| /* |
| * Copyright (c) 2001-2004 by David Brownell |
| * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software Foundation, |
| * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| /* this file is part of ehci-hcd.c */ |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| /* |
| * EHCI scheduled transaction support: interrupt, iso, split iso |
| * These are called "periodic" transactions in the EHCI spec. |
| * |
| * Note that for interrupt transfers, the QH/QTD manipulation is shared |
| * with the "asynchronous" transaction support (control/bulk transfers). |
| * The only real difference is in how interrupt transfers are scheduled. |
| * |
| * For ISO, we make an "iso_stream" head to serve the same role as a QH. |
| * It keeps track of every ITD (or SITD) that's linked, and holds enough |
| * pre-calculated schedule data to make appending to the queue be quick. |
| */ |
| |
| static int ehci_get_frame (struct usb_hcd *hcd); |
| |
| #ifdef CONFIG_PCI |
| |
| static unsigned ehci_read_frame_index(struct ehci_hcd *ehci) |
| { |
| unsigned uf; |
| |
| /* |
| * The MosChip MCS9990 controller updates its microframe counter |
| * a little before the frame counter, and occasionally we will read |
| * the invalid intermediate value. Avoid problems by checking the |
| * microframe number (the low-order 3 bits); if they are 0 then |
| * re-read the register to get the correct value. |
| */ |
| uf = ehci_readl(ehci, &ehci->regs->frame_index); |
| if (unlikely(ehci->frame_index_bug && ((uf & 7) == 0))) |
| uf = ehci_readl(ehci, &ehci->regs->frame_index); |
| return uf; |
| } |
| |
| #endif |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| /* |
| * periodic_next_shadow - return "next" pointer on shadow list |
| * @periodic: host pointer to qh/itd/sitd |
| * @tag: hardware tag for type of this record |
| */ |
| static union ehci_shadow * |
| periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic, |
| __hc32 tag) |
| { |
| switch (hc32_to_cpu(ehci, tag)) { |
| case Q_TYPE_QH: |
| return &periodic->qh->qh_next; |
| case Q_TYPE_FSTN: |
| return &periodic->fstn->fstn_next; |
| case Q_TYPE_ITD: |
| return &periodic->itd->itd_next; |
| // case Q_TYPE_SITD: |
| default: |
| return &periodic->sitd->sitd_next; |
| } |
| } |
| |
| static __hc32 * |
| shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic, |
| __hc32 tag) |
| { |
| switch (hc32_to_cpu(ehci, tag)) { |
| /* our ehci_shadow.qh is actually software part */ |
| case Q_TYPE_QH: |
| return &periodic->qh->hw->hw_next; |
| /* others are hw parts */ |
| default: |
| return periodic->hw_next; |
| } |
| } |
| |
| /* caller must hold ehci->lock */ |
| static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr) |
| { |
| union ehci_shadow *prev_p = &ehci->pshadow[frame]; |
| __hc32 *hw_p = &ehci->periodic[frame]; |
| union ehci_shadow here = *prev_p; |
| |
| /* find predecessor of "ptr"; hw and shadow lists are in sync */ |
| while (here.ptr && here.ptr != ptr) { |
| prev_p = periodic_next_shadow(ehci, prev_p, |
| Q_NEXT_TYPE(ehci, *hw_p)); |
| hw_p = shadow_next_periodic(ehci, &here, |
| Q_NEXT_TYPE(ehci, *hw_p)); |
| here = *prev_p; |
| } |
| /* an interrupt entry (at list end) could have been shared */ |
| if (!here.ptr) |
| return; |
| |
| /* update shadow and hardware lists ... the old "next" pointers |
| * from ptr may still be in use, the caller updates them. |
| */ |
| *prev_p = *periodic_next_shadow(ehci, &here, |
| Q_NEXT_TYPE(ehci, *hw_p)); |
| |
| if (!ehci->use_dummy_qh || |
| *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p)) |
| != EHCI_LIST_END(ehci)) |
| *hw_p = *shadow_next_periodic(ehci, &here, |
| Q_NEXT_TYPE(ehci, *hw_p)); |
| else |
| *hw_p = ehci->dummy->qh_dma; |
| } |
| |
| /* how many of the uframe's 125 usecs are allocated? */ |
| static unsigned short |
| periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe) |
| { |
| __hc32 *hw_p = &ehci->periodic [frame]; |
| union ehci_shadow *q = &ehci->pshadow [frame]; |
| unsigned usecs = 0; |
| struct ehci_qh_hw *hw; |
| |
| while (q->ptr) { |
| switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) { |
| case Q_TYPE_QH: |
| hw = q->qh->hw; |
| /* is it in the S-mask? */ |
| if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe)) |
| usecs += q->qh->usecs; |
| /* ... or C-mask? */ |
| if (hw->hw_info2 & cpu_to_hc32(ehci, |
| 1 << (8 + uframe))) |
| usecs += q->qh->c_usecs; |
| hw_p = &hw->hw_next; |
| q = &q->qh->qh_next; |
| break; |
| // case Q_TYPE_FSTN: |
| default: |
| /* for "save place" FSTNs, count the relevant INTR |
| * bandwidth from the previous frame |
| */ |
| if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) { |
| ehci_dbg (ehci, "ignoring FSTN cost ...\n"); |
| } |
| hw_p = &q->fstn->hw_next; |
| q = &q->fstn->fstn_next; |
| break; |
| case Q_TYPE_ITD: |
| if (q->itd->hw_transaction[uframe]) |
| usecs += q->itd->stream->usecs; |
| hw_p = &q->itd->hw_next; |
| q = &q->itd->itd_next; |
| break; |
| case Q_TYPE_SITD: |
| /* is it in the S-mask? (count SPLIT, DATA) */ |
| if (q->sitd->hw_uframe & cpu_to_hc32(ehci, |
| 1 << uframe)) { |
| if (q->sitd->hw_fullspeed_ep & |
| cpu_to_hc32(ehci, 1<<31)) |
| usecs += q->sitd->stream->usecs; |
| else /* worst case for OUT start-split */ |
| usecs += HS_USECS_ISO (188); |
| } |
| |
| /* ... C-mask? (count CSPLIT, DATA) */ |
| if (q->sitd->hw_uframe & |
| cpu_to_hc32(ehci, 1 << (8 + uframe))) { |
| /* worst case for IN complete-split */ |
| usecs += q->sitd->stream->c_usecs; |
| } |
| |
| hw_p = &q->sitd->hw_next; |
| q = &q->sitd->sitd_next; |
| break; |
| } |
| } |
| #ifdef DEBUG |
| if (usecs > ehci->uframe_periodic_max) |
| ehci_err (ehci, "uframe %d sched overrun: %d usecs\n", |
| frame * 8 + uframe, usecs); |
| #endif |
| return usecs; |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| static int same_tt (struct usb_device *dev1, struct usb_device *dev2) |
| { |
| if (!dev1->tt || !dev2->tt) |
| return 0; |
| if (dev1->tt != dev2->tt) |
| return 0; |
| if (dev1->tt->multi) |
