| /* |
| * Copyright (c) 2016, 2017 Oracle. All rights reserved. |
| * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved. |
| * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the BSD-type |
| * license below: |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * |
| * Neither the name of the Network Appliance, Inc. nor the names of |
| * its contributors may be used to endorse or promote products |
| * derived from this software without specific prior written |
| * permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Author: Tom Tucker <tom@opengridcomputing.com> |
| */ |
| |
| /* Operation |
| * |
| * The main entry point is svc_rdma_recvfrom. This is called from |
| * svc_recv when the transport indicates there is incoming data to |
| * be read. "Data Ready" is signaled when an RDMA Receive completes, |
| * or when a set of RDMA Reads complete. |
| * |
| * An svc_rqst is passed in. This structure contains an array of |
| * free pages (rq_pages) that will contain the incoming RPC message. |
| * |
| * Short messages are moved directly into svc_rqst::rq_arg, and |
| * the RPC Call is ready to be processed by the Upper Layer. |
| * svc_rdma_recvfrom returns the length of the RPC Call message, |
| * completing the reception of the RPC Call. |
| * |
| * However, when an incoming message has Read chunks, |
| * svc_rdma_recvfrom must post RDMA Reads to pull the RPC Call's |
| * data payload from the client. svc_rdma_recvfrom sets up the |
| * RDMA Reads using pages in svc_rqst::rq_pages, which are |
| * transferred to an svc_rdma_op_ctxt for the duration of the |
| * I/O. svc_rdma_recvfrom then returns zero, since the RPC message |
| * is still not yet ready. |
| * |
| * When the Read chunk payloads have become available on the |
| * server, "Data Ready" is raised again, and svc_recv calls |
| * svc_rdma_recvfrom again. This second call may use a different |
| * svc_rqst than the first one, thus any information that needs |
| * to be preserved across these two calls is kept in an |
| * svc_rdma_op_ctxt. |
| * |
| * The second call to svc_rdma_recvfrom performs final assembly |
| * of the RPC Call message, using the RDMA Read sink pages kept in |
| * the svc_rdma_op_ctxt. The xdr_buf is copied from the |
| * svc_rdma_op_ctxt to the second svc_rqst. The second call returns |
| * the length of the completed RPC Call message. |
| * |
| * Page Management |
| * |
| * Pages under I/O must be transferred from the first svc_rqst to an |
| * svc_rdma_op_ctxt before the first svc_rdma_recvfrom call returns. |
| * |
| * The first svc_rqst supplies pages for RDMA Reads. These are moved |
| * from rqstp::rq_pages into ctxt::pages. The consumed elements of |
| * the rq_pages array are set to NULL and refilled with the first |
| * svc_rdma_recvfrom call returns. |
| * |
| * During the second svc_rdma_recvfrom call, RDMA Read sink pages |
| * are transferred from the svc_rdma_op_ctxt to the second svc_rqst |
| * (see rdma_read_complete() below). |
| */ |
| |
| #include <asm/unaligned.h> |
| #include <rdma/ib_verbs.h> |
| #include <rdma/rdma_cm.h> |
| |
| #include <linux/spinlock.h> |
| |
| #include <linux/sunrpc/xdr.h> |
| #include <linux/sunrpc/debug.h> |
| #include <linux/sunrpc/rpc_rdma.h> |
| #include <linux/sunrpc/svc_rdma.h> |
| |
| #define RPCDBG_FACILITY RPCDBG_SVCXPRT |
| |
