| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2017-2018 Christoph Hellwig. |
| */ |
| |
| #include <linux/backing-dev.h> |
| #include <linux/moduleparam.h> |
| #include <linux/vmalloc.h> |
| #include <trace/events/block.h> |
| #include "nvme.h" |
| |
| bool multipath = true; |
| module_param(multipath, bool, 0444); |
| MODULE_PARM_DESC(multipath, |
| "turn on native support for multiple controllers per subsystem"); |
| |
| static const char *nvme_iopolicy_names[] = { |
| [NVME_IOPOLICY_NUMA] = "numa", |
| [NVME_IOPOLICY_RR] = "round-robin", |
| }; |
| |
| static int iopolicy = NVME_IOPOLICY_NUMA; |
| |
| static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp) |
| { |
| if (!val) |
| return -EINVAL; |
| if (!strncmp(val, "numa", 4)) |
| iopolicy = NVME_IOPOLICY_NUMA; |
| else if (!strncmp(val, "round-robin", 11)) |
| iopolicy = NVME_IOPOLICY_RR; |
| else |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp) |
| { |
| return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]); |
| } |
| |
| module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy, |
| &iopolicy, 0644); |
| MODULE_PARM_DESC(iopolicy, |
| "Default multipath I/O policy; 'numa' (default) or 'round-robin'"); |
| |
| void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys) |
| { |
| subsys->iopolicy = iopolicy; |
| } |
| |
| void nvme_mpath_unfreeze(struct nvme_subsystem *subsys) |
| { |
| struct nvme_ns_head *h; |
| |
| lockdep_assert_held(&subsys->lock); |
| list_for_each_entry(h, &subsys->nsheads, entry) |
| if (h->disk) |
| blk_mq_unfreeze_queue(h->disk->queue); |
| } |
| |
| void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys) |
| { |
| struct nvme_ns_head *h; |
| |
| lockdep_assert_held(&subsys->lock); |
| list_for_each_entry(h, &subsys->nsheads, entry) |
| if (h->disk) |
| blk_mq_freeze_queue_wait(h->disk->queue); |
| } |
| |
| void nvme_mpath_start_freeze(struct nvme_subsystem *subsys) |
| { |
| struct nvme_ns_head *h; |
| |
| lockdep_assert_held(&subsys->lock); |
| list_for_each_entry(h, &subsys->nsheads, entry) |
| if (h->disk) |
| blk_freeze_queue_start(h->disk->queue); |
| } |
| |
| void nvme_failover_req(struct request *req) |
| { |
| struct nvme_ns *ns = req->q->queuedata; |
| u16 status = nvme_req(req)->status & 0x7ff; |
| unsigned long flags; |
| struct bio *bio; |
| |
| nvme_mpath_clear_current_path(ns); |
| |
| /* |
| * If we got back an ANA error, we know the controller is alive but not |
| * ready to serve this namespace. Kick of a re-read of the ANA |
| * information page, and just try any other available path for now. |
| */ |
| if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) { |
| set_bit(NVME_NS_ANA_PENDING, &ns->flags); |
| queue_work(nvme_wq, &ns->ctrl->ana_work); |
| } |
| |
| spin_lock_irqsave(&ns->head->requeue_lock, flags); |
| for (bio = req->bio; bio; bio = bio->bi_next) { |
| bio_set_dev(bio, ns->head->disk->part0); |
| if (bio->bi_opf & REQ_POLLED) { |
| bio->bi_opf &= ~REQ_POLLED; |
| bio->bi_cookie = BLK_QC_T_NONE; |
| } |
| /* |
| * The alternate request queue that we may end up submitting |
| * the bio to may be frozen temporarily, in this case REQ_NOWAIT |
| * will fail the I/O immediately with EAGAIN to the issuer. |
| * We are not in the issuer context which cannot block. Clear |
| * the flag to avoid spurious EAGAIN I/O failures. |
| */ |
| bio->bi_opf &= ~REQ_NOWAIT; |
| } |
| blk_steal_bios(&ns->head->requeue_list, req); |
| spin_unlock_irqrestore(&ns->head->requeue_lock, flags); |
| |
