0;
}
static bool
modifier_has_dcc(uint64_t modifier)
{
return IS_AMD_FMT_MOD(modifier) && AMD_FMT_MOD_GET(DCC, modifier);
}
static unsigned
modifier_gfx9_swizzle_mode(uint64_t modifier)
{
if (modifier == DRM_FORMAT_MOD_LINEAR)
return 0;
return AMD_FMT_MOD_GET(TILE, modifier);
}
static const struct drm_format_info *
amd_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
{
return amdgpu_lookup_format_info(cmd->pixel_format, cmd->modifier[0]);
}
static void
fill_gfx9_tiling_info_from_modifier(const struct amdgpu_device *adev,
union dc_tiling_info *tiling_info,
uint64_t modifier)
{
unsigned int mod_bank_xor_bits = AMD_FMT_MOD_GET(BANK_XOR_BITS, modifier);
unsigned int mod_pipe_xor_bits = AMD_FMT_MOD_GET(PIPE_XOR_BITS, modifier);
unsigned int pkrs_log2 = AMD_FMT_MOD_GET(PACKERS, modifier);
unsigned int pipes_log2 = min(4u, mod_pipe_xor_bits);
fill_gfx9_tiling_info_from_device(adev, tiling_info);
if (!IS_AMD_FMT_MOD(modifier))
return;
tiling_info->gfx9.num_pipes = 1u << pipes_log2;
tiling_info->gfx9.num_shader_engines = 1u << (mod_pipe_xor_bits - pipes_log2);
if (adev->family >= AMDGPU_FAMILY_NV) {
tiling_info->gfx9.num_pkrs = 1u << pkrs_log2;
} else {
tiling_info->gfx9.num_banks = 1u << mod_bank_xor_bits;
/* for DCC we know it isn't rb aligned, so rb_per_se doesn't matter. */
}
}
enum dm_micro_swizzle {
MICRO_SWIZZLE_Z = 0,
MICRO_SWIZZLE_S = 1,
MICRO_SWIZZLE_D = 2,
MICRO_SWIZZLE_R = 3
};
static bool dm_plane_format_mod_supported(struct drm_plane *plane,
uint32_t format,
uint64_t modifier)
{
struct amdgpu_device *adev = drm_to_adev(plane->dev);
const struct drm_format_info *info = drm_format_info(format);
int i;
enum dm_micro_swizzle microtile = modifier_gfx9_swizzle_mode(modifier) & 3;
if (!info)
return false;
/*
* We always have to allow these modifiers:
* 1. Core DRM checks for LINEAR support if userspace does not provide modifiers.
* 2. Not passing any modifiers is the same as explicitly passing INVALID.
*/
if (modifier == DRM_FORMAT_MOD_LINEAR ||
modifier == DRM_FORMAT_MOD_INVALID) {
return true;
}
/* Check that the modifier is on the list of the plane's supported modifiers. */
for (i = 0; i < plane->modifier_count; i++) {
if (modifier == plane->modifiers[i])
break;
}
if (i == plane->modifier_count)
return false;
/*
* For D swizzle the canonical modifier depends on the bpp, so check
* it here.
*/
if (AMD_FMT_MOD_GET(TILE_VERSION, modifier) == AMD_FMT_MOD_TILE_VER_GFX9 &&
adev->family >= AMDGPU_FAMILY_NV) {
if (microtile == MICRO_SWIZZLE_D && info->cpp[0] == 4)
return false;
}
if (adev->family >= AMDGPU_FAMILY_RV && microtile == MICRO_SWIZZLE_D &&
info->cpp[0] < 8)
return false;
if (modifier_has_dcc(modifier)) {
/* Per radeonsi comments 16/64 bpp are more complicated. */
if (info->cpp[0] != 4)
return false;
/* We support multi-planar formats, but not when combined with
* additional DCC metadata planes. */
if (info->num_planes > 1)
return false;
}
return true;
}
static void
add_modifier(uint64_t **mods, uint64_t *size, uint64_t *cap, uint64_t mod)
{
if (!*mods)
return;
if (*cap - *size < 1) {
uint64_t new_cap = *cap * 2;
uint64_t *new_mods = kmalloc(new_cap * sizeof(uint64_t), GFP_KERNEL);
if (!new_mods) {
kfree(*mods);
*mods = NULL;
return;
}
memcpy(new_mods, *mods, sizeof(uint64_t) * *size);
kfree(*mods);
*mods = new_mods;
*cap = new_cap;
}
(*mods)[*size] = mod;
*size += 1;
}
static void
add_gfx9_modifiers(const struct amdgpu_device *adev,
uint64_t **mods, uint64_t *size, uint64_t *capacity)
{
int pipes = ilog2(adev->gfx.config.gb_addr_config_fields.num_pipes);
int pipe_xor_bits = min(8, pipes +
ilog2(adev->gfx.config.gb_addr_config_fields.num_se));
int bank_xor_bits = min(8 - pipe_xor_bits,
ilog2(adev->gfx.config.gb_addr_config_fields.num_banks));
int rb = ilog2(adev->gfx.config.gb_addr_config_fields.num_se) +
ilog2(adev->gfx.config.gb_addr_config_fields.num_rb_per_se);
if (adev->family == AMDGPU_FAMILY_RV) {
/* Raven2 and later */
bool has_constant_encode = adev->asic_type > CHIP_RAVEN || adev->external_rev_id >= 0x81;
/*
* No _D DCC swizzles yet because we only allow 32bpp, which
* doesn't support _D on DCN
*/
if (has_constant_encode) {
add_modifier(mods, size, capacity, AMD_FMT_MOD |
AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_S_X) |
AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9) |
AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) |
AMD_FMT_MOD_SET(BANK_XOR_BITS, bank_xor_bits) |
AMD_FMT_MOD_SET(DCC, 1) |
AMD_FMT_MOD_SET(DCC_INDEPENDENT_64B, 1) |
AMD_FMT_MOD_SET(DCC_MAX_COMPRESSED_BLOCK, AMD_FMT_MOD_DCC_BLOCK_64B) |
AMD_FMT_MOD_SET(DCC_CONSTANT_ENCODE, 1));
}
add_modifier(mods, size, capacity, AMD_FMT_MOD |
AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_S_X) |
AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9) |
AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) |
AMD_FMT_MOD_SET(BANK_XOR_BITS, bank_xor_bits) |
AMD_FMT_MOD_SET(DCC, 1) |
AMD_FMT_MOD_SET(DCC_INDEPENDENT_64B, 1) |
AMD_FMT_MOD_SET(DCC_MAX_COMPRESSED_BLOCK, AMD_FMT_MOD_DCC_BLOCK_64B) |
AMD_FMT_MOD_SET(DCC_CONSTANT_ENCODE, 0));
if (has_constant_encode) {
add_modifier(mods, size, capacity, AMD_FMT_MOD |
AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_S_X) |
AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9) |
AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) |
AMD_FMT_MOD_SET(BANK_XOR_BITS, bank_xor_bits) |
AMD_FMT_MOD_SET(DCC, 1) |
AMD_FMT_MOD_SET(DCC_RETILE, 1) |
AMD_FMT_MOD_SET(DCC_INDEPENDENT_64B, 1) |
AMD_FMT_MOD_SET(DCC_MAX_COMPRESSED_BLOCK, AMD_FMT_MOD_DCC_BLOCK_64B) |
AMD_FMT_MOD_SET(DCC_CONSTANT_ENCODE, 1) |
AMD_FMT_MOD_SET(RB, rb) |
AMD_FMT_MOD_SET(PIPE, pipes));
}
add_modifier(mods, size, capacity, AMD_FMT_MOD |
AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_S_X) |
AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9) |
AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) |
AMD_FMT_MOD_SET(BANK_XOR_BITS, bank_xor_bits) |
AMD_FMT_MOD_SET(DCC, 1) |
AMD_FMT_MOD_SET(DCC_RETILE, 1) |
AMD_FMT_MOD_SET(DCC_INDEPENDENT_64B, 1) |
AMD_FMT_MOD_SET(DCC_MAX_COMPRESSED_BLOCK, AMD_FMT_MOD_DCC_BLOCK_64B) |
AMD_FMT_MOD_SET(DCC_CONSTANT_ENCODE, 0) |
AMD_FMT_MOD_SET(RB, rb) |
AMD_FMT_MOD_SET(PIPE, pipes));
}
/*
* Only supported for 64bpp on Raven, will be filtered on format in
* dm_plane_format_mod_supported.
*/
add_modifier(mods, size, capacity, AMD_FMT_MOD |
AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_D_X) |
AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9) |
AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) |
AMD_FMT_MOD_SET(BANK_XOR_BITS, bank_xor_bits));
if (adev->family == AMDGPU_FAMILY_RV) {
add_modifier(mods, size, capacity, AMD_FMT_MOD |
AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_S_X) |
AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9) |
AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) |
AMD_FMT_MOD_SET(BANK_XOR_BITS, bank_xor_bits));
}
/*
* Only supported for 64bpp on Raven, will be filtered on format in
* dm_plane_format_mod_supported.
*/
add_modifier(mods, size, capacity, AMD_FMT_MOD |
AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_D) |
AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9));
if (adev->family == AMDGPU_FAMILY_RV) {
add_modifier(mods, size, capacity, AMD_FMT_MOD |
AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_S) |
AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9));
}
}
static void
add_gfx10_1_modifiers(const struct amdgpu_device *adev,
uint64_t **mods, uint64_t *size, uint64_t *capacity)
{
int pipe_xor_bits = ilog2(adev->gfx.config.gb_addr_config_fields.num_pipes);
add_modifier(mods, size, capacity, AMD_FMT_MOD |
AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_R_X) |
AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX10) |
AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) |
AMD_FMT_MOD_SET(DCC, 1) |
AMD_FMT_MOD_SET(DCC_CONSTANT_ENCODE, 1) |
AMD_FMT_MOD_SET(DCC_INDEPENDENT_64B, 1) |
AMD_FMT_MOD_SET(DCC_MAX_COMPRESSED_BLOCK, AMD_FMT_MOD_DCC_BLOCK_64B));
add_modifier(mods, size, capacity, AMD_FMT_MOD |
AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_R_X) |
AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX10) |
AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) |
AMD_FMT_MOD_SET(DCC, 1) |
AMD_FMT_MOD_SET(DCC_RETILE, 1) |
AMD_FMT_MOD_SET(DCC_CONSTANT_ENCODE, 1) |
AMD_FMT_MOD_SET(DCC_INDEPENDENT_64B, 1) |
AMD_FMT_MOD_SET(DCC_MAX_COMPRESSED_BLOCK, AMD_FMT_MOD_DCC_BLOCK_64B));
add_modifier(mods, size, capacity, AMD_FMT_MOD |
AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_R_X) |
AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX10) |
AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits));
add_modifier(mods, size, capacity, AMD_FMT_MOD |
AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_S_X) |
AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX10) |
AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits));
/* Only supported for 64bpp, will be filtered in dm_plane_format_mod_supported */
add_modifier(mods, size, capacity, AMD_FMT_MOD |
AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_D) |
AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9));
add_modifier(mods, size, capacity, AMD_FMT_MOD |
AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_S) |
AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9));
}
static void
add_gfx10_3_modifiers(const struct amdgpu_device *adev,
uint64_t **mods, uint64_t *size, uint64_t *capacity)
{
int pipe_xor_bits = ilog2(adev->gfx.config.gb_addr_config_fields.num_pipes);
int pkrs = ilog2(adev->gfx.config.gb_addr_config_fields.num_pkrs);
add_modifier(mods, size, capacity, AMD_FMT_MOD |
AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_R_X) |
AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS) |
AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) |
AMD_FMT_MOD_SET(PACKERS, pkrs) |
AMD_FMT_MOD_SET(DCC, 1) |
AMD_FMT_MOD_SET(DCC_CONSTANT_ENCODE, 1) |
AMD_FMT_MOD_SET(DCC_INDEPENDENT_64B, 1) |
AMD_FMT_MOD_SET(DCC_INDEPENDENT_128B, 1) |
AMD_FMT_MOD_SET(DCC_MAX_COMPRESSED_BLOCK, AMD_FMT_MOD_DCC_BLOCK_64B));
add_modifier(mods, size, capacity, AMD_FMT_MOD |
AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_R_X) |
AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS) |
AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) |
AMD_FMT_MOD_SET(PACKERS, pkrs) |
AMD_FMT_MOD_SET(DCC, 1) |
AMD_FMT_MOD_SET(DCC_RETILE, 1) |
AMD_FMT_MOD_SET(DCC_CONSTANT_ENCODE, 1) |
AMD_FMT_MOD_SET(DCC_INDEPENDENT_64B, 1) |
AMD_FMT_MOD_SET(DCC_INDEPENDENT_128B, 1) |
AMD_FMT_MOD_SET(DCC_MAX_COMPRESSED_BLOCK, AMD_FMT_MOD_DCC_BLOCK_64B));
add_modifier(mods, size, capacity, AMD_FMT_MOD |
AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_R_X) |
AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS) |
AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) |
AMD_FMT_MOD_SET(PACKERS, pkrs));
add_modifier(mods, size, capacity, AMD_FMT_MOD |
AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_S_X) |
AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS) |
AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) |
AMD_FMT_MOD_SET(PACKERS, pkrs));
/* Only supported for 64bpp, will be filtered in dm_plane_format_mod_supported */
add_modifier(mods, size, capacity, AMD_FMT_MOD |
AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_D) |
AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9));
add_modifier(mods, size, capacity, AMD_FMT_MOD |
AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_S) |
AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9));
}
static int
get_plane_modifiers(const struct amdgpu_device *adev, unsigned int plane_type, uint64_t **mods)
{
uint64_t size = 0, capacity = 128;
*mods = NULL;
/* We have not hooked up any pre-GFX9 modifiers. */
if (adev->family < AMDGPU_FAMILY_AI)
return 0;
*mods = kmalloc(capacity * sizeof(uint64_t), GFP_KERNEL);
if (plane_type == DRM_PLANE_TYPE_CURSOR) {
add_modifier(mods, &size, &capacity, DRM_FORMAT_MOD_LINEAR);
add_modifier(mods, &size, &capacity, DRM_FORMAT_MOD_INVALID);
return *mods ? 0 : -ENOMEM;
}
switch (adev->family) {
case AMDGPU_FAMILY_AI:
case AMDGPU_FAMILY_RV:
add_gfx9_modifiers(adev, mods, &size, &capacity);
break;
case AMDGPU_FAMILY_NV:
case AMDGPU_FAMILY_VGH:
case AMDGPU_FAMILY_YC:
if (adev->asic_type >= CHIP_SIENNA_CICHLID)
add_gfx10_3_modifiers(adev, mods, &size, &capacity);
else
add_gfx10_1_modifiers(adev, mods, &size, &capacity);
break;
}
add_modifier(mods, &size, &capacity, DRM_FORMAT_MOD_LINEAR);
/* INVALID marks the end of the list. */
add_modifier(mods, &size, &capacity, DRM_FORMAT_MOD_INVALID);
if (!*mods)
return -ENOMEM;
return 0;
}
static int
fill_gfx9_plane_attributes_from_modifiers(struct amdgpu_device *adev,
const struct amdgpu_framebuffer *afb,
const enum surface_pixel_format format,
const enum dc_rotation_angle rotation,
const struct plane_size *plane_size,
union dc_tiling_info *tiling_info,
struct dc_plane_dcc_param *dcc,
struct dc_plane_address *address,
const bool force_disable_dcc)
{
const uint64_t modifier = afb->base.modifier;
int ret;
fill_gfx9_tiling_info_from_modifier(adev, tiling_info, modifier);
tiling_info->gfx9.swizzle = modifier_gfx9_swizzle_mode(modifier);
if (modifier_has_dcc(modifier) && !force_disable_dcc) {
uint64_t dcc_address = afb->address + afb->base.offsets[1];
dcc->enable = 1;
dcc->meta_pitch = afb->base.pitches[1];
dcc->independent_64b_blks = AMD_FMT_MOD_GET(DCC_INDEPENDENT_64B, modifier);
address->grph.meta_addr.low_part = lower_32_bits(dcc_address);
address->grph.meta_addr.high_part = upper_32_bits(dcc_address);
}
ret = validate_dcc(adev, format, rotation, tiling_info, dcc, address, plane_size);
if (ret)
return ret;
return 0;
}
static int
fill_plane_buffer_attributes(struct amdgpu_device *adev,
const struct amdgpu_framebuffer *afb,
const enum surface_pixel_format format,
const enum dc_rotation_angle rotation,
const uint64_t tiling_flags,
union dc_tiling_info *tiling_info,
struct plane_size *plane_size,
struct dc_plane_dcc_param *dcc,
struct dc_plane_address *address,
bool tmz_surface,
bool force_disable_dcc)
{
const struct drm_framebuffer *fb = &afb->base;
int ret;
memset(tiling_info, 0, sizeof(*tiling_info));
memset(plane_size, 0, sizeof(*plane_size));
memset(dcc, 0, sizeof(*dcc));
memset(address, 0, sizeof(*address));
address->tmz_surface = tmz_surface;
if (format < SURFACE_PIXEL_FORMAT_VIDEO_BEGIN) {
uint64_t addr = afb->address + fb->offsets[0];
plane_size->surface_size.x = 0;
plane_size->surface_size.y = 0;
plane_size->surface_size.width = fb->width;
plane_size->surface_size.height = fb->height;
plane_size->surface_pitch =
fb->pitches[0] / fb->format->cpp[0];
address->type = PLN_ADDR_TYPE_GRAPHICS;
address->grph.addr.low_part = lower_32_bits(addr);
address->grph.addr.high_part = upper_32_bits(addr);
} else if (format < SURFACE_PIXEL_FORMAT_INVALID) {
uint64_t luma_addr = afb->address + fb->offsets[0];
uint64_t chroma_addr = afb->address + fb->offsets[1];
plane_size->surface_size.x = 0;
plane_size->surface_size.y = 0;
plane_size->surface_size.width = fb->width;
plane_size->surface_size.height = fb->height;
plane_size->surface_pitch =
fb->pitches[0] / fb->format->cpp[0];
plane_size->chroma_size.x = 0;
plane_size->chroma_size.y = 0;
/* TODO: set these based on surface format */
plane_size->chroma_size.width = fb->width / 2;
plane_size->chroma_size.height = fb->height / 2;
plane_size->chroma_pitch =
fb->pitches[1] / fb->format->cpp[1];
address->type = PLN_ADDR_TYPE_VIDEO_PROGRESSIVE;
address->video_progressive.luma_addr.low_part =
lower_32_bits(luma_addr);
address->video_progressive.luma_addr.high_part =
upper_32_bits(luma_addr);
address->video_progressive.chroma_addr.low_part =
lower_32_bits(chroma_addr);
address->video_progressive.chroma_addr.high_part =
upper_32_bits(chroma_addr);
}
if (adev->family >= AMDGPU_FAMILY_AI) {
ret = fill_gfx9_plane_attributes_from_modifiers(adev, afb, format,
rotation, plane_size,
tiling_info, dcc,
address,
force_disable_dcc);
if (ret)
return ret;
} else {
fill_gfx8_tiling_info_from_flags(tiling_info, tiling_flags);
}
return 0;
}
static void
fill_blending_from_plane_state(const struct drm_plane_state *plane_state,
bool *per_pixel_alpha, bool *global_alpha,
int *global_alpha_value)
{
*per_pixel_alpha = false;
*global_alpha = false;
*global_alpha_value = 0xff;
if (plane_state->plane->type != DRM_PLANE_TYPE_OVERLAY)
return;
if (plane_state->pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) {
static const uint32_t alpha_formats[] = {
DRM_FORMAT_ARGB8888,
DRM_FORMAT_RGBA8888,
DRM_FORMAT_ABGR8888,
};
uint32_t format = plane_state->fb->format->format;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(alpha_formats); ++i) {
if (format == alpha_formats[i]) {
*per_pixel_alpha = true;
break;
}
}
}
if (plane_state->alpha < 0xffff) {
*global_alpha = true;
*global_alpha_value = plane_state->alpha >> 8;
}
}
static int
fill_plane_color_attributes(const struct drm_plane_state *plane_state,
const enum surface_pixel_format format,
enum dc_color_space *color_space)
{
bool full_range;
*color_space = COLOR_SPACE_SRGB;
/* DRM color properties only affect non-RGB formats. */
if (format < SURFACE_PIXEL_FORMAT_VIDEO_BEGIN)
return 0;
full_range = (plane_state->color_range == DRM_COLOR_YCBCR_FULL_RANGE);
switch (plane_state->color_encoding) {
case DRM_COLOR_YCBCR_BT601:
if (full_range)
*color_space = COLOR_SPACE_YCBCR601;
else
*color_space = COLOR_SPACE_YCBCR601_LIMITED;
break;
case DRM_COLOR_YCBCR_BT709:
if (full_range)
*color_space = COLOR_SPACE_YCBCR709;
else
*color_space = COLOR_SPACE_YCBCR709_LIMITED;
break;
case DRM_COLOR_YCBCR_BT2020:
if (full_range)
*color_space = COLOR_SPACE_2020_YCBCR;
else
return -EINVAL;
break;
default:
return -EINVAL;
}
return 0;
}
static int
fill_dc_plane_info_and_addr(struct amdgpu_device *adev,
const struct drm_plane_state *plane_state,
const uint64_t tiling_flags,
struct dc_plane_info *plane_info,
struct dc_plane_address *address,
bool tmz_surface,
bool force_disable_dcc)
{
const struct drm_framebuffer *fb = plane_state->fb;
const struct amdgpu_framebuffer *afb =
to_amdgpu_framebuffer(plane_state->fb);
int ret;
memset(plane_info, 0, sizeof(*plane_info));
switch (fb->format->format) {
case DRM_FORMAT_C8:
plane_info->format =
SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS;
break;
case DRM_FORMAT_RGB565:
plane_info->format = SURFACE_PIXEL_FORMAT_GRPH_RGB565;
break;
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
plane_info->format = SURFACE_PIXEL_FORMAT_GRPH_ARGB8888;
break;
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_ARGB2101010:
plane_info->format = SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010;
break;
case DRM_FORMAT_XBGR2101010:
case DRM_FORMAT_ABGR2101010:
plane_info->format = SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010;
break;
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
plane_info->format = SURFACE_PIXEL_FORMAT_GRPH_ABGR8888;
break;
case DRM_FORMAT_NV21:
plane_info->format = SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr;
break;
case DRM_FORMAT_NV12:
plane_info->format = SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb;
break;
case DRM_FORMAT_P010:
plane_info->format = SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb;
break;
case DRM_FORMAT_XRGB16161616F:
case DRM_FORMAT_ARGB16161616F:
plane_info->format = SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F;
break;
case DRM_FORMAT_XBGR16161616F:
case DRM_FORMAT_ABGR16161616F:
plane_info->format = SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F;
break;
case DRM_FORMAT_XRGB16161616:
case DRM_FORMAT_ARGB16161616:
plane_info->format = SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616;
break;
case DRM_FORMAT_XBGR16161616:
case DRM_FORMAT_ABGR16161616:
plane_info->format = SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616;
break;
default:
DRM_ERROR(
"Unsupported screen format %p4cc\n",
&fb->format->format);
return -EINVAL;
}
switch (plane_state->rotation & DRM_MODE_ROTATE_MASK) {
case DRM_MODE_ROTATE_0:
plane_info->rotation = ROTATION_ANGLE_0;
break;
case DRM_MODE_ROTATE_90:
plane_info->rotation = ROTATION_ANGLE_90;
break;
case DRM_MODE_ROTATE_180:
plane_info->rotation = ROTATION_ANGLE_180;
break;
case DRM_MODE_ROTATE_270:
plane_info->rotation = ROTATION_ANGLE_270;
break;
default:
plane_info->rotation = ROTATION_ANGLE_0;
break;
}
plane_info->visible = true;
plane_info->stereo_format = PLANE_STEREO_FORMAT_NONE;
plane_info->layer_index = 0;
ret = fill_plane_color_attributes(plane_state, plane_info->format,
&plane_info->color_space);
if (ret)
return ret;
ret = fill_plane_buffer_attributes(adev, afb, plane_info->format,
plane_info->rotation, tiling_flags,
&plane_info->tiling_info,
&plane_info->plane_size,
&plane_info->dcc, address, tmz_surface,
force_disable_dcc);
if (ret)
return ret;
fill_blending_from_plane_state(
plane_state, &plane_info->per_pixel_alpha,
&plane_info->global_alpha, &plane_info->global_alpha_value);
return 0;
}
static int fill_dc_plane_attributes(struct amdgpu_device *adev,
struct dc_plane_state *dc_plane_state,
struct drm_plane_state *plane_state,
struct drm_crtc_state *crtc_state)
{
struct dm_crtc_state *dm_crtc_state = to_dm_crtc_state(crtc_state);
struct amdgpu_framebuffer *afb = (struct amdgpu_framebuffer *)plane_state->fb;
struct dc_scaling_info scaling_info;
struct dc_plane_info plane_info;
int ret;
bool force_disable_dcc = false;
ret = fill_dc_scaling_info(plane_state, &scaling_info);
if (ret)
return ret;
dc_plane_state->src_rect = scaling_info.src_rect;
dc_plane_state->dst_rect = scaling_info.dst_rect;
dc_plane_state->clip_rect = scaling_info.clip_rect;
dc_plane_state->scaling_quality = scaling_info.scaling_quality;
force_disable_dcc = adev->asic_type == CHIP_RAVEN && adev->in_suspend;
ret = fill_dc_plane_info_and_addr(adev, plane_state,
afb->tiling_flags,
&plane_info,
&dc_plane_state->address,
afb->tmz_surface,
force_disable_dcc);
if (ret)
return ret;
dc_plane_state->format = plane_info.format;
dc_plane_state->color_space = plane_info.color_space;
dc_plane_state->format = plane_info.format;
dc_plane_state->plane_size = plane_info.plane_size;
dc_plane_state->rotation = plane_info.rotation;
dc_plane_state->horizontal_mirror = plane_info.horizontal_mirror;
dc_plane_state->stereo_format = plane_info.stereo_format;
dc_plane_state->tiling_info = plane_info.tiling_info;
dc_plane_state->visible = plane_info.visible;
dc_plane_state->per_pixel_alpha = plane_info.per_pixel_alpha;
dc_plane_state->global_alpha = plane_info.global_alpha;
dc_plane_state->global_alpha_value = plane_info.global_alpha_value;
dc_plane_state->dcc = plane_info.dcc;
dc_plane_state->layer_index = plane_info.layer_index; // Always returns 0
dc_plane_state->flip_int_enabled = true;
/*
* Always set input transfer function, since plane state is refreshed
* every time.