| return dev1->ttport == dev2->ttport; |
| else |
| return 1; |
| } |
| |
| #ifdef CONFIG_USB_EHCI_TT_NEWSCHED |
| |
| /* Which uframe does the low/fullspeed transfer start in? |
| * |
| * The parameter is the mask of ssplits in "H-frame" terms |
| * and this returns the transfer start uframe in "B-frame" terms, |
| * which allows both to match, e.g. a ssplit in "H-frame" uframe 0 |
| * will cause a transfer in "B-frame" uframe 0. "B-frames" lag |
| * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7. |
| */ |
| static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask) |
| { |
| unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask); |
| if (!smask) { |
| ehci_err(ehci, "invalid empty smask!\n"); |
| /* uframe 7 can't have bw so this will indicate failure */ |
| return 7; |
| } |
| return ffs(smask) - 1; |
| } |
| |
| static const unsigned char |
| max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 }; |
| |
| /* carryover low/fullspeed bandwidth that crosses uframe boundries */ |
| static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8]) |
| { |
| int i; |
| for (i=0; i<7; i++) { |
| if (max_tt_usecs[i] < tt_usecs[i]) { |
| tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i]; |
| tt_usecs[i] = max_tt_usecs[i]; |
| } |
| } |
| } |
| |
| /* How many of the tt's periodic downstream 1000 usecs are allocated? |
| * |
| * While this measures the bandwidth in terms of usecs/uframe, |
| * the low/fullspeed bus has no notion of uframes, so any particular |
| * low/fullspeed transfer can "carry over" from one uframe to the next, |
| * since the TT just performs downstream transfers in sequence. |
| * |
| * For example two separate 100 usec transfers can start in the same uframe, |
| * and the second one would "carry over" 75 usecs into the next uframe. |
| */ |
| static void |
| periodic_tt_usecs ( |
| struct ehci_hcd *ehci, |
| struct usb_device *dev, |
| unsigned frame, |
| unsigned short tt_usecs[8] |
| ) |
| { |
| __hc32 *hw_p = &ehci->periodic [frame]; |
| union ehci_shadow *q = &ehci->pshadow [frame]; |
| unsigned char uf; |
| |
| memset(tt_usecs, 0, 16); |
| |
| while (q->ptr) { |
| switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) { |
| case Q_TYPE_ITD: |
| hw_p = &q->itd->hw_next; |
| q = &q->itd->itd_next; |
| continue; |
| case Q_TYPE_QH: |
| if (same_tt(dev, q->qh->dev)) { |
| uf = tt_start_uframe(ehci, q->qh->hw->hw_info2); |
| tt_usecs[uf] += q->qh->tt_usecs; |
| } |
| hw_p = &q->qh->hw->hw_next; |
| q = &q->qh->qh_next; |
| continue; |
| case Q_TYPE_SITD: |
| if (same_tt(dev, q->sitd->urb->dev)) { |
| uf = tt_start_uframe(ehci, q->sitd->hw_uframe); |
| tt_usecs[uf] += q->sitd->stream->tt_usecs; |
| } |
| hw_p = &q->sitd->hw_next; |
| q = &q->sitd->sitd_next; |
| continue; |
| // case Q_TYPE_FSTN: |
| default: |
| ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n", |
| frame); |
| hw_p = &q->fstn->hw_next; |
| q = &q->fstn->fstn_next; |
| } |
| } |
| |
| carryover_tt_bandwidth(tt_usecs); |
| |
| if (max_tt_usecs[7] < tt_usecs[7]) |
| ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n", |
| frame, tt_usecs[7] - max_tt_usecs[7]); |
| } |
| |
| /* |
| * Return true if the device's tt's downstream bus is available for a |
| * periodic transfer of the specified length (usecs), starting at the |
| * specified frame/uframe. Note that (as summarized in section 11.19 |
| * of the usb 2.0 spec) TTs can buffer multiple transactions for each |
| * uframe. |
| * |
| * The uframe parameter is when the fullspeed/lowspeed transfer |
| * should be executed in "B-frame" terms, which is the same as the |
| * highspeed ssplit's uframe (which is in "H-frame" terms). For example |
| * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0. |
| * See the EHCI spec sec 4.5 and fig 4.7. |
| * |
| * This checks if the full/lowspeed bus, at the specified starting uframe, |
| * has the specified bandwidth available, according to rules listed |
| * in USB 2.0 spec section 11.18.1 fig 11-60. |
| * |
| * This does not check if the transfer would exceed the max ssplit |
| * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4, |
| * since proper scheduling limits ssplits to less than 16 per uframe. |
| */ |
| static int tt_available ( |
| struct ehci_hcd *ehci, |
| unsigned period, |
| struct usb_device *dev, |
| unsigned frame, |
| unsigned uframe, |
| u16 usecs |
| ) |
| { |
| if ((period == 0) || (uframe >= 7)) /* error */ |
| return 0; |
| |
| for (; frame < ehci->periodic_size; frame += period) { |
| unsigned short tt_usecs[8]; |
| |
| periodic_tt_usecs (ehci, dev, frame, tt_usecs); |
| |
| ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in" |
| " schedule %d/%d/%d/%d/%d/%d/%d/%d\n", |
| frame, usecs, uframe, |
| tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3], |
| tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]); |
| |
| if (max_tt_usecs[uframe] <= tt_usecs[uframe]) { |
| ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n", |
| frame, uframe); |
| return 0; |
| } |
| |
| /* special case for isoc transfers larger than 125us: |
| * the first and each subsequent fully used uframe |
| * must be empty, so as to not illegally delay |
| * already scheduled transactions |
| */ |
| if (125 < usecs) { |
| int ufs = (usecs / 125); |
| int i; |
| for (i = uframe; i < (uframe + ufs) && i < 8; i++) |
| if (0 < tt_usecs[i]) { |
| ehci_vdbg(ehci, |
| "multi-uframe xfer can't fit " |
| "in frame %d uframe %d\n", |
| frame, i); |
| return 0; |
| } |
| } |
| |
| tt_usecs[uframe] += usecs; |
| |
| carryover_tt_bandwidth(tt_usecs); |
| |
| /* fail if the carryover pushed bw past the last uframe's limit */ |
| if (max_tt_usecs[7] < tt_usecs[7]) { |
| ehci_vdbg(ehci, |
| "tt unavailable usecs %d frame %d uframe %d\n", |
| usecs, frame, uframe); |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| #else |
| |
| /* return true iff the device's transaction translator is available |
| * for a periodic transfer starting at the specified frame, using |