| blk_mq_end_request(req, 0); |
| kblockd_schedule_work(&ns->head->requeue_work); |
| } |
| |
| void nvme_mpath_start_request(struct request *rq) |
| { |
| struct nvme_ns *ns = rq->q->queuedata; |
| struct gendisk *disk = ns->head->disk; |
| |
| if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq)) |
| return; |
| |
| nvme_req(rq)->flags |= NVME_MPATH_IO_STATS; |
| nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq), |
| jiffies); |
| } |
| EXPORT_SYMBOL_GPL(nvme_mpath_start_request); |
| |
| void nvme_mpath_end_request(struct request *rq) |
| { |
| struct nvme_ns *ns = rq->q->queuedata; |
| |
| if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS)) |
| return; |
| bdev_end_io_acct(ns->head->disk->part0, req_op(rq), |
| blk_rq_bytes(rq) >> SECTOR_SHIFT, |
| nvme_req(rq)->start_time); |
| } |
| |
| void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_ns *ns; |
| |
| down_read(&ctrl->namespaces_rwsem); |
| list_for_each_entry(ns, &ctrl->namespaces, list) { |
| if (!ns->head->disk) |
| continue; |
| kblockd_schedule_work(&ns->head->requeue_work); |
| if (nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE) |
| disk_uevent(ns->head->disk, KOBJ_CHANGE); |
| } |
| up_read(&ctrl->namespaces_rwsem); |
| } |
| |
| static const char *nvme_ana_state_names[] = { |
| [0] = "invalid state", |
| [NVME_ANA_OPTIMIZED] = "optimized", |
| [NVME_ANA_NONOPTIMIZED] = "non-optimized", |
| [NVME_ANA_INACCESSIBLE] = "inaccessible", |
| [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss", |
| [NVME_ANA_CHANGE] = "change", |
| }; |
| |
| bool nvme_mpath_clear_current_path(struct nvme_ns *ns) |
| { |
| struct nvme_ns_head *head = ns->head; |
| bool changed = false; |
| int node; |
| |
| if (!head) |
| goto out; |
| |
| for_each_node(node) { |
| if (ns == rcu_access_pointer(head->current_path[node])) { |
| rcu_assign_pointer(head->current_path[node], NULL); |
| changed = true; |
| } |
| } |
| out: |
| return changed; |
| } |
| |
| void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_ns *ns; |
| |
| down_read(&ctrl->namespaces_rwsem); |
| list_for_each_entry(ns, &ctrl->namespaces, list) { |
| nvme_mpath_clear_current_path(ns); |
| kblockd_schedule_work(&ns->head->requeue_work); |
| } |
| up_read(&ctrl->namespaces_rwsem); |
| } |
| |
| void nvme_mpath_revalidate_paths(struct nvme_ns *ns) |
| { |
| struct nvme_ns_head *head = ns->head; |
| sector_t capacity = get_capacity(head->disk); |
| int node; |
| int srcu_idx; |
| |
| srcu_idx = srcu_read_lock(&head->srcu); |
| list_for_each_entry_rcu(ns, &head->list, siblings) { |
| if (capacity != get_capacity(ns->disk)) |
| clear_bit(NVME_NS_READY, &ns->flags); |
| } |
| srcu_read_unlock(&head->srcu, srcu_idx); |
| |
| for_each_node(node) |
| rcu_assign_pointer(head->current_path[node], NULL); |
| kblockd_schedule_work(&head->requeue_work); |
| } |
| |
| static bool nvme_path_is_disabled(struct nvme_ns *ns) |
| { |
| enum nvme_ctrl_state state = nvme_ctrl_state(ns->ctrl); |
| |
| /* |
| * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should |
| * still be able to complete assuming that the controller is connected. |
| * Otherwise it will fail immediately and return to the requeue list. |
| */ |
| if (state != NVME_CTRL_LIVE && state != NVME_CTRL_DELETING) |
| return true; |
| if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) || |
| !test_bit(NVME_NS_READY, &ns->flags)) |
| return true; |
| return false; |
| } |
| |
| static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node) |
| { |