*/
ret = amdgpu_dm_update_plane_color_mgmt(dm_crtc_state, dc_plane_state);
if (ret)
return ret;
return 0;
}
static void update_stream_scaling_settings(const struct drm_display_mode *mode,
const struct dm_connector_state *dm_state,
struct dc_stream_state *stream)
{
enum amdgpu_rmx_type rmx_type;
struct rect src = { 0 }; /* viewport in composition space*/
struct rect dst = { 0 }; /* stream addressable area */
/* no mode. nothing to be done */
if (!mode)
return;
/* Full screen scaling by default */
src.width = mode->hdisplay;
src.height = mode->vdisplay;
dst.width = stream->timing.h_addressable;
dst.height = stream->timing.v_addressable;
if (dm_state) {
rmx_type = dm_state->scaling;
if (rmx_type == RMX_ASPECT || rmx_type == RMX_OFF) {
if (src.width * dst.height <
src.height * dst.width) {
/* height needs less upscaling/more downscaling */
dst.width = src.width *
dst.height / src.height;
} else {
/* width needs less upscaling/more downscaling */
dst.height = src.height *
dst.width / src.width;
}
} else if (rmx_type == RMX_CENTER) {
dst = src;
}
dst.x = (stream->timing.h_addressable - dst.width) / 2;
dst.y = (stream->timing.v_addressable - dst.height) / 2;
if (dm_state->underscan_enable) {
dst.x += dm_state->underscan_hborder / 2;
dst.y += dm_state->underscan_vborder / 2;
dst.width -= dm_state->underscan_hborder;
dst.height -= dm_state->underscan_vborder;
}
}
stream->src = src;
stream->dst = dst;
DRM_DEBUG_KMS("Destination Rectangle x:%d y:%d width:%d height:%d\n",
dst.x, dst.y, dst.width, dst.height);
}
static enum dc_color_depth
convert_color_depth_from_display_info(const struct drm_connector *connector,
bool is_y420, int requested_bpc)
{
uint8_t bpc;
if (is_y420) {
bpc = 8;
/* Cap display bpc based on HDMI 2.0 HF-VSDB */
if (connector->display_info.hdmi.y420_dc_modes & DRM_EDID_YCBCR420_DC_48)
bpc = 16;
else if (connector->display_info.hdmi.y420_dc_modes & DRM_EDID_YCBCR420_DC_36)
bpc = 12;
else if (connector->display_info.hdmi.y420_dc_modes & DRM_EDID_YCBCR420_DC_30)
bpc = 10;
} else {
bpc = (uint8_t)connector->display_info.bpc;
/* Assume 8 bpc by default if no bpc is specified. */
bpc = bpc ? bpc : 8;
}
if (requested_bpc > 0) {
/*
* Cap display bpc based on the user requested value.
*
* The value for state->max_bpc may not correctly updated
* depending on when the connector gets added to the state
* or if this was called outside of atomic check, so it
* can't be used directly.
*/
bpc = min_t(u8, bpc, requested_bpc);
/* Round down to the nearest even number. */
bpc = bpc - (bpc & 1);
}
switch (bpc) {
case 0:
/*
* Temporary Work around, DRM doesn't parse color depth for
* EDID revision before 1.4
* TODO: Fix edid parsing
*/
return COLOR_DEPTH_888;
case 6:
return COLOR_DEPTH_666;
case 8:
return COLOR_DEPTH_888;
case 10:
return COLOR_DEPTH_101010;
case 12:
return COLOR_DEPTH_121212;
case 14:
return COLOR_DEPTH_141414;
case 16:
return COLOR_DEPTH_161616;
default:
return COLOR_DEPTH_UNDEFINED;
}
}
static enum dc_aspect_ratio
get_aspect_ratio(const struct drm_display_mode *mode_in)
{
/* 1-1 mapping, since both enums follow the HDMI spec. */
return (enum dc_aspect_ratio) mode_in->picture_aspect_ratio;
}
static enum dc_color_space
get_output_color_space(const struct dc_crtc_timing *dc_crtc_timing)
{
enum dc_color_space color_space = COLOR_SPACE_SRGB;
switch (dc_crtc_timing->pixel_encoding) {
case PIXEL_ENCODING_YCBCR422:
case PIXEL_ENCODING_YCBCR444:
case PIXEL_ENCODING_YCBCR420:
{
/*
* 27030khz is the separation point between HDTV and SDTV
* according to HDMI spec, we use YCbCr709 and YCbCr601
* respectively
*/
if (dc_crtc_timing->pix_clk_100hz > 270300) {
if (dc_crtc_timing->flags.Y_ONLY)
color_space =
COLOR_SPACE_YCBCR709_LIMITED;
else
color_space = COLOR_SPACE_YCBCR709;
} else {
if (dc_crtc_timing->flags.Y_ONLY)
color_space =
COLOR_SPACE_YCBCR601_LIMITED;
else
color_space = COLOR_SPACE_YCBCR601;
}
}
break;
case PIXEL_ENCODING_RGB:
color_space = COLOR_SPACE_SRGB;
break;
default:
WARN_ON(1);
break;
}
return color_space;
}
static bool adjust_colour_depth_from_display_info(
struct dc_crtc_timing *timing_out,
const struct drm_display_info *info)
{
enum dc_color_depth depth = timing_out->display_color_depth;
int normalized_clk;
do {
normalized_clk = timing_out->pix_clk_100hz / 10;
/* YCbCr 4:2:0 requires additional adjustment of 1/2 */
if (timing_out->pixel_encoding == PIXEL_ENCODING_YCBCR420)
normalized_clk /= 2;
/* Adjusting pix clock following on HDMI spec based on colour depth */
switch (depth) {
case COLOR_DEPTH_888:
break;
case COLOR_DEPTH_101010:
normalized_clk = (normalized_clk * 30) / 24;
break;
case COLOR_DEPTH_121212:
normalized_clk = (normalized_clk * 36) / 24;
break;
case COLOR_DEPTH_161616:
normalized_clk = (normalized_clk * 48) / 24;
break;
default:
/* The above depths are the only ones valid for HDMI. */
return false;
}
if (normalized_clk <= info->max_tmds_clock) {
timing_out->display_color_depth = depth;
return true;
}
} while (--depth > COLOR_DEPTH_666);
return false;
}
static void fill_stream_properties_from_drm_display_mode(
struct dc_stream_state *stream,
const struct drm_display_mode *mode_in,
const struct drm_connector *connector,
const struct drm_connector_state *connector_state,
const struct dc_stream_state *old_stream,
int requested_bpc)
{
struct dc_crtc_timing *timing_out = &stream->timing;
const struct drm_display_info *info = &connector->display_info;
struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector);
struct hdmi_vendor_infoframe hv_frame;
struct hdmi_avi_infoframe avi_frame;
memset(&hv_frame, 0, sizeof(hv_frame));
memset(&avi_frame, 0, sizeof(avi_frame));
timing_out->h_border_left = 0;
timing_out->h_border_right = 0;
timing_out->v_border_top = 0;
timing_out->v_border_bottom = 0;
/* TODO: un-hardcode */
if (drm_mode_is_420_only(info, mode_in)
&& stream->signal == SIGNAL_TYPE_HDMI_TYPE_A)
timing_out->pixel_encoding = PIXEL_ENCODING_YCBCR420;
else if (drm_mode_is_420_also(info, mode_in)
&& aconnector->force_yuv420_output)
timing_out->pixel_encoding = PIXEL_ENCODING_YCBCR420;
else if ((connector->display_info.color_formats & DRM_COLOR_FORMAT_YCRCB444)
&& stream->signal == SIGNAL_TYPE_HDMI_TYPE_A)
timing_out->pixel_encoding = PIXEL_ENCODING_YCBCR444;
else
timing_out->pixel_encoding = PIXEL_ENCODING_RGB;
timing_out->timing_3d_format = TIMING_3D_FORMAT_NONE;
timing_out->display_color_depth = convert_color_depth_from_display_info(
connector,
(timing_out->pixel_encoding == PIXEL_ENCODING_YCBCR420),
requested_bpc);
timing_out->scan_type = SCANNING_TYPE_NODATA;
timing_out->hdmi_vic = 0;
if(old_stream) {
timing_out->vic = old_stream->timing.vic;
timing_out->flags.HSYNC_POSITIVE_POLARITY = old_stream->timing.flags.HSYNC_POSITIVE_POLARITY;
timing_out->flags.VSYNC_POSITIVE_POLARITY = old_stream->timing.flags.VSYNC_POSITIVE_POLARITY;
} else {
timing_out->vic = drm_match_cea_mode(mode_in);
if (mode_in->flags & DRM_MODE_FLAG_PHSYNC)
timing_out->flags.HSYNC_POSITIVE_POLARITY = 1;
if (mode_in->flags & DRM_MODE_FLAG_PVSYNC)
timing_out->flags.VSYNC_POSITIVE_POLARITY = 1;
}
if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A) {
drm_hdmi_avi_infoframe_from_display_mode(&avi_frame, (struct drm_connector *)connector, mode_in);
timing_out->vic = avi_frame.video_code;
drm_hdmi_vendor_infoframe_from_display_mode(&hv_frame, (struct drm_connector *)connector, mode_in);
timing_out->hdmi_vic = hv_frame.vic;
}
if (is_freesync_video_mode(mode_in, aconnector)) {
timing_out->h_addressable = mode_in->hdisplay;
timing_out->h_total = mode_in->htotal;
timing_out->h_sync_width = mode_in->hsync_end - mode_in->hsync_start;
timing_out->h_front_porch = mode_in->hsync_start - mode_in->hdisplay;
timing_out->v_total = mode_in->vtotal;
timing_out->v_addressable = mode_in->vdisplay;
timing_out->v_front_porch = mode_in->vsync_start - mode_in->vdisplay;
timing_out->v_sync_width = mode_in->vsync_end - mode_in->vsync_start;
timing_out->pix_clk_100hz = mode_in->clock * 10;
} else {
timing_out->h_addressable = mode_in->crtc_hdisplay;
timing_out->h_total = mode_in->crtc_htotal;
timing_out->h_sync_width = mode_in->crtc_hsync_end - mode_in->crtc_hsync_start;
timing_out->h_front_porch = mode_in->crtc_hsync_start - mode_in->crtc_hdisplay;
timing_out->v_total = mode_in->crtc_vtotal;
timing_out->v_addressable = mode_in->crtc_vdisplay;
timing_out->v_front_porch = mode_in->crtc_vsync_start - mode_in->crtc_vdisplay;
timing_out->v_sync_width = mode_in->crtc_vsync_end - mode_in->crtc_vsync_start;
timing_out->pix_clk_100hz = mode_in->crtc_clock * 10;
}
timing_out->aspect_ratio = get_aspect_ratio(mode_in);
stream->output_color_space = get_output_color_space(timing_out);
stream->out_transfer_func->type = TF_TYPE_PREDEFINED;
stream->out_transfer_func->tf = TRANSFER_FUNCTION_SRGB;
if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A) {
if (!adjust_colour_depth_from_display_info(timing_out, info) &&
drm_mode_is_420_also(info, mode_in) &&
timing_out->pixel_encoding != PIXEL_ENCODING_YCBCR420) {
timing_out->pixel_encoding = PIXEL_ENCODING_YCBCR420;
adjust_colour_depth_from_display_info(timing_out, info);
}
}
}
static void fill_audio_info(struct audio_info *audio_info,
const struct drm_connector *drm_connector,
const struct dc_sink *dc_sink)
{
int i = 0;
int cea_revision = 0;
const struct dc_edid_caps *edid_caps = &dc_sink->edid_caps;
audio_info->manufacture_id = edid_caps->manufacturer_id;
audio_info->product_id = edid_caps->product_id;
cea_revision = drm_connector->display_info.cea_rev;
strscpy(audio_info->display_name,
edid_caps->display_name,
AUDIO_INFO_DISPLAY_NAME_SIZE_IN_CHARS);
if (cea_revision >= 3) {
audio_info->mode_count = edid_caps->audio_mode_count;
for (i = 0; i < audio_info->mode_count; ++i) {
audio_info->modes[i].format_code =
(enum audio_format_code)
(edid_caps->audio_modes[i].format_code);
audio_info->modes[i].channel_count =
edid_caps->audio_modes[i].channel_count;
audio_info->modes[i].sample_rates.all =
edid_caps->audio_modes[i].sample_rate;
audio_info->modes[i].sample_size =
edid_caps->audio_modes[i].sample_size;
}
}
audio_info->flags.all = edid_caps->speaker_flags;
/* TODO: We only check for the progressive mode, check for interlace mode too */
if (drm_connector->latency_present[0]) {
audio_info->video_latency = drm_connector->video_latency[0];
audio_info->audio_latency = drm_connector->audio_latency[0];
}
/* TODO: For DP, video and audio latency should be calculated from DPCD caps */
}
static void
copy_crtc_timing_for_drm_display_mode(const struct drm_display_mode *src_mode,
struct drm_display_mode *dst_mode)
{
dst_mode->crtc_hdisplay = src_mode->crtc_hdisplay;
dst_mode->crtc_vdisplay = src_mode->crtc_vdisplay;
dst_mode->crtc_clock = src_mode->crtc_clock;
dst_mode->crtc_hblank_start = src_mode->crtc_hblank_start;
dst_mode->crtc_hblank_end = src_mode->crtc_hblank_end;
dst_mode->crtc_hsync_start = src_mode->crtc_hsync_start;
dst_mode->crtc_hsync_end = src_mode->crtc_hsync_end;
dst_mode->crtc_htotal = src_mode->crtc_htotal;
dst_mode->crtc_hskew = src_mode->crtc_hskew;
dst_mode->crtc_vblank_start = src_mode->crtc_vblank_start;
dst_mode->crtc_vblank_end = src_mode->crtc_vblank_end;
dst_mode->crtc_vsync_start = src_mode->crtc_vsync_start;
dst_mode->crtc_vsync_end = src_mode->crtc_vsync_end;
dst_mode->crtc_vtotal = src_mode->crtc_vtotal;
}
static void
decide_crtc_timing_for_drm_display_mode(struct drm_display_mode *drm_mode,
const struct drm_display_mode *native_mode,
bool scale_enabled)
{
if (scale_enabled) {
copy_crtc_timing_for_drm_display_mode(native_mode, drm_mode);
} else if (native_mode->clock == drm_mode->clock &&
native_mode->htotal == drm_mode->htotal &&
native_mode->vtotal == drm_mode->vtotal) {
copy_crtc_timing_for_drm_display_mode(native_mode, drm_mode);
} else {
/* no scaling nor amdgpu inserted, no need to patch */
}
}
static struct dc_sink *
create_fake_sink(struct amdgpu_dm_connector *aconnector)
{
struct dc_sink_init_data sink_init_data = { 0 };
struct dc_sink *sink = NULL;
sink_init_data.link = aconnector->dc_link;
sink_init_data.sink_signal = aconnector->dc_link->connector_signal;
sink = dc_sink_create(&sink_init_data);
if (!sink) {
DRM_ERROR("Failed to create sink!\n");
return NULL;
}
sink->sink_signal = SIGNAL_TYPE_VIRTUAL;
return sink;
}
static void set_multisync_trigger_params(
struct dc_stream_state *stream)
{
struct dc_stream_state *master = NULL;
if (stream->triggered_crtc_reset.enabled) {
master = stream->triggered_crtc_reset.event_source;
stream->triggered_crtc_reset.event =
master->timing.flags.VSYNC_POSITIVE_POLARITY ?
CRTC_EVENT_VSYNC_RISING : CRTC_EVENT_VSYNC_FALLING;
stream->triggered_crtc_reset.delay = TRIGGER_DELAY_NEXT_PIXEL;
}
}
static void set_master_stream(struct dc_stream_state *stream_set[],
int stream_count)
{
int j, highest_rfr = 0, master_stream = 0;
for (j = 0; j < stream_count; j++) {
if (stream_set[j] && stream_set[j]->triggered_crtc_reset.enabled) {
int refresh_rate = 0;
refresh_rate = (stream_set[j]->timing.pix_clk_100hz*100)/
(stream_set[j]->timing.h_total*stream_set[j]->timing.v_total);
if (refresh_rate > highest_rfr) {
highest_rfr = refresh_rate;
master_stream = j;
}
}
}
for (j = 0; j < stream_count; j++) {
if (stream_set[j])
stream_set[j]->triggered_crtc_reset.event_source = stream_set[master_stream];
}
}
static void dm_enable_per_frame_crtc_master_sync(struct dc_state *context)
{
int i = 0;
struct dc_stream_state *stream;
if (context->stream_count < 2)
return;
for (i = 0; i < context->stream_count ; i++) {
if (!context->streams[i])
continue;
/*
* TODO: add a function to read AMD VSDB bits and set
* crtc_sync_master.multi_sync_enabled flag
* For now it's set to false
*/
}
set_master_stream(context->streams, context->stream_count);
for (i = 0; i < context->stream_count ; i++) {
stream = context->streams[i];
if (!stream)
continue;
set_multisync_trigger_params(stream);
}
}
#if defined(CONFIG_DRM_AMD_DC_DCN)
static void update_dsc_caps(struct amdgpu_dm_connector *aconnector,
struct dc_sink *sink, struct dc_stream_state *stream,
struct dsc_dec_dpcd_caps *dsc_caps)
{
stream->timing.flags.DSC = 0;
if (aconnector->dc_link && sink->sink_signal == SIGNAL_TYPE_DISPLAY_PORT) {
dc_dsc_parse_dsc_dpcd(aconnector->dc_link->ctx->dc,
aconnector->dc_link->dpcd_caps.dsc_caps.dsc_basic_caps.raw,
aconnector->dc_link->dpcd_caps.dsc_caps.dsc_branch_decoder_caps.raw,
dsc_caps);
}
}
static void apply_dsc_policy_for_stream(struct amdgpu_dm_connector *aconnector,
struct dc_sink *sink, struct dc_stream_state *stream,
struct dsc_dec_dpcd_caps *dsc_caps)
{
struct drm_connector *drm_connector = &aconnector->base;
uint32_t link_bandwidth_kbps;
link_bandwidth_kbps = dc_link_bandwidth_kbps(aconnector->dc_link,
dc_link_get_link_cap(aconnector->dc_link));
/* Set DSC policy according to dsc_clock_en */
dc_dsc_policy_set_enable_dsc_when_not_needed(
aconnector->dsc_settings.dsc_force_enable == DSC_CLK_FORCE_ENABLE);
if (aconnector->dc_link && sink->sink_signal == SIGNAL_TYPE_DISPLAY_PORT) {
if (dc_dsc_compute_config(aconnector->dc_link->ctx->dc->res_pool->dscs[0],
dsc_caps,
aconnector->dc_link->ctx->dc->debug.dsc_min_slice_height_override,
0,
link_bandwidth_kbps,
&stream->timing,
&stream->timing.dsc_cfg)) {
stream->timing.flags.DSC = 1;
DRM_DEBUG_DRIVER("%s: [%s] DSC is selected from SST RX\n", __func__, drm_connector->name);
}
}
/* Overwrite the stream flag if DSC is enabled through debugfs */
if (aconnector->dsc_settings.dsc_force_enable == DSC_CLK_FORCE_ENABLE)
stream->timing.flags.DSC = 1;
if (stream->timing.flags.DSC && aconnector->dsc_settings.dsc_num_slices_h)
stream->timing.dsc_cfg.num_slices_h = aconnector->dsc_settings.dsc_num_slices_h;
if (stream->timing.flags.DSC && aconnector->dsc_settings.dsc_num_slices_v)
stream->timing.dsc_cfg.num_slices_v = aconnector->dsc_settings.dsc_num_slices_v;
if (stream->timing.flags.DSC && aconnector->dsc_settings.dsc_bits_per_pixel)
stream->timing.dsc_cfg.bits_per_pixel = aconnector->dsc_settings.dsc_bits_per_pixel;
}
#endif
/**
* DOC: FreeSync Video
*
* When a userspace application wants to play a video, the content follows a
* standard format definition that usually specifies the FPS for that format.
* The below list illustrates some video format and the expected FPS,
* respectively:
*
* - TV/NTSC (23.976 FPS)
* - Cinema (24 FPS)
* - TV/PAL (25 FPS)
* - TV/NTSC (29.97 FPS)
* - TV/NTSC (30 FPS)
* - Cinema HFR (48 FPS)
* - TV/PAL (50 FPS)
* - Commonly used (60 FPS)
* - Multiples of 24 (48,72,96 FPS)
*
* The list of standards video format is not huge and can be added to the
* connector modeset list beforehand. With that, userspace can leverage
* FreeSync to extends the front porch in order to attain the target refresh
* rate. Such a switch will happen seamlessly, without screen blanking or
* reprogramming of the output in any other way. If the userspace requests a
* modesetting change compatible with FreeSync modes that only differ in the
* refresh rate, DC will skip the full update and avoid blink during the
* transition. For example, the video player can change the modesetting from
* 60Hz to 30Hz for playing TV/NTSC content when it goes full screen without
* causing any display blink. This same concept can be applied to a mode
* setting change.
*/
static struct drm_display_mode *
get_highest_refresh_rate_mode(struct amdgpu_dm_connector *aconnector,
bool use_probed_modes)
{
struct drm_display_mode *m, *m_pref = NULL;
u16 current_refresh, highest_refresh;
struct list_head *list_head = use_probed_modes ?
&aconnector->base.probed_modes :
&aconnector->base.modes;
if (aconnector->freesync_vid_base.clock != 0)
return &aconnector->freesync_vid_base;
/* Find the preferred mode */
list_for_each_entry (m, list_head, head) {
if (m->type & DRM_MODE_TYPE_PREFERRED) {
m_pref = m;
break;
}
}
if (!m_pref) {
/* Probably an EDID with no preferred mode. Fallback to first entry */
m_pref = list_first_entry_or_null(
&aconnector->base.modes, struct drm_display_mode, head);
if (!m_pref) {
DRM_DEBUG_DRIVER("No preferred mode found in EDID\n");
return NULL;
}
}
highest_refresh = drm_mode_vrefresh(m_pref);
/*
* Find the mode with highest refresh rate with same resolution.
* For some monitors, preferred mode is not the mode with highest
* supported refresh rate.
*/
list_for_each_entry (m, list_head, head) {
current_refresh = drm_mode_vrefresh(m);
if (m->hdisplay == m_pref->hdisplay &&
m->vdisplay == m_pref->vdisplay &&
highest_refresh < current_refresh) {
highest_refresh = current_refresh;
m_pref = m;
}
}
aconnector->freesync_vid_base = *m_pref;
return m_pref;
}
static bool is_freesync_video_mode(const struct drm_display_mode *mode,
struct amdgpu_dm_connector *aconnector)
{
struct drm_display_mode *high_mode;
int timing_diff;
high_mode = get_highest_refresh_rate_mode(aconnector, false);
if (!high_mode || !mode)
return false;
timing_diff = high_mode->vtotal - mode->vtotal;
if (high_mode->clock == 0 || high_mode->clock != mode->clock ||
high_mode->hdisplay != mode->hdisplay ||
high_mode->vdisplay != mode->vdisplay ||
high_mode->hsync_start != mode->hsync_start ||
high_mode->hsync_end != mode->hsync_end ||
high_mode->htotal != mode->htotal ||
high_mode->hskew != mode->hskew ||
high_mode->vscan != mode->vscan ||
high_mode->vsync_start - mode->vsync_start != timing_diff ||
high_mode->vsync_end - mode->vsync_end != timing_diff)
return false;
else
return true;
}
static struct dc_stream_state *
create_stream_for_sink(struct amdgpu_dm_connector *aconnector,
const struct drm_display_mode *drm_mode,
const struct dm_connector_state *dm_state,
const struct dc_stream_state *old_stream,
int requested_bpc)
{
struct drm_display_mode *preferred_mode = NULL;
struct drm_connector *drm_connector;
const struct drm_connector_state *con_state =
dm_state ? &dm_state->base : NULL;
struct dc_stream_state *stream = NULL;
struct drm_display_mode mode = *drm_mode;
struct drm_display_mode saved_mode;
struct drm_display_mode *freesync_mode = NULL;
bool native_mode_found = false;
bool recalculate_timing = false;
bool scale = dm_state ? (dm_state->scaling != RMX_OFF) : false;
int mode_refresh;
int preferred_refresh = 0;
#if defined(CONFIG_DRM_AMD_DC_DCN)
struct dsc_dec_dpcd_caps dsc_caps;
#endif
struct dc_sink *sink = NULL;
memset(&saved_mode, 0, sizeof(saved_mode));
if (aconnector == NULL) {
DRM_ERROR("aconnector is NULL!\n");
return stream;
}
drm_connector = &aconnector->base;
if (!aconnector->dc_sink) {
sink = create_fake_sink(aconnector);
if (!sink)
return stream;
} else {
sink = aconnector->dc_sink;
dc_sink_retain(sink);
}
stream = dc_create_stream_for_sink(sink);
if (stream == NULL) {
DRM_ERROR("Failed to create stream for sink!\n");
goto finish;
}
stream->dm_stream_context = aconnector;
stream->timing.flags.LTE_340MCSC_SCRAMBLE =
drm_connector->display_info.hdmi.scdc.scrambling.low_rates;
list_for_each_entry(preferred_mode, &aconnector->base.modes, head) {
/* Search for preferred mode */
if (preferred_mode->type & DRM_MODE_TYPE_PREFERRED) {
native_mode_found = true;
break;
}
}
if (!native_mode_found)
preferred_mode = list_first_entry_or_null(
&aconnector->base.modes,
struct drm_display_mode,
head);
mode_refresh = drm_mode_vrefresh(&mode);
if (preferred_mode == NULL) {
/*
* This may not be an error, the use case is when we have no
* usermode calls to reset and set mode upon hotplug. In this
* case, we call set mode ourselves to restore the previous mode
* and the modelist may not be filled in in time.