| * all the uframes in the mask. |
| */ |
| static int tt_no_collision ( |
| struct ehci_hcd *ehci, |
| unsigned period, |
| struct usb_device *dev, |
| unsigned frame, |
| u32 uf_mask |
| ) |
| { |
| if (period == 0) /* error */ |
| return 0; |
| |
| /* note bandwidth wastage: split never follows csplit |
| * (different dev or endpoint) until the next uframe. |
| * calling convention doesn't make that distinction. |
| */ |
| for (; frame < ehci->periodic_size; frame += period) { |
| union ehci_shadow here; |
| __hc32 type; |
| struct ehci_qh_hw *hw; |
| |
| here = ehci->pshadow [frame]; |
| type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]); |
| while (here.ptr) { |
| switch (hc32_to_cpu(ehci, type)) { |
| case Q_TYPE_ITD: |
| type = Q_NEXT_TYPE(ehci, here.itd->hw_next); |
| here = here.itd->itd_next; |
| continue; |
| case Q_TYPE_QH: |
| hw = here.qh->hw; |
| if (same_tt (dev, here.qh->dev)) { |
| u32 mask; |
| |
| mask = hc32_to_cpu(ehci, |
| hw->hw_info2); |
| /* "knows" no gap is needed */ |
| mask |= mask >> 8; |
| if (mask & uf_mask) |
| break; |
| } |
| type = Q_NEXT_TYPE(ehci, hw->hw_next); |
| here = here.qh->qh_next; |
| continue; |
| case Q_TYPE_SITD: |
| if (same_tt (dev, here.sitd->urb->dev)) { |
| u16 mask; |
| |
| mask = hc32_to_cpu(ehci, here.sitd |
| ->hw_uframe); |
| /* FIXME assumes no gap for IN! */ |
| mask |= mask >> 8; |
| if (mask & uf_mask) |
| break; |
| } |
| type = Q_NEXT_TYPE(ehci, here.sitd->hw_next); |
| here = here.sitd->sitd_next; |
| continue; |
| // case Q_TYPE_FSTN: |
| default: |
| ehci_dbg (ehci, |
| "periodic frame %d bogus type %d\n", |
| frame, type); |
| } |
| |
| /* collision or error */ |
| return 0; |
| } |
| } |
| |
| /* no collision */ |
| return 1; |
| } |
| |
| #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */ |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| static int enable_periodic (struct ehci_hcd *ehci) |
| { |
| int status; |
| |
| if (ehci->periodic_sched++) |
| return 0; |
| |
| /* did clearing PSE did take effect yet? |
| * takes effect only at frame boundaries... |
| */ |
| status = handshake_on_error_set_halt(ehci, &ehci->regs->status, |
| STS_PSS, 0, 9 * 125); |
| if (status) { |
| usb_hc_died(ehci_to_hcd(ehci)); |
| return status; |
| } |
| |
| ehci->command |= CMD_PSE; |
| ehci_writel(ehci, ehci->command, &ehci->regs->command); |
| /* posted write ... PSS happens later */ |
| |
| /* make sure ehci_work scans these */ |
| ehci->next_uframe = ehci_read_frame_index(ehci) |
| % (ehci->periodic_size << 3); |
| if (unlikely(ehci->broken_periodic)) |
| ehci->last_periodic_enable = ktime_get_real(); |
| return 0; |
| } |
| |
| static int disable_periodic (struct ehci_hcd *ehci) |
| { |
| int status; |
| |
| if (--ehci->periodic_sched) |
| return 0; |
| |
| if (unlikely(ehci->broken_periodic)) { |
| /* delay experimentally determined */ |
| ktime_t safe = ktime_add_us(ehci->last_periodic_enable, 1000); |
| ktime_t now = ktime_get_real(); |
| s64 delay = ktime_us_delta(safe, now); |
| |
| if (unlikely(delay > 0)) |
| udelay(delay); |
| } |
| |
| /* did setting PSE not take effect yet? |
| * takes effect only at frame boundaries... |
| */ |
| status = handshake_on_error_set_halt(ehci, &ehci->regs->status, |
| STS_PSS, STS_PSS, 9 * 125); |
| if (status) { |
| usb_hc_died(ehci_to_hcd(ehci)); |
| return status; |
| } |
| |
| ehci->command &= ~CMD_PSE; |
| ehci_writel(ehci, ehci->command, &ehci->regs->command); |
| /* posted write ... */ |
| |
| free_cached_lists(ehci); |
| |
| ehci->next_uframe = -1; |
| return 0; |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| /* periodic schedule slots have iso tds (normal or split) first, then a |
| * sparse tree for active interrupt transfers. |
| * |
| * this just links in a qh; caller guarantees uframe masks are set right. |
| * no FSTN support (yet; ehci 0.96+) |
| */ |
| static int qh_link_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh) |
| { |
| unsigned i; |
| unsigned period = qh->period; |
| |
| dev_dbg (&qh->dev->dev, |
| "link qh%d-%04x/%p start %d [%d/%d us]\n", |
| period, hc32_to_cpup(ehci, &qh->hw->hw_info2) |
| & (QH_CMASK | QH_SMASK), |
| qh, qh->start, qh->usecs, qh->c_usecs); |
| |
| /* high bandwidth, or otherwise every microframe */ |
| if (period == 0) |
| period = 1; |
| |
| for (i = qh->start; i < ehci->periodic_size; i += period) { |
| union ehci_shadow *prev = &ehci->pshadow[i]; |
| __hc32 *hw_p = &ehci->periodic[i]; |
| union ehci_shadow here = *prev; |
| __hc32 type = 0; |
| |
| /* skip the iso nodes at list head */ |
| while (here.ptr) { |
| type = Q_NEXT_TYPE(ehci, *hw_p); |
| if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) |
| break; |
| prev = periodic_next_shadow(ehci, prev, type); |
| hw_p = shadow_next_periodic(ehci, &here, type); |
| here = *prev; |
| } |
| |
| /* sorting each branch by period (slow-->fast) |
| * enables sharing interior tree nodes |
| */ |
| while (here.ptr && qh != here.qh) { |
| if (qh->period > here.qh->period) |
| break; |
| prev = &here.qh->qh_next; |
| hw_p = &here.qh->hw->hw_next; |
| here = *prev; |
| } |
| /* link in this qh, unless some earlier pass did that */ |
| if (qh != here.qh) { |
| qh->qh_next = here; |
| if (here.qh) |
| qh->hw->hw_next = *hw_p; |
| wmb (); |
| prev->qh = qh; |
| *hw_p = QH_NEXT (ehci, qh->qh_dma); |
| } |
| } |
| qh->qh_state = QH_STATE_LINKED; |
| qh->xacterrs = 0; |
| |
| /* update per-qh bandwidth for usbfs */ |
| ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period |
| ? ((qh->usecs + qh->c_usecs) / qh->period) |
| : (qh->usecs * 8); |
| |
| /* maybe enable periodic schedule processing */ |
| return enable_periodic(ehci); |
| } |
| |
| static int qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh) |
| { |
| unsigned i; |
| unsigned period; |
| |
| // FIXME: |
| // IF this isn't high speed |
| // and this qh is active in the current uframe |
| // (and overlay token SplitXstate is false?) |
| // THEN |
| // qh->hw_info1 |= cpu_to_hc32(1 << 7 /* "ignore" */); |