| int found_distance = INT_MAX, fallback_distance = INT_MAX, distance; |
| struct nvme_ns *found = NULL, *fallback = NULL, *ns; |
| |
| list_for_each_entry_rcu(ns, &head->list, siblings) { |
| if (nvme_path_is_disabled(ns)) |
| continue; |
| |
| if (ns->ctrl->numa_node != NUMA_NO_NODE && |
| READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA) |
| distance = node_distance(node, ns->ctrl->numa_node); |
| else |
| distance = LOCAL_DISTANCE; |
| |
| switch (ns->ana_state) { |
| case NVME_ANA_OPTIMIZED: |
| if (distance < found_distance) { |
| found_distance = distance; |
| found = ns; |
| } |
| break; |
| case NVME_ANA_NONOPTIMIZED: |
| if (distance < fallback_distance) { |
| fallback_distance = distance; |
| fallback = ns; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (!found) |
| found = fallback; |
| if (found) |
| rcu_assign_pointer(head->current_path[node], found); |
| return found; |
| } |
| |
| static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head, |
| struct nvme_ns *ns) |
| { |
| ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns, |
| siblings); |
| if (ns) |
| return ns; |
| return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings); |
| } |
| |
| static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head, |
| int node, struct nvme_ns *old) |
| { |
| struct nvme_ns *ns, *found = NULL; |
| |
| if (list_is_singular(&head->list)) { |
| if (nvme_path_is_disabled(old)) |
| return NULL; |
| return old; |
| } |
| |
| for (ns = nvme_next_ns(head, old); |
| ns && ns != old; |
| ns = nvme_next_ns(head, ns)) { |
| if (nvme_path_is_disabled(ns)) |
| continue; |
| |
| if (ns->ana_state == NVME_ANA_OPTIMIZED) { |
| found = ns; |
| goto out; |
| } |
| if (ns->ana_state == NVME_ANA_NONOPTIMIZED) |
| found = ns; |
| } |
| |
| /* |
| * The loop above skips the current path for round-robin semantics. |
| * Fall back to the current path if either: |
| * - no other optimized path found and current is optimized, |
| * - no other usable path found and current is usable. |
| */ |
| if (!nvme_path_is_disabled(old) && |
| (old->ana_state == NVME_ANA_OPTIMIZED || |
| (!found && old->ana_state == NVME_ANA_NONOPTIMIZED))) |
| return old; |
| |
| if (!found) |
| return NULL; |
| out: |
| rcu_assign_pointer(head->current_path[node], found); |
| return found; |
| } |
| |
| static inline bool nvme_path_is_optimized(struct nvme_ns *ns) |
| { |
| return nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE && |
| ns->ana_state == NVME_ANA_OPTIMIZED; |
| } |
| |
| inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head) |
| { |
| int node = numa_node_id(); |
| struct nvme_ns *ns; |
| |
| ns = srcu_dereference(head->current_path[node], &head->srcu); |
| if (unlikely(!ns)) |
| return __nvme_find_path(head, node); |
| |
| if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR) |
| return nvme_round_robin_path(head, node, ns); |
| if (unlikely(!nvme_path_is_optimized(ns))) |
| return __nvme_find_path(head, node); |
| return ns; |
| } |
| |
| static bool nvme_available_path(struct nvme_ns_head *head) |
| { |
| struct nvme_ns *ns; |
| |
| list_for_each_entry_rcu(ns, &head->list, siblings) { |
| if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags)) |
| continue; |
| switch (nvme_ctrl_state(ns->ctrl)) { |
| case NVME_CTRL_LIVE: |
| case NVME_CTRL_RESETTING: |
| case NVME_CTRL_CONNECTING: |
| /* fallthru */ |
| return true; |
| default: |
| break; |
| } |
| } |
| return false; |
| } |
| |
| static void nvme_ns_head_submit_bio(struct bio *bio) |