*/
DRM_DEBUG_DRIVER("No preferred mode found\n");
} else {
recalculate_timing = amdgpu_freesync_vid_mode &&
is_freesync_video_mode(&mode, aconnector);
if (recalculate_timing) {
freesync_mode = get_highest_refresh_rate_mode(aconnector, false);
saved_mode = mode;
mode = *freesync_mode;
} else {
decide_crtc_timing_for_drm_display_mode(
&mode, preferred_mode, scale);
preferred_refresh = drm_mode_vrefresh(preferred_mode);
}
}
if (recalculate_timing)
drm_mode_set_crtcinfo(&saved_mode, 0);
else if (!dm_state)
drm_mode_set_crtcinfo(&mode, 0);
/*
* If scaling is enabled and refresh rate didn't change
* we copy the vic and polarities of the old timings
*/
if (!scale || mode_refresh != preferred_refresh)
fill_stream_properties_from_drm_display_mode(
stream, &mode, &aconnector->base, con_state, NULL,
requested_bpc);
else
fill_stream_properties_from_drm_display_mode(
stream, &mode, &aconnector->base, con_state, old_stream,
requested_bpc);
#if defined(CONFIG_DRM_AMD_DC_DCN)
/* SST DSC determination policy */
update_dsc_caps(aconnector, sink, stream, &dsc_caps);
if (aconnector->dsc_settings.dsc_force_enable != DSC_CLK_FORCE_DISABLE && dsc_caps.is_dsc_supported)
apply_dsc_policy_for_stream(aconnector, sink, stream, &dsc_caps);
#endif
update_stream_scaling_settings(&mode, dm_state, stream);
fill_audio_info(
&stream->audio_info,
drm_connector,
sink);
update_stream_signal(stream, sink);
if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A)
mod_build_hf_vsif_infopacket(stream, &stream->vsp_infopacket);
if (stream->link->psr_settings.psr_feature_enabled) {
//
// should decide stream support vsc sdp colorimetry capability
// before building vsc info packet
//
stream->use_vsc_sdp_for_colorimetry = false;
if (aconnector->dc_sink->sink_signal == SIGNAL_TYPE_DISPLAY_PORT_MST) {
stream->use_vsc_sdp_for_colorimetry =
aconnector->dc_sink->is_vsc_sdp_colorimetry_supported;
} else {
if (stream->link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED)
stream->use_vsc_sdp_for_colorimetry = true;
}
mod_build_vsc_infopacket(stream, &stream->vsc_infopacket);
aconnector->psr_skip_count = AMDGPU_DM_PSR_ENTRY_DELAY;
}
finish:
dc_sink_release(sink);
return stream;
}
static void amdgpu_dm_crtc_destroy(struct drm_crtc *crtc)
{
drm_crtc_cleanup(crtc);
kfree(crtc);
}
static void dm_crtc_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct dm_crtc_state *cur = to_dm_crtc_state(state);
/* TODO Destroy dc_stream objects are stream object is flattened */
if (cur->stream)
dc_stream_release(cur->stream);
__drm_atomic_helper_crtc_destroy_state(state);
kfree(state);
}
static void dm_crtc_reset_state(struct drm_crtc *crtc)
{
struct dm_crtc_state *state;
if (crtc->state)
dm_crtc_destroy_state(crtc, crtc->state);
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (WARN_ON(!state))
return;
__drm_atomic_helper_crtc_reset(crtc, &state->base);
}
static struct drm_crtc_state *
dm_crtc_duplicate_state(struct drm_crtc *crtc)
{
struct dm_crtc_state *state, *cur;
cur = to_dm_crtc_state(crtc->state);
if (WARN_ON(!crtc->state))
return NULL;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &state->base);
if (cur->stream) {
state->stream = cur->stream;
dc_stream_retain(state->stream);
}
state->active_planes = cur->active_planes;
state->vrr_infopacket = cur->vrr_infopacket;
state->abm_level = cur->abm_level;
state->vrr_supported = cur->vrr_supported;
state->freesync_config = cur->freesync_config;
state->cm_has_degamma = cur->cm_has_degamma;
state->cm_is_degamma_srgb = cur->cm_is_degamma_srgb;
/* TODO Duplicate dc_stream after objects are stream object is flattened */
return &state->base;
}
#ifdef CONFIG_DRM_AMD_SECURE_DISPLAY
static int amdgpu_dm_crtc_late_register(struct drm_crtc *crtc)
{
crtc_debugfs_init(crtc);
return 0;
}
#endif
static inline int dm_set_vupdate_irq(struct drm_crtc *crtc, bool enable)
{
enum dc_irq_source irq_source;
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc);
struct amdgpu_device *adev = drm_to_adev(crtc->dev);
int rc;
irq_source = IRQ_TYPE_VUPDATE + acrtc->otg_inst;
rc = dc_interrupt_set(adev->dm.dc, irq_source, enable) ? 0 : -EBUSY;
DRM_DEBUG_VBL("crtc %d - vupdate irq %sabling: r=%d\n",
acrtc->crtc_id, enable ? "en" : "dis", rc);
return rc;
}
static inline int dm_set_vblank(struct drm_crtc *crtc, bool enable)
{
enum dc_irq_source irq_source;
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc);
struct amdgpu_device *adev = drm_to_adev(crtc->dev);
struct dm_crtc_state *acrtc_state = to_dm_crtc_state(crtc->state);
#if defined(CONFIG_DRM_AMD_DC_DCN)
struct amdgpu_display_manager *dm = &adev->dm;
unsigned long flags;
#endif
int rc = 0;
if (enable) {
/* vblank irq on -> Only need vupdate irq in vrr mode */
if (amdgpu_dm_vrr_active(acrtc_state))
rc = dm_set_vupdate_irq(crtc, true);
} else {
/* vblank irq off -> vupdate irq off */
rc = dm_set_vupdate_irq(crtc, false);
}
if (rc)
return rc;
irq_source = IRQ_TYPE_VBLANK + acrtc->otg_inst;
if (!dc_interrupt_set(adev->dm.dc, irq_source, enable))
return -EBUSY;
if (amdgpu_in_reset(adev))
return 0;
#if defined(CONFIG_DRM_AMD_DC_DCN)
spin_lock_irqsave(&dm->vblank_lock, flags);
dm->vblank_workqueue->dm = dm;
dm->vblank_workqueue->otg_inst = acrtc->otg_inst;
dm->vblank_workqueue->enable = enable;
spin_unlock_irqrestore(&dm->vblank_lock, flags);
schedule_work(&dm->vblank_workqueue->mall_work);
#endif
return 0;
}
static int dm_enable_vblank(struct drm_crtc *crtc)
{
return dm_set_vblank(crtc, true);
}
static void dm_disable_vblank(struct drm_crtc *crtc)
{
dm_set_vblank(crtc, false);
}
/* Implemented only the options currently availible for the driver */
static const struct drm_crtc_funcs amdgpu_dm_crtc_funcs = {
.reset = dm_crtc_reset_state,
.destroy = amdgpu_dm_crtc_destroy,
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.atomic_duplicate_state = dm_crtc_duplicate_state,
.atomic_destroy_state = dm_crtc_destroy_state,
.set_crc_source = amdgpu_dm_crtc_set_crc_source,
.verify_crc_source = amdgpu_dm_crtc_verify_crc_source,
.get_crc_sources = amdgpu_dm_crtc_get_crc_sources,
.get_vblank_counter = amdgpu_get_vblank_counter_kms,
.enable_vblank = dm_enable_vblank,
.disable_vblank = dm_disable_vblank,
.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
#if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
.late_register = amdgpu_dm_crtc_late_register,
#endif
};
static enum drm_connector_status
amdgpu_dm_connector_detect(struct drm_connector *connector, bool force)
{
bool connected;
struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector);
/*
* Notes:
* 1. This interface is NOT called in context of HPD irq.
* 2. This interface *is called* in context of user-mode ioctl. Which
* makes it a bad place for *any* MST-related activity.
*/
if (aconnector->base.force == DRM_FORCE_UNSPECIFIED &&
!aconnector->fake_enable)
connected = (aconnector->dc_sink != NULL);
else
connected = (aconnector->base.force == DRM_FORCE_ON);
update_subconnector_property(aconnector);
return (connected ? connector_status_connected :
connector_status_disconnected);
}
int amdgpu_dm_connector_atomic_set_property(struct drm_connector *connector,
struct drm_connector_state *connector_state,
struct drm_property *property,
uint64_t val)
{
struct drm_device *dev = connector->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct dm_connector_state *dm_old_state =
to_dm_connector_state(connector->state);
struct dm_connector_state *dm_new_state =
to_dm_connector_state(connector_state);
int ret = -EINVAL;
if (property == dev->mode_config.scaling_mode_property) {
enum amdgpu_rmx_type rmx_type;
switch (val) {
case DRM_MODE_SCALE_CENTER:
rmx_type = RMX_CENTER;
break;
case DRM_MODE_SCALE_ASPECT:
rmx_type = RMX_ASPECT;
break;
case DRM_MODE_SCALE_FULLSCREEN:
rmx_type = RMX_FULL;
break;
case DRM_MODE_SCALE_NONE:
default:
rmx_type = RMX_OFF;
break;
}
if (dm_old_state->scaling == rmx_type)
return 0;
dm_new_state->scaling = rmx_type;
ret = 0;
} else if (property == adev->mode_info.underscan_hborder_property) {
dm_new_state->underscan_hborder = val;
ret = 0;
} else if (property == adev->mode_info.underscan_vborder_property) {
dm_new_state->underscan_vborder = val;
ret = 0;
} else if (property == adev->mode_info.underscan_property) {
dm_new_state->underscan_enable = val;
ret = 0;
} else if (property == adev->mode_info.abm_level_property) {
dm_new_state->abm_level = val;
ret = 0;
}
return ret;
}
int amdgpu_dm_connector_atomic_get_property(struct drm_connector *connector,
const struct drm_connector_state *state,
struct drm_property *property,
uint64_t *val)
{
struct drm_device *dev = connector->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct dm_connector_state *dm_state =
to_dm_connector_state(state);
int ret = -EINVAL;
if (property == dev->mode_config.scaling_mode_property) {
switch (dm_state->scaling) {
case RMX_CENTER:
*val = DRM_MODE_SCALE_CENTER;
break;
case RMX_ASPECT:
*val = DRM_MODE_SCALE_ASPECT;
break;
case RMX_FULL:
*val = DRM_MODE_SCALE_FULLSCREEN;
break;
case RMX_OFF:
default:
*val = DRM_MODE_SCALE_NONE;
break;
}
ret = 0;
} else if (property == adev->mode_info.underscan_hborder_property) {
*val = dm_state->underscan_hborder;
ret = 0;
} else if (property == adev->mode_info.underscan_vborder_property) {
*val = dm_state->underscan_vborder;
ret = 0;
} else if (property == adev->mode_info.underscan_property) {
*val = dm_state->underscan_enable;
ret = 0;
} else if (property == adev->mode_info.abm_level_property) {
*val = dm_state->abm_level;
ret = 0;
}
return ret;
}
static void amdgpu_dm_connector_unregister(struct drm_connector *connector)
{
struct amdgpu_dm_connector *amdgpu_dm_connector = to_amdgpu_dm_connector(connector);
drm_dp_aux_unregister(&amdgpu_dm_connector->dm_dp_aux.aux);
}
static void amdgpu_dm_connector_destroy(struct drm_connector *connector)
{
struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector);
const struct dc_link *link = aconnector->dc_link;
struct amdgpu_device *adev = drm_to_adev(connector->dev);
struct amdgpu_display_manager *dm = &adev->dm;
/*
* Call only if mst_mgr was iniitalized before since it's not done
* for all connector types.
*/
if (aconnector->mst_mgr.dev)
drm_dp_mst_topology_mgr_destroy(&aconnector->mst_mgr);
#if defined(CONFIG_BACKLIGHT_CLASS_DEVICE) ||\
defined(CONFIG_BACKLIGHT_CLASS_DEVICE_MODULE)
if ((link->connector_signal & (SIGNAL_TYPE_EDP | SIGNAL_TYPE_LVDS)) &&
link->type != dc_connection_none &&
dm->backlight_dev) {
backlight_device_unregister(dm->backlight_dev);
dm->backlight_dev = NULL;
}
#endif
if (aconnector->dc_em_sink)
dc_sink_release(aconnector->dc_em_sink);
aconnector->dc_em_sink = NULL;
if (aconnector->dc_sink)
dc_sink_release(aconnector->dc_sink);
aconnector->dc_sink = NULL;
drm_dp_cec_unregister_connector(&aconnector->dm_dp_aux.aux);
drm_connector_unregister(connector);
drm_connector_cleanup(connector);
if (aconnector->i2c) {
i2c_del_adapter(&aconnector->i2c->base);
kfree(aconnector->i2c);
}
kfree(aconnector->dm_dp_aux.aux.name);
kfree(connector);
}
void amdgpu_dm_connector_funcs_reset(struct drm_connector *connector)
{
struct dm_connector_state *state =
to_dm_connector_state(connector->state);
if (connector->state)
__drm_atomic_helper_connector_destroy_state(connector->state);
kfree(state);
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (state) {
state->scaling = RMX_OFF;
state->underscan_enable = false;
state->underscan_hborder = 0;
state->underscan_vborder = 0;
state->base.max_requested_bpc = 8;
state->vcpi_slots = 0;
state->pbn = 0;
if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
state->abm_level = amdgpu_dm_abm_level;
__drm_atomic_helper_connector_reset(connector, &state->base);
}
}
struct drm_connector_state *
amdgpu_dm_connector_atomic_duplicate_state(struct drm_connector *connector)
{
struct dm_connector_state *state =
to_dm_connector_state(connector->state);
struct dm_connector_state *new_state =
kmemdup(state, sizeof(*state), GFP_KERNEL);
if (!new_state)
return NULL;
__drm_atomic_helper_connector_duplicate_state(connector, &new_state->base);
new_state->freesync_capable = state->freesync_capable;
new_state->abm_level = state->abm_level;
new_state->scaling = state->scaling;
new_state->underscan_enable = state->underscan_enable;
new_state->underscan_hborder = state->underscan_hborder;
new_state->underscan_vborder = state->underscan_vborder;
new_state->vcpi_slots = state->vcpi_slots;
new_state->pbn = state->pbn;
return &new_state->base;
}
static int
amdgpu_dm_connector_late_register(struct drm_connector *connector)
{
struct amdgpu_dm_connector *amdgpu_dm_connector =
to_amdgpu_dm_connector(connector);
int r;
if ((connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort) ||
(connector->connector_type == DRM_MODE_CONNECTOR_eDP)) {
amdgpu_dm_connector->dm_dp_aux.aux.dev = connector->kdev;
r = drm_dp_aux_register(&amdgpu_dm_connector->dm_dp_aux.aux);
if (r)
return r;
}
#if defined(CONFIG_DEBUG_FS)
connector_debugfs_init(amdgpu_dm_connector);
#endif
return 0;
}
static const struct drm_connector_funcs amdgpu_dm_connector_funcs = {
.reset = amdgpu_dm_connector_funcs_reset,
.detect = amdgpu_dm_connector_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = amdgpu_dm_connector_destroy,
.atomic_duplicate_state = amdgpu_dm_connector_atomic_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
.atomic_set_property = amdgpu_dm_connector_atomic_set_property,
.atomic_get_property = amdgpu_dm_connector_atomic_get_property,
.late_register = amdgpu_dm_connector_late_register,
.early_unregister = amdgpu_dm_connector_unregister
};
static int get_modes(struct drm_connector *connector)
{
return amdgpu_dm_connector_get_modes(connector);
}
static void create_eml_sink(struct amdgpu_dm_connector *aconnector)
{
struct dc_sink_init_data init_params = {
.link = aconnector->dc_link,
.sink_signal = SIGNAL_TYPE_VIRTUAL
};
struct edid *edid;
if (!aconnector->base.edid_blob_ptr) {
DRM_ERROR("No EDID firmware found on connector: %s ,forcing to OFF!\n",
aconnector->base.name);
aconnector->base.force = DRM_FORCE_OFF;
aconnector->base.override_edid = false;
return;
}
edid = (struct edid *) aconnector->base.edid_blob_ptr->data;
aconnector->edid = edid;
aconnector->dc_em_sink = dc_link_add_remote_sink(
aconnector->dc_link,
(uint8_t *)edid,
(edid->extensions + 1) * EDID_LENGTH,
&init_params);
if (aconnector->base.force == DRM_FORCE_ON) {
aconnector->dc_sink = aconnector->dc_link->local_sink ?
aconnector->dc_link->local_sink :
aconnector->dc_em_sink;
dc_sink_retain(aconnector->dc_sink);
}
}
static void handle_edid_mgmt(struct amdgpu_dm_connector *aconnector)
{
struct dc_link *link = (struct dc_link *)aconnector->dc_link;
/*
* In case of headless boot with force on for DP managed connector
* Those settings have to be != 0 to get initial modeset
*/
if (link->connector_signal == SIGNAL_TYPE_DISPLAY_PORT) {
link->verified_link_cap.lane_count = LANE_COUNT_FOUR;
link->verified_link_cap.link_rate = LINK_RATE_HIGH2;
}
aconnector->base.override_edid = true;
create_eml_sink(aconnector);
}
static struct dc_stream_state *
create_validate_stream_for_sink(struct amdgpu_dm_connector *aconnector,
const struct drm_display_mode *drm_mode,
const struct dm_connector_state *dm_state,
const struct dc_stream_state *old_stream)
{
struct drm_connector *connector = &aconnector->base;
struct amdgpu_device *adev = drm_to_adev(connector->dev);
struct dc_stream_state *stream;
const struct drm_connector_state *drm_state = dm_state ? &dm_state->base : NULL;
int requested_bpc = drm_state ? drm_state->max_requested_bpc : 8;
enum dc_status dc_result = DC_OK;
do {
stream = create_stream_for_sink(aconnector, drm_mode,
dm_state, old_stream,
requested_bpc);
if (stream == NULL) {
DRM_ERROR("Failed to create stream for sink!\n");
break;
}
dc_result = dc_validate_stream(adev->dm.dc, stream);
if (dc_result != DC_OK) {
DRM_DEBUG_KMS("Mode %dx%d (clk %d) failed DC validation with error %d (%s)\n",
drm_mode->hdisplay,
drm_mode->vdisplay,
drm_mode->clock,
dc_result,
dc_status_to_str(dc_result));
dc_stream_release(stream);
stream = NULL;
requested_bpc -= 2; /* lower bpc to retry validation */
}
} while (stream == NULL && requested_bpc >= 6);
if (dc_result == DC_FAIL_ENC_VALIDATE && !aconnector->force_yuv420_output) {
DRM_DEBUG_KMS("Retry forcing YCbCr420 encoding\n");
aconnector->force_yuv420_output = true;
stream = create_validate_stream_for_sink(aconnector, drm_mode,
dm_state, old_stream);
aconnector->force_yuv420_output = false;
}
return stream;
}
enum drm_mode_status amdgpu_dm_connector_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
int result = MODE_ERROR;
struct dc_sink *dc_sink;
/* TODO: Unhardcode stream count */
struct dc_stream_state *stream;
struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector);
if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
(mode->flags & DRM_MODE_FLAG_DBLSCAN))
return result;
/*
* Only run this the first time mode_valid is called to initilialize
* EDID mgmt
*/
if (aconnector->base.force != DRM_FORCE_UNSPECIFIED &&
!aconnector->dc_em_sink)
handle_edid_mgmt(aconnector);
dc_sink = to_amdgpu_dm_connector(connector)->dc_sink;
if (dc_sink == NULL && aconnector->base.force != DRM_FORCE_ON_DIGITAL &&
aconnector->base.force != DRM_FORCE_ON) {
DRM_ERROR("dc_sink is NULL!\n");
goto fail;
}
stream = create_validate_stream_for_sink(aconnector, mode, NULL, NULL);
if (stream) {
dc_stream_release(stream);
result = MODE_OK;
}
fail:
/* TODO: error handling*/
return result;
}
static int fill_hdr_info_packet(const struct drm_connector_state *state,
struct dc_info_packet *out)
{
struct hdmi_drm_infoframe frame;
unsigned char buf[30]; /* 26 + 4 */
ssize_t len;
int ret, i;
memset(out, 0, sizeof(*out));
if (!state->hdr_output_metadata)
return 0;
ret = drm_hdmi_infoframe_set_hdr_metadata(&frame, state);
if (ret)
return ret;
len = hdmi_drm_infoframe_pack_only(&frame, buf, sizeof(buf));
if (len < 0)
return (int)len;
/* Static metadata is a fixed 26 bytes + 4 byte header. */
if (len != 30)
return -EINVAL;
/* Prepare the infopacket for DC. */
switch (state->connector->connector_type) {
case DRM_MODE_CONNECTOR_HDMIA:
out->hb0 = 0x87; /* type */
out->hb1 = 0x01; /* version */
out->hb2 = 0x1A; /* length */
out->sb[0] = buf[3]; /* checksum */
i = 1;
break;
case DRM_MODE_CONNECTOR_DisplayPort:
case DRM_MODE_CONNECTOR_eDP:
out->hb0 = 0x00; /* sdp id, zero */
out->hb1 = 0x87; /* type */
out->hb2 = 0x1D; /* payload len - 1 */
out->hb3 = (0x13 << 2); /* sdp version */
out->sb[0] = 0x01; /* version */
out->sb[1] = 0x1A; /* length */
i = 2;
break;
default:
return -EINVAL;
}
memcpy(&out->sb[i], &buf[4], 26);
out->valid = true;
print_hex_dump(KERN_DEBUG, "HDR SB:", DUMP_PREFIX_NONE, 16, 1, out->sb,
sizeof(out->sb), false);
return 0;
}
static int
amdgpu_dm_connector_atomic_check(struct drm_connector *conn,
struct drm_atomic_state *state)
{
struct drm_connector_state *new_con_state =
drm_atomic_get_new_connector_state(state, conn);
struct drm_connector_state *old_con_state =
drm_atomic_get_old_connector_state(state, conn);
struct drm_crtc *crtc = new_con_state->crtc;
struct drm_crtc_state *new_crtc_state;
int ret;
trace_amdgpu_dm_connector_atomic_check(new_con_state);
if (!crtc)
return 0;
if (!drm_connector_atomic_hdr_metadata_equal(old_con_state, new_con_state)) {
struct dc_info_packet hdr_infopacket;
ret = fill_hdr_info_packet(new_con_state, &hdr_infopacket);
if (ret)
return ret;
new_crtc_state = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(new_crtc_state))
return PTR_ERR(new_crtc_state);
/*
* DC considers the stream backends changed if the
* static metadata changes. Forcing the modeset also
* gives a simple way for userspace to switch from
* 8bpc to 10bpc when setting the metadata to enter
* or exit HDR.
*
* Changing the static metadata after it's been
* set is permissible, however. So only force a
* modeset if we're entering or exiting HDR.
*/
new_crtc_state->mode_changed =
!old_con_state->hdr_output_metadata ||
!new_con_state->hdr_output_metadata;
}
return 0;
}
static const struct drm_connector_helper_funcs
amdgpu_dm_connector_helper_funcs = {
/*
* If hotplugging a second bigger display in FB Con mode, bigger resolution
* modes will be filtered by drm_mode_validate_size(), and those modes
* are missing after user start lightdm. So we need to renew modes list.
* in get_modes call back, not just return the modes count
*/
.get_modes = get_modes,
.mode_valid = amdgpu_dm_connector_mode_valid,
.atomic_check = amdgpu_dm_connector_atomic_check,
};
static void dm_crtc_helper_disable(struct drm_crtc *crtc)
{
}
static int count_crtc_active_planes(struct drm_crtc_state *new_crtc_state)
{
struct drm_atomic_state *state = new_crtc_state->state;
struct drm_plane *plane;
int num_active = 0;
drm_for_each_plane_mask(plane, state->dev, new_crtc_state->plane_mask) {
struct drm_plane_state *new_plane_state;
/* Cursor planes are "fake". */
if (plane->type == DRM_PLANE_TYPE_CURSOR)
continue;
new_plane_state = drm_atomic_get_new_plane_state(state, plane);
if (!new_plane_state) {
/*
* The plane is enable on the CRTC and hasn't changed
* state. This means that it previously passed
* validation and is therefore enabled.
*/
num_active += 1;
continue;
}
/* We need a framebuffer to be considered enabled. */
num_active += (new_plane_state->fb != NULL);
}
return num_active;
}
static void dm_update_crtc_active_planes(struct drm_crtc *crtc,
struct drm_crtc_state *new_crtc_state)
{
struct dm_crtc_state *dm_new_crtc_state =
to_dm_crtc_state(new_crtc_state);
dm_new_crtc_state->active_planes = 0;
if (!dm_new_crtc_state->stream)
return;
dm_new_crtc_state->active_planes =
count_crtc_active_planes(new_crtc_state);
}
static int dm_crtc_helper_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
crtc);
struct amdgpu_device *adev = drm_to_adev(crtc->dev);
struct dc *dc = adev->dm.dc;
struct dm_crtc_state *dm_crtc_state = to_dm_crtc_state(crtc_state);
int ret = -EINVAL;
trace_amdgpu_dm_crtc_atomic_check(crtc_state);
dm_update_crtc_active_planes(crtc, crtc_state);
if (WARN_ON(unlikely(!dm_crtc_state->stream &&
modeset_required(crtc_state, NULL, dm_crtc_state->stream)))) {
return ret;
}
/*
* We require the primary plane to be enabled whenever the CRTC is, otherwise
* drm_mode_cursor_universal may end up trying to enable the cursor plane while all other
* planes are disabled, which is not supported by the hardware. And there is legacy
* userspace which stops using the HW cursor altogether in response to the resulting EINVAL.