| /* |
| * Replace the pages in the rq_argpages array with the pages from the SGE in |
| * the RDMA_RECV completion. The SGL should contain full pages up until the |
| * last one. |
| */ |
| static void svc_rdma_build_arg_xdr(struct svc_rqst *rqstp, |
| struct svc_rdma_op_ctxt *ctxt) |
| { |
| struct page *page; |
| int sge_no; |
| u32 len; |
| |
| /* The reply path assumes the Call's transport header resides |
| * in rqstp->rq_pages[0]. |
| */ |
| page = ctxt->pages[0]; |
| put_page(rqstp->rq_pages[0]); |
| rqstp->rq_pages[0] = page; |
| |
| /* Set up the XDR head */ |
| rqstp->rq_arg.head[0].iov_base = page_address(page); |
| rqstp->rq_arg.head[0].iov_len = |
| min_t(size_t, ctxt->byte_len, ctxt->sge[0].length); |
| rqstp->rq_arg.len = ctxt->byte_len; |
| rqstp->rq_arg.buflen = ctxt->byte_len; |
| |
| /* Compute bytes past head in the SGL */ |
| len = ctxt->byte_len - rqstp->rq_arg.head[0].iov_len; |
| |
| /* If data remains, store it in the pagelist */ |
| rqstp->rq_arg.page_len = len; |
| rqstp->rq_arg.page_base = 0; |
| |
| sge_no = 1; |
| while (len && sge_no < ctxt->count) { |
| page = ctxt->pages[sge_no]; |
| put_page(rqstp->rq_pages[sge_no]); |
| rqstp->rq_pages[sge_no] = page; |
| len -= min_t(u32, len, ctxt->sge[sge_no].length); |
| sge_no++; |
| } |
| rqstp->rq_respages = &rqstp->rq_pages[sge_no]; |
| rqstp->rq_next_page = rqstp->rq_respages + 1; |
| |
| /* If not all pages were used from the SGL, free the remaining ones */ |
| len = sge_no; |
| while (sge_no < ctxt->count) { |
| page = ctxt->pages[sge_no++]; |
| put_page(page); |
| } |
| ctxt->count = len; |
| |
| /* Set up tail */ |
| rqstp->rq_arg.tail[0].iov_base = NULL; |
| rqstp->rq_arg.tail[0].iov_len = 0; |
| } |
| |
| /* This accommodates the largest possible Write chunk, |
| * in one segment. |
| */ |
| #define MAX_BYTES_WRITE_SEG ((u32)(RPCSVC_MAXPAGES << PAGE_SHIFT)) |
| |
| /* This accommodates the largest possible Position-Zero |
| * Read chunk or Reply chunk, in one segment. |
| */ |
| #define MAX_BYTES_SPECIAL_SEG ((u32)((RPCSVC_MAXPAGES + 2) << PAGE_SHIFT)) |
| |
| /* Sanity check the Read list. |
| * |
| * Implementation limits: |
| * - This implementation supports only one Read chunk. |
| * |
| * Sanity checks: |
| * - Read list does not overflow buffer. |
| * - Segment size limited by largest NFS data payload. |
| * |
| * The segment count is limited to how many segments can |
| * fit in the transport header without overflowing the |
| * buffer. That's about 40 Read segments for a 1KB inline |
| * threshold. |
| * |
| * Returns pointer to the following Write list. |
| */ |
| static __be32 *xdr_check_read_list(__be32 *p, const __be32 *end) |
| { |
| u32 position; |
| bool first; |
| |
| first = true; |
| while (*p++ != xdr_zero) { |
| if (first) { |
| position = be32_to_cpup(p++); |
| first = false; |
| } else if (be32_to_cpup(p++) != position) { |
| return NULL; |
| } |
| p++; /* handle */ |
| if (be32_to_cpup(p++) > MAX_BYTES_SPECIAL_SEG) |
| return NULL; |
| p += 2; /* offset */ |
| |
| if (p > end) |
| return NULL; |
| } |
| return p; |
| } |
| |
| /* The segment count is limited to how many segments can |
| * fit in the transport header without overflowing the |
| * buffer. That's about 60 Write segments for a 1KB inline |
| * threshold. |
| */ |
| static __be32 *xdr_check_write_chunk(__be32 *p, const __be32 *end, |