| { |
| struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data; |
| struct device *dev = disk_to_dev(head->disk); |
| struct nvme_ns *ns; |
| int srcu_idx; |
| |
| /* |
| * The namespace might be going away and the bio might be moved to a |
| * different queue via blk_steal_bios(), so we need to use the bio_split |
| * pool from the original queue to allocate the bvecs from. |
| */ |
| bio = bio_split_to_limits(bio); |
| if (!bio) |
| return; |
| |
| srcu_idx = srcu_read_lock(&head->srcu); |
| ns = nvme_find_path(head); |
| if (likely(ns)) { |
| bio_set_dev(bio, ns->disk->part0); |
| bio->bi_opf |= REQ_NVME_MPATH; |
| trace_block_bio_remap(bio, disk_devt(ns->head->disk), |
| bio->bi_iter.bi_sector); |
| submit_bio_noacct(bio); |
| } else if (nvme_available_path(head)) { |
| dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n"); |
| |
| spin_lock_irq(&head->requeue_lock); |
| bio_list_add(&head->requeue_list, bio); |
| spin_unlock_irq(&head->requeue_lock); |
| } else { |
| dev_warn_ratelimited(dev, "no available path - failing I/O\n"); |
| |
| bio_io_error(bio); |
| } |
| |
| srcu_read_unlock(&head->srcu, srcu_idx); |
| } |
| |
| static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode) |
| { |
| if (!nvme_tryget_ns_head(disk->private_data)) |
| return -ENXIO; |
| return 0; |
| } |
| |
| static void nvme_ns_head_release(struct gendisk *disk) |
| { |
| nvme_put_ns_head(disk->private_data); |
| } |
| |
| #ifdef CONFIG_BLK_DEV_ZONED |
| static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector, |
| unsigned int nr_zones, report_zones_cb cb, void *data) |
| { |
| struct nvme_ns_head *head = disk->private_data; |
| struct nvme_ns *ns; |
| int srcu_idx, ret = -EWOULDBLOCK; |
| |
| srcu_idx = srcu_read_lock(&head->srcu); |
| ns = nvme_find_path(head); |
| if (ns) |
| ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data); |
| srcu_read_unlock(&head->srcu, srcu_idx); |
| return ret; |
| } |
| #else |
| #define nvme_ns_head_report_zones NULL |
| #endif /* CONFIG_BLK_DEV_ZONED */ |
| |
| const struct block_device_operations nvme_ns_head_ops = { |
| .owner = THIS_MODULE, |
| .submit_bio = nvme_ns_head_submit_bio, |
| .open = nvme_ns_head_open, |
| .release = nvme_ns_head_release, |
| .ioctl = nvme_ns_head_ioctl, |
| .compat_ioctl = blkdev_compat_ptr_ioctl, |
| .getgeo = nvme_getgeo, |
| .report_zones = nvme_ns_head_report_zones, |
| .pr_ops = &nvme_pr_ops, |
| }; |
| |
| static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev) |
| { |
| return container_of(cdev, struct nvme_ns_head, cdev); |
| } |
| |
| static int nvme_ns_head_chr_open(struct inode *inode, struct file *file) |
| { |
| if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev))) |
| return -ENXIO; |
| return 0; |
| } |
| |
| static int nvme_ns_head_chr_release(struct inode *inode, struct file *file) |
| { |
| nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev)); |
| return 0; |
| } |
| |
| static const struct file_operations nvme_ns_head_chr_fops = { |
| .owner = THIS_MODULE, |
| .open = nvme_ns_head_chr_open, |
| .release = nvme_ns_head_chr_release, |
| .unlocked_ioctl = nvme_ns_head_chr_ioctl, |
| .compat_ioctl = compat_ptr_ioctl, |
| .uring_cmd = nvme_ns_head_chr_uring_cmd, |
| .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, |
| }; |
| |
| static int nvme_add_ns_head_cdev(struct nvme_ns_head *head) |
| { |
| int ret; |
| |
| head->cdev_device.parent = &head->subsys->dev; |
| ret = dev_set_name(&head->cdev_device, "ng%dn%d", |