*/
if (crtc_state->enable &&
!(crtc_state->plane_mask & drm_plane_mask(crtc->primary))) {
DRM_DEBUG_ATOMIC("Can't enable a CRTC without enabling the primary plane\n");
return -EINVAL;
}
/* In some use cases, like reset, no stream is attached */
if (!dm_crtc_state->stream)
return 0;
if (dc_validate_stream(dc, dm_crtc_state->stream) == DC_OK)
return 0;
DRM_DEBUG_ATOMIC("Failed DC stream validation\n");
return ret;
}
static bool dm_crtc_helper_mode_fixup(struct drm_crtc *crtc,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
return true;
}
static const struct drm_crtc_helper_funcs amdgpu_dm_crtc_helper_funcs = {
.disable = dm_crtc_helper_disable,
.atomic_check = dm_crtc_helper_atomic_check,
.mode_fixup = dm_crtc_helper_mode_fixup,
.get_scanout_position = amdgpu_crtc_get_scanout_position,
};
static void dm_encoder_helper_disable(struct drm_encoder *encoder)
{
}
static int convert_dc_color_depth_into_bpc (enum dc_color_depth display_color_depth)
{
switch (display_color_depth) {
case COLOR_DEPTH_666:
return 6;
case COLOR_DEPTH_888:
return 8;
case COLOR_DEPTH_101010:
return 10;
case COLOR_DEPTH_121212:
return 12;
case COLOR_DEPTH_141414:
return 14;
case COLOR_DEPTH_161616:
return 16;
default:
break;
}
return 0;
}
static int dm_encoder_helper_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct drm_atomic_state *state = crtc_state->state;
struct drm_connector *connector = conn_state->connector;
struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector);
struct dm_connector_state *dm_new_connector_state = to_dm_connector_state(conn_state);
const struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
struct drm_dp_mst_topology_mgr *mst_mgr;
struct drm_dp_mst_port *mst_port;
enum dc_color_depth color_depth;
int clock, bpp = 0;
bool is_y420 = false;
if (!aconnector->port || !aconnector->dc_sink)
return 0;
mst_port = aconnector->port;
mst_mgr = &aconnector->mst_port->mst_mgr;
if (!crtc_state->connectors_changed && !crtc_state->mode_changed)
return 0;
if (!state->duplicated) {
int max_bpc = conn_state->max_requested_bpc;
is_y420 = drm_mode_is_420_also(&connector->display_info, adjusted_mode) &&
aconnector->force_yuv420_output;
color_depth = convert_color_depth_from_display_info(connector,
is_y420,
max_bpc);
bpp = convert_dc_color_depth_into_bpc(color_depth) * 3;
clock = adjusted_mode->clock;
dm_new_connector_state->pbn = drm_dp_calc_pbn_mode(clock, bpp, false);
}
dm_new_connector_state->vcpi_slots = drm_dp_atomic_find_vcpi_slots(state,
mst_mgr,
mst_port,
dm_new_connector_state->pbn,
dm_mst_get_pbn_divider(aconnector->dc_link));
if (dm_new_connector_state->vcpi_slots < 0) {
DRM_DEBUG_ATOMIC("failed finding vcpi slots: %d\n", (int)dm_new_connector_state->vcpi_slots);
return dm_new_connector_state->vcpi_slots;
}
return 0;
}
const struct drm_encoder_helper_funcs amdgpu_dm_encoder_helper_funcs = {
.disable = dm_encoder_helper_disable,
.atomic_check = dm_encoder_helper_atomic_check
};
#if defined(CONFIG_DRM_AMD_DC_DCN)
static int dm_update_mst_vcpi_slots_for_dsc(struct drm_atomic_state *state,
struct dc_state *dc_state)
{
struct dc_stream_state *stream = NULL;
struct drm_connector *connector;
struct drm_connector_state *new_con_state;
struct amdgpu_dm_connector *aconnector;
struct dm_connector_state *dm_conn_state;
int i, j, clock, bpp;
int vcpi, pbn_div, pbn = 0;
for_each_new_connector_in_state(state, connector, new_con_state, i) {
aconnector = to_amdgpu_dm_connector(connector);
if (!aconnector->port)
continue;
if (!new_con_state || !new_con_state->crtc)
continue;
dm_conn_state = to_dm_connector_state(new_con_state);
for (j = 0; j < dc_state->stream_count; j++) {
stream = dc_state->streams[j];
if (!stream)
continue;
if ((struct amdgpu_dm_connector*)stream->dm_stream_context == aconnector)
break;
stream = NULL;
}
if (!stream)
continue;
if (stream->timing.flags.DSC != 1) {
drm_dp_mst_atomic_enable_dsc(state,
aconnector->port,
dm_conn_state->pbn,
0,
false);
continue;
}
pbn_div = dm_mst_get_pbn_divider(stream->link);
bpp = stream->timing.dsc_cfg.bits_per_pixel;
clock = stream->timing.pix_clk_100hz / 10;
pbn = drm_dp_calc_pbn_mode(clock, bpp, true);
vcpi = drm_dp_mst_atomic_enable_dsc(state,
aconnector->port,
pbn, pbn_div,
true);
if (vcpi < 0)
return vcpi;
dm_conn_state->pbn = pbn;
dm_conn_state->vcpi_slots = vcpi;
}
return 0;
}
#endif
static void dm_drm_plane_reset(struct drm_plane *plane)
{
struct dm_plane_state *amdgpu_state = NULL;
if (plane->state)
plane->funcs->atomic_destroy_state(plane, plane->state);
amdgpu_state = kzalloc(sizeof(*amdgpu_state), GFP_KERNEL);
WARN_ON(amdgpu_state == NULL);
if (amdgpu_state)
__drm_atomic_helper_plane_reset(plane, &amdgpu_state->base);
}
static struct drm_plane_state *
dm_drm_plane_duplicate_state(struct drm_plane *plane)
{
struct dm_plane_state *dm_plane_state, *old_dm_plane_state;
old_dm_plane_state = to_dm_plane_state(plane->state);
dm_plane_state = kzalloc(sizeof(*dm_plane_state), GFP_KERNEL);
if (!dm_plane_state)
return NULL;
__drm_atomic_helper_plane_duplicate_state(plane, &dm_plane_state->base);
if (old_dm_plane_state->dc_state) {
dm_plane_state->dc_state = old_dm_plane_state->dc_state;
dc_plane_state_retain(dm_plane_state->dc_state);
}
return &dm_plane_state->base;
}
static void dm_drm_plane_destroy_state(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct dm_plane_state *dm_plane_state = to_dm_plane_state(state);
if (dm_plane_state->dc_state)
dc_plane_state_release(dm_plane_state->dc_state);
drm_atomic_helper_plane_destroy_state(plane, state);
}
static const struct drm_plane_funcs dm_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.destroy = drm_primary_helper_destroy,
.reset = dm_drm_plane_reset,
.atomic_duplicate_state = dm_drm_plane_duplicate_state,
.atomic_destroy_state = dm_drm_plane_destroy_state,
.format_mod_supported = dm_plane_format_mod_supported,
};
static int dm_plane_helper_prepare_fb(struct drm_plane *plane,
struct drm_plane_state *new_state)
{
struct amdgpu_framebuffer *afb;
struct drm_gem_object *obj;
struct amdgpu_device *adev;
struct amdgpu_bo *rbo;
struct dm_plane_state *dm_plane_state_new, *dm_plane_state_old;
struct list_head list;
struct ttm_validate_buffer tv;
struct ww_acquire_ctx ticket;
uint32_t domain;
int r;
if (!new_state->fb) {
DRM_DEBUG_KMS("No FB bound\n");
return 0;
}
afb = to_amdgpu_framebuffer(new_state->fb);
obj = new_state->fb->obj[0];
rbo = gem_to_amdgpu_bo(obj);
adev = amdgpu_ttm_adev(rbo->tbo.bdev);
INIT_LIST_HEAD(&list);
tv.bo = &rbo->tbo;
tv.num_shared = 1;
list_add(&tv.head, &list);
r = ttm_eu_reserve_buffers(&ticket, &list, false, NULL);
if (r) {
dev_err(adev->dev, "fail to reserve bo (%d)\n", r);
return r;
}
if (plane->type != DRM_PLANE_TYPE_CURSOR)
domain = amdgpu_display_supported_domains(adev, rbo->flags);
else
domain = AMDGPU_GEM_DOMAIN_VRAM;
r = amdgpu_bo_pin(rbo, domain);
if (unlikely(r != 0)) {
if (r != -ERESTARTSYS)
DRM_ERROR("Failed to pin framebuffer with error %d\n", r);
ttm_eu_backoff_reservation(&ticket, &list);
return r;
}
r = amdgpu_ttm_alloc_gart(&rbo->tbo);
if (unlikely(r != 0)) {
amdgpu_bo_unpin(rbo);
ttm_eu_backoff_reservation(&ticket, &list);
DRM_ERROR("%p bind failed\n", rbo);
return r;
}
ttm_eu_backoff_reservation(&ticket, &list);
afb->address = amdgpu_bo_gpu_offset(rbo);
amdgpu_bo_ref(rbo);
/**
* We don't do surface updates on planes that have been newly created,
* but we also don't have the afb->address during atomic check.
*
* Fill in buffer attributes depending on the address here, but only on
* newly created planes since they're not being used by DC yet and this
* won't modify global state.
*/
dm_plane_state_old = to_dm_plane_state(plane->state);
dm_plane_state_new = to_dm_plane_state(new_state);
if (dm_plane_state_new->dc_state &&
dm_plane_state_old->dc_state != dm_plane_state_new->dc_state) {
struct dc_plane_state *plane_state =
dm_plane_state_new->dc_state;
bool force_disable_dcc = !plane_state->dcc.enable;
fill_plane_buffer_attributes(
adev, afb, plane_state->format, plane_state->rotation,
afb->tiling_flags,
&plane_state->tiling_info, &plane_state->plane_size,
&plane_state->dcc, &plane_state->address,
afb->tmz_surface, force_disable_dcc);
}
return 0;
}
static void dm_plane_helper_cleanup_fb(struct drm_plane *plane,
struct drm_plane_state *old_state)
{
struct amdgpu_bo *rbo;
int r;
if (!old_state->fb)
return;
rbo = gem_to_amdgpu_bo(old_state->fb->obj[0]);
r = amdgpu_bo_reserve(rbo, false);
if (unlikely(r)) {
DRM_ERROR("failed to reserve rbo before unpin\n");
return;
}
amdgpu_bo_unpin(rbo);
amdgpu_bo_unreserve(rbo);
amdgpu_bo_unref(&rbo);
}
static int dm_plane_helper_check_state(struct drm_plane_state *state,
struct drm_crtc_state *new_crtc_state)
{
struct drm_framebuffer *fb = state->fb;
int min_downscale, max_upscale;
int min_scale = 0;
int max_scale = INT_MAX;
/* Plane enabled? Validate viewport and get scaling factors from plane caps. */
if (fb && state->crtc) {
/* Validate viewport to cover the case when only the position changes */
if (state->plane->type != DRM_PLANE_TYPE_CURSOR) {
int viewport_width = state->crtc_w;
int viewport_height = state->crtc_h;
if (state->crtc_x < 0)
viewport_width += state->crtc_x;
else if (state->crtc_x + state->crtc_w > new_crtc_state->mode.crtc_hdisplay)
viewport_width = new_crtc_state->mode.crtc_hdisplay - state->crtc_x;
if (state->crtc_y < 0)
viewport_height += state->crtc_y;
else if (state->crtc_y + state->crtc_h > new_crtc_state->mode.crtc_vdisplay)
viewport_height = new_crtc_state->mode.crtc_vdisplay - state->crtc_y;
if (viewport_width < 0 || viewport_height < 0) {
DRM_DEBUG_ATOMIC("Plane completely outside of screen\n");
return -EINVAL;
} else if (viewport_width < MIN_VIEWPORT_SIZE*2) { /* x2 for width is because of pipe-split. */
DRM_DEBUG_ATOMIC("Viewport width %d smaller than %d\n", viewport_width, MIN_VIEWPORT_SIZE*2);
return -EINVAL;
} else if (viewport_height < MIN_VIEWPORT_SIZE) {
DRM_DEBUG_ATOMIC("Viewport height %d smaller than %d\n", viewport_height, MIN_VIEWPORT_SIZE);
return -EINVAL;
}
}
/* Get min/max allowed scaling factors from plane caps. */
get_min_max_dc_plane_scaling(state->crtc->dev, fb,
&min_downscale, &max_upscale);
/*
* Convert to drm convention: 16.16 fixed point, instead of dc's
* 1.0 == 1000. Also drm scaling is src/dst instead of dc's
* dst/src, so min_scale = 1.0 / max_upscale, etc.
*/
min_scale = (1000 << 16) / max_upscale;
max_scale = (1000 << 16) / min_downscale;
}
return drm_atomic_helper_check_plane_state(
state, new_crtc_state, min_scale, max_scale, true, true);
}
static int dm_plane_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
plane);
struct amdgpu_device *adev = drm_to_adev(plane->dev);
struct dc *dc = adev->dm.dc;
struct dm_plane_state *dm_plane_state;
struct dc_scaling_info scaling_info;
struct drm_crtc_state *new_crtc_state;
int ret;
trace_amdgpu_dm_plane_atomic_check(new_plane_state);
dm_plane_state = to_dm_plane_state(new_plane_state);
if (!dm_plane_state->dc_state)
return 0;
new_crtc_state =
drm_atomic_get_new_crtc_state(state,
new_plane_state->crtc);
if (!new_crtc_state)
return -EINVAL;
ret = dm_plane_helper_check_state(new_plane_state, new_crtc_state);
if (ret)
return ret;
ret = fill_dc_scaling_info(new_plane_state, &scaling_info);
if (ret)
return ret;
if (dc_validate_plane(dc, dm_plane_state->dc_state) == DC_OK)
return 0;
return -EINVAL;
}
static int dm_plane_atomic_async_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
/* Only support async updates on cursor planes. */
if (plane->type != DRM_PLANE_TYPE_CURSOR)
return -EINVAL;
return 0;
}
static void dm_plane_atomic_async_update(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
plane);
struct drm_plane_state *old_state =
drm_atomic_get_old_plane_state(state, plane);
trace_amdgpu_dm_atomic_update_cursor(new_state);
swap(plane->state->fb, new_state->fb);
plane->state->src_x = new_state->src_x;
plane->state->src_y = new_state->src_y;
plane->state->src_w = new_state->src_w;
plane->state->src_h = new_state->src_h;
plane->state->crtc_x = new_state->crtc_x;
plane->state->crtc_y = new_state->crtc_y;
plane->state->crtc_w = new_state->crtc_w;
plane->state->crtc_h = new_state->crtc_h;
handle_cursor_update(plane, old_state);
}
static const struct drm_plane_helper_funcs dm_plane_helper_funcs = {
.prepare_fb = dm_plane_helper_prepare_fb,
.cleanup_fb = dm_plane_helper_cleanup_fb,
.atomic_check = dm_plane_atomic_check,
.atomic_async_check = dm_plane_atomic_async_check,
.atomic_async_update = dm_plane_atomic_async_update
};
/*
* TODO: these are currently initialized to rgb formats only.
* For future use cases we should either initialize them dynamically based on
* plane capabilities, or initialize this array to all formats, so internal drm
* check will succeed, and let DC implement proper check
*/
static const uint32_t rgb_formats[] = {
DRM_FORMAT_XRGB8888,
DRM_FORMAT_ARGB8888,
DRM_FORMAT_RGBA8888,
DRM_FORMAT_XRGB2101010,
DRM_FORMAT_XBGR2101010,
DRM_FORMAT_ARGB2101010,
DRM_FORMAT_ABGR2101010,
DRM_FORMAT_XRGB16161616,
DRM_FORMAT_XBGR16161616,
DRM_FORMAT_ARGB16161616,
DRM_FORMAT_ABGR16161616,
DRM_FORMAT_XBGR8888,
DRM_FORMAT_ABGR8888,
DRM_FORMAT_RGB565,
};
static const uint32_t overlay_formats[] = {
DRM_FORMAT_XRGB8888,
DRM_FORMAT_ARGB8888,
DRM_FORMAT_RGBA8888,
DRM_FORMAT_XBGR8888,
DRM_FORMAT_ABGR8888,
DRM_FORMAT_RGB565
};
static const u32 cursor_formats[] = {
DRM_FORMAT_ARGB8888
};
static int get_plane_formats(const struct drm_plane *plane,
const struct dc_plane_cap *plane_cap,
uint32_t *formats, int max_formats)
{
int i, num_formats = 0;
/*
* TODO: Query support for each group of formats directly from
* DC plane caps. This will require adding more formats to the
* caps list.
*/
switch (plane->type) {
case DRM_PLANE_TYPE_PRIMARY:
for (i = 0; i < ARRAY_SIZE(rgb_formats); ++i) {
if (num_formats >= max_formats)
break;
formats[num_formats++] = rgb_formats[i];
}
if (plane_cap && plane_cap->pixel_format_support.nv12)
formats[num_formats++] = DRM_FORMAT_NV12;
if (plane_cap && plane_cap->pixel_format_support.p010)
formats[num_formats++] = DRM_FORMAT_P010;
if (plane_cap && plane_cap->pixel_format_support.fp16) {
formats[num_formats++] = DRM_FORMAT_XRGB16161616F;
formats[num_formats++] = DRM_FORMAT_ARGB16161616F;
formats[num_formats++] = DRM_FORMAT_XBGR16161616F;
formats[num_formats++] = DRM_FORMAT_ABGR16161616F;
}
break;
case DRM_PLANE_TYPE_OVERLAY:
for (i = 0; i < ARRAY_SIZE(overlay_formats); ++i) {
if (num_formats >= max_formats)
break;
formats[num_formats++] = overlay_formats[i];
}
break;
case DRM_PLANE_TYPE_CURSOR:
for (i = 0; i < ARRAY_SIZE(cursor_formats); ++i) {
if (num_formats >= max_formats)
break;
formats[num_formats++] = cursor_formats[i];
}
break;
}
return num_formats;
}
static int amdgpu_dm_plane_init(struct amdgpu_display_manager *dm,
struct drm_plane *plane,
unsigned long possible_crtcs,
const struct dc_plane_cap *plane_cap)
{
uint32_t formats[32];
int num_formats;
int res = -EPERM;
unsigned int supported_rotations;
uint64_t *modifiers = NULL;
num_formats = get_plane_formats(plane, plane_cap, formats,
ARRAY_SIZE(formats));
res = get_plane_modifiers(dm->adev, plane->type, &modifiers);
if (res)
return res;
res = drm_universal_plane_init(adev_to_drm(dm->adev), plane, possible_crtcs,
&dm_plane_funcs, formats, num_formats,
modifiers, plane->type, NULL);
kfree(modifiers);
if (res)
return res;
if (plane->type == DRM_PLANE_TYPE_OVERLAY &&
plane_cap && plane_cap->per_pixel_alpha) {
unsigned int blend_caps = BIT(DRM_MODE_BLEND_PIXEL_NONE) |
BIT(DRM_MODE_BLEND_PREMULTI);
drm_plane_create_alpha_property(plane);
drm_plane_create_blend_mode_property(plane, blend_caps);
}
if (plane->type == DRM_PLANE_TYPE_PRIMARY &&
plane_cap &&
(plane_cap->pixel_format_support.nv12 ||
plane_cap->pixel_format_support.p010)) {
/* This only affects YUV formats. */
drm_plane_create_color_properties(
plane,
BIT(DRM_COLOR_YCBCR_BT601) |
BIT(DRM_COLOR_YCBCR_BT709) |
BIT(DRM_COLOR_YCBCR_BT2020),
BIT(DRM_COLOR_YCBCR_LIMITED_RANGE) |
BIT(DRM_COLOR_YCBCR_FULL_RANGE),
DRM_COLOR_YCBCR_BT709, DRM_COLOR_YCBCR_LIMITED_RANGE);
}
supported_rotations =
DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_90 |
DRM_MODE_ROTATE_180 | DRM_MODE_ROTATE_270;
if (dm->adev->asic_type >= CHIP_BONAIRE &&
plane->type != DRM_PLANE_TYPE_CURSOR)
drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
supported_rotations);
drm_plane_helper_add(plane, &dm_plane_helper_funcs);
/* Create (reset) the plane state */
if (plane->funcs->reset)
plane->funcs->reset(plane);
return 0;
}
static int amdgpu_dm_crtc_init(struct amdgpu_display_manager *dm,
struct drm_plane *plane,
uint32_t crtc_index)
{
struct amdgpu_crtc *acrtc = NULL;
struct drm_plane *cursor_plane;
int res = -ENOMEM;
cursor_plane = kzalloc(sizeof(*cursor_plane), GFP_KERNEL);
if (!cursor_plane)
goto fail;
cursor_plane->type = DRM_PLANE_TYPE_CURSOR;
res = amdgpu_dm_plane_init(dm, cursor_plane, 0, NULL);
acrtc = kzalloc(sizeof(struct amdgpu_crtc), GFP_KERNEL);
if (!acrtc)
goto fail;
res = drm_crtc_init_with_planes(
dm->ddev,
&acrtc->base,
plane,
cursor_plane,
&amdgpu_dm_crtc_funcs, NULL);
if (res)
goto fail;
drm_crtc_helper_add(&acrtc->base, &amdgpu_dm_crtc_helper_funcs);
/* Create (reset) the plane state */
if (acrtc->base.funcs->reset)
acrtc->base.funcs->reset(&acrtc->base);
acrtc->max_cursor_width = dm->adev->dm.dc->caps.max_cursor_size;
acrtc->max_cursor_height = dm->adev->dm.dc->caps.max_cursor_size;
acrtc->crtc_id = crtc_index;
acrtc->base.enabled = false;
acrtc->otg_inst = -1;
dm->adev->mode_info.crtcs[crtc_index] = acrtc;
drm_crtc_enable_color_mgmt(&acrtc->base, MAX_COLOR_LUT_ENTRIES,
true, MAX_COLOR_LUT_ENTRIES);
drm_mode_crtc_set_gamma_size(&acrtc->base, MAX_COLOR_LEGACY_LUT_ENTRIES);
return 0;
fail:
kfree(acrtc);
kfree(cursor_plane);
return res;
}
static int to_drm_connector_type(enum signal_type st)
{
switch (st) {
case SIGNAL_TYPE_HDMI_TYPE_A:
return DRM_MODE_CONNECTOR_HDMIA;
case SIGNAL_TYPE_EDP:
return DRM_MODE_CONNECTOR_eDP;
case SIGNAL_TYPE_LVDS:
return DRM_MODE_CONNECTOR_LVDS;
case SIGNAL_TYPE_RGB:
return DRM_MODE_CONNECTOR_VGA;
case SIGNAL_TYPE_DISPLAY_PORT:
case SIGNAL_TYPE_DISPLAY_PORT_MST:
return DRM_MODE_CONNECTOR_DisplayPort;
case SIGNAL_TYPE_DVI_DUAL_LINK:
case SIGNAL_TYPE_DVI_SINGLE_LINK:
return DRM_MODE_CONNECTOR_DVID;
case SIGNAL_TYPE_VIRTUAL:
return DRM_MODE_CONNECTOR_VIRTUAL;
default:
return DRM_MODE_CONNECTOR_Unknown;
}
}
static struct drm_encoder *amdgpu_dm_connector_to_encoder(struct drm_connector *connector)
{
struct drm_encoder *encoder;
/* There is only one encoder per connector */
drm_connector_for_each_possible_encoder(connector, encoder)
return encoder;
return NULL;
}
static void amdgpu_dm_get_native_mode(struct drm_connector *connector)
{
struct drm_encoder *encoder;
struct amdgpu_encoder *amdgpu_encoder;
encoder = amdgpu_dm_connector_to_encoder(connector);
if (encoder == NULL)
return;
amdgpu_encoder = to_amdgpu_encoder(encoder);
amdgpu_encoder->native_mode.clock = 0;
if (!list_empty(&connector->probed_modes)) {
struct drm_display_mode *preferred_mode = NULL;
list_for_each_entry(preferred_mode,
&connector->probed_modes,
head) {
if (preferred_mode->type & DRM_MODE_TYPE_PREFERRED)
amdgpu_encoder->native_mode = *preferred_mode;
break;
}
}
}
static struct drm_display_mode *
amdgpu_dm_create_common_mode(struct drm_encoder *encoder,
char *name,
int hdisplay, int vdisplay)
{
struct drm_device *dev = encoder->dev;
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct drm_display_mode *mode = NULL;
struct drm_display_mode *native_mode = &amdgpu_encoder->native_mode;
mode = drm_mode_duplicate(dev, native_mode);
if (mode == NULL)
return NULL;
mode->hdisplay = hdisplay;
mode->vdisplay = vdisplay;
mode->type &= ~DRM_MODE_TYPE_PREFERRED;
strscpy(mode->name, name, DRM_DISPLAY_MODE_LEN);
return mode;
}
static void amdgpu_dm_connector_add_common_modes(struct drm_encoder *encoder,
struct drm_connector *connector)
{
struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder);
struct drm_display_mode *mode = NULL;
struct drm_display_mode *native_mode = &amdgpu_encoder->native_mode;
struct amdgpu_dm_connector *amdgpu_dm_connector =
to_amdgpu_dm_connector(connector);
int i;
int n;
struct mode_size {
char name[DRM_DISPLAY_MODE_LEN];
int w;
int h;
} common_modes[] = {
{ "640x480", 640, 480},
{ "800x600", 800, 600},
{ "1024x768", 1024, 768},
{ "1280x720", 1280, 720},
{ "1280x800", 1280, 800},
{"1280x1024", 1280, 1024},
{ "1440x900", 1440, 900},
{"1680x1050", 1680, 1050},
{"1600x1200", 1600, 1200},
{"1920x1080", 1920, 1080},
{"1920x1200", 1920, 1200}
};
n = ARRAY_SIZE(common_modes);
for (i = 0; i < n; i++) {
struct drm_display_mode *curmode = NULL;
bool mode_existed = false;
if (common_modes[i].w > native_mode->hdisplay ||
common_modes[i].h > native_mode->vdisplay ||
(common_modes[i].w == native_mode->hdisplay &&
common_modes[i].h == native_mode->vdisplay))
continue;
list_for_each_entry(curmode, &connector->probed_modes, head) {
if (common_modes[i].w == curmode->hdisplay &&
common_modes[i].h == curmode->vdisplay) {
mode_existed = true;
break;
}
}
if (mode_existed)
continue;
mode = amdgpu_dm_create_common_mode(encoder,
common_modes[i].name, common_modes[i].w,
common_modes[i].h);
drm_mode_probed_add(connector, mode);
amdgpu_dm_connector->num_modes++;
}
}
static void amdgpu_dm_connector_ddc_get_modes(struct drm_connector *connector,
struct edid *edid)
{
struct amdgpu_dm_connector *amdgpu_dm_connector =
to_amdgpu_dm_connector(connector);
if (edid) {
/* empty probed_modes */
INIT_LIST_HEAD(&connector->probed_modes);
amdgpu_dm_connector->num_modes =
drm_add_edid_modes(connector, edid);
/* sorting the probed modes before calling function
* amdgpu_dm_get_native_mode() since EDID can have
* more than one preferred mode. The modes that are
* later in the probed mode list could be of higher
* and preferred resolution. For example, 3840x2160
* resolution in base EDID preferred timing and 4096x2160
* preferred resolution in DID extension block later.
*/
drm_mode_sort(&connector->probed_modes);
amdgpu_dm_get_native_mode(connector);
/* Freesync capabilities are reset by calling
* drm_add_edid_modes() and need to be
* restored here.
*/
amdgpu_dm_update_freesync_caps(connector, edid);
} else {
amdgpu_dm_connector->num_modes = 0;
}
}
static bool is_duplicate_mode(struct amdgpu_dm_connector *aconnector,
struct drm_display_mode *mode)
{
struct drm_display_mode *m;
list_for_each_entry (m, &aconnector->base.probed_modes, head) {
if (drm_mode_equal(m, mode))
return true;
}
return false;
}
static uint add_fs_modes(struct amdgpu_dm_connector *aconnector)
{
const struct drm_display_mode *m;
struct drm_display_mode *new_mode;
uint i;
uint32_t new_modes_count = 0;
/* Standard FPS values
*
* 23.976 - TV/NTSC
* 24 - Cinema
* 25 - TV/PAL
* 29.97 - TV/NTSC
* 30 - TV/NTSC
* 48 - Cinema HFR
* 50 - TV/PAL
* 60 - Commonly used
* 48,72,96 - Multiples of 24
*/
const uint32_t common_rates[] = { 23976, 24000, 25000, 29970, 30000,
48000, 50000, 60000, 72000, 96000 };
/*
* Find mode with highest refresh rate with the same resolution
* as the preferred mode. Some monitors report a preferred mode
* with lower resolution than the highest refresh rate supported.