| |
| /* high bandwidth, or otherwise part of every microframe */ |
| if ((period = qh->period) == 0) |
| period = 1; |
| |
| for (i = qh->start; i < ehci->periodic_size; i += period) |
| periodic_unlink (ehci, i, qh); |
| |
| /* update per-qh bandwidth for usbfs */ |
| ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period |
| ? ((qh->usecs + qh->c_usecs) / qh->period) |
| : (qh->usecs * 8); |
| |
| dev_dbg (&qh->dev->dev, |
| "unlink qh%d-%04x/%p start %d [%d/%d us]\n", |
| qh->period, |
| hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK), |
| qh, qh->start, qh->usecs, qh->c_usecs); |
| |
| /* qh->qh_next still "live" to HC */ |
| qh->qh_state = QH_STATE_UNLINK; |
| qh->qh_next.ptr = NULL; |
| |
| /* maybe turn off periodic schedule */ |
| return disable_periodic(ehci); |
| } |
| |
| static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh) |
| { |
| unsigned wait; |
| struct ehci_qh_hw *hw = qh->hw; |
| int rc; |
| |
| /* If the QH isn't linked then there's nothing we can do |
| * unless we were called during a giveback, in which case |
| * qh_completions() has to deal with it. |
| */ |
| if (qh->qh_state != QH_STATE_LINKED) { |
| if (qh->qh_state == QH_STATE_COMPLETING) |
| qh->needs_rescan = 1; |
| return; |
| } |
| |
| qh_unlink_periodic (ehci, qh); |
| |
| /* simple/paranoid: always delay, expecting the HC needs to read |
| * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and |
| * expect khubd to clean up after any CSPLITs we won't issue. |
| * active high speed queues may need bigger delays... |
| */ |
| if (list_empty (&qh->qtd_list) |
| || (cpu_to_hc32(ehci, QH_CMASK) |
| & hw->hw_info2) != 0) |
| wait = 2; |
| else |
| wait = 55; /* worst case: 3 * 1024 */ |
| |
| udelay (wait); |
| qh->qh_state = QH_STATE_IDLE; |
| hw->hw_next = EHCI_LIST_END(ehci); |
| wmb (); |
| |
| qh_completions(ehci, qh); |
| |
| /* reschedule QH iff another request is queued */ |
| if (!list_empty(&qh->qtd_list) && |
| ehci->rh_state == EHCI_RH_RUNNING) { |
| rc = qh_schedule(ehci, qh); |
| |
| /* An error here likely indicates handshake failure |
| * or no space left in the schedule. Neither fault |
| * should happen often ... |
| * |
| * FIXME kill the now-dysfunctional queued urbs |
| */ |
| if (rc != 0) |
| ehci_err(ehci, "can't reschedule qh %p, err %d\n", |
| qh, rc); |
| } |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| static int check_period ( |
| struct ehci_hcd *ehci, |
| unsigned frame, |
| unsigned uframe, |
| unsigned period, |
| unsigned usecs |
| ) { |
| int claimed; |
| |
| /* complete split running into next frame? |
| * given FSTN support, we could sometimes check... |
| */ |
| if (uframe >= 8) |
| return 0; |
| |
| /* convert "usecs we need" to "max already claimed" */ |
| usecs = ehci->uframe_periodic_max - usecs; |
| |
| /* we "know" 2 and 4 uframe intervals were rejected; so |
| * for period 0, check _every_ microframe in the schedule. |
| */ |
| if (unlikely (period == 0)) { |
| do { |
| for (uframe = 0; uframe < 7; uframe++) { |
| claimed = periodic_usecs (ehci, frame, uframe); |
| if (claimed > usecs) |
| return 0; |
| } |
| } while ((frame += 1) < ehci->periodic_size); |
| |
| /* just check the specified uframe, at that period */ |
| } else { |
| do { |
| claimed = periodic_usecs (ehci, frame, uframe); |
| if (claimed > usecs) |
| return 0; |
| } while ((frame += period) < ehci->periodic_size); |
| } |
| |
| // success! |
| return 1; |
| } |
| |
| static int check_intr_schedule ( |
| struct ehci_hcd *ehci, |
| unsigned frame, |
| unsigned uframe, |
| const struct ehci_qh *qh, |
| __hc32 *c_maskp |
| ) |
| { |
| int retval = -ENOSPC; |
| u8 mask = 0; |
| |
| if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ |
| goto done; |
| |
| if (!check_period (ehci, frame, uframe, qh->period, qh->usecs)) |
| goto done; |
| if (!qh->c_usecs) { |
| retval = 0; |
| *c_maskp = 0; |
| goto done; |
| } |
| |
| #ifdef CONFIG_USB_EHCI_TT_NEWSCHED |
| if (tt_available (ehci, qh->period, qh->dev, frame, uframe, |
| qh->tt_usecs)) { |
| unsigned i; |
| |
| /* TODO : this may need FSTN for SSPLIT in uframe 5. */ |
| for (i=uframe+1; i<8 && i<uframe+4; i++) |
| if (!check_period (ehci, frame, i, |
| qh->period, qh->c_usecs)) |
| goto done; |
| else |
| mask |= 1 << i; |
| |
| retval = 0; |
| |
| *c_maskp = cpu_to_hc32(ehci, mask << 8); |
| } |
| #else |
| /* Make sure this tt's buffer is also available for CSPLITs. |
| * We pessimize a bit; probably the typical full speed case |
| * doesn't need the second CSPLIT. |
| * |
| * NOTE: both SPLIT and CSPLIT could be checked in just |
| * one smart pass... |
| */ |
| mask = 0x03 << (uframe + qh->gap_uf); |
| *c_maskp = cpu_to_hc32(ehci, mask << 8); |
| |
| mask |= 1 << uframe; |
| if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) { |
| if (!check_period (ehci, frame, uframe + qh->gap_uf + 1, |
| qh->period, qh->c_usecs)) |
| goto done; |
| if (!check_period (ehci, frame, uframe + qh->gap_uf, |
| qh->period, qh->c_usecs)) |
| goto done; |
| retval = 0; |
| } |
| #endif |
| done: |
| return retval; |
| } |
| |
| /* "first fit" scheduling policy used the first time through, |
| * or when the previous schedule slot can't be re-used. |
| */ |
| static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh) |
| { |
| int status; |
| unsigned uframe; |
| __hc32 c_mask; |
| unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ |
| struct ehci_qh_hw *hw = qh->hw; |
| |
| qh_refresh(ehci, qh); |
| hw->hw_next = EHCI_LIST_END(ehci); |
| frame = qh->start; |
| |
| /* reuse the previous schedule slots, if we can */ |
| if (frame < qh->period) { |
| uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK); |
| status = check_intr_schedule (ehci, frame, --uframe, |
| qh, &c_mask); |
| } else { |
| uframe = 0; |
| c_mask = 0; |
| status = -ENOSPC; |
| } |
| |
| /* else scan the schedule to find a group of slots such that all |
| * uframes have enough periodic bandwidth available. |
| */ |
| if (status) { |