| u32 maxlen) |
| { |
| u32 i, segcount; |
| |
| segcount = be32_to_cpup(p++); |
| for (i = 0; i < segcount; i++) { |
| p++; /* handle */ |
| if (be32_to_cpup(p++) > maxlen) |
| return NULL; |
| p += 2; /* offset */ |
| |
| if (p > end) |
| return NULL; |
| } |
| |
| return p; |
| } |
| |
| /* Sanity check the Write list. |
| * |
| * Implementation limits: |
| * - This implementation supports only one Write chunk. |
| * |
| * Sanity checks: |
| * - Write list does not overflow buffer. |
| * - Segment size limited by largest NFS data payload. |
| * |
| * Returns pointer to the following Reply chunk. |
| */ |
| static __be32 *xdr_check_write_list(__be32 *p, const __be32 *end) |
| { |
| u32 chcount; |
| |
| chcount = 0; |
| while (*p++ != xdr_zero) { |
| p = xdr_check_write_chunk(p, end, MAX_BYTES_WRITE_SEG); |
| if (!p) |
| return NULL; |
| if (chcount++ > 1) |
| return NULL; |
| } |
| return p; |
| } |
| |
| /* Sanity check the Reply chunk. |
| * |
| * Sanity checks: |
| * - Reply chunk does not overflow buffer. |
| * - Segment size limited by largest NFS data payload. |
| * |
| * Returns pointer to the following RPC header. |
| */ |
| static __be32 *xdr_check_reply_chunk(__be32 *p, const __be32 *end) |
| { |
| if (*p++ != xdr_zero) { |
| p = xdr_check_write_chunk(p, end, MAX_BYTES_SPECIAL_SEG); |
| if (!p) |
| return NULL; |
| } |
| return p; |
| } |
| |
| /* On entry, xdr->head[0].iov_base points to first byte in the |
| * RPC-over-RDMA header. |
| * |
| * On successful exit, head[0] points to first byte past the |
| * RPC-over-RDMA header. For RDMA_MSG, this is the RPC message. |
| * The length of the RPC-over-RDMA header is returned. |
| * |
| * Assumptions: |
| * - The transport header is entirely contained in the head iovec. |
| */ |
| static int svc_rdma_xdr_decode_req(struct xdr_buf *rq_arg) |
| { |
| __be32 *p, *end, *rdma_argp; |
| unsigned int hdr_len; |
| char *proc; |
| |
| /* Verify that there's enough bytes for header + something */ |
| if (rq_arg->len <= RPCRDMA_HDRLEN_ERR) |
| goto out_short; |
| |
| rdma_argp = rq_arg->head[0].iov_base; |
| if (*(rdma_argp + 1) != rpcrdma_version) |
| goto out_version; |
| |
| switch (*(rdma_argp + 3)) { |
| case rdma_msg: |
| proc = "RDMA_MSG"; |
| break; |
| case rdma_nomsg: |
| proc = "RDMA_NOMSG"; |
| break; |
| |
| case rdma_done: |
| goto out_drop; |
| |
| case rdma_error: |
| goto out_drop; |
| |
| default: |
| goto out_proc; |
| } |
| |
| end = (__be32 *)((unsigned long)rdma_argp + rq_arg->len); |
| p = xdr_check_read_list(rdma_argp + 4, end); |
| if (!p) |
| goto out_inval; |
| p = xdr_check_write_list(p, end); |
| if (!p) |
| goto out_inval; |
| p = xdr_check_reply_chunk(p, end); |
| if (!p) |
| goto out_inval; |
| if (p > end) |
| goto out_inval; |
| |
| rq_arg->head[0].iov_base = p; |
| hdr_len = (unsigned long)p - (unsigned long)rdma_argp; |
| rq_arg->head[0].iov_len -= hdr_len; |
| rq_arg->len -= hdr_len; |
| dprintk("svcrdma: received %s request for XID 0x%08x, hdr_len=%u\n", |
| proc, be32_to_cpup(rdma_argp), hdr_len); |
| return hdr_len; |
| |
| out_short: |
| dprintk("svcrdma: header too short = %d\n", rq_arg->len); |
| return -EINVAL; |
| |
| out_version: |
| dprintk("svcrdma: bad xprt version: %u\n", |
| be32_to_cpup(rdma_argp + 1)); |
| return -EPROTONOSUPPORT; |
| |
| out_drop: |