| head->subsys->instance, head->instance); |
| if (ret) |
| return ret; |
| ret = nvme_cdev_add(&head->cdev, &head->cdev_device, |
| &nvme_ns_head_chr_fops, THIS_MODULE); |
| return ret; |
| } |
| |
| static void nvme_requeue_work(struct work_struct *work) |
| { |
| struct nvme_ns_head *head = |
| container_of(work, struct nvme_ns_head, requeue_work); |
| struct bio *bio, *next; |
| |
| spin_lock_irq(&head->requeue_lock); |
| next = bio_list_get(&head->requeue_list); |
| spin_unlock_irq(&head->requeue_lock); |
| |
| while ((bio = next) != NULL) { |
| next = bio->bi_next; |
| bio->bi_next = NULL; |
| |
| submit_bio_noacct(bio); |
| } |
| } |
| |
| int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head) |
| { |
| struct queue_limits lim; |
| bool vwc = false; |
| |
| mutex_init(&head->lock); |
| bio_list_init(&head->requeue_list); |
| spin_lock_init(&head->requeue_lock); |
| INIT_WORK(&head->requeue_work, nvme_requeue_work); |
| |
| /* |
| * Add a multipath node if the subsystems supports multiple controllers. |
| * We also do this for private namespaces as the namespace sharing flag |
| * could change after a rescan. |
| */ |
| if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || |
| !nvme_is_unique_nsid(ctrl, head) || !multipath) |
| return 0; |
| |
| blk_set_stacking_limits(&lim); |
| lim.dma_alignment = 3; |
| if (head->ids.csi != NVME_CSI_ZNS) |
| lim.max_zone_append_sectors = 0; |
| |
| head->disk = blk_alloc_disk(&lim, ctrl->numa_node); |
| if (IS_ERR(head->disk)) |
| return PTR_ERR(head->disk); |
| head->disk->fops = &nvme_ns_head_ops; |
| head->disk->private_data = head; |
| sprintf(head->disk->disk_name, "nvme%dn%d", |
| ctrl->subsys->instance, head->instance); |
| |
| blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue); |
| blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue); |
| blk_queue_flag_set(QUEUE_FLAG_IO_STAT, head->disk->queue); |
| /* |
| * This assumes all controllers that refer to a namespace either |
| * support poll queues or not. That is not a strict guarantee, |
| * but if the assumption is wrong the effect is only suboptimal |
| * performance but not correctness problem. |
| */ |
| if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL && |
| ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues) |
| blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue); |
| |
| /* we need to propagate up the VMC settings */ |
| if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) |
| vwc = true; |
| blk_queue_write_cache(head->disk->queue, vwc, vwc); |
| return 0; |
| } |
| |
| static void nvme_mpath_set_live(struct nvme_ns *ns) |
| { |
| struct nvme_ns_head *head = ns->head; |
| int rc; |
| |
| if (!head->disk) |
| return; |
| |
| /* |
| * test_and_set_bit() is used because it is protecting against two nvme |
| * paths simultaneously calling device_add_disk() on the same namespace |
| * head. |
| */ |
| if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) { |
| rc = device_add_disk(&head->subsys->dev, head->disk, |
| nvme_ns_attr_groups); |
| if (rc) { |
| clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags); |
| return; |
| } |
| nvme_add_ns_head_cdev(head); |
| } |
| |
| mutex_lock(&head->lock); |
| if (nvme_path_is_optimized(ns)) { |
| int node, srcu_idx; |
| |
| srcu_idx = srcu_read_lock(&head->srcu); |
| for_each_node(node) |
| __nvme_find_path(head, node); |
| srcu_read_unlock(&head->srcu, srcu_idx); |
| } |
| mutex_unlock(&head->lock); |
| |
| synchronize_srcu(&head->srcu); |