| /* "normal" case, uframing flexible except with splits */ |
| if (qh->period) { |
| int i; |
| |
| for (i = qh->period; status && i > 0; --i) { |
| frame = ++ehci->random_frame % qh->period; |
| for (uframe = 0; uframe < 8; uframe++) { |
| status = check_intr_schedule (ehci, |
| frame, uframe, qh, |
| &c_mask); |
| if (status == 0) |
| break; |
| } |
| } |
| |
| /* qh->period == 0 means every uframe */ |
| } else { |
| frame = 0; |
| status = check_intr_schedule (ehci, 0, 0, qh, &c_mask); |
| } |
| if (status) |
| goto done; |
| qh->start = frame; |
| |
| /* reset S-frame and (maybe) C-frame masks */ |
| hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK)); |
| hw->hw_info2 |= qh->period |
| ? cpu_to_hc32(ehci, 1 << uframe) |
| : cpu_to_hc32(ehci, QH_SMASK); |
| hw->hw_info2 |= c_mask; |
| } else |
| ehci_dbg (ehci, "reused qh %p schedule\n", qh); |
| |
| /* stuff into the periodic schedule */ |
| status = qh_link_periodic (ehci, qh); |
| done: |
| return status; |
| } |
| |
| static int intr_submit ( |
| struct ehci_hcd *ehci, |
| struct urb *urb, |
| struct list_head *qtd_list, |
| gfp_t mem_flags |
| ) { |
| unsigned epnum; |
| unsigned long flags; |
| struct ehci_qh *qh; |
| int status; |
| struct list_head empty; |
| |
| /* get endpoint and transfer/schedule data */ |
| epnum = urb->ep->desc.bEndpointAddress; |
| |
| spin_lock_irqsave (&ehci->lock, flags); |
| |
| if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { |
| status = -ESHUTDOWN; |
| goto done_not_linked; |
| } |
| status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); |
| if (unlikely(status)) |
| goto done_not_linked; |
| |
| /* get qh and force any scheduling errors */ |
| INIT_LIST_HEAD (&empty); |
| qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv); |
| if (qh == NULL) { |
| status = -ENOMEM; |
| goto done; |
| } |
| if (qh->qh_state == QH_STATE_IDLE) { |
| if ((status = qh_schedule (ehci, qh)) != 0) |
| goto done; |
| } |
| |
| /* then queue the urb's tds to the qh */ |
| qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv); |
| BUG_ON (qh == NULL); |
| |
| /* ... update usbfs periodic stats */ |
| ehci_to_hcd(ehci)->self.bandwidth_int_reqs++; |
| |
| done: |
| if (unlikely(status)) |
| usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); |
| done_not_linked: |
| spin_unlock_irqrestore (&ehci->lock, flags); |
| if (status) |
| qtd_list_free (ehci, urb, qtd_list); |
| |
| return status; |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| /* ehci_iso_stream ops work with both ITD and SITD */ |
| |
| static struct ehci_iso_stream * |
| iso_stream_alloc (gfp_t mem_flags) |
| { |
| struct ehci_iso_stream *stream; |
| |
| stream = kzalloc(sizeof *stream, mem_flags); |
| if (likely (stream != NULL)) { |
| INIT_LIST_HEAD(&stream->td_list); |
| INIT_LIST_HEAD(&stream->free_list); |
| stream->next_uframe = -1; |
| stream->refcount = 1; |
| } |
| return stream; |
| } |
| |
| static void |
| iso_stream_init ( |
| struct ehci_hcd *ehci, |
| struct ehci_iso_stream *stream, |
| struct usb_device *dev, |
| int pipe, |
| unsigned interval |
| ) |
| { |
| static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f }; |
| |
| u32 buf1; |
| unsigned epnum, maxp; |
| int is_input; |
| long bandwidth; |
| |
| /* |
| * this might be a "high bandwidth" highspeed endpoint, |
| * as encoded in the ep descriptor's wMaxPacket field |
| */ |
| epnum = usb_pipeendpoint (pipe); |
| is_input = usb_pipein (pipe) ? USB_DIR_IN : 0; |
| maxp = usb_maxpacket(dev, pipe, !is_input); |
| if (is_input) { |
| buf1 = (1 << 11); |
| } else { |
| buf1 = 0; |
| } |
| |
| /* knows about ITD vs SITD */ |
| if (dev->speed == USB_SPEED_HIGH) { |
| unsigned multi = hb_mult(maxp); |
| |
| stream->highspeed = 1; |
| |
| maxp = max_packet(maxp); |
| buf1 |= maxp; |
| maxp *= multi; |
| |
| stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum); |
| stream->buf1 = cpu_to_hc32(ehci, buf1); |
| stream->buf2 = cpu_to_hc32(ehci, multi); |
| |
| /* usbfs wants to report the average usecs per frame tied up |
| * when transfers on this endpoint are scheduled ... |
| */ |
| stream->usecs = HS_USECS_ISO (maxp); |
| bandwidth = stream->usecs * 8; |
| bandwidth /= interval; |
| |
| } else { |
| u32 addr; |
| int think_time; |
| int hs_transfers; |
| |
| addr = dev->ttport << 24; |
| if (!ehci_is_TDI(ehci) |
| || (dev->tt->hub != |
| ehci_to_hcd(ehci)->self.root_hub)) |
| addr |= dev->tt->hub->devnum << 16; |
| addr |= epnum << 8; |
| addr |= dev->devnum; |
| stream->usecs = HS_USECS_ISO (maxp); |
| think_time = dev->tt ? dev->tt->think_time : 0; |
| stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time ( |
| dev->speed, is_input, 1, maxp)); |
| hs_transfers = max (1u, (maxp + 187) / 188); |
| if (is_input) { |
| u32 tmp; |
| |
| addr |= 1 << 31; |
| stream->c_usecs = stream->usecs; |
| stream->usecs = HS_USECS_ISO (1); |
| stream->raw_mask = 1; |
| |
| /* c-mask as specified in USB 2.0 11.18.4 3.c */ |
| tmp = (1 << (hs_transfers + 2)) - 1; |
| stream->raw_mask |= tmp << (8 + 2); |
| } else |
| stream->raw_mask = smask_out [hs_transfers - 1]; |
| bandwidth = stream->usecs + stream->c_usecs; |
| bandwidth /= interval << 3; |
| |
| /* stream->splits gets created from raw_mask later */ |
| stream->address = cpu_to_hc32(ehci, addr); |
| } |
| stream->bandwidth = bandwidth; |
| |
| stream->udev = dev; |
| |
| stream->bEndpointAddress = is_input | epnum; |
| stream->interval = interval; |
| stream->maxp = maxp; |
| } |
| |
| static void |
| iso_stream_put(struct ehci_hcd *ehci, struct ehci_iso_stream *stream) |
| { |
| stream->refcount--; |
| |
| /* free whenever just a dev->ep reference remains. |
| * not like a QH -- no persistent state (toggle, halt) |
| */ |
| if (stream->refcount == 1) { |
| // BUG_ON (!list_empty(&stream->td_list)); |
| |
| while (!list_empty (&stream->free_list)) { |
| struct list_head *entry; |
| |
| entry = stream->free_list.next; |
| list_del (entry); |
| |
| /* knows about ITD vs SITD */ |
| if (stream->highspeed) { |