*/
m = get_highest_refresh_rate_mode(aconnector, true);
if (!m)
return 0;
for (i = 0; i < ARRAY_SIZE(common_rates); i++) {
uint64_t target_vtotal, target_vtotal_diff;
uint64_t num, den;
if (drm_mode_vrefresh(m) * 1000 < common_rates[i])
continue;
if (common_rates[i] < aconnector->min_vfreq * 1000 ||
common_rates[i] > aconnector->max_vfreq * 1000)
continue;
num = (unsigned long long)m->clock * 1000 * 1000;
den = common_rates[i] * (unsigned long long)m->htotal;
target_vtotal = div_u64(num, den);
target_vtotal_diff = target_vtotal - m->vtotal;
/* Check for illegal modes */
if (m->vsync_start + target_vtotal_diff < m->vdisplay ||
m->vsync_end + target_vtotal_diff < m->vsync_start ||
m->vtotal + target_vtotal_diff < m->vsync_end)
continue;
new_mode = drm_mode_duplicate(aconnector->base.dev, m);
if (!new_mode)
goto out;
new_mode->vtotal += (u16)target_vtotal_diff;
new_mode->vsync_start += (u16)target_vtotal_diff;
new_mode->vsync_end += (u16)target_vtotal_diff;
new_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
new_mode->type |= DRM_MODE_TYPE_DRIVER;
if (!is_duplicate_mode(aconnector, new_mode)) {
drm_mode_probed_add(&aconnector->base, new_mode);
new_modes_count += 1;
} else
drm_mode_destroy(aconnector->base.dev, new_mode);
}
out:
return new_modes_count;
}
static void amdgpu_dm_connector_add_freesync_modes(struct drm_connector *connector,
struct edid *edid)
{
struct amdgpu_dm_connector *amdgpu_dm_connector =
to_amdgpu_dm_connector(connector);
if (!(amdgpu_freesync_vid_mode && edid))
return;
if (amdgpu_dm_connector->max_vfreq - amdgpu_dm_connector->min_vfreq > 10)
amdgpu_dm_connector->num_modes +=
add_fs_modes(amdgpu_dm_connector);
}
static int amdgpu_dm_connector_get_modes(struct drm_connector *connector)
{
struct amdgpu_dm_connector *amdgpu_dm_connector =
to_amdgpu_dm_connector(connector);
struct drm_encoder *encoder;
struct edid *edid = amdgpu_dm_connector->edid;
encoder = amdgpu_dm_connector_to_encoder(connector);
if (!drm_edid_is_valid(edid)) {
amdgpu_dm_connector->num_modes =
drm_add_modes_noedid(connector, 640, 480);
} else {
amdgpu_dm_connector_ddc_get_modes(connector, edid);
amdgpu_dm_connector_add_common_modes(encoder, connector);
amdgpu_dm_connector_add_freesync_modes(connector, edid);
}
amdgpu_dm_fbc_init(connector);
return amdgpu_dm_connector->num_modes;
}
void amdgpu_dm_connector_init_helper(struct amdgpu_display_manager *dm,
struct amdgpu_dm_connector *aconnector,
int connector_type,
struct dc_link *link,
int link_index)
{
struct amdgpu_device *adev = drm_to_adev(dm->ddev);
/*
* Some of the properties below require access to state, like bpc.
* Allocate some default initial connector state with our reset helper.
*/
if (aconnector->base.funcs->reset)
aconnector->base.funcs->reset(&aconnector->base);
aconnector->connector_id = link_index;
aconnector->dc_link = link;
aconnector->base.interlace_allowed = false;
aconnector->base.doublescan_allowed = false;
aconnector->base.stereo_allowed = false;
aconnector->base.dpms = DRM_MODE_DPMS_OFF;
aconnector->hpd.hpd = AMDGPU_HPD_NONE; /* not used */
aconnector->audio_inst = -1;
mutex_init(&aconnector->hpd_lock);
/*
* configure support HPD hot plug connector_>polled default value is 0
* which means HPD hot plug not supported
*/
switch (connector_type) {
case DRM_MODE_CONNECTOR_HDMIA:
aconnector->base.polled = DRM_CONNECTOR_POLL_HPD;
aconnector->base.ycbcr_420_allowed =
link->link_enc->features.hdmi_ycbcr420_supported ? true : false;
break;
case DRM_MODE_CONNECTOR_DisplayPort:
aconnector->base.polled = DRM_CONNECTOR_POLL_HPD;
aconnector->base.ycbcr_420_allowed =
link->link_enc->features.dp_ycbcr420_supported ? true : false;
break;
case DRM_MODE_CONNECTOR_DVID:
aconnector->base.polled = DRM_CONNECTOR_POLL_HPD;
break;
default:
break;
}
drm_object_attach_property(&aconnector->base.base,
dm->ddev->mode_config.scaling_mode_property,
DRM_MODE_SCALE_NONE);
drm_object_attach_property(&aconnector->base.base,
adev->mode_info.underscan_property,
UNDERSCAN_OFF);
drm_object_attach_property(&aconnector->base.base,
adev->mode_info.underscan_hborder_property,
0);
drm_object_attach_property(&aconnector->base.base,
adev->mode_info.underscan_vborder_property,
0);
if (!aconnector->mst_port)
drm_connector_attach_max_bpc_property(&aconnector->base, 8, 16);
/* This defaults to the max in the range, but we want 8bpc for non-edp. */
aconnector->base.state->max_bpc = (connector_type == DRM_MODE_CONNECTOR_eDP) ? 16 : 8;
aconnector->base.state->max_requested_bpc = aconnector->base.state->max_bpc;
if (connector_type == DRM_MODE_CONNECTOR_eDP &&
(dc_is_dmcu_initialized(adev->dm.dc) || adev->dm.dc->ctx->dmub_srv)) {
drm_object_attach_property(&aconnector->base.base,
adev->mode_info.abm_level_property, 0);
}
if (connector_type == DRM_MODE_CONNECTOR_HDMIA ||
connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
connector_type == DRM_MODE_CONNECTOR_eDP) {
drm_connector_attach_hdr_output_metadata_property(&aconnector->base);
if (!aconnector->mst_port)
drm_connector_attach_vrr_capable_property(&aconnector->base);
#ifdef CONFIG_DRM_AMD_DC_HDCP
if (adev->dm.hdcp_workqueue)
drm_connector_attach_content_protection_property(&aconnector->base, true);
#endif
}
}
static int amdgpu_dm_i2c_xfer(struct i2c_adapter *i2c_adap,
struct i2c_msg *msgs, int num)
{
struct amdgpu_i2c_adapter *i2c = i2c_get_adapdata(i2c_adap);
struct ddc_service *ddc_service = i2c->ddc_service;
struct i2c_command cmd;
int i;
int result = -EIO;
cmd.payloads = kcalloc(num, sizeof(struct i2c_payload), GFP_KERNEL);
if (!cmd.payloads)
return result;
cmd.number_of_payloads = num;
cmd.engine = I2C_COMMAND_ENGINE_DEFAULT;
cmd.speed = 100;
for (i = 0; i < num; i++) {
cmd.payloads[i].write = !(msgs[i].flags & I2C_M_RD);
cmd.payloads[i].address = msgs[i].addr;
cmd.payloads[i].length = msgs[i].len;
cmd.payloads[i].data = msgs[i].buf;
}
if (dc_submit_i2c(
ddc_service->ctx->dc,
ddc_service->ddc_pin->hw_info.ddc_channel,
&cmd))
result = num;
kfree(cmd.payloads);
return result;
}
static u32 amdgpu_dm_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm amdgpu_dm_i2c_algo = {
.master_xfer = amdgpu_dm_i2c_xfer,
.functionality = amdgpu_dm_i2c_func,
};
static struct amdgpu_i2c_adapter *
create_i2c(struct ddc_service *ddc_service,
int link_index,
int *res)
{
struct amdgpu_device *adev = ddc_service->ctx->driver_context;
struct amdgpu_i2c_adapter *i2c;
i2c = kzalloc(sizeof(struct amdgpu_i2c_adapter), GFP_KERNEL);
if (!i2c)
return NULL;
i2c->base.owner = THIS_MODULE;
i2c->base.class = I2C_CLASS_DDC;
i2c->base.dev.parent = &adev->pdev->dev;
i2c->base.algo = &amdgpu_dm_i2c_algo;
snprintf(i2c->base.name, sizeof(i2c->base.name), "AMDGPU DM i2c hw bus %d", link_index);
i2c_set_adapdata(&i2c->base, i2c);
i2c->ddc_service = ddc_service;
i2c->ddc_service->ddc_pin->hw_info.ddc_channel = link_index;
return i2c;
}
/*
* Note: this function assumes that dc_link_detect() was called for the
* dc_link which will be represented by this aconnector.
*/
static int amdgpu_dm_connector_init(struct amdgpu_display_manager *dm,
struct amdgpu_dm_connector *aconnector,
uint32_t link_index,
struct amdgpu_encoder *aencoder)
{
int res = 0;
int connector_type;
struct dc *dc = dm->dc;
struct dc_link *link = dc_get_link_at_index(dc, link_index);
struct amdgpu_i2c_adapter *i2c;
link->priv = aconnector;
DRM_DEBUG_DRIVER("%s()\n", __func__);
i2c = create_i2c(link->ddc, link->link_index, &res);
if (!i2c) {
DRM_ERROR("Failed to create i2c adapter data\n");
return -ENOMEM;
}
aconnector->i2c = i2c;
res = i2c_add_adapter(&i2c->base);
if (res) {
DRM_ERROR("Failed to register hw i2c %d\n", link->link_index);
goto out_free;
}
connector_type = to_drm_connector_type(link->connector_signal);
res = drm_connector_init_with_ddc(
dm->ddev,
&aconnector->base,
&amdgpu_dm_connector_funcs,
connector_type,
&i2c->base);
if (res) {
DRM_ERROR("connector_init failed\n");
aconnector->connector_id = -1;
goto out_free;
}
drm_connector_helper_add(
&aconnector->base,
&amdgpu_dm_connector_helper_funcs);
amdgpu_dm_connector_init_helper(
dm,
aconnector,
connector_type,
link,
link_index);
drm_connector_attach_encoder(
&aconnector->base, &aencoder->base);
if (connector_type == DRM_MODE_CONNECTOR_DisplayPort
|| connector_type == DRM_MODE_CONNECTOR_eDP)
amdgpu_dm_initialize_dp_connector(dm, aconnector, link->link_index);
out_free:
if (res) {
kfree(i2c);
aconnector->i2c = NULL;
}
return res;
}
int amdgpu_dm_get_encoder_crtc_mask(struct amdgpu_device *adev)
{
switch (adev->mode_info.num_crtc) {
case 1:
return 0x1;
case 2:
return 0x3;
case 3:
return 0x7;
case 4:
return 0xf;
case 5:
return 0x1f;
case 6:
default:
return 0x3f;
}
}
static int amdgpu_dm_encoder_init(struct drm_device *dev,
struct amdgpu_encoder *aencoder,
uint32_t link_index)
{
struct amdgpu_device *adev = drm_to_adev(dev);
int res = drm_encoder_init(dev,
&aencoder->base,
&amdgpu_dm_encoder_funcs,
DRM_MODE_ENCODER_TMDS,
NULL);
aencoder->base.possible_crtcs = amdgpu_dm_get_encoder_crtc_mask(adev);
if (!res)
aencoder->encoder_id = link_index;
else
aencoder->encoder_id = -1;
drm_encoder_helper_add(&aencoder->base, &amdgpu_dm_encoder_helper_funcs);
return res;
}
static void manage_dm_interrupts(struct amdgpu_device *adev,
struct amdgpu_crtc *acrtc,
bool enable)
{
/*
* We have no guarantee that the frontend index maps to the same
* backend index - some even map to more than one.
*
* TODO: Use a different interrupt or check DC itself for the mapping.
*/
int irq_type =
amdgpu_display_crtc_idx_to_irq_type(
adev,
acrtc->crtc_id);
if (enable) {
drm_crtc_vblank_on(&acrtc->base);
amdgpu_irq_get(
adev,
&adev->pageflip_irq,
irq_type);
#if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
amdgpu_irq_get(
adev,
&adev->vline0_irq,
irq_type);
#endif
} else {
#if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
amdgpu_irq_put(
adev,
&adev->vline0_irq,
irq_type);
#endif
amdgpu_irq_put(
adev,
&adev->pageflip_irq,
irq_type);
drm_crtc_vblank_off(&acrtc->base);
}
}
static void dm_update_pflip_irq_state(struct amdgpu_device *adev,
struct amdgpu_crtc *acrtc)
{
int irq_type =
amdgpu_display_crtc_idx_to_irq_type(adev, acrtc->crtc_id);
/**
* This reads the current state for the IRQ and force reapplies
* the setting to hardware.
*/
amdgpu_irq_update(adev, &adev->pageflip_irq, irq_type);
}
static bool
is_scaling_state_different(const struct dm_connector_state *dm_state,
const struct dm_connector_state *old_dm_state)
{
if (dm_state->scaling != old_dm_state->scaling)
return true;
if (!dm_state->underscan_enable && old_dm_state->underscan_enable) {
if (old_dm_state->underscan_hborder != 0 && old_dm_state->underscan_vborder != 0)
return true;
} else if (dm_state->underscan_enable && !old_dm_state->underscan_enable) {
if (dm_state->underscan_hborder != 0 && dm_state->underscan_vborder != 0)
return true;
} else if (dm_state->underscan_hborder != old_dm_state->underscan_hborder ||
dm_state->underscan_vborder != old_dm_state->underscan_vborder)
return true;
return false;
}
#ifdef CONFIG_DRM_AMD_DC_HDCP
static bool is_content_protection_different(struct drm_connector_state *state,
const struct drm_connector_state *old_state,
const struct drm_connector *connector, struct hdcp_workqueue *hdcp_w)
{
struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector);
struct dm_connector_state *dm_con_state = to_dm_connector_state(connector->state);
/* Handle: Type0/1 change */
if (old_state->hdcp_content_type != state->hdcp_content_type &&
state->content_protection != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
state->content_protection = DRM_MODE_CONTENT_PROTECTION_DESIRED;
return true;
}
/* CP is being re enabled, ignore this
*
* Handles: ENABLED -> DESIRED
*/
if (old_state->content_protection == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
state->content_protection == DRM_MODE_CONTENT_PROTECTION_DESIRED) {
state->content_protection = DRM_MODE_CONTENT_PROTECTION_ENABLED;
return false;
}
/* S3 resume case, since old state will always be 0 (UNDESIRED) and the restored state will be ENABLED
*
* Handles: UNDESIRED -> ENABLED
*/
if (old_state->content_protection == DRM_MODE_CONTENT_PROTECTION_UNDESIRED &&
state->content_protection == DRM_MODE_CONTENT_PROTECTION_ENABLED)
state->content_protection = DRM_MODE_CONTENT_PROTECTION_DESIRED;
/* Check if something is connected/enabled, otherwise we start hdcp but nothing is connected/enabled
* hot-plug, headless s3, dpms
*
* Handles: DESIRED -> DESIRED (Special case)
*/
if (dm_con_state->update_hdcp && state->content_protection == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
connector->dpms == DRM_MODE_DPMS_ON && aconnector->dc_sink != NULL) {
dm_con_state->update_hdcp = false;
return true;
}
/*
* Handles: UNDESIRED -> UNDESIRED
* DESIRED -> DESIRED
* ENABLED -> ENABLED
*/
if (old_state->content_protection == state->content_protection)
return false;
/*
* Handles: UNDESIRED -> DESIRED
* DESIRED -> UNDESIRED
* ENABLED -> UNDESIRED
*/
if (state->content_protection != DRM_MODE_CONTENT_PROTECTION_ENABLED)
return true;
/*
* Handles: DESIRED -> ENABLED
*/
return false;
}
#endif
static void remove_stream(struct amdgpu_device *adev,
struct amdgpu_crtc *acrtc,
struct dc_stream_state *stream)
{
/* this is the update mode case */
acrtc->otg_inst = -1;
acrtc->enabled = false;
}
static int get_cursor_position(struct drm_plane *plane, struct drm_crtc *crtc,
struct dc_cursor_position *position)
{
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
int x, y;
int xorigin = 0, yorigin = 0;
if (!crtc || !plane->state->fb)
return 0;
if ((plane->state->crtc_w > amdgpu_crtc->max_cursor_width) ||
(plane->state->crtc_h > amdgpu_crtc->max_cursor_height)) {
DRM_ERROR("%s: bad cursor width or height %d x %d\n",
__func__,
plane->state->crtc_w,
plane->state->crtc_h);
return -EINVAL;
}
x = plane->state->crtc_x;
y = plane->state->crtc_y;
if (x <= -amdgpu_crtc->max_cursor_width ||
y <= -amdgpu_crtc->max_cursor_height)
return 0;
if (x < 0) {
xorigin = min(-x, amdgpu_crtc->max_cursor_width - 1);
x = 0;
}
if (y < 0) {
yorigin = min(-y, amdgpu_crtc->max_cursor_height - 1);
y = 0;
}
position->enable = true;
position->translate_by_source = true;
position->x = x;
position->y = y;
position->x_hotspot = xorigin;
position->y_hotspot = yorigin;
return 0;
}
static void handle_cursor_update(struct drm_plane *plane,
struct drm_plane_state *old_plane_state)
{
struct amdgpu_device *adev = drm_to_adev(plane->dev);
struct amdgpu_framebuffer *afb = to_amdgpu_framebuffer(plane->state->fb);
struct drm_crtc *crtc = afb ? plane->state->crtc : old_plane_state->crtc;
struct dm_crtc_state *crtc_state = crtc ? to_dm_crtc_state(crtc->state) : NULL;
struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc);
uint64_t address = afb ? afb->address : 0;
struct dc_cursor_position position = {0};
struct dc_cursor_attributes attributes;
int ret;
if (!plane->state->fb && !old_plane_state->fb)
return;
DC_LOG_CURSOR("%s: crtc_id=%d with size %d to %d\n",
__func__,
amdgpu_crtc->crtc_id,
plane->state->crtc_w,
plane->state->crtc_h);
ret = get_cursor_position(plane, crtc, &position);
if (ret)
return;
if (!position.enable) {
/* turn off cursor */
if (crtc_state && crtc_state->stream) {
mutex_lock(&adev->dm.dc_lock);
dc_stream_set_cursor_position(crtc_state->stream,
&position);
mutex_unlock(&adev->dm.dc_lock);
}
return;
}
amdgpu_crtc->cursor_width = plane->state->crtc_w;
amdgpu_crtc->cursor_height = plane->state->crtc_h;
memset(&attributes, 0, sizeof(attributes));
attributes.address.high_part = upper_32_bits(address);
attributes.address.low_part = lower_32_bits(address);
attributes.width = plane->state->crtc_w;
attributes.height = plane->state->crtc_h;
attributes.color_format = CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA;
attributes.rotation_angle = 0;
attributes.attribute_flags.value = 0;
attributes.pitch = afb->base.pitches[0] / afb->base.format->cpp[0];
if (crtc_state->stream) {
mutex_lock(&adev->dm.dc_lock);
if (!dc_stream_set_cursor_attributes(crtc_state->stream,
&attributes))
DRM_ERROR("DC failed to set cursor attributes\n");
if (!dc_stream_set_cursor_position(crtc_state->stream,
&position))
DRM_ERROR("DC failed to set cursor position\n");
mutex_unlock(&adev->dm.dc_lock);
}
}
static void prepare_flip_isr(struct amdgpu_crtc *acrtc)
{
assert_spin_locked(&acrtc->base.dev->event_lock);
WARN_ON(acrtc->event);
acrtc->event = acrtc->base.state->event;
/* Set the flip status */
acrtc->pflip_status = AMDGPU_FLIP_SUBMITTED;
/* Mark this event as consumed */
acrtc->base.state->event = NULL;
DC_LOG_PFLIP("crtc:%d, pflip_stat:AMDGPU_FLIP_SUBMITTED\n",
acrtc->crtc_id);
}
static void update_freesync_state_on_stream(
struct amdgpu_display_manager *dm,
struct dm_crtc_state *new_crtc_state,
struct dc_stream_state *new_stream,
struct dc_plane_state *surface,
u32 flip_timestamp_in_us)
{
struct mod_vrr_params vrr_params;
struct dc_info_packet vrr_infopacket = {0};
struct amdgpu_device *adev = dm->adev;
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(new_crtc_state->base.crtc);
unsigned long flags;
bool pack_sdp_v1_3 = false;
if (!new_stream)
return;
/*
* TODO: Determine why min/max totals and vrefresh can be 0 here.
* For now it's sufficient to just guard against these conditions.
*/
if (!new_stream->timing.h_total || !new_stream->timing.v_total)
return;
spin_lock_irqsave(&adev_to_drm(adev)->event_lock, flags);
vrr_params = acrtc->dm_irq_params.vrr_params;
if (surface) {
mod_freesync_handle_preflip(
dm->freesync_module,
surface,
new_stream,
flip_timestamp_in_us,
&vrr_params);
if (adev->family < AMDGPU_FAMILY_AI &&
amdgpu_dm_vrr_active(new_crtc_state)) {
mod_freesync_handle_v_update(dm->freesync_module,
new_stream, &vrr_params);
/* Need to call this before the frame ends. */
dc_stream_adjust_vmin_vmax(dm->dc,
new_crtc_state->stream,
&vrr_params.adjust);
}
}
mod_freesync_build_vrr_infopacket(
dm->freesync_module,
new_stream,
&vrr_params,
PACKET_TYPE_VRR,
TRANSFER_FUNC_UNKNOWN,
&vrr_infopacket,
pack_sdp_v1_3);
new_crtc_state->freesync_timing_changed |=
(memcmp(&acrtc->dm_irq_params.vrr_params.adjust,
&vrr_params.adjust,
sizeof(vrr_params.adjust)) != 0);
new_crtc_state->freesync_vrr_info_changed |=
(memcmp(&new_crtc_state->vrr_infopacket,
&vrr_infopacket,
sizeof(vrr_infopacket)) != 0);
acrtc->dm_irq_params.vrr_params = vrr_params;
new_crtc_state->vrr_infopacket = vrr_infopacket;
new_stream->adjust = acrtc->dm_irq_params.vrr_params.adjust;
new_stream->vrr_infopacket = vrr_infopacket;
if (new_crtc_state->freesync_vrr_info_changed)
DRM_DEBUG_KMS("VRR packet update: crtc=%u enabled=%d state=%d",
new_crtc_state->base.crtc->base.id,
(int)new_crtc_state->base.vrr_enabled,
(int)vrr_params.state);
spin_unlock_irqrestore(&adev_to_drm(adev)->event_lock, flags);
}
static void update_stream_irq_parameters(
struct amdgpu_display_manager *dm,
struct dm_crtc_state *new_crtc_state)
{
struct dc_stream_state *new_stream = new_crtc_state->stream;
struct mod_vrr_params vrr_params;
struct mod_freesync_config config = new_crtc_state->freesync_config;
struct amdgpu_device *adev = dm->adev;
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(new_crtc_state->base.crtc);
unsigned long flags;
if (!new_stream)
return;
/*
* TODO: Determine why min/max totals and vrefresh can be 0 here.
* For now it's sufficient to just guard against these conditions.
*/
if (!new_stream->timing.h_total || !new_stream->timing.v_total)
return;
spin_lock_irqsave(&adev_to_drm(adev)->event_lock, flags);
vrr_params = acrtc->dm_irq_params.vrr_params;
if (new_crtc_state->vrr_supported &&
config.min_refresh_in_uhz &&
config.max_refresh_in_uhz) {
/*
* if freesync compatible mode was set, config.state will be set
* in atomic check
*/
if (config.state == VRR_STATE_ACTIVE_FIXED && config.fixed_refresh_in_uhz &&
(!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) ||
new_crtc_state->freesync_config.state == VRR_STATE_ACTIVE_FIXED)) {
vrr_params.max_refresh_in_uhz = config.max_refresh_in_uhz;
vrr_params.min_refresh_in_uhz = config.min_refresh_in_uhz;
vrr_params.fixed_refresh_in_uhz = config.fixed_refresh_in_uhz;
vrr_params.state = VRR_STATE_ACTIVE_FIXED;
} else {
config.state = new_crtc_state->base.vrr_enabled ?
VRR_STATE_ACTIVE_VARIABLE :
VRR_STATE_INACTIVE;
}
} else {
config.state = VRR_STATE_UNSUPPORTED;
}
mod_freesync_build_vrr_params(dm->freesync_module,
new_stream,
&config, &vrr_params);
new_crtc_state->freesync_timing_changed |=
(memcmp(&acrtc->dm_irq_params.vrr_params.adjust,
&vrr_params.adjust, sizeof(vrr_params.adjust)) != 0);
new_crtc_state->freesync_config = config;
/* Copy state for access from DM IRQ handler */
acrtc->dm_irq_params.freesync_config = config;
acrtc->dm_irq_params.active_planes = new_crtc_state->active_planes;
acrtc->dm_irq_params.vrr_params = vrr_params;
spin_unlock_irqrestore(&adev_to_drm(adev)->event_lock, flags);
}
static void amdgpu_dm_handle_vrr_transition(struct dm_crtc_state *old_state,
struct dm_crtc_state *new_state)
{
bool old_vrr_active = amdgpu_dm_vrr_active(old_state);
bool new_vrr_active = amdgpu_dm_vrr_active(new_state);
if (!old_vrr_active && new_vrr_active) {
/* Transition VRR inactive -> active:
* While VRR is active, we must not disable vblank irq, as a
* reenable after disable would compute bogus vblank/pflip
* timestamps if it likely happened inside display front-porch.
*
* We also need vupdate irq for the actual core vblank handling
* at end of vblank.
*/
dm_set_vupdate_irq(new_state->base.crtc, true);
drm_crtc_vblank_get(new_state->base.crtc);
DRM_DEBUG_DRIVER("%s: crtc=%u VRR off->on: Get vblank ref\n",
__func__, new_state->base.crtc->base.id);
} else if (old_vrr_active && !new_vrr_active) {
/* Transition VRR active -> inactive:
* Allow vblank irq disable again for fixed refresh rate.