| kblockd_schedule_work(&head->requeue_work); |
| } |
| |
| static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data, |
| int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *, |
| void *)) |
| { |
| void *base = ctrl->ana_log_buf; |
| size_t offset = sizeof(struct nvme_ana_rsp_hdr); |
| int error, i; |
| |
| lockdep_assert_held(&ctrl->ana_lock); |
| |
| for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) { |
| struct nvme_ana_group_desc *desc = base + offset; |
| u32 nr_nsids; |
| size_t nsid_buf_size; |
| |
| if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc))) |
| return -EINVAL; |
| |
| nr_nsids = le32_to_cpu(desc->nnsids); |
| nsid_buf_size = flex_array_size(desc, nsids, nr_nsids); |
| |
| if (WARN_ON_ONCE(desc->grpid == 0)) |
| return -EINVAL; |
| if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax)) |
| return -EINVAL; |
| if (WARN_ON_ONCE(desc->state == 0)) |
| return -EINVAL; |
| if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE)) |
| return -EINVAL; |
| |
| offset += sizeof(*desc); |
| if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size)) |
| return -EINVAL; |
| |
| error = cb(ctrl, desc, data); |
| if (error) |
| return error; |
| |
| offset += nsid_buf_size; |
| } |
| |
| return 0; |
| } |
| |
| static inline bool nvme_state_is_live(enum nvme_ana_state state) |
| { |
| return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED; |
| } |
| |
| static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc, |
| struct nvme_ns *ns) |
| { |
| ns->ana_grpid = le32_to_cpu(desc->grpid); |
| ns->ana_state = desc->state; |
| clear_bit(NVME_NS_ANA_PENDING, &ns->flags); |
| /* |
| * nvme_mpath_set_live() will trigger I/O to the multipath path device |
| * and in turn to this path device. However we cannot accept this I/O |
| * if the controller is not live. This may deadlock if called from |
| * nvme_mpath_init_identify() and the ctrl will never complete |
| * initialization, preventing I/O from completing. For this case we |
| * will reprocess the ANA log page in nvme_mpath_update() once the |
| * controller is ready. |
| */ |
| if (nvme_state_is_live(ns->ana_state) && |
| nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE) |
| nvme_mpath_set_live(ns); |
| } |
| |
| static int nvme_update_ana_state(struct nvme_ctrl *ctrl, |
| struct nvme_ana_group_desc *desc, void *data) |
| { |
| u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0; |
| unsigned *nr_change_groups = data; |
| struct nvme_ns *ns; |
| |
| dev_dbg(ctrl->device, "ANA group %d: %s.\n", |
| le32_to_cpu(desc->grpid), |
| nvme_ana_state_names[desc->state]); |
| |
| if (desc->state == NVME_ANA_CHANGE) |
| (*nr_change_groups)++; |
| |
| if (!nr_nsids) |
| return 0; |
| |
| down_read(&ctrl->namespaces_rwsem); |
| list_for_each_entry(ns, &ctrl->namespaces, list) { |
| unsigned nsid; |
| again: |
| nsid = le32_to_cpu(desc->nsids[n]); |
| if (ns->head->ns_id < nsid) |
| continue; |
| if (ns->head->ns_id == nsid) |
| nvme_update_ns_ana_state(desc, ns); |
| if (++n == nr_nsids) |
| break; |
| if (ns->head->ns_id > nsid) |
| goto again; |
| } |
| up_read(&ctrl->namespaces_rwsem); |
| return 0; |
| } |
| |
| static int nvme_read_ana_log(struct nvme_ctrl *ctrl) |
| { |
| u32 nr_change_groups = 0; |
| int error; |
| |
| mutex_lock(&ctrl->ana_lock); |
| error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM, |
| ctrl->ana_log_buf, ctrl->ana_log_size, 0); |
| if (error) { |
| dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error); |