| struct ehci_itd *itd; |
| |
| itd = list_entry (entry, struct ehci_itd, |
| itd_list); |
| dma_pool_free (ehci->itd_pool, itd, |
| itd->itd_dma); |
| } else { |
| struct ehci_sitd *sitd; |
| |
| sitd = list_entry (entry, struct ehci_sitd, |
| sitd_list); |
| dma_pool_free (ehci->sitd_pool, sitd, |
| sitd->sitd_dma); |
| } |
| } |
| |
| stream->bEndpointAddress &= 0x0f; |
| if (stream->ep) |
| stream->ep->hcpriv = NULL; |
| |
| kfree(stream); |
| } |
| } |
| |
| static inline struct ehci_iso_stream * |
| iso_stream_get (struct ehci_iso_stream *stream) |
| { |
| if (likely (stream != NULL)) |
| stream->refcount++; |
| return stream; |
| } |
| |
| static struct ehci_iso_stream * |
| iso_stream_find (struct ehci_hcd *ehci, struct urb *urb) |
| { |
| unsigned epnum; |
| struct ehci_iso_stream *stream; |
| struct usb_host_endpoint *ep; |
| unsigned long flags; |
| |
| epnum = usb_pipeendpoint (urb->pipe); |
| if (usb_pipein(urb->pipe)) |
| ep = urb->dev->ep_in[epnum]; |
| else |
| ep = urb->dev->ep_out[epnum]; |
| |
| spin_lock_irqsave (&ehci->lock, flags); |
| stream = ep->hcpriv; |
| |
| if (unlikely (stream == NULL)) { |
| stream = iso_stream_alloc(GFP_ATOMIC); |
| if (likely (stream != NULL)) { |
| /* dev->ep owns the initial refcount */ |
| ep->hcpriv = stream; |
| stream->ep = ep; |
| iso_stream_init(ehci, stream, urb->dev, urb->pipe, |
| urb->interval); |
| } |
| |
| /* if dev->ep [epnum] is a QH, hw is set */ |
| } else if (unlikely (stream->hw != NULL)) { |
| ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n", |
| urb->dev->devpath, epnum, |
| usb_pipein(urb->pipe) ? "in" : "out"); |
| stream = NULL; |
| } |
| |
| /* caller guarantees an eventual matching iso_stream_put */ |
| stream = iso_stream_get (stream); |
| |
| spin_unlock_irqrestore (&ehci->lock, flags); |
| return stream; |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| /* ehci_iso_sched ops can be ITD-only or SITD-only */ |
| |
| static struct ehci_iso_sched * |
| iso_sched_alloc (unsigned packets, gfp_t mem_flags) |
| { |
| struct ehci_iso_sched *iso_sched; |
| int size = sizeof *iso_sched; |
| |
| size += packets * sizeof (struct ehci_iso_packet); |
| iso_sched = kzalloc(size, mem_flags); |
| if (likely (iso_sched != NULL)) { |
| INIT_LIST_HEAD (&iso_sched->td_list); |
| } |
| return iso_sched; |
| } |
| |
| static inline void |
| itd_sched_init( |
| struct ehci_hcd *ehci, |
| struct ehci_iso_sched *iso_sched, |
| struct ehci_iso_stream *stream, |
| struct urb *urb |
| ) |
| { |
| unsigned i; |
| dma_addr_t dma = urb->transfer_dma; |
| |
| /* how many uframes are needed for these transfers */ |
| iso_sched->span = urb->number_of_packets * stream->interval; |
| |
| /* figure out per-uframe itd fields that we'll need later |
| * when we fit new itds into the schedule. |
| */ |
| for (i = 0; i < urb->number_of_packets; i++) { |
| struct ehci_iso_packet *uframe = &iso_sched->packet [i]; |
| unsigned length; |
| dma_addr_t buf; |
| u32 trans; |
| |
| length = urb->iso_frame_desc [i].length; |
| buf = dma + urb->iso_frame_desc [i].offset; |
| |
| trans = EHCI_ISOC_ACTIVE; |
| trans |= buf & 0x0fff; |
| if (unlikely (((i + 1) == urb->number_of_packets)) |
| && !(urb->transfer_flags & URB_NO_INTERRUPT)) |
| trans |= EHCI_ITD_IOC; |
| trans |= length << 16; |
| uframe->transaction = cpu_to_hc32(ehci, trans); |
| |
| /* might need to cross a buffer page within a uframe */ |
| uframe->bufp = (buf & ~(u64)0x0fff); |
| buf += length; |
| if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff)))) |
| uframe->cross = 1; |
| } |
| } |
| |
| static void |
| iso_sched_free ( |
| struct ehci_iso_stream *stream, |
| struct ehci_iso_sched *iso_sched |
| ) |
| { |
| if (!iso_sched) |
| return; |
| // caller must hold ehci->lock! |
| list_splice (&iso_sched->td_list, &stream->free_list); |
| kfree (iso_sched); |
| } |
| |
| static int |
| itd_urb_transaction ( |
| struct ehci_iso_stream *stream, |
| struct ehci_hcd *ehci, |
| struct urb *urb, |
| gfp_t mem_flags |
| ) |
| { |
| struct ehci_itd *itd; |
| dma_addr_t itd_dma; |
| int i; |
| unsigned num_itds; |
| struct ehci_iso_sched *sched; |
| unsigned long flags; |
| |
| sched = iso_sched_alloc (urb->number_of_packets, mem_flags); |
| if (unlikely (sched == NULL)) |
| return -ENOMEM; |
| |
| itd_sched_init(ehci, sched, stream, urb); |
| |
| if (urb->interval < 8) |
| num_itds = 1 + (sched->span + 7) / 8; |
| else |
| num_itds = urb->number_of_packets; |
| |
| /* allocate/init ITDs */ |
| spin_lock_irqsave (&ehci->lock, flags); |
| for (i = 0; i < num_itds; i++) { |
| |
| /* free_list.next might be cache-hot ... but maybe |
| * the HC caches it too. avoid that issue for now. |
| */ |
| |
| /* prefer previously-allocated itds */ |
| if (likely (!list_empty(&stream->free_list))) { |
| itd = list_entry (stream->free_list.prev, |
| struct ehci_itd, itd_list); |
| list_del (&itd->itd_list); |
| itd_dma = itd->itd_dma; |
| } else { |
| spin_unlock_irqrestore (&ehci->lock, flags); |
| itd = dma_pool_alloc (ehci->itd_pool, mem_flags, |
| &itd_dma); |
| spin_lock_irqsave (&ehci->lock, flags); |
| if (!itd) { |
| iso_sched_free(stream, sched); |
| spin_unlock_irqrestore(&ehci->lock, flags); |
| return -ENOMEM; |
| } |
| } |
| |
| memset (itd, 0, sizeof *itd); |
| itd->itd_dma = itd_dma; |
| list_add (&itd->itd_list, &sched->td_list); |
| } |
| spin_unlock_irqrestore (&ehci->lock, flags); |
| |
| /* temporarily store schedule info in hcpriv */ |
| urb->hcpriv = sched; |
| urb->error_count = 0; |
| return 0; |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| static inline int |
| itd_slot_ok ( |
| struct ehci_hcd *ehci, |
| u32 mod, |
| u32 uframe, |
| u8 usecs, |
| u32 period |
| ) |
| { |
| uframe %= period; |
| do { |
| /* can't commit more than uframe_periodic_max usec */ |
| if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7) |
| > (ehci->uframe_periodic_max - usecs)) |
| return 0; |
| |
| /* we know urb->interval is 2^N uframes */ |
| uframe += period; |
| } while (uframe < mod); |