*/
dm_set_vupdate_irq(new_state->base.crtc, false);
drm_crtc_vblank_put(new_state->base.crtc);
DRM_DEBUG_DRIVER("%s: crtc=%u VRR on->off: Drop vblank ref\n",
__func__, new_state->base.crtc->base.id);
}
}
static void amdgpu_dm_commit_cursors(struct drm_atomic_state *state)
{
struct drm_plane *plane;
struct drm_plane_state *old_plane_state;
int i;
/*
* TODO: Make this per-stream so we don't issue redundant updates for
* commits with multiple streams.
*/
for_each_old_plane_in_state(state, plane, old_plane_state, i)
if (plane->type == DRM_PLANE_TYPE_CURSOR)
handle_cursor_update(plane, old_plane_state);
}
static void amdgpu_dm_commit_planes(struct drm_atomic_state *state,
struct dc_state *dc_state,
struct drm_device *dev,
struct amdgpu_display_manager *dm,
struct drm_crtc *pcrtc,
bool wait_for_vblank)
{
uint32_t i;
uint64_t timestamp_ns;
struct drm_plane *plane;
struct drm_plane_state *old_plane_state, *new_plane_state;
struct amdgpu_crtc *acrtc_attach = to_amdgpu_crtc(pcrtc);
struct drm_crtc_state *new_pcrtc_state =
drm_atomic_get_new_crtc_state(state, pcrtc);
struct dm_crtc_state *acrtc_state = to_dm_crtc_state(new_pcrtc_state);
struct dm_crtc_state *dm_old_crtc_state =
to_dm_crtc_state(drm_atomic_get_old_crtc_state(state, pcrtc));
int planes_count = 0, vpos, hpos;
long r;
unsigned long flags;
struct amdgpu_bo *abo;
uint32_t target_vblank, last_flip_vblank;
bool vrr_active = amdgpu_dm_vrr_active(acrtc_state);
bool pflip_present = false;
struct {
struct dc_surface_update surface_updates[MAX_SURFACES];
struct dc_plane_info plane_infos[MAX_SURFACES];
struct dc_scaling_info scaling_infos[MAX_SURFACES];
struct dc_flip_addrs flip_addrs[MAX_SURFACES];
struct dc_stream_update stream_update;
} *bundle;
bundle = kzalloc(sizeof(*bundle), GFP_KERNEL);
if (!bundle) {
dm_error("Failed to allocate update bundle\n");
goto cleanup;
}
/*
* Disable the cursor first if we're disabling all the planes.
* It'll remain on the screen after the planes are re-enabled
* if we don't.
*/
if (acrtc_state->active_planes == 0)
amdgpu_dm_commit_cursors(state);
/* update planes when needed */
for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i) {
struct drm_crtc *crtc = new_plane_state->crtc;
struct drm_crtc_state *new_crtc_state;
struct drm_framebuffer *fb = new_plane_state->fb;
struct amdgpu_framebuffer *afb = (struct amdgpu_framebuffer *)fb;
bool plane_needs_flip;
struct dc_plane_state *dc_plane;
struct dm_plane_state *dm_new_plane_state = to_dm_plane_state(new_plane_state);
/* Cursor plane is handled after stream updates */
if (plane->type == DRM_PLANE_TYPE_CURSOR)
continue;
if (!fb || !crtc || pcrtc != crtc)
continue;
new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
if (!new_crtc_state->active)
continue;
dc_plane = dm_new_plane_state->dc_state;
bundle->surface_updates[planes_count].surface = dc_plane;
if (new_pcrtc_state->color_mgmt_changed) {
bundle->surface_updates[planes_count].gamma = dc_plane->gamma_correction;
bundle->surface_updates[planes_count].in_transfer_func = dc_plane->in_transfer_func;
bundle->surface_updates[planes_count].gamut_remap_matrix = &dc_plane->gamut_remap_matrix;
}
fill_dc_scaling_info(new_plane_state,
&bundle->scaling_infos[planes_count]);
bundle->surface_updates[planes_count].scaling_info =
&bundle->scaling_infos[planes_count];
plane_needs_flip = old_plane_state->fb && new_plane_state->fb;
pflip_present = pflip_present || plane_needs_flip;
if (!plane_needs_flip) {
planes_count += 1;
continue;
}
abo = gem_to_amdgpu_bo(fb->obj[0]);
/*
* Wait for all fences on this FB. Do limited wait to avoid
* deadlock during GPU reset when this fence will not signal
* but we hold reservation lock for the BO.
*/
r = dma_resv_wait_timeout(abo->tbo.base.resv, true, false,
msecs_to_jiffies(5000));
if (unlikely(r <= 0))
DRM_ERROR("Waiting for fences timed out!");
fill_dc_plane_info_and_addr(
dm->adev, new_plane_state,
afb->tiling_flags,
&bundle->plane_infos[planes_count],
&bundle->flip_addrs[planes_count].address,
afb->tmz_surface, false);
DRM_DEBUG_ATOMIC("plane: id=%d dcc_en=%d\n",
new_plane_state->plane->index,
bundle->plane_infos[planes_count].dcc.enable);
bundle->surface_updates[planes_count].plane_info =
&bundle->plane_infos[planes_count];
/*
* Only allow immediate flips for fast updates that don't
* change FB pitch, DCC state, rotation or mirroing.
*/
bundle->flip_addrs[planes_count].flip_immediate =
crtc->state->async_flip &&
acrtc_state->update_type == UPDATE_TYPE_FAST;
timestamp_ns = ktime_get_ns();
bundle->flip_addrs[planes_count].flip_timestamp_in_us = div_u64(timestamp_ns, 1000);
bundle->surface_updates[planes_count].flip_addr = &bundle->flip_addrs[planes_count];
bundle->surface_updates[planes_count].surface = dc_plane;
if (!bundle->surface_updates[planes_count].surface) {
DRM_ERROR("No surface for CRTC: id=%d\n",
acrtc_attach->crtc_id);
continue;
}
if (plane == pcrtc->primary)
update_freesync_state_on_stream(
dm,
acrtc_state,
acrtc_state->stream,
dc_plane,
bundle->flip_addrs[planes_count].flip_timestamp_in_us);
DRM_DEBUG_ATOMIC("%s Flipping to hi: 0x%x, low: 0x%x\n",
__func__,
bundle->flip_addrs[planes_count].address.grph.addr.high_part,
bundle->flip_addrs[planes_count].address.grph.addr.low_part);
planes_count += 1;
}
if (pflip_present) {
if (!vrr_active) {
/* Use old throttling in non-vrr fixed refresh rate mode
* to keep flip scheduling based on target vblank counts
* working in a backwards compatible way, e.g., for
* clients using the GLX_OML_sync_control extension or
* DRI3/Present extension with defined target_msc.
*/
last_flip_vblank = amdgpu_get_vblank_counter_kms(pcrtc);
}
else {
/* For variable refresh rate mode only:
* Get vblank of last completed flip to avoid > 1 vrr
* flips per video frame by use of throttling, but allow
* flip programming anywhere in the possibly large
* variable vrr vblank interval for fine-grained flip
* timing control and more opportunity to avoid stutter
* on late submission of flips.
*/
spin_lock_irqsave(&pcrtc->dev->event_lock, flags);
last_flip_vblank = acrtc_attach->dm_irq_params.last_flip_vblank;
spin_unlock_irqrestore(&pcrtc->dev->event_lock, flags);
}
target_vblank = last_flip_vblank + wait_for_vblank;
/*
* Wait until we're out of the vertical blank period before the one
* targeted by the flip
*/
while ((acrtc_attach->enabled &&
(amdgpu_display_get_crtc_scanoutpos(dm->ddev, acrtc_attach->crtc_id,
0, &vpos, &hpos, NULL,
NULL, &pcrtc->hwmode)
& (DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_IN_VBLANK)) ==
(DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_IN_VBLANK) &&
(int)(target_vblank -
amdgpu_get_vblank_counter_kms(pcrtc)) > 0)) {
usleep_range(1000, 1100);
}
/**
* Prepare the flip event for the pageflip interrupt to handle.
*
* This only works in the case where we've already turned on the
* appropriate hardware blocks (eg. HUBP) so in the transition case
* from 0 -> n planes we have to skip a hardware generated event
* and rely on sending it from software.
*/
if (acrtc_attach->base.state->event &&
acrtc_state->active_planes > 0) {
drm_crtc_vblank_get(pcrtc);
spin_lock_irqsave(&pcrtc->dev->event_lock, flags);
WARN_ON(acrtc_attach->pflip_status != AMDGPU_FLIP_NONE);
prepare_flip_isr(acrtc_attach);
spin_unlock_irqrestore(&pcrtc->dev->event_lock, flags);
}
if (acrtc_state->stream) {
if (acrtc_state->freesync_vrr_info_changed)
bundle->stream_update.vrr_infopacket =
&acrtc_state->stream->vrr_infopacket;
}
}
/* Update the planes if changed or disable if we don't have any. */
if ((planes_count || acrtc_state->active_planes == 0) &&
acrtc_state->stream) {
bundle->stream_update.stream = acrtc_state->stream;
if (new_pcrtc_state->mode_changed) {
bundle->stream_update.src = acrtc_state->stream->src;
bundle->stream_update.dst = acrtc_state->stream->dst;
}
if (new_pcrtc_state->color_mgmt_changed) {
/*
* TODO: This isn't fully correct since we've actually
* already modified the stream in place.
*/
bundle->stream_update.gamut_remap =
&acrtc_state->stream->gamut_remap_matrix;
bundle->stream_update.output_csc_transform =
&acrtc_state->stream->csc_color_matrix;
bundle->stream_update.out_transfer_func =
acrtc_state->stream->out_transfer_func;
}
acrtc_state->stream->abm_level = acrtc_state->abm_level;
if (acrtc_state->abm_level != dm_old_crtc_state->abm_level)
bundle->stream_update.abm_level = &acrtc_state->abm_level;
/*
* If FreeSync state on the stream has changed then we need to
* re-adjust the min/max bounds now that DC doesn't handle this
* as part of commit.
*/
if (is_dc_timing_adjust_needed(dm_old_crtc_state, acrtc_state)) {
spin_lock_irqsave(&pcrtc->dev->event_lock, flags);
dc_stream_adjust_vmin_vmax(
dm->dc, acrtc_state->stream,
&acrtc_attach->dm_irq_params.vrr_params.adjust);
spin_unlock_irqrestore(&pcrtc->dev->event_lock, flags);
}
mutex_lock(&dm->dc_lock);
if ((acrtc_state->update_type > UPDATE_TYPE_FAST) &&
acrtc_state->stream->link->psr_settings.psr_allow_active)
amdgpu_dm_psr_disable(acrtc_state->stream);
dc_commit_updates_for_stream(dm->dc,
bundle->surface_updates,
planes_count,
acrtc_state->stream,
&bundle->stream_update,
dc_state);
/**
* Enable or disable the interrupts on the backend.
*
* Most pipes are put into power gating when unused.
*
* When power gating is enabled on a pipe we lose the
* interrupt enablement state when power gating is disabled.
*
* So we need to update the IRQ control state in hardware
* whenever the pipe turns on (since it could be previously
* power gated) or off (since some pipes can't be power gated
* on some ASICs).
*/
if (dm_old_crtc_state->active_planes != acrtc_state->active_planes)
dm_update_pflip_irq_state(drm_to_adev(dev),
acrtc_attach);
if ((acrtc_state->update_type > UPDATE_TYPE_FAST) &&
acrtc_state->stream->link->psr_settings.psr_version != DC_PSR_VERSION_UNSUPPORTED &&
!acrtc_state->stream->link->psr_settings.psr_feature_enabled)
amdgpu_dm_link_setup_psr(acrtc_state->stream);
else if ((acrtc_state->update_type == UPDATE_TYPE_FAST) &&
acrtc_state->stream->link->psr_settings.psr_feature_enabled &&
!acrtc_state->stream->link->psr_settings.psr_allow_active) {
struct amdgpu_dm_connector *aconn = (struct amdgpu_dm_connector *)
acrtc_state->stream->dm_stream_context;
if (aconn->psr_skip_count > 0)
aconn->psr_skip_count--;
else
amdgpu_dm_psr_enable(acrtc_state->stream);
}
mutex_unlock(&dm->dc_lock);
}
/*
* Update cursor state *after* programming all the planes.
* This avoids redundant programming in the case where we're going
* to be disabling a single plane - those pipes are being disabled.
*/
if (acrtc_state->active_planes)
amdgpu_dm_commit_cursors(state);
cleanup:
kfree(bundle);
}
static void amdgpu_dm_commit_audio(struct drm_device *dev,
struct drm_atomic_state *state)
{
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_dm_connector *aconnector;
struct drm_connector *connector;
struct drm_connector_state *old_con_state, *new_con_state;
struct drm_crtc_state *new_crtc_state;
struct dm_crtc_state *new_dm_crtc_state;
const struct dc_stream_status *status;
int i, inst;
/* Notify device removals. */
for_each_oldnew_connector_in_state(state, connector, old_con_state, new_con_state, i) {
if (old_con_state->crtc != new_con_state->crtc) {
/* CRTC changes require notification. */
goto notify;
}
if (!new_con_state->crtc)
continue;
new_crtc_state = drm_atomic_get_new_crtc_state(
state, new_con_state->crtc);
if (!new_crtc_state)
continue;
if (!drm_atomic_crtc_needs_modeset(new_crtc_state))
continue;
notify:
aconnector = to_amdgpu_dm_connector(connector);
mutex_lock(&adev->dm.audio_lock);
inst = aconnector->audio_inst;
aconnector->audio_inst = -1;
mutex_unlock(&adev->dm.audio_lock);
amdgpu_dm_audio_eld_notify(adev, inst);
}
/* Notify audio device additions. */
for_each_new_connector_in_state(state, connector, new_con_state, i) {
if (!new_con_state->crtc)
continue;
new_crtc_state = drm_atomic_get_new_crtc_state(
state, new_con_state->crtc);
if (!new_crtc_state)
continue;
if (!drm_atomic_crtc_needs_modeset(new_crtc_state))
continue;
new_dm_crtc_state = to_dm_crtc_state(new_crtc_state);
if (!new_dm_crtc_state->stream)
continue;
status = dc_stream_get_status(new_dm_crtc_state->stream);
if (!status)
continue;
aconnector = to_amdgpu_dm_connector(connector);
mutex_lock(&adev->dm.audio_lock);
inst = status->audio_inst;
aconnector->audio_inst = inst;
mutex_unlock(&adev->dm.audio_lock);
amdgpu_dm_audio_eld_notify(adev, inst);
}
}
/*
* amdgpu_dm_crtc_copy_transient_flags - copy mirrored flags from DRM to DC
* @crtc_state: the DRM CRTC state
* @stream_state: the DC stream state.
*
* Copy the mirrored transient state flags from DRM, to DC. It is used to bring
* a dc_stream_state's flags in sync with a drm_crtc_state's flags.
*/
static void amdgpu_dm_crtc_copy_transient_flags(struct drm_crtc_state *crtc_state,
struct dc_stream_state *stream_state)
{
stream_state->mode_changed = drm_atomic_crtc_needs_modeset(crtc_state);
}
/**
* amdgpu_dm_atomic_commit_tail() - AMDgpu DM's commit tail implementation.
* @state: The atomic state to commit
*
* This will tell DC to commit the constructed DC state from atomic_check,
* programming the hardware. Any failures here implies a hardware failure, since
* atomic check should have filtered anything non-kosher.
*/
static void amdgpu_dm_atomic_commit_tail(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_display_manager *dm = &adev->dm;
struct dm_atomic_state *dm_state;
struct dc_state *dc_state = NULL, *dc_state_temp = NULL;
uint32_t i, j;
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state, *new_crtc_state;
unsigned long flags;
bool wait_for_vblank = true;
struct drm_connector *connector;
struct drm_connector_state *old_con_state, *new_con_state;
struct dm_crtc_state *dm_old_crtc_state, *dm_new_crtc_state;
int crtc_disable_count = 0;
bool mode_set_reset_required = false;
trace_amdgpu_dm_atomic_commit_tail_begin(state);
drm_atomic_helper_update_legacy_modeset_state(dev, state);
dm_state = dm_atomic_get_new_state(state);
if (dm_state && dm_state->context) {
dc_state = dm_state->context;
} else {
/* No state changes, retain current state. */
dc_state_temp = dc_create_state(dm->dc);
ASSERT(dc_state_temp);
dc_state = dc_state_temp;
dc_resource_state_copy_construct_current(dm->dc, dc_state);
}
for_each_oldnew_crtc_in_state (state, crtc, old_crtc_state,
new_crtc_state, i) {
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc);
dm_old_crtc_state = to_dm_crtc_state(old_crtc_state);
if (old_crtc_state->active &&
(!new_crtc_state->active ||
drm_atomic_crtc_needs_modeset(new_crtc_state))) {
manage_dm_interrupts(adev, acrtc, false);
dc_stream_release(dm_old_crtc_state->stream);
}
}
drm_atomic_helper_calc_timestamping_constants(state);
/* update changed items */
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc);
dm_new_crtc_state = to_dm_crtc_state(new_crtc_state);
dm_old_crtc_state = to_dm_crtc_state(old_crtc_state);
DRM_DEBUG_ATOMIC(
"amdgpu_crtc id:%d crtc_state_flags: enable:%d, active:%d, "
"planes_changed:%d, mode_changed:%d,active_changed:%d,"
"connectors_changed:%d\n",
acrtc->crtc_id,
new_crtc_state->enable,
new_crtc_state->active,
new_crtc_state->planes_changed,
new_crtc_state->mode_changed,
new_crtc_state->active_changed,
new_crtc_state->connectors_changed);
/* Disable cursor if disabling crtc */
if (old_crtc_state->active && !new_crtc_state->active) {
struct dc_cursor_position position;
memset(&position, 0, sizeof(position));
mutex_lock(&dm->dc_lock);
dc_stream_set_cursor_position(dm_old_crtc_state->stream, &position);
mutex_unlock(&dm->dc_lock);
}
/* Copy all transient state flags into dc state */
if (dm_new_crtc_state->stream) {
amdgpu_dm_crtc_copy_transient_flags(&dm_new_crtc_state->base,
dm_new_crtc_state->stream);
}
/* handles headless hotplug case, updating new_state and
* aconnector as needed
*/
if (modeset_required(new_crtc_state, dm_new_crtc_state->stream, dm_old_crtc_state->stream)) {
DRM_DEBUG_ATOMIC("Atomic commit: SET crtc id %d: [%p]\n", acrtc->crtc_id, acrtc);
if (!dm_new_crtc_state->stream) {
/*
* this could happen because of issues with
* userspace notifications delivery.
* In this case userspace tries to set mode on
* display which is disconnected in fact.
* dc_sink is NULL in this case on aconnector.
* We expect reset mode will come soon.
*
* This can also happen when unplug is done
* during resume sequence ended
*
* In this case, we want to pretend we still
* have a sink to keep the pipe running so that
* hw state is consistent with the sw state
*/
DRM_DEBUG_DRIVER("%s: Failed to create new stream for crtc %d\n",
__func__, acrtc->base.base.id);
continue;
}
if (dm_old_crtc_state->stream)
remove_stream(adev, acrtc, dm_old_crtc_state->stream);
pm_runtime_get_noresume(dev->dev);
acrtc->enabled = true;
acrtc->hw_mode = new_crtc_state->mode;
crtc->hwmode = new_crtc_state->mode;
mode_set_reset_required = true;
} else if (modereset_required(new_crtc_state)) {
DRM_DEBUG_ATOMIC("Atomic commit: RESET. crtc id %d:[%p]\n", acrtc->crtc_id, acrtc);
/* i.e. reset mode */
if (dm_old_crtc_state->stream)
remove_stream(adev, acrtc, dm_old_crtc_state->stream);
mode_set_reset_required = true;
}
} /* for_each_crtc_in_state() */
if (dc_state) {
/* if there mode set or reset, disable eDP PSR */
if (mode_set_reset_required)
amdgpu_dm_psr_disable_all(dm);
dm_enable_per_frame_crtc_master_sync(dc_state);
mutex_lock(&dm->dc_lock);
WARN_ON(!dc_commit_state(dm->dc, dc_state));
#if defined(CONFIG_DRM_AMD_DC_DCN)
/* Allow idle optimization when vblank count is 0 for display off */
if (dm->active_vblank_irq_count == 0)
dc_allow_idle_optimizations(dm->dc,true);
#endif
mutex_unlock(&dm->dc_lock);
}
for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc);
dm_new_crtc_state = to_dm_crtc_state(new_crtc_state);
if (dm_new_crtc_state->stream != NULL) {
const struct dc_stream_status *status =
dc_stream_get_status(dm_new_crtc_state->stream);
if (!status)
status = dc_stream_get_status_from_state(dc_state,
dm_new_crtc_state->stream);
if (!status)
DC_ERR("got no status for stream %p on acrtc%p\n", dm_new_crtc_state->stream, acrtc);
else
acrtc->otg_inst = status->primary_otg_inst;
}
}
#ifdef CONFIG_DRM_AMD_DC_HDCP
for_each_oldnew_connector_in_state(state, connector, old_con_state, new_con_state, i) {
struct dm_connector_state *dm_new_con_state = to_dm_connector_state(new_con_state);
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(dm_new_con_state->base.crtc);
struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector);
new_crtc_state = NULL;
if (acrtc)
new_crtc_state = drm_atomic_get_new_crtc_state(state, &acrtc->base);
dm_new_crtc_state = to_dm_crtc_state(new_crtc_state);
if (dm_new_crtc_state && dm_new_crtc_state->stream == NULL &&
connector->state->content_protection == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
hdcp_reset_display(adev->dm.hdcp_workqueue, aconnector->dc_link->link_index);
new_con_state->content_protection = DRM_MODE_CONTENT_PROTECTION_DESIRED;
dm_new_con_state->update_hdcp = true;
continue;
}
if (is_content_protection_different(new_con_state, old_con_state, connector, adev->dm.hdcp_workqueue))
hdcp_update_display(
adev->dm.hdcp_workqueue, aconnector->dc_link->link_index, aconnector,
new_con_state->hdcp_content_type,
new_con_state->content_protection == DRM_MODE_CONTENT_PROTECTION_DESIRED);
}
#endif
/* Handle connector state changes */
for_each_oldnew_connector_in_state(state, connector, old_con_state, new_con_state, i) {
struct dm_connector_state *dm_new_con_state = to_dm_connector_state(new_con_state);
struct dm_connector_state *dm_old_con_state = to_dm_connector_state(old_con_state);
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(dm_new_con_state->base.crtc);
struct dc_surface_update dummy_updates[MAX_SURFACES];
struct dc_stream_update stream_update;
struct dc_info_packet hdr_packet;
struct dc_stream_status *status = NULL;
bool abm_changed, hdr_changed, scaling_changed;
memset(&dummy_updates, 0, sizeof(dummy_updates));
memset(&stream_update, 0, sizeof(stream_update));
if (acrtc) {
new_crtc_state = drm_atomic_get_new_crtc_state(state, &acrtc->base);
old_crtc_state = drm_atomic_get_old_crtc_state(state, &acrtc->base);
}
/* Skip any modesets/resets */
if (!acrtc || drm_atomic_crtc_needs_modeset(new_crtc_state))
continue;
dm_new_crtc_state = to_dm_crtc_state(new_crtc_state);
dm_old_crtc_state = to_dm_crtc_state(old_crtc_state);
scaling_changed = is_scaling_state_different(dm_new_con_state,
dm_old_con_state);
abm_changed = dm_new_crtc_state->abm_level !=
dm_old_crtc_state->abm_level;
hdr_changed =
!drm_connector_atomic_hdr_metadata_equal(old_con_state, new_con_state);
if (!scaling_changed && !abm_changed && !hdr_changed)
continue;
stream_update.stream = dm_new_crtc_state->stream;
if (scaling_changed) {
update_stream_scaling_settings(&dm_new_con_state->base.crtc->mode,
dm_new_con_state, dm_new_crtc_state->stream);
stream_update.src = dm_new_crtc_state->stream->src;
stream_update.dst = dm_new_crtc_state->stream->dst;
}
if (abm_changed) {
dm_new_crtc_state->stream->abm_level = dm_new_crtc_state->abm_level;
stream_update.abm_level = &dm_new_crtc_state->abm_level;
}
if (hdr_changed) {
fill_hdr_info_packet(new_con_state, &hdr_packet);
stream_update.hdr_static_metadata = &hdr_packet;
}
status = dc_stream_get_status(dm_new_crtc_state->stream);
if (WARN_ON(!status))
continue;
WARN_ON(!status->plane_count);
/*
* TODO: DC refuses to perform stream updates without a dc_surface_update.
* Here we create an empty update on each plane.
* To fix this, DC should permit updating only stream properties.
*/
for (j = 0; j < status->plane_count; j++)
dummy_updates[j].surface = status->plane_states[0];
mutex_lock(&dm->dc_lock);
dc_commit_updates_for_stream(dm->dc,
dummy_updates,
status->plane_count,
dm_new_crtc_state->stream,
&stream_update,
dc_state);
mutex_unlock(&dm->dc_lock);
}
/* Count number of newly disabled CRTCs for dropping PM refs later. */
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (old_crtc_state->active && !new_crtc_state->active)
crtc_disable_count++;
dm_new_crtc_state = to_dm_crtc_state(new_crtc_state);
dm_old_crtc_state = to_dm_crtc_state(old_crtc_state);
/* For freesync config update on crtc state and params for irq */
update_stream_irq_parameters(dm, dm_new_crtc_state);
/* Handle vrr on->off / off->on transitions */
amdgpu_dm_handle_vrr_transition(dm_old_crtc_state,
dm_new_crtc_state);
}
/**
* Enable interrupts for CRTCs that are newly enabled or went through
* a modeset. It was intentionally deferred until after the front end
* state was modified to wait until the OTG was on and so the IRQ
* handlers didn't access stale or invalid state.
*/
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc);
#ifdef CONFIG_DEBUG_FS
bool configure_crc = false;
enum amdgpu_dm_pipe_crc_source cur_crc_src;
#if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
struct crc_rd_work *crc_rd_wrk = dm->crc_rd_wrk;
#endif
spin_lock_irqsave(&adev_to_drm(adev)->event_lock, flags);
cur_crc_src = acrtc->dm_irq_params.crc_src;
spin_unlock_irqrestore(&adev_to_drm(adev)->event_lock, flags);
#endif
dm_new_crtc_state = to_dm_crtc_state(new_crtc_state);
if (new_crtc_state->active &&
(!old_crtc_state->active ||
drm_atomic_crtc_needs_modeset(new_crtc_state))) {
dc_stream_retain(dm_new_crtc_state->stream);
acrtc->dm_irq_params.stream = dm_new_crtc_state->stream;
manage_dm_interrupts(adev, acrtc, true);
#ifdef CONFIG_DEBUG_FS
/**
* Frontend may have changed so reapply the CRC capture
* settings for the stream.