| dprintk("svcrdma: dropping RDMA_DONE/ERROR message\n"); |
| return 0; |
| |
| out_proc: |
| dprintk("svcrdma: bad rdma procedure (%u)\n", |
| be32_to_cpup(rdma_argp + 3)); |
| return -EINVAL; |
| |
| out_inval: |
| dprintk("svcrdma: failed to parse transport header\n"); |
| return -EINVAL; |
| } |
| |
| static void rdma_read_complete(struct svc_rqst *rqstp, |
| struct svc_rdma_op_ctxt *head) |
| { |
| int page_no; |
| |
| /* Copy RPC pages */ |
| for (page_no = 0; page_no < head->count; page_no++) { |
| put_page(rqstp->rq_pages[page_no]); |
| rqstp->rq_pages[page_no] = head->pages[page_no]; |
| } |
| |
| /* Point rq_arg.pages past header */ |
| rqstp->rq_arg.pages = &rqstp->rq_pages[head->hdr_count]; |
| rqstp->rq_arg.page_len = head->arg.page_len; |
| |
| /* rq_respages starts after the last arg page */ |
| rqstp->rq_respages = &rqstp->rq_pages[page_no]; |
| rqstp->rq_next_page = rqstp->rq_respages + 1; |
| |
| /* Rebuild rq_arg head and tail. */ |
| rqstp->rq_arg.head[0] = head->arg.head[0]; |
| rqstp->rq_arg.tail[0] = head->arg.tail[0]; |
| rqstp->rq_arg.len = head->arg.len; |
| rqstp->rq_arg.buflen = head->arg.buflen; |
| } |
| |
| static void svc_rdma_send_error(struct svcxprt_rdma *xprt, |
| __be32 *rdma_argp, int status) |
| { |
| struct svc_rdma_op_ctxt *ctxt; |
| __be32 *p, *err_msgp; |
| unsigned int length; |
| struct page *page; |
| int ret; |
| |
| page = alloc_page(GFP_KERNEL); |
| if (!page) |
| return; |
| err_msgp = page_address(page); |
| |
| p = err_msgp; |
| *p++ = *rdma_argp; |
| *p++ = *(rdma_argp + 1); |
| *p++ = xprt->sc_fc_credits; |
| *p++ = rdma_error; |
| if (status == -EPROTONOSUPPORT) { |
| *p++ = err_vers; |
| *p++ = rpcrdma_version; |
| *p++ = rpcrdma_version; |
| } else { |
| *p++ = err_chunk; |
| } |
| length = (unsigned long)p - (unsigned long)err_msgp; |
| |
| /* Map transport header; no RPC message payload */ |
| ctxt = svc_rdma_get_context(xprt); |
| ret = svc_rdma_map_reply_hdr(xprt, ctxt, err_msgp, length); |
| if (ret) { |
| dprintk("svcrdma: Error %d mapping send for protocol error\n", |
| ret); |
| return; |
| } |
| |
| ret = svc_rdma_post_send_wr(xprt, ctxt, 1, 0); |
| if (ret) { |
| dprintk("svcrdma: Error %d posting send for protocol error\n", |
| ret); |
| svc_rdma_unmap_dma(ctxt); |
| svc_rdma_put_context(ctxt, 1); |
| } |
| } |
| |
| /* By convention, backchannel calls arrive via rdma_msg type |
| * messages, and never populate the chunk lists. This makes |
| * the RPC/RDMA header small and fixed in size, so it is |
| * straightforward to check the RPC header's direction field. |
| */ |
| static bool svc_rdma_is_backchannel_reply(struct svc_xprt *xprt, |
| __be32 *rdma_resp) |
| { |
| __be32 *p; |
| |
| if (!xprt->xpt_bc_xprt) |
| return false; |
| |
| p = rdma_resp + 3; |
| if (*p++ != rdma_msg) |
| return false; |
| |
| if (*p++ != xdr_zero) |
| return false; |
| if (*p++ != xdr_zero) |
| return false; |
| if (*p++ != xdr_zero) |
| return false; |
| |
| /* XID sanity */ |
| if (*p++ != *rdma_resp) |
| return false; |
| /* call direction */ |
| if (*p == cpu_to_be32(RPC_CALL)) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * svc_rdma_recvfrom - Receive an RPC call |
| * @rqstp: request structure into which to receive an RPC Call |
| * |
| * Returns: |
| * The positive number of bytes in the RPC Call message, |