| goto out_unlock; |
| } |
| |
| error = nvme_parse_ana_log(ctrl, &nr_change_groups, |
| nvme_update_ana_state); |
| if (error) |
| goto out_unlock; |
| |
| /* |
| * In theory we should have an ANATT timer per group as they might enter |
| * the change state at different times. But that is a lot of overhead |
| * just to protect against a target that keeps entering new changes |
| * states while never finishing previous ones. But we'll still |
| * eventually time out once all groups are in change state, so this |
| * isn't a big deal. |
| * |
| * We also double the ANATT value to provide some slack for transports |
| * or AEN processing overhead. |
| */ |
| if (nr_change_groups) |
| mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies); |
| else |
| del_timer_sync(&ctrl->anatt_timer); |
| out_unlock: |
| mutex_unlock(&ctrl->ana_lock); |
| return error; |
| } |
| |
| static void nvme_ana_work(struct work_struct *work) |
| { |
| struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work); |
| |
| if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) |
| return; |
| |
| nvme_read_ana_log(ctrl); |
| } |
| |
| void nvme_mpath_update(struct nvme_ctrl *ctrl) |
| { |
| u32 nr_change_groups = 0; |
| |
| if (!ctrl->ana_log_buf) |
| return; |
| |
| mutex_lock(&ctrl->ana_lock); |
| nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state); |
| mutex_unlock(&ctrl->ana_lock); |
| } |
| |
| static void nvme_anatt_timeout(struct timer_list *t) |
| { |
| struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer); |
| |
| dev_info(ctrl->device, "ANATT timeout, resetting controller.\n"); |
| nvme_reset_ctrl(ctrl); |
| } |
| |
| void nvme_mpath_stop(struct nvme_ctrl *ctrl) |
| { |
| if (!nvme_ctrl_use_ana(ctrl)) |
| return; |
| del_timer_sync(&ctrl->anatt_timer); |
| cancel_work_sync(&ctrl->ana_work); |
| } |
| |
| #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \ |
| struct device_attribute subsys_attr_##_name = \ |
| __ATTR(_name, _mode, _show, _store) |
| |
| static ssize_t nvme_subsys_iopolicy_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nvme_subsystem *subsys = |
| container_of(dev, struct nvme_subsystem, dev); |
| |
| return sysfs_emit(buf, "%s\n", |
| nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]); |
| } |
| |
| static ssize_t nvme_subsys_iopolicy_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t count) |
| { |
| struct nvme_subsystem *subsys = |
| container_of(dev, struct nvme_subsystem, dev); |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) { |
| if (sysfs_streq(buf, nvme_iopolicy_names[i])) { |
| WRITE_ONCE(subsys->iopolicy, i); |
| return count; |
| } |
| } |
| |
| return -EINVAL; |
| } |
| SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR, |
| nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store); |
| |
| static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid); |
| } |
| DEVICE_ATTR_RO(ana_grpid); |
| |
| static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct nvme_ns *ns = nvme_get_ns_from_dev(dev); |
| |
| return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]); |
| } |
| DEVICE_ATTR_RO(ana_state); |
| |
| static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl, |
| struct nvme_ana_group_desc *desc, void *data) |
| { |
| struct nvme_ana_group_desc *dst = data; |
| |
| if (desc->grpid != dst->grpid) |
| return 0; |
| |
| *dst = *desc; |
| return -ENXIO; /* just break out of the loop */ |
| } |
| |
| void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid) |