| return 1; |
| } |
| |
| static inline int |
| sitd_slot_ok ( |
| struct ehci_hcd *ehci, |
| u32 mod, |
| struct ehci_iso_stream *stream, |
| u32 uframe, |
| struct ehci_iso_sched *sched, |
| u32 period_uframes |
| ) |
| { |
| u32 mask, tmp; |
| u32 frame, uf; |
| |
| mask = stream->raw_mask << (uframe & 7); |
| |
| /* for IN, don't wrap CSPLIT into the next frame */ |
| if (mask & ~0xffff) |
| return 0; |
| |
| /* check bandwidth */ |
| uframe %= period_uframes; |
| frame = uframe >> 3; |
| |
| #ifdef CONFIG_USB_EHCI_TT_NEWSCHED |
| /* The tt's fullspeed bus bandwidth must be available. |
| * tt_available scheduling guarantees 10+% for control/bulk. |
| */ |
| uf = uframe & 7; |
| if (!tt_available(ehci, period_uframes >> 3, |
| stream->udev, frame, uf, stream->tt_usecs)) |
| return 0; |
| #else |
| /* tt must be idle for start(s), any gap, and csplit. |
| * assume scheduling slop leaves 10+% for control/bulk. |
| */ |
| if (!tt_no_collision(ehci, period_uframes >> 3, |
| stream->udev, frame, mask)) |
| return 0; |
| #endif |
| |
| /* this multi-pass logic is simple, but performance may |
| * suffer when the schedule data isn't cached. |
| */ |
| do { |
| u32 max_used; |
| |
| frame = uframe >> 3; |
| uf = uframe & 7; |
| |
| /* check starts (OUT uses more than one) */ |
| max_used = ehci->uframe_periodic_max - stream->usecs; |
| for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) { |
| if (periodic_usecs (ehci, frame, uf) > max_used) |
| return 0; |
| } |
| |
| /* for IN, check CSPLIT */ |
| if (stream->c_usecs) { |
| uf = uframe & 7; |
| max_used = ehci->uframe_periodic_max - stream->c_usecs; |
| do { |
| tmp = 1 << uf; |
| tmp <<= 8; |
| if ((stream->raw_mask & tmp) == 0) |
| continue; |
| if (periodic_usecs (ehci, frame, uf) |
| > max_used) |
| return 0; |
| } while (++uf < 8); |
| } |
| |
| /* we know urb->interval is 2^N uframes */ |
| uframe += period_uframes; |
| } while (uframe < mod); |
| |
| stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7)); |
| return 1; |
| } |
| |
| /* |
| * This scheduler plans almost as far into the future as it has actual |
| * periodic schedule slots. (Affected by TUNE_FLS, which defaults to |
| * "as small as possible" to be cache-friendlier.) That limits the size |
| * transfers you can stream reliably; avoid more than 64 msec per urb. |
| * Also avoid queue depths of less than ehci's worst irq latency (affected |
| * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter, |
| * and other factors); or more than about 230 msec total (for portability, |
| * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler! |
| */ |
| |
| #define SCHEDULE_SLOP 80 /* microframes */ |
| |
| static int |
| iso_stream_schedule ( |
| struct ehci_hcd *ehci, |
| struct urb *urb, |
| struct ehci_iso_stream *stream |
| ) |
| { |
| u32 now, next, start, period, span; |
| int status; |
| unsigned mod = ehci->periodic_size << 3; |
| struct ehci_iso_sched *sched = urb->hcpriv; |
| |
| period = urb->interval; |
| span = sched->span; |
| if (!stream->highspeed) { |
| period <<= 3; |
| span <<= 3; |
| } |
| |
| if (span > mod - SCHEDULE_SLOP) { |
| ehci_dbg (ehci, "iso request %p too long\n", urb); |
| status = -EFBIG; |
| goto fail; |
| } |
| |
| now = ehci_read_frame_index(ehci) & (mod - 1); |
| |
| /* Typical case: reuse current schedule, stream is still active. |
| * Hopefully there are no gaps from the host falling behind |
| * (irq delays etc), but if there are we'll take the next |
| * slot in the schedule, implicitly assuming URB_ISO_ASAP. |
| */ |
| if (likely (!list_empty (&stream->td_list))) { |
| u32 excess; |
| |
| /* For high speed devices, allow scheduling within the |
| * isochronous scheduling threshold. For full speed devices |
| * and Intel PCI-based controllers, don't (work around for |
| * Intel ICH9 bug). |
| */ |
| if (!stream->highspeed && ehci->fs_i_thresh) |
| next = now + ehci->i_thresh; |
| else |
| next = now; |
| |
| /* Fell behind (by up to twice the slop amount)? |
| * We decide based on the time of the last currently-scheduled |
| * slot, not the time of the next available slot. |
| */ |
| excess = (stream->next_uframe - period - next) & (mod - 1); |
| if (excess >= mod - 2 * SCHEDULE_SLOP) |
| start = next + excess - mod + period * |
| DIV_ROUND_UP(mod - excess, period); |
| else |
| start = next + excess + period; |
| if (start - now >= mod) { |
| ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n", |
| urb, start - now - period, period, |
| mod); |
| status = -EFBIG; |
| goto fail; |
| } |
| } |
| |
| /* need to schedule; when's the next (u)frame we could start? |
| * this is bigger than ehci->i_thresh allows; scheduling itself |
| * isn't free, the slop should handle reasonably slow cpus. it |
| * can also help high bandwidth if the dma and irq loads don't |
| * jump until after the queue is primed. |
| */ |
| else { |
| int done = 0; |
| start = SCHEDULE_SLOP + (now & ~0x07); |
| |
| /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */ |
| |
| /* find a uframe slot with enough bandwidth. |
| * Early uframes are more precious because full-speed |
| * iso IN transfers can't use late uframes, |
| * and therefore they should be allocated last. |
| */ |
| next = start; |
| start += period; |
| do { |
| start--; |
| /* check schedule: enough space? */ |
| if (stream->highspeed) { |
| if (itd_slot_ok(ehci, mod, start, |
| stream->usecs, period)) |
| done = 1; |
| } else { |
| if ((start % 8) >= 6) |
| continue; |
| if (sitd_slot_ok(ehci, mod, stream, |
| start, sched, period)) |
| done = 1; |
| } |
| } while (start > next && !done); |
| |
| /* no room in the schedule */ |
| if (!done) { |
| ehci_dbg(ehci, "iso resched full %p (now %d max %d)\n", |
| urb, now, now + mod); |
| status = -ENOSPC; |
| goto fail; |
| } |
| } |
| |
| /* Tried to schedule too far into the future? */ |
| if (unlikely(start - now + span - period |
| >= mod - 2 * SCHEDULE_SLOP)) { |
| ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n", |