| * %0 if there were no Calls ready to return, |
| * %-EINVAL if the Read chunk data is too large, |
| * %-ENOMEM if rdma_rw context pool was exhausted, |
| * %-ENOTCONN if posting failed (connection is lost), |
| * %-EIO if rdma_rw initialization failed (DMA mapping, etc). |
| * |
| * Called in a loop when XPT_DATA is set. XPT_DATA is cleared only |
| * when there are no remaining ctxt's to process. |
| * |
| * The next ctxt is removed from the "receive" lists. |
| * |
| * - If the ctxt completes a Read, then finish assembling the Call |
| * message and return the number of bytes in the message. |
| * |
| * - If the ctxt completes a Receive, then construct the Call |
| * message from the contents of the Receive buffer. |
| * |
| * - If there are no Read chunks in this message, then finish |
| * assembling the Call message and return the number of bytes |
| * in the message. |
| * |
| * - If there are Read chunks in this message, post Read WRs to |
| * pull that payload and return 0. |
| */ |
| int svc_rdma_recvfrom(struct svc_rqst *rqstp) |
| { |
| struct svc_xprt *xprt = rqstp->rq_xprt; |
| struct svcxprt_rdma *rdma_xprt = |
| container_of(xprt, struct svcxprt_rdma, sc_xprt); |
| struct svc_rdma_op_ctxt *ctxt; |
| __be32 *p; |
| int ret; |
| |
| spin_lock(&rdma_xprt->sc_rq_dto_lock); |
| if (!list_empty(&rdma_xprt->sc_read_complete_q)) { |
| ctxt = list_first_entry(&rdma_xprt->sc_read_complete_q, |
| struct svc_rdma_op_ctxt, list); |
| list_del(&ctxt->list); |
| spin_unlock(&rdma_xprt->sc_rq_dto_lock); |
| rdma_read_complete(rqstp, ctxt); |
| goto complete; |
| } else if (!list_empty(&rdma_xprt->sc_rq_dto_q)) { |
| ctxt = list_first_entry(&rdma_xprt->sc_rq_dto_q, |
| struct svc_rdma_op_ctxt, list); |
| list_del(&ctxt->list); |
| } else { |
| /* No new incoming requests, terminate the loop */ |
| clear_bit(XPT_DATA, &xprt->xpt_flags); |
| spin_unlock(&rdma_xprt->sc_rq_dto_lock); |
| return 0; |
| } |
| spin_unlock(&rdma_xprt->sc_rq_dto_lock); |
| |
| dprintk("svcrdma: recvfrom: ctxt=%p on xprt=%p, rqstp=%p\n", |
| ctxt, rdma_xprt, rqstp); |
| atomic_inc(&rdma_stat_recv); |
| |
| svc_rdma_build_arg_xdr(rqstp, ctxt); |
| |
| p = (__be32 *)rqstp->rq_arg.head[0].iov_base; |
| ret = svc_rdma_xdr_decode_req(&rqstp->rq_arg); |
| if (ret < 0) |
| goto out_err; |
| if (ret == 0) |
| goto out_drop; |
| rqstp->rq_xprt_hlen = ret; |
| |
| if (svc_rdma_is_backchannel_reply(xprt, p)) { |
| ret = svc_rdma_handle_bc_reply(xprt->xpt_bc_xprt, p, |
| &rqstp->rq_arg); |
| svc_rdma_put_context(ctxt, 0); |
| return ret; |
| } |
| |
| p += rpcrdma_fixed_maxsz; |
| if (*p != xdr_zero) |
| goto out_readchunk; |
| |
| complete: |
| svc_rdma_put_context(ctxt, 0); |
| dprintk("svcrdma: recvfrom: xprt=%p, rqstp=%p, rq_arg.len=%u\n", |
| rdma_xprt, rqstp, rqstp->rq_arg.len); |
| rqstp->rq_prot = IPPROTO_MAX; |
| svc_xprt_copy_addrs(rqstp, xprt); |
| return rqstp->rq_arg.len; |
| |
| out_readchunk: |
| ret = svc_rdma_recv_read_chunk(rdma_xprt, rqstp, ctxt, p); |
| if (ret < 0) |
| goto out_postfail; |
| return 0; |
| |
| out_err: |
| svc_rdma_send_error(rdma_xprt, p, ret); |
| svc_rdma_put_context(ctxt, 0); |
| return 0; |
| |
| out_postfail: |
| if (ret == -EINVAL) |
| svc_rdma_send_error(rdma_xprt, p, ret); |
| svc_rdma_put_context(ctxt, 1); |
| return ret; |
| |
| out_drop: |
| svc_rdma_put_context(ctxt, 1); |
| return 0; |
| } |