| { |
| if (nvme_ctrl_use_ana(ns->ctrl)) { |
| struct nvme_ana_group_desc desc = { |
| .grpid = anagrpid, |
| .state = 0, |
| }; |
| |
| mutex_lock(&ns->ctrl->ana_lock); |
| ns->ana_grpid = le32_to_cpu(anagrpid); |
| nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc); |
| mutex_unlock(&ns->ctrl->ana_lock); |
| if (desc.state) { |
| /* found the group desc: update */ |
| nvme_update_ns_ana_state(&desc, ns); |
| } else { |
| /* group desc not found: trigger a re-read */ |
| set_bit(NVME_NS_ANA_PENDING, &ns->flags); |
| queue_work(nvme_wq, &ns->ctrl->ana_work); |
| } |
| } else { |
| ns->ana_state = NVME_ANA_OPTIMIZED; |
| nvme_mpath_set_live(ns); |
| } |
| |
| if (blk_queue_stable_writes(ns->queue) && ns->head->disk) |
| blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, |
| ns->head->disk->queue); |
| #ifdef CONFIG_BLK_DEV_ZONED |
| if (blk_queue_is_zoned(ns->queue) && ns->head->disk) |
| ns->head->disk->nr_zones = ns->disk->nr_zones; |
| #endif |
| } |
| |
| void nvme_mpath_shutdown_disk(struct nvme_ns_head *head) |
| { |
| if (!head->disk) |
| return; |
| kblockd_schedule_work(&head->requeue_work); |
| if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) { |
| nvme_cdev_del(&head->cdev, &head->cdev_device); |
| del_gendisk(head->disk); |
| } |
| } |
| |
| void nvme_mpath_remove_disk(struct nvme_ns_head *head) |
| { |
| if (!head->disk) |
| return; |
| /* make sure all pending bios are cleaned up */ |
| kblockd_schedule_work(&head->requeue_work); |
| flush_work(&head->requeue_work); |
| put_disk(head->disk); |
| } |
| |
| void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl) |
| { |
| mutex_init(&ctrl->ana_lock); |
| timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0); |
| INIT_WORK(&ctrl->ana_work, nvme_ana_work); |
| } |
| |
| int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) |
| { |
| size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT; |
| size_t ana_log_size; |
| int error = 0; |
| |
| /* check if multipath is enabled and we have the capability */ |
| if (!multipath || !ctrl->subsys || |
| !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA)) |
| return 0; |
| |
| if (!ctrl->max_namespaces || |
| ctrl->max_namespaces > le32_to_cpu(id->nn)) { |
| dev_err(ctrl->device, |
| "Invalid MNAN value %u\n", ctrl->max_namespaces); |
| return -EINVAL; |
| } |
| |
| ctrl->anacap = id->anacap; |
| ctrl->anatt = id->anatt; |
| ctrl->nanagrpid = le32_to_cpu(id->nanagrpid); |
| ctrl->anagrpmax = le32_to_cpu(id->anagrpmax); |
| |
| ana_log_size = sizeof(struct nvme_ana_rsp_hdr) + |
| ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) + |
| ctrl->max_namespaces * sizeof(__le32); |
| if (ana_log_size > max_transfer_size) { |
| dev_err(ctrl->device, |
| "ANA log page size (%zd) larger than MDTS (%zd).\n", |
| ana_log_size, max_transfer_size); |
| dev_err(ctrl->device, "disabling ANA support.\n"); |
| goto out_uninit; |
| } |
| if (ana_log_size > ctrl->ana_log_size) { |
| nvme_mpath_stop(ctrl); |
| nvme_mpath_uninit(ctrl); |
| ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL); |
| if (!ctrl->ana_log_buf) |
| return -ENOMEM; |
| } |
| ctrl->ana_log_size = ana_log_size; |
| error = nvme_read_ana_log(ctrl); |
| if (error) |
| goto out_uninit; |
| return 0; |
| |
| out_uninit: |
| nvme_mpath_uninit(ctrl); |
| return error; |
| } |
| |
| void nvme_mpath_uninit(struct nvme_ctrl *ctrl) |
| { |
| kvfree(ctrl->ana_log_buf); |
| ctrl->ana_log_buf = NULL; |
| ctrl->ana_log_size = 0; |
| } |