*/
dm_new_crtc_state = to_dm_crtc_state(new_crtc_state);
if (amdgpu_dm_is_valid_crc_source(cur_crc_src)) {
configure_crc = true;
#if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
if (amdgpu_dm_crc_window_is_activated(crtc)) {
spin_lock_irqsave(&adev_to_drm(adev)->event_lock, flags);
acrtc->dm_irq_params.crc_window.update_win = true;
acrtc->dm_irq_params.crc_window.skip_frame_cnt = 2;
spin_lock_irq(&crc_rd_wrk->crc_rd_work_lock);
crc_rd_wrk->crtc = crtc;
spin_unlock_irq(&crc_rd_wrk->crc_rd_work_lock);
spin_unlock_irqrestore(&adev_to_drm(adev)->event_lock, flags);
}
#endif
}
if (configure_crc)
if (amdgpu_dm_crtc_configure_crc_source(
crtc, dm_new_crtc_state, cur_crc_src))
DRM_DEBUG_DRIVER("Failed to configure crc source");
#endif
}
}
for_each_new_crtc_in_state(state, crtc, new_crtc_state, j)
if (new_crtc_state->async_flip)
wait_for_vblank = false;
/* update planes when needed per crtc*/
for_each_new_crtc_in_state(state, crtc, new_crtc_state, j) {
dm_new_crtc_state = to_dm_crtc_state(new_crtc_state);
if (dm_new_crtc_state->stream)
amdgpu_dm_commit_planes(state, dc_state, dev,
dm, crtc, wait_for_vblank);
}
/* Update audio instances for each connector. */
amdgpu_dm_commit_audio(dev, state);
#if defined(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
defined(CONFIG_BACKLIGHT_CLASS_DEVICE_MODULE)
/* restore the backlight level */
if (dm->backlight_dev && (amdgpu_dm_backlight_get_level(dm) != dm->brightness[0]))
amdgpu_dm_backlight_set_level(dm, dm->brightness[0]);
#endif
/*
* send vblank event on all events not handled in flip and
* mark consumed event for drm_atomic_helper_commit_hw_done
*/
spin_lock_irqsave(&adev_to_drm(adev)->event_lock, flags);
for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
if (new_crtc_state->event)
drm_send_event_locked(dev, &new_crtc_state->event->base);
new_crtc_state->event = NULL;
}
spin_unlock_irqrestore(&adev_to_drm(adev)->event_lock, flags);
/* Signal HW programming completion */
drm_atomic_helper_commit_hw_done(state);
if (wait_for_vblank)
drm_atomic_helper_wait_for_flip_done(dev, state);
drm_atomic_helper_cleanup_planes(dev, state);
/* return the stolen vga memory back to VRAM */
if (!adev->mman.keep_stolen_vga_memory)
amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
/*
* Finally, drop a runtime PM reference for each newly disabled CRTC,
* so we can put the GPU into runtime suspend if we're not driving any
* displays anymore
*/
for (i = 0; i < crtc_disable_count; i++)
pm_runtime_put_autosuspend(dev->dev);
pm_runtime_mark_last_busy(dev->dev);
if (dc_state_temp)
dc_release_state(dc_state_temp);
}
static int dm_force_atomic_commit(struct drm_connector *connector)
{
int ret = 0;
struct drm_device *ddev = connector->dev;
struct drm_atomic_state *state = drm_atomic_state_alloc(ddev);
struct amdgpu_crtc *disconnected_acrtc = to_amdgpu_crtc(connector->encoder->crtc);
struct drm_plane *plane = disconnected_acrtc->base.primary;
struct drm_connector_state *conn_state;
struct drm_crtc_state *crtc_state;
struct drm_plane_state *plane_state;
if (!state)
return -ENOMEM;
state->acquire_ctx = ddev->mode_config.acquire_ctx;
/* Construct an atomic state to restore previous display setting */
/*
* Attach connectors to drm_atomic_state
*/
conn_state = drm_atomic_get_connector_state(state, connector);
ret = PTR_ERR_OR_ZERO(conn_state);
if (ret)
goto out;
/* Attach crtc to drm_atomic_state*/
crtc_state = drm_atomic_get_crtc_state(state, &disconnected_acrtc->base);
ret = PTR_ERR_OR_ZERO(crtc_state);
if (ret)
goto out;
/* force a restore */
crtc_state->mode_changed = true;
/* Attach plane to drm_atomic_state */
plane_state = drm_atomic_get_plane_state(state, plane);
ret = PTR_ERR_OR_ZERO(plane_state);
if (ret)
goto out;
/* Call commit internally with the state we just constructed */
ret = drm_atomic_commit(state);
out:
drm_atomic_state_put(state);
if (ret)
DRM_ERROR("Restoring old state failed with %i\n", ret);
return ret;
}
/*
* This function handles all cases when set mode does not come upon hotplug.
* This includes when a display is unplugged then plugged back into the
* same port and when running without usermode desktop manager supprot
*/
void dm_restore_drm_connector_state(struct drm_device *dev,
struct drm_connector *connector)
{
struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector);
struct amdgpu_crtc *disconnected_acrtc;
struct dm_crtc_state *acrtc_state;
if (!aconnector->dc_sink || !connector->state || !connector->encoder)
return;
disconnected_acrtc = to_amdgpu_crtc(connector->encoder->crtc);
if (!disconnected_acrtc)
return;
acrtc_state = to_dm_crtc_state(disconnected_acrtc->base.state);
if (!acrtc_state->stream)
return;
/*
* If the previous sink is not released and different from the current,
* we deduce we are in a state where we can not rely on usermode call
* to turn on the display, so we do it here
*/
if (acrtc_state->stream->sink != aconnector->dc_sink)
dm_force_atomic_commit(&aconnector->base);
}
/*
* Grabs all modesetting locks to serialize against any blocking commits,
* Waits for completion of all non blocking commits.
*/
static int do_aquire_global_lock(struct drm_device *dev,
struct drm_atomic_state *state)
{
struct drm_crtc *crtc;
struct drm_crtc_commit *commit;
long ret;
/*
* Adding all modeset locks to aquire_ctx will
* ensure that when the framework release it the
* extra locks we are locking here will get released to
*/
ret = drm_modeset_lock_all_ctx(dev, state->acquire_ctx);
if (ret)
return ret;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
spin_lock(&crtc->commit_lock);
commit = list_first_entry_or_null(&crtc->commit_list,
struct drm_crtc_commit, commit_entry);
if (commit)
drm_crtc_commit_get(commit);
spin_unlock(&crtc->commit_lock);
if (!commit)
continue;
/*
* Make sure all pending HW programming completed and
* page flips done
*/
ret = wait_for_completion_interruptible_timeout(&commit->hw_done, 10*HZ);
if (ret > 0)
ret = wait_for_completion_interruptible_timeout(
&commit->flip_done, 10*HZ);
if (ret == 0)
DRM_ERROR("[CRTC:%d:%s] hw_done or flip_done "
"timed out\n", crtc->base.id, crtc->name);
drm_crtc_commit_put(commit);
}
return ret < 0 ? ret : 0;
}
static void get_freesync_config_for_crtc(
struct dm_crtc_state *new_crtc_state,
struct dm_connector_state *new_con_state)
{
struct mod_freesync_config config = {0};
struct amdgpu_dm_connector *aconnector =
to_amdgpu_dm_connector(new_con_state->base.connector);
struct drm_display_mode *mode = &new_crtc_state->base.mode;
int vrefresh = drm_mode_vrefresh(mode);
bool fs_vid_mode = false;
new_crtc_state->vrr_supported = new_con_state->freesync_capable &&
vrefresh >= aconnector->min_vfreq &&
vrefresh <= aconnector->max_vfreq;
if (new_crtc_state->vrr_supported) {
new_crtc_state->stream->ignore_msa_timing_param = true;
fs_vid_mode = new_crtc_state->freesync_config.state == VRR_STATE_ACTIVE_FIXED;
config.min_refresh_in_uhz = aconnector->min_vfreq * 1000000;
config.max_refresh_in_uhz = aconnector->max_vfreq * 1000000;
config.vsif_supported = true;
config.btr = true;
if (fs_vid_mode) {
config.state = VRR_STATE_ACTIVE_FIXED;
config.fixed_refresh_in_uhz = new_crtc_state->freesync_config.fixed_refresh_in_uhz;
goto out;
} else if (new_crtc_state->base.vrr_enabled) {
config.state = VRR_STATE_ACTIVE_VARIABLE;
} else {
config.state = VRR_STATE_INACTIVE;
}
}
out:
new_crtc_state->freesync_config = config;
}
static void reset_freesync_config_for_crtc(
struct dm_crtc_state *new_crtc_state)
{
new_crtc_state->vrr_supported = false;
memset(&new_crtc_state->vrr_infopacket, 0,
sizeof(new_crtc_state->vrr_infopacket));
}
static bool
is_timing_unchanged_for_freesync(struct drm_crtc_state *old_crtc_state,
struct drm_crtc_state *new_crtc_state)
{
struct drm_display_mode old_mode, new_mode;
if (!old_crtc_state || !new_crtc_state)
return false;
old_mode = old_crtc_state->mode;
new_mode = new_crtc_state->mode;
if (old_mode.clock == new_mode.clock &&
old_mode.hdisplay == new_mode.hdisplay &&
old_mode.vdisplay == new_mode.vdisplay &&
old_mode.htotal == new_mode.htotal &&
old_mode.vtotal != new_mode.vtotal &&
old_mode.hsync_start == new_mode.hsync_start &&
old_mode.vsync_start != new_mode.vsync_start &&
old_mode.hsync_end == new_mode.hsync_end &&
old_mode.vsync_end != new_mode.vsync_end &&
old_mode.hskew == new_mode.hskew &&
old_mode.vscan == new_mode.vscan &&
(old_mode.vsync_end - old_mode.vsync_start) ==
(new_mode.vsync_end - new_mode.vsync_start))
return true;
return false;
}
static void set_freesync_fixed_config(struct dm_crtc_state *dm_new_crtc_state) {
uint64_t num, den, res;
struct drm_crtc_state *new_crtc_state = &dm_new_crtc_state->base;
dm_new_crtc_state->freesync_config.state = VRR_STATE_ACTIVE_FIXED;
num = (unsigned long long)new_crtc_state->mode.clock * 1000 * 1000000;
den = (unsigned long long)new_crtc_state->mode.htotal *
(unsigned long long)new_crtc_state->mode.vtotal;
res = div_u64(num, den);
dm_new_crtc_state->freesync_config.fixed_refresh_in_uhz = res;
}
static int dm_update_crtc_state(struct amdgpu_display_manager *dm,
struct drm_atomic_state *state,
struct drm_crtc *crtc,
struct drm_crtc_state *old_crtc_state,
struct drm_crtc_state *new_crtc_state,
bool enable,
bool *lock_and_validation_needed)
{
struct dm_atomic_state *dm_state = NULL;
struct dm_crtc_state *dm_old_crtc_state, *dm_new_crtc_state;
struct dc_stream_state *new_stream;
int ret = 0;
/*
* TODO Move this code into dm_crtc_atomic_check once we get rid of dc_validation_set
* update changed items
*/
struct amdgpu_crtc *acrtc = NULL;
struct amdgpu_dm_connector *aconnector = NULL;
struct drm_connector_state *drm_new_conn_state = NULL, *drm_old_conn_state = NULL;
struct dm_connector_state *dm_new_conn_state = NULL, *dm_old_conn_state = NULL;
new_stream = NULL;
dm_old_crtc_state = to_dm_crtc_state(old_crtc_state);
dm_new_crtc_state = to_dm_crtc_state(new_crtc_state);
acrtc = to_amdgpu_crtc(crtc);
aconnector = amdgpu_dm_find_first_crtc_matching_connector(state, crtc);
/* TODO This hack should go away */
if (aconnector && enable) {
/* Make sure fake sink is created in plug-in scenario */
drm_new_conn_state = drm_atomic_get_new_connector_state(state,
&aconnector->base);
drm_old_conn_state = drm_atomic_get_old_connector_state(state,
&aconnector->base);
if (IS_ERR(drm_new_conn_state)) {
ret = PTR_ERR_OR_ZERO(drm_new_conn_state);
goto fail;
}
dm_new_conn_state = to_dm_connector_state(drm_new_conn_state);
dm_old_conn_state = to_dm_connector_state(drm_old_conn_state);
if (!drm_atomic_crtc_needs_modeset(new_crtc_state))
goto skip_modeset;
new_stream = create_validate_stream_for_sink(aconnector,
&new_crtc_state->mode,
dm_new_conn_state,
dm_old_crtc_state->stream);
/*
* we can have no stream on ACTION_SET if a display
* was disconnected during S3, in this case it is not an
* error, the OS will be updated after detection, and
* will do the right thing on next atomic commit
*/
if (!new_stream) {
DRM_DEBUG_DRIVER("%s: Failed to create new stream for crtc %d\n",
__func__, acrtc->base.base.id);
ret = -ENOMEM;
goto fail;
}
/*
* TODO: Check VSDB bits to decide whether this should
* be enabled or not.
*/
new_stream->triggered_crtc_reset.enabled =
dm->force_timing_sync;
dm_new_crtc_state->abm_level = dm_new_conn_state->abm_level;
ret = fill_hdr_info_packet(drm_new_conn_state,
&new_stream->hdr_static_metadata);
if (ret)
goto fail;
/*
* If we already removed the old stream from the context
* (and set the new stream to NULL) then we can't reuse
* the old stream even if the stream and scaling are unchanged.
* We'll hit the BUG_ON and black screen.
*
* TODO: Refactor this function to allow this check to work
* in all conditions.
*/
if (amdgpu_freesync_vid_mode &&
dm_new_crtc_state->stream &&
is_timing_unchanged_for_freesync(new_crtc_state, old_crtc_state))
goto skip_modeset;
if (dm_new_crtc_state->stream &&
dc_is_stream_unchanged(new_stream, dm_old_crtc_state->stream) &&
dc_is_stream_scaling_unchanged(new_stream, dm_old_crtc_state->stream)) {
new_crtc_state->mode_changed = false;
DRM_DEBUG_DRIVER("Mode change not required, setting mode_changed to %d",
new_crtc_state->mode_changed);
}
}
/* mode_changed flag may get updated above, need to check again */
if (!drm_atomic_crtc_needs_modeset(new_crtc_state))
goto skip_modeset;
DRM_DEBUG_ATOMIC(
"amdgpu_crtc id:%d crtc_state_flags: enable:%d, active:%d, "
"planes_changed:%d, mode_changed:%d,active_changed:%d,"
"connectors_changed:%d\n",
acrtc->crtc_id,
new_crtc_state->enable,
new_crtc_state->active,
new_crtc_state->planes_changed,
new_crtc_state->mode_changed,
new_crtc_state->active_changed,
new_crtc_state->connectors_changed);
/* Remove stream for any changed/disabled CRTC */
if (!enable) {
if (!dm_old_crtc_state->stream)
goto skip_modeset;
if (amdgpu_freesync_vid_mode && dm_new_crtc_state->stream &&
is_timing_unchanged_for_freesync(new_crtc_state,
old_crtc_state)) {
new_crtc_state->mode_changed = false;
DRM_DEBUG_DRIVER(
"Mode change not required for front porch change, "
"setting mode_changed to %d",
new_crtc_state->mode_changed);
set_freesync_fixed_config(dm_new_crtc_state);
goto skip_modeset;
} else if (amdgpu_freesync_vid_mode && aconnector &&
is_freesync_video_mode(&new_crtc_state->mode,
aconnector)) {
set_freesync_fixed_config(dm_new_crtc_state);
}
ret = dm_atomic_get_state(state, &dm_state);
if (ret)
goto fail;
DRM_DEBUG_DRIVER("Disabling DRM crtc: %d\n",
crtc->base.id);
/* i.e. reset mode */
if (dc_remove_stream_from_ctx(
dm->dc,
dm_state->context,
dm_old_crtc_state->stream) != DC_OK) {
ret = -EINVAL;
goto fail;
}
dc_stream_release(dm_old_crtc_state->stream);
dm_new_crtc_state->stream = NULL;
reset_freesync_config_for_crtc(dm_new_crtc_state);
*lock_and_validation_needed = true;
} else {/* Add stream for any updated/enabled CRTC */
/*
* Quick fix to prevent NULL pointer on new_stream when
* added MST connectors not found in existing crtc_state in the chained mode
* TODO: need to dig out the root cause of that
*/
if (!aconnector || (!aconnector->dc_sink && aconnector->mst_port))
goto skip_modeset;
if (modereset_required(new_crtc_state))
goto skip_modeset;
if (modeset_required(new_crtc_state, new_stream,
dm_old_crtc_state->stream)) {
WARN_ON(dm_new_crtc_state->stream);
ret = dm_atomic_get_state(state, &dm_state);
if (ret)
goto fail;
dm_new_crtc_state->stream = new_stream;
dc_stream_retain(new_stream);
DRM_DEBUG_ATOMIC("Enabling DRM crtc: %d\n",
crtc->base.id);
if (dc_add_stream_to_ctx(
dm->dc,
dm_state->context,
dm_new_crtc_state->stream) != DC_OK) {
ret = -EINVAL;
goto fail;
}
*lock_and_validation_needed = true;
}
}
skip_modeset:
/* Release extra reference */
if (new_stream)
dc_stream_release(new_stream);
/*
* We want to do dc stream updates that do not require a
* full modeset below.
*/
if (!(enable && aconnector && new_crtc_state->active))
return 0;
/*
* Given above conditions, the dc state cannot be NULL because:
* 1. We're in the process of enabling CRTCs (just been added
* to the dc context, or already is on the context)
* 2. Has a valid connector attached, and
* 3. Is currently active and enabled.
* => The dc stream state currently exists.
*/
BUG_ON(dm_new_crtc_state->stream == NULL);
/* Scaling or underscan settings */
if (is_scaling_state_different(dm_old_conn_state, dm_new_conn_state) ||
drm_atomic_crtc_needs_modeset(new_crtc_state))
update_stream_scaling_settings(
&new_crtc_state->mode, dm_new_conn_state, dm_new_crtc_state->stream);
/* ABM settings */
dm_new_crtc_state->abm_level = dm_new_conn_state->abm_level;
/*
* Color management settings. We also update color properties
* when a modeset is needed, to ensure it gets reprogrammed.
*/
if (dm_new_crtc_state->base.color_mgmt_changed ||
drm_atomic_crtc_needs_modeset(new_crtc_state)) {
ret = amdgpu_dm_update_crtc_color_mgmt(dm_new_crtc_state);
if (ret)
goto fail;
}
/* Update Freesync settings. */
get_freesync_config_for_crtc(dm_new_crtc_state,
dm_new_conn_state);
return ret;
fail:
if (new_stream)
dc_stream_release(new_stream);
return ret;
}
static bool should_reset_plane(struct drm_atomic_state *state,
struct drm_plane *plane,
struct drm_plane_state *old_plane_state,
struct drm_plane_state *new_plane_state)
{
struct drm_plane *other;
struct drm_plane_state *old_other_state, *new_other_state;
struct drm_crtc_state *new_crtc_state;
int i;
/*
* TODO: Remove this hack once the checks below are sufficient
* enough to determine when we need to reset all the planes on
* the stream.
*/
if (state->allow_modeset)
return true;
/* Exit early if we know that we're adding or removing the plane. */
if (old_plane_state->crtc != new_plane_state->crtc)
return true;
/* old crtc == new_crtc == NULL, plane not in context. */
if (!new_plane_state->crtc)
return false;
new_crtc_state =
drm_atomic_get_new_crtc_state(state, new_plane_state->crtc);
if (!new_crtc_state)
return true;
/* CRTC Degamma changes currently require us to recreate planes. */
if (new_crtc_state->color_mgmt_changed)
return true;
if (drm_atomic_crtc_needs_modeset(new_crtc_state))
return true;
/*
* If there are any new primary or overlay planes being added or
* removed then the z-order can potentially change. To ensure
* correct z-order and pipe acquisition the current DC architecture
* requires us to remove and recreate all existing planes.
*
* TODO: Come up with a more elegant solution for this.
*/
for_each_oldnew_plane_in_state(state, other, old_other_state, new_other_state, i) {
struct amdgpu_framebuffer *old_afb, *new_afb;
if (other->type == DRM_PLANE_TYPE_CURSOR)
continue;
if (old_other_state->crtc != new_plane_state->crtc &&
new_other_state->crtc != new_plane_state->crtc)
continue;
if (old_other_state->crtc != new_other_state->crtc)
return true;
/* Src/dst size and scaling updates. */
if (old_other_state->src_w != new_other_state->src_w ||
old_other_state->src_h != new_other_state->src_h ||
old_other_state->crtc_w != new_other_state->crtc_w ||
old_other_state->crtc_h != new_other_state->crtc_h)
return true;
/* Rotation / mirroring updates. */
if (old_other_state->rotation != new_other_state->rotation)
return true;
/* Blending updates. */
if (old_other_state->pixel_blend_mode !=
new_other_state->pixel_blend_mode)
return true;
/* Alpha updates. */
if (old_other_state->alpha != new_other_state->alpha)
return true;
/* Colorspace changes. */
if (old_other_state->color_range != new_other_state->color_range ||
old_other_state->color_encoding != new_other_state->color_encoding)
return true;
/* Framebuffer checks fall at the end. */
if (!old_other_state->fb || !new_other_state->fb)
continue;
/* Pixel format changes can require bandwidth updates. */
if (old_other_state->fb->format != new_other_state->fb->format)
return true;
old_afb = (struct amdgpu_framebuffer *)old_other_state->fb;
new_afb = (struct amdgpu_framebuffer *)new_other_state->fb;
/* Tiling and DCC changes also require bandwidth updates. */
if (old_afb->tiling_flags != new_afb->tiling_flags ||
old_afb->base.modifier != new_afb->base.modifier)
return true;
}
return false;
}
static int dm_check_cursor_fb(struct amdgpu_crtc *new_acrtc,
struct drm_plane_state *new_plane_state,
struct drm_framebuffer *fb)
{
struct amdgpu_device *adev = drm_to_adev(new_acrtc->base.dev);
struct amdgpu_framebuffer *afb = to_amdgpu_framebuffer(fb);
unsigned int pitch;
bool linear;
if (fb->width > new_acrtc->max_cursor_width ||
fb->height > new_acrtc->max_cursor_height) {
DRM_DEBUG_ATOMIC("Bad cursor FB size %dx%d\n",
new_plane_state->fb->width,
new_plane_state->fb->height);
return -EINVAL;
}
if (new_plane_state->src_w != fb->width << 16 ||
new_plane_state->src_h != fb->height << 16) {
DRM_DEBUG_ATOMIC("Cropping not supported for cursor plane\n");
return -EINVAL;
}
/* Pitch in pixels */
pitch = fb->pitches[0] / fb->format->cpp[0];
if (fb->width != pitch) {
DRM_DEBUG_ATOMIC("Cursor FB width %d doesn't match pitch %d",
fb->width, pitch);
return -EINVAL;
}
switch (pitch) {
case 64:
case 128:
case 256:
/* FB pitch is supported by cursor plane */
break;
default:
DRM_DEBUG_ATOMIC("Bad cursor FB pitch %d px\n", pitch);
return -EINVAL;
}
/* Core DRM takes care of checking FB modifiers, so we only need to
* check tiling flags when the FB doesn't have a modifier. */
if (!(fb->flags & DRM_MODE_FB_MODIFIERS)) {
if (adev->family < AMDGPU_FAMILY_AI) {
linear = AMDGPU_TILING_GET(afb->tiling_flags, ARRAY_MODE) != DC_ARRAY_2D_TILED_THIN1 &&
AMDGPU_TILING_GET(afb->tiling_flags, ARRAY_MODE) != DC_ARRAY_1D_TILED_THIN1 &&
AMDGPU_TILING_GET(afb->tiling_flags, MICRO_TILE_MODE) == 0;
} else {
linear = AMDGPU_TILING_GET(afb->tiling_flags, SWIZZLE_MODE) == 0;
}
if (!linear) {
DRM_DEBUG_ATOMIC("Cursor FB not linear");
return -EINVAL;
}
}
return 0;
}
static int dm_update_plane_state(struct dc *dc,
struct drm_atomic_state *state,
struct drm_plane *plane,
struct drm_plane_state *old_plane_state,
struct drm_plane_state *new_plane_state,
bool enable,
bool *lock_and_validation_needed)
{
struct dm_atomic_state *dm_state = NULL;
struct drm_crtc *new_plane_crtc, *old_plane_crtc;
struct drm_crtc_state *old_crtc_state, *new_crtc_state;
struct dm_crtc_state *dm_new_crtc_state, *dm_old_crtc_state;
struct dm_plane_state *dm_new_plane_state, *dm_old_plane_state;
struct amdgpu_crtc *new_acrtc;
bool needs_reset;
int ret = 0;
new_plane_crtc = new_plane_state->crtc;
old_plane_crtc = old_plane_state->crtc;
dm_new_plane_state = to_dm_plane_state(new_plane_state);
dm_old_plane_state = to_dm_plane_state(old_plane_state);
if (plane->type == DRM_PLANE_TYPE_CURSOR) {
if (!enable || !new_plane_crtc ||
drm_atomic_plane_disabling(plane->state, new_plane_state))
return 0;
new_acrtc = to_amdgpu_crtc(new_plane_crtc);
if (new_plane_state->src_x != 0 || new_plane_state->src_y != 0) {
DRM_DEBUG_ATOMIC("Cropping not supported for cursor plane\n");
return -EINVAL;
}
if (new_plane_state->fb) {
ret = dm_check_cursor_fb(new_acrtc, new_plane_state,
new_plane_state->fb);
if (ret)
return ret;
}
return 0;
}
needs_reset = should_reset_plane(state, plane, old_plane_state,
new_plane_state);
/* Remove any changed/removed planes */
if (!enable) {
if (!needs_reset)
return 0;
if (!old_plane_crtc)
return 0;
old_crtc_state = drm_atomic_get_old_crtc_state(
state, old_plane_crtc);
dm_old_crtc_state = to_dm_crtc_state(old_crtc_state);
if (!dm_old_crtc_state->stream)
return 0;
DRM_DEBUG_ATOMIC("Disabling DRM plane: %d on DRM crtc %d\n",
plane->base.id, old_plane_crtc->base.id);
ret = dm_atomic_get_state(state, &dm_state);
if (ret)
return ret;
if (!dc_remove_plane_from_context(
dc,
dm_old_crtc_state->stream,
dm_old_plane_state->dc_state,
dm_state->context)) {
return -EINVAL;
}
dc_plane_state_release(dm_old_plane_state->dc_state);
dm_new_plane_state->dc_state = NULL;
*lock_and_validation_needed = true;
} else { /* Add new planes */
struct dc_plane_state *dc_new_plane_state;
if (drm_atomic_plane_disabling(plane->state, new_plane_state))
return 0;
if (!new_plane_crtc)
return 0;
new_crtc_state = drm_atomic_get_new_crtc_state(state, new_plane_crtc);
dm_new_crtc_state = to_dm_crtc_state(new_crtc_state);
if (!dm_new_crtc_state->stream)
return 0;
if (!needs_reset)
return 0;
ret = dm_plane_helper_check_state(new_plane_state, new_crtc_state);
if (ret)
return ret;
WARN_ON(dm_new_plane_state->dc_state);
dc_new_plane_state = dc_create_plane_state(dc);
if (!dc_new_plane_state)
return -ENOMEM;
DRM_DEBUG_ATOMIC("Enabling DRM plane: %d on DRM crtc %d\n",
plane->base.id, new_plane_crtc->base.id);
ret = fill_dc_plane_attributes(
drm_to_adev(new_plane_crtc->dev),
dc_new_plane_state,
new_plane_state,
new_crtc_state);
if (ret) {
dc_plane_state_release(dc_new_plane_state);
return ret;
}
ret = dm_atomic_get_state(state, &dm_state);
if (ret) {
dc_plane_state_release(dc_new_plane_state);
return ret;
}
/*
* Any atomic check errors that occur after this will
* not need a release. The plane state will be attached
* to the stream, and therefore part of the atomic
* state. It'll be released when the atomic state is
* cleaned.
*/
if (!dc_add_plane_to_context(
dc,
dm_new_crtc_state->stream,
dc_new_plane_state,
dm_state->context)) {
dc_plane_state_release(dc_new_plane_state);
return -EINVAL;
}
dm_new_plane_state->dc_state = dc_new_plane_state;
/* Tell DC to do a full surface update every time there
* is a plane change. Inefficient, but works for now.
*/
dm_new_plane_state->dc_state->update_flags.bits.full_update = 1;
*lock_and_validation_needed = true;
}
return ret;
}
static int dm_check_crtc_cursor(struct drm_atomic_state *state,
struct drm_crtc *crtc,
struct drm_crtc_state *new_crtc_state)
{
struct drm_plane_state *new_cursor_state, *new_primary_state;
int cursor_scale_w, cursor_scale_h, primary_scale_w, primary_scale_h;
/* On DCE and DCN there is no dedicated hardware cursor plane. We get a
* cursor per pipe but it's going to inherit the scaling and
* positioning from the underlying pipe. Check the cursor plane's
* blending properties match the primary plane's. */
new_cursor_state = drm_atomic_get_new_plane_state(state, crtc->cursor);
new_primary_state = drm_atomic_get_new_plane_state(state, crtc->primary);
if (!new_cursor_state || !new_primary_state ||
!new_cursor_state->fb || !new_primary_state->fb) {
return 0;
}
cursor_scale_w = new_cursor_state->crtc_w * 1000 /
(new_cursor_state->src_w >> 16);
cursor_scale_h = new_cursor_state->crtc_h * 1000 /
(new_cursor_state->src_h >> 16);
primary_scale_w = new_primary_state->crtc_w * 1000 /
(new_primary_state->src_w >> 16);
primary_scale_h = new_primary_state->crtc_h * 1000 /
(new_primary_state->src_h >> 16);
if (cursor_scale_w != primary_scale_w ||
cursor_scale_h != primary_scale_h) {
drm_dbg_atomic(crtc->dev, "Cursor plane scaling doesn't match primary plane\n");
return -EINVAL;
}
return 0;
}
#if defined(CONFIG_DRM_AMD_DC_DCN)
static int add_affected_mst_dsc_crtcs(struct drm_atomic_state *state, struct drm_crtc *crtc)
{
struct drm_connector *connector;
struct drm_connector_state *conn_state;
struct amdgpu_dm_connector *aconnector = NULL;
int i;
for_each_new_connector_in_state(state, connector, conn_state, i) {
if (conn_state->crtc != crtc)
continue;
aconnector = to_amdgpu_dm_connector(connector);
if (!aconnector->port || !aconnector->mst_port)
aconnector = NULL;
else
break;
}
if (!aconnector)
return 0;
return drm_dp_mst_add_affected_dsc_crtcs(state, &aconnector->mst_port->mst_mgr);
}
#endif
static int validate_overlay(struct drm_atomic_state *state)
{
int i;
struct drm_plane *plane;
struct drm_plane_state *new_plane_state;
struct drm_plane_state *primary_state, *overlay_state = NULL;
/* Check if primary plane is contained inside overlay */
for_each_new_plane_in_state_reverse(state, plane, new_plane_state, i) {
if (plane->type == DRM_PLANE_TYPE_OVERLAY) {
if (drm_atomic_plane_disabling(plane->state, new_plane_state))
return 0;
overlay_state = new_plane_state;
continue;
}
}
/* check if we're making changes to the overlay plane */
if (!overlay_state)
return 0;
/* check if overlay plane is enabled */
if (!overlay_state->crtc)
return 0;
/* find the primary plane for the CRTC that the overlay is enabled on */
primary_state = drm_atomic_get_plane_state(state, overlay_state->crtc->primary);
if (IS_ERR(primary_state))
return PTR_ERR(primary_state);
/* check if primary plane is enabled */
if (!primary_state->crtc)
return 0;
/* Perform the bounds check to ensure the overlay plane covers the primary */
if (primary_state->crtc_x < overlay_state->crtc_x ||
primary_state->crtc_y < overlay_state->crtc_y ||
primary_state->crtc_x + primary_state->crtc_w > overlay_state->crtc_x + overlay_state->crtc_w ||
primary_state->crtc_y + primary_state->crtc_h > overlay_state->crtc_y + overlay_state->crtc_h) {
DRM_DEBUG_ATOMIC("Overlay plane is enabled with hardware cursor but does not fully cover primary plane\n");
return -EINVAL;
}
return 0;
}
/**
* amdgpu_dm_atomic_check() - Atomic check implementation for AMDgpu DM.
* @dev: The DRM device
* @state: The atomic state to commit
*
* Validate that the given atomic state is programmable by DC into hardware.
* This involves constructing a &struct dc_state reflecting the new hardware
* state we wish to commit, then querying DC to see if it is programmable. It's
* important not to modify the existing DC state. Otherwise, atomic_check
* may unexpectedly commit hardware changes.
*
* When validating the DC state, it's important that the right locks are
* acquired. For full updates case which removes/adds/updates streams on one
* CRTC while flipping on another CRTC, acquiring global lock will guarantee
* that any such full update commit will wait for completion of any outstanding
* flip using DRMs synchronization events.
*
* Note that DM adds the affected connectors for all CRTCs in state, when that
* might not seem necessary. This is because DC stream creation requires the
* DC sink, which is tied to the DRM connector state. Cleaning this up should
* be possible but non-trivial - a possible TODO item.
*
* Return: -Error code if validation failed.
*/
static int amdgpu_dm_atomic_check(struct drm_device *dev,
struct drm_atomic_state *state)
{
struct amdgpu_device *adev = drm_to_adev(dev);
struct dm_atomic_state *dm_state = NULL;
struct dc *dc = adev->dm.dc;
struct drm_connector *connector;
struct drm_connector_state *old_con_state, *new_con_state;
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state, *new_crtc_state;
struct drm_plane *plane;
struct drm_plane_state *old_plane_state, *new_plane_state;
enum dc_status status;
int ret, i;
bool lock_and_validation_needed = false;
struct dm_crtc_state *dm_old_crtc_state;
trace_amdgpu_dm_atomic_check_begin(state);
ret = drm_atomic_helper_check_modeset(dev, state);
if (ret)
goto fail;
/* Check connector changes */
for_each_oldnew_connector_in_state(state, connector, old_con_state, new_con_state, i) {
struct dm_connector_state *dm_old_con_state = to_dm_connector_state(old_con_state);
struct dm_connector_state *dm_new_con_state = to_dm_connector_state(new_con_state);
/* Skip connectors that are disabled or part of modeset already. */
if (!old_con_state->crtc && !new_con_state->crtc)
continue;
if (!new_con_state->crtc)
continue;
new_crtc_state = drm_atomic_get_crtc_state(state, new_con_state->crtc);
if (IS_ERR(new_crtc_state)) {
ret = PTR_ERR(new_crtc_state);
goto fail;
}
if (dm_old_con_state->abm_level !=
dm_new_con_state->abm_level)
new_crtc_state->connectors_changed = true;
}
#if defined(CONFIG_DRM_AMD_DC_DCN)
if (dc_resource_is_dsc_encoding_supported(dc)) {
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
if (drm_atomic_crtc_needs_modeset(new_crtc_state)) {
ret = add_affected_mst_dsc_crtcs(state, crtc);
if (ret)
goto fail;
}
}
}
#endif
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
dm_old_crtc_state = to_dm_crtc_state(old_crtc_state);
if (!drm_atomic_crtc_needs_modeset(new_crtc_state) &&
!new_crtc_state->color_mgmt_changed &&
old_crtc_state->vrr_enabled == new_crtc_state->vrr_enabled &&
dm_old_crtc_state->dsc_force_changed == false)
continue;
ret = amdgpu_dm_verify_lut_sizes(new_crtc_state);
if (ret)
goto fail;
if (!new_crtc_state->enable)
continue;
ret = drm_atomic_add_affected_connectors(state, crtc);
if (ret)
return ret;
ret = drm_atomic_add_affected_planes(state, crtc);
if (ret)
goto fail;
if (dm_old_crtc_state->dsc_force_changed)
new_crtc_state->mode_changed = true;
}
/*
* Add all primary and overlay planes on the CRTC to the state
* whenever a plane is enabled to maintain correct z-ordering
* and to enable fast surface updates.
*/
drm_for_each_crtc(crtc, dev) {
bool modified = false;
for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i) {
if (plane->type == DRM_PLANE_TYPE_CURSOR)
continue;
if (new_plane_state->crtc == crtc ||
old_plane_state->crtc == crtc) {
modified = true;
break;
}
}
if (!modified)
continue;
drm_for_each_plane_mask(plane, state->dev, crtc->state->plane_mask) {
if (plane->type == DRM_PLANE_TYPE_CURSOR)
continue;
new_plane_state =
drm_atomic_get_plane_state(state, plane);
if (IS_ERR(new_plane_state)) {
ret = PTR_ERR(new_plane_state);
goto fail;
}
}
}
/* Remove exiting planes if they are modified */
for_each_oldnew_plane_in_state_reverse(state, plane, old_plane_state, new_plane_state, i) {
ret = dm_update_plane_state(dc, state, plane,
old_plane_state,
new_plane_state,
false,
&lock_and_validation_needed);
if (ret)
goto fail;
}
/* Disable all crtcs which require disable */
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
ret = dm_update_crtc_state(&adev->dm, state, crtc,
old_crtc_state,
new_crtc_state,
false,
&lock_and_validation_needed);
if (ret)
goto fail;
}
/* Enable all crtcs which require enable */
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
ret = dm_update_crtc_state(&adev->dm, state, crtc,
old_crtc_state,
new_crtc_state,
true,
&lock_and_validation_needed);
if (ret)
goto fail;
}
ret = validate_overlay(state);
if (ret)
goto fail;
/* Add new/modified planes */
for_each_oldnew_plane_in_state_reverse(state, plane, old_plane_state, new_plane_state, i) {
ret = dm_update_plane_state(dc, state, plane,
old_plane_state,
new_plane_state,
true,
&lock_and_validation_needed);
if (ret)
goto fail;
}
/* Run this here since we want to validate the streams we created */
ret = drm_atomic_helper_check_planes(dev, state);
if (ret)
goto fail;
/* Check cursor planes scaling */
for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
ret = dm_check_crtc_cursor(state, crtc, new_crtc_state);
if (ret)
goto fail;
}
if (state->legacy_cursor_update) {
/*
* This is a fast cursor update coming from the plane update
* helper, check if it can be done asynchronously for better
* performance.
*/
state->async_update =
!drm_atomic_helper_async_check(dev, state);
/*
* Skip the remaining global validation if this is an async
* update. Cursor updates can be done without affecting
* state or bandwidth calcs and this avoids the performance
* penalty of locking the private state object and
* allocating a new dc_state.
*/
if (state->async_update)
return 0;
}
/* Check scaling and underscan changes*/
/* TODO Removed scaling changes validation due to inability to commit
* new stream into context w\o causing full reset. Need to
* decide how to handle.
*/
for_each_oldnew_connector_in_state(state, connector, old_con_state, new_con_state, i) {
struct dm_connector_state *dm_old_con_state = to_dm_connector_state(old_con_state);
struct dm_connector_state *dm_new_con_state = to_dm_connector_state(new_con_state);
struct amdgpu_crtc *acrtc = to_amdgpu_crtc(dm_new_con_state->base.crtc);
/* Skip any modesets/resets */
if (!acrtc || drm_atomic_crtc_needs_modeset(
drm_atomic_get_new_crtc_state(state, &acrtc->base)))
continue;
/* Skip any thing not scale or underscan changes */
if (!is_scaling_state_different(dm_new_con_state, dm_old_con_state))
continue;
lock_and_validation_needed = true;
}
/**
* Streams and planes are reset when there are changes that affect
* bandwidth. Anything that affects bandwidth needs to go through
* DC global validation to ensure that the configuration can be applied
* to hardware.
*
* We have to currently stall out here in atomic_check for outstanding
* commits to finish in this case because our IRQ handlers reference
* DRM state directly - we can end up disabling interrupts too early
* if we don't.
*
* TODO: Remove this stall and drop DM state private objects.
*/
if (lock_and_validation_needed) {
ret = dm_atomic_get_state(state, &dm_state);
if (ret)
goto fail;
ret = do_aquire_global_lock(dev, state);
if (ret)
goto fail;
#if defined(CONFIG_DRM_AMD_DC_DCN)
if (!compute_mst_dsc_configs_for_state(state, dm_state->context))
goto fail;
ret = dm_update_mst_vcpi_slots_for_dsc(state, dm_state->context);
if (ret)
goto fail;
#endif
/*
* Perform validation of MST topology in the state:
* We need to perform MST atomic check before calling
* dc_validate_global_state(), or there is a chance
* to get stuck in an infinite loop and hang eventually.
*/
ret = drm_dp_mst_atomic_check(state);
if (ret)
goto fail;
status = dc_validate_global_state(dc, dm_state->context, false);
if (status != DC_OK) {
DC_LOG_WARNING("DC global validation failure: %s (%d)",
dc_status_to_str(status), status);
ret = -EINVAL;
goto fail;
}
} else {
/*
* The commit is a fast update. Fast updates shouldn't change
* the DC context, affect global validation, and can have their
* commit work done in parallel with other commits not touching
* the same resource. If we have a new DC context as part of
* the DM atomic state from validation we need to free it and
* retain the existing one instead.
*
* Furthermore, since the DM atomic state only contains the DC
* context and can safely be annulled, we can free the state
* and clear the associated private object now to free
* some memory and avoid a possible use-after-free later.
*/
for (i = 0; i < state->num_private_objs; i++) {
struct drm_private_obj *obj = state->private_objs[i].ptr;
if (obj->funcs == adev->dm.atomic_obj.funcs) {
int j = state->num_private_objs-1;
dm_atomic_destroy_state(obj,
state->private_objs[i].state);
/* If i is not at the end of the array then the
* last element needs to be moved to where i was
* before the array can safely be truncated.
*/
if (i != j)
state->private_objs[i] =
state->private_objs[j];
state->private_objs[j].ptr = NULL;
state->private_objs[j].state = NULL;
state->private_objs[j].old_state = NULL;
state->private_objs[j].new_state = NULL;
state->num_private_objs = j;
break;
}
}
}
/* Store the overall update type for use later in atomic check. */
for_each_new_crtc_in_state (state, crtc, new_crtc_state, i) {
struct dm_crtc_state *dm_new_crtc_state =
to_dm_crtc_state(new_crtc_state);
dm_new_crtc_state->update_type = lock_and_validation_needed ?
UPDATE_TYPE_FULL :
UPDATE_TYPE_FAST;
}
/* Must be success */
WARN_ON(ret);
trace_amdgpu_dm_atomic_check_finish(state, ret);
return ret;
fail:
if (ret == -EDEADLK)
DRM_DEBUG_DRIVER("Atomic check stopped to avoid deadlock.\n");
else if (ret == -EINTR || ret == -EAGAIN || ret == -ERESTARTSYS)
DRM_DEBUG_DRIVER("Atomic check stopped due to signal.\n");
else
DRM_DEBUG_DRIVER("Atomic check failed with err: %d \n", ret);
trace_amdgpu_dm_atomic_check_finish(state, ret);
return ret;
}
static bool is_dp_capable_without_timing_msa(struct dc *dc,
struct amdgpu_dm_connector *amdgpu_dm_connector)
{
uint8_t dpcd_data;
bool capable = false;
if (amdgpu_dm_connector->dc_link &&
dm_helpers_dp_read_dpcd(
NULL,
amdgpu_dm_connector->dc_link,
DP_DOWN_STREAM_PORT_COUNT,
&dpcd_data,
sizeof(dpcd_data))) {
capable = (dpcd_data & DP_MSA_TIMING_PAR_IGNORED) ? true:false;
}
return capable;
}
static bool parse_edid_cea(struct amdgpu_dm_connector *aconnector,
uint8_t *edid_ext, int len,
struct amdgpu_hdmi_vsdb_info *vsdb_info)
{
int i;
struct amdgpu_device *adev = drm_to_adev(aconnector->base.dev);
struct dc *dc = adev->dm.dc;
/* send extension block to DMCU for parsing */
for (i = 0; i < len; i += 8) {
bool res;
int offset;
/* send 8 bytes a time */
if (!dc_edid_parser_send_cea(dc, i, len, &edid_ext[i], 8))
return false;
if (i+8 == len) {
/* EDID block sent completed, expect result */
int version, min_rate, max_rate;
res = dc_edid_parser_recv_amd_vsdb(dc, &version, &min_rate, &max_rate);
if (res) {
/* amd vsdb found */
vsdb_info->freesync_supported = 1;
vsdb_info->amd_vsdb_version = version;
vsdb_info->min_refresh_rate_hz = min_rate;
vsdb_info->max_refresh_rate_hz = max_rate;
return true;
}
/* not amd vsdb */
return false;
}
/* check for ack*/
res = dc_edid_parser_recv_cea_ack(dc, &offset);
if (!res)
return false;
}
return false;
}
static int parse_hdmi_amd_vsdb(struct amdgpu_dm_connector *aconnector,
struct edid *edid, struct amdgpu_hdmi_vsdb_info *vsdb_info)
{
uint8_t *edid_ext = NULL;
int i;
bool valid_vsdb_found = false;
/*----- drm_find_cea_extension() -----*/
/* No EDID or EDID extensions */
if (edid == NULL || edid->extensions == 0)
return -ENODEV;
/* Find CEA extension */
for (i = 0; i < edid->extensions; i++) {
edid_ext = (uint8_t *)edid + EDID_LENGTH * (i + 1);
if (edid_ext[0] == CEA_EXT)
break;
}
if (i == edid->extensions)
return -ENODEV;
/*----- cea_db_offsets() -----*/
if (edid_ext[0] != CEA_EXT)
return -ENODEV;
valid_vsdb_found = parse_edid_cea(aconnector, edid_ext, EDID_LENGTH, vsdb_info);
return valid_vsdb_found ? i : -ENODEV;
}
void amdgpu_dm_update_freesync_caps(struct drm_connector *connector,
struct edid *edid)
{
int i = 0;
struct detailed_timing *timing;
struct detailed_non_pixel *data;
struct detailed_data_monitor_range *range;
struct amdgpu_dm_connector *amdgpu_dm_connector =
to_amdgpu_dm_connector(connector);
struct dm_connector_state *dm_con_state = NULL;
struct drm_device *dev = connector->dev;
struct amdgpu_device *adev = drm_to_adev(dev);
bool freesync_capable = false;
struct amdgpu_hdmi_vsdb_info vsdb_info = {0};
if (!connector->state) {
DRM_ERROR("%s - Connector has no state", __func__);
goto update;
}
if (!edid) {
dm_con_state = to_dm_connector_state(connector->state);
amdgpu_dm_connector->min_vfreq = 0;
amdgpu_dm_connector->max_vfreq = 0;
amdgpu_dm_connector->pixel_clock_mhz = 0;
goto update;
}
dm_con_state = to_dm_connector_state(connector->state);
if (!amdgpu_dm_connector->dc_sink) {
DRM_ERROR("dc_sink NULL, could not add free_sync module.\n");
goto update;
}
if (!adev->dm.freesync_module)
goto update;
if (amdgpu_dm_connector->dc_sink->sink_signal == SIGNAL_TYPE_DISPLAY_PORT
|| amdgpu_dm_connector->dc_sink->sink_signal == SIGNAL_TYPE_EDP) {
bool edid_check_required = false;
if (edid) {
edid_check_required = is_dp_capable_without_timing_msa(
adev->dm.dc,
amdgpu_dm_connector);
}
if (edid_check_required == true && (edid->version > 1 ||
(edid->version == 1 && edid->revision > 1))) {
for (i = 0; i < 4; i++) {
timing = &edid->detailed_timings[i];
data = &timing->data.other_data;
range = &data->data.range;
/*
* Check if monitor has continuous frequency mode
*/
if (data->type != EDID_DETAIL_MONITOR_RANGE)
continue;
/*
* Check for flag range limits only. If flag == 1 then
* no additional timing information provided.
* Default GTF, GTF Secondary curve and CVT are not
* supported
*/
if (range->flags != 1)
continue;
amdgpu_dm_connector->min_vfreq = range->min_vfreq;
amdgpu_dm_connector->max_vfreq = range->max_vfreq;
amdgpu_dm_connector->pixel_clock_mhz =
range->pixel_clock_mhz * 10;
connector->display_info.monitor_range.min_vfreq = range->min_vfreq;
connector->display_info.monitor_range.max_vfreq = range->max_vfreq;
break;
}
if (amdgpu_dm_connector->max_vfreq -
amdgpu_dm_connector->min_vfreq > 10) {
freesync_capable = true;
}
}
} else if (edid && amdgpu_dm_connector->dc_sink->sink_signal == SIGNAL_TYPE_HDMI_TYPE_A) {
i = parse_hdmi_amd_vsdb(amdgpu_dm_connector, edid, &vsdb_info);
if (i >= 0 && vsdb_info.freesync_supported) {
timing = &edid->detailed_timings[i];
data = &timing->data.other_data;
amdgpu_dm_connector->min_vfreq = vsdb_info.min_refresh_rate_hz;
amdgpu_dm_connector->max_vfreq = vsdb_info.max_refresh_rate_hz;
if (amdgpu_dm_connector->max_vfreq - amdgpu_dm_connector->min_vfreq > 10)
freesync_capable = true;
connector->display_info.monitor_range.min_vfreq = vsdb_info.min_refresh_rate_hz;
connector->display_info.monitor_range.max_vfreq = vsdb_info.max_refresh_rate_hz;
}
}
update:
if (dm_con_state)
dm_con_state->freesync_capable = freesync_capable;
if (connector->vrr_capable_property)
drm_connector_set_vrr_capable_property(connector,
freesync_capable);
}
void amdgpu_dm_trigger_timing_sync(struct drm_device *dev)
{
struct amdgpu_device *adev = drm_to_adev(dev);
struct dc *dc = adev->dm.dc;
int i;
mutex_lock(&adev->dm.dc_lock);
if (dc->current_state) {
for (i = 0; i < dc->current_state->stream_count; ++i)
dc->current_state->streams[i]
->triggered_crtc_reset.enabled =
adev->dm.force_timing_sync;
dm_enable_per_frame_crtc_master_sync(dc->current_state);
dc_trigger_sync(dc, dc->current_state);
}
mutex_unlock(&adev->dm.dc_lock);
}
void dm_write_reg_func(const struct dc_context *ctx, uint32_t address,
uint32_t value, const char *func_name)
{
#ifdef DM_CHECK_ADDR_0
if (address == 0) {
DC_ERR("invalid register write. address = 0");
return;
}
#endif
cgs_write_register(ctx->cgs_device, address, value);
trace_amdgpu_dc_wreg(&ctx->perf_trace->write_count, address, value);
}
uint32_t dm_read_reg_func(const struct dc_context *ctx, uint32_t address,
const char *func_name)
{
uint32_t value;
#ifdef DM_CHECK_ADDR_0
if (address == 0) {
DC_ERR("invalid register read; address = 0\n");
return 0;
}
#endif
if (ctx->dmub_srv &&
ctx->dmub_srv->reg_helper_offload.gather_in_progress &&
!ctx->dmub_srv->reg_helper_offload.should_burst_write) {
ASSERT(false);
return 0;
}
value = cgs_read_register(ctx->cgs_device, address);
trace_amdgpu_dc_rreg(&ctx->perf_trace->read_count, address, value);
return value;
}
int amdgpu_dm_process_dmub_aux_transfer_sync(struct dc_context *ctx, unsigned int linkIndex,
struct aux_payload *payload, enum aux_return_code_type *operation_result)
{
struct amdgpu_device *adev = ctx->driver_context;
int ret = 0;
dc_process_dmub_aux_transfer_async(ctx->dc, linkIndex, payload);
ret = wait_for_completion_interruptible_timeout(&adev->dm.dmub_aux_transfer_done, 10*HZ);
if (ret == 0) {
*operation_result = AUX_RET_ERROR_TIMEOUT;
return -1;
}
*operation_result = (enum aux_return_code_type)adev->dm.dmub_notify->result;
if (adev->dm.dmub_notify->result == AUX_RET_SUCCESS) {
(*payload->reply) = adev->dm.dmub_notify->aux_reply.command;
// For read case, Copy data to payload
if (!payload->write && adev->dm.dmub_notify->aux_reply.length &&
(*payload->reply == AUX_TRANSACTION_REPLY_AUX_ACK))
memcpy(payload->data, adev->dm.dmub_notify->aux_reply.data,
adev->dm.dmub_notify->aux_reply.length);
}
return adev->dm.dmub_notify->aux_reply.length;
}