| urb, start - now, span - period, |
| mod - 2 * SCHEDULE_SLOP); |
| status = -EFBIG; |
| goto fail; |
| } |
| |
| stream->next_uframe = start & (mod - 1); |
| |
| /* report high speed start in uframes; full speed, in frames */ |
| urb->start_frame = stream->next_uframe; |
| if (!stream->highspeed) |
| urb->start_frame >>= 3; |
| return 0; |
| |
| fail: |
| iso_sched_free(stream, sched); |
| urb->hcpriv = NULL; |
| return status; |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| static inline void |
| itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream, |
| struct ehci_itd *itd) |
| { |
| int i; |
| |
| /* it's been recently zeroed */ |
| itd->hw_next = EHCI_LIST_END(ehci); |
| itd->hw_bufp [0] = stream->buf0; |
| itd->hw_bufp [1] = stream->buf1; |
| itd->hw_bufp [2] = stream->buf2; |
| |
| for (i = 0; i < 8; i++) |
| itd->index[i] = -1; |
| |
| /* All other fields are filled when scheduling */ |
| } |
| |
| static inline void |
| itd_patch( |
| struct ehci_hcd *ehci, |
| struct ehci_itd *itd, |
| struct ehci_iso_sched *iso_sched, |
| unsigned index, |
| u16 uframe |
| ) |
| { |
| struct ehci_iso_packet *uf = &iso_sched->packet [index]; |
| unsigned pg = itd->pg; |
| |
| // BUG_ON (pg == 6 && uf->cross); |
| |
| uframe &= 0x07; |
| itd->index [uframe] = index; |
| |
| itd->hw_transaction[uframe] = uf->transaction; |
| itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12); |
| itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0); |
| itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32)); |
| |
| /* iso_frame_desc[].offset must be strictly increasing */ |
| if (unlikely (uf->cross)) { |
| u64 bufp = uf->bufp + 4096; |
| |
| itd->pg = ++pg; |
| itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0); |
| itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32)); |
| } |
| } |
| |
| static inline void |
| itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd) |
| { |
| union ehci_shadow *prev = &ehci->pshadow[frame]; |
| __hc32 *hw_p = &ehci->periodic[frame]; |
| union ehci_shadow here = *prev; |
| __hc32 type = 0; |
| |
| /* skip any iso nodes which might belong to previous microframes */ |
| while (here.ptr) { |
| type = Q_NEXT_TYPE(ehci, *hw_p); |
| if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) |
| break; |
| prev = periodic_next_shadow(ehci, prev, type); |
| hw_p = shadow_next_periodic(ehci, &here, type); |
| here = *prev; |
| } |
| |
| itd->itd_next = here; |
| itd->hw_next = *hw_p; |
| prev->itd = itd; |
| itd->frame = frame; |
| wmb (); |
| *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD); |
| } |
| |
| /* fit urb's itds into the selected schedule slot; activate as needed */ |
| static int |
| itd_link_urb ( |
| struct ehci_hcd *ehci, |
| struct urb *urb, |
| unsigned mod, |
| struct ehci_iso_stream *stream |
| ) |
| { |
| int packet; |
| unsigned next_uframe, uframe, frame; |
| struct ehci_iso_sched *iso_sched = urb->hcpriv; |
| struct ehci_itd *itd; |
| |
| next_uframe = stream->next_uframe & (mod - 1); |
| |
| if (unlikely (list_empty(&stream->td_list))) { |
| ehci_to_hcd(ehci)->self.bandwidth_allocated |
| += stream->bandwidth; |
| ehci_vdbg (ehci, |
| "schedule devp %s ep%d%s-iso period %d start %d.%d\n", |
| urb->dev->devpath, stream->bEndpointAddress & 0x0f, |
| (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out", |
| urb->interval, |
| next_uframe >> 3, next_uframe & 0x7); |
| } |
| |
| if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { |
| if (ehci->amd_pll_fix == 1) |
| usb_amd_quirk_pll_disable(); |
| } |
| |
| ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; |
| |
| /* fill iTDs uframe by uframe */ |
| for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) { |
| if (itd == NULL) { |
| /* ASSERT: we have all necessary itds */ |
| // BUG_ON (list_empty (&iso_sched->td_list)); |
| |
| /* ASSERT: no itds for this endpoint in this uframe */ |
| |
| itd = list_entry (iso_sched->td_list.next, |
| struct ehci_itd, itd_list); |
| list_move_tail (&itd->itd_list, &stream->td_list); |
| itd->stream = iso_stream_get (stream); |
| itd->urb = urb; |
| itd_init (ehci, stream, itd); |
| } |
| |
| uframe = next_uframe & 0x07; |
| frame = next_uframe >> 3; |
| |
| itd_patch(ehci, itd, iso_sched, packet, uframe); |
| |
| next_uframe += stream->interval; |
| next_uframe &= mod - 1; |
| packet++; |
| |
| /* link completed itds into the schedule */ |
| if (((next_uframe >> 3) != frame) |
| || packet == urb->number_of_packets) { |
| itd_link(ehci, frame & (ehci->periodic_size - 1), itd); |
| itd = NULL; |
| } |
| } |
| stream->next_uframe = next_uframe; |
| |
| /* don't need that schedule data any more */ |
| iso_sched_free (stream, iso_sched); |
| urb->hcpriv = NULL; |
| |
| timer_action (ehci, TIMER_IO_WATCHDOG); |
| return enable_periodic(ehci); |
| } |
| |
| #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR) |
| |
| /* Process and recycle a completed ITD. Return true iff its urb completed, |
| * and hence its completion callback probably added things to the hardware |
| * schedule. |
| * |
| * Note that we carefully avoid recycling this descriptor until after any |
| * completion callback runs, so that it won't be reused quickly. That is, |
| * assuming (a) no more than two urbs per frame on this endpoint, and also |
| * (b) only this endpoint's completions submit URBs. It seems some silicon |
| * corrupts things if you reuse completed descriptors very quickly... |
| */ |
| static unsigned |
| itd_complete ( |
| struct ehci_hcd *ehci, |
| struct ehci_itd *itd |
| ) { |
| struct urb *urb = itd->urb; |
| struct usb_iso_packet_descriptor *desc; |
| u32 t; |
| unsigned uframe; |
| int urb_index = -1; |
| struct ehci_iso_stream *stream = itd->stream; |
| struct usb_device *dev; |
| unsigned retval = false; |
| |
| /* for each uframe with a packet */ |
| for (uframe = 0; uframe < 8; uframe++) { |
| if (likely (itd->index[uframe] == -1)) |
| continue; |
| urb_index = itd->index[uframe]; |
| desc = &urb->iso_frame_desc [urb_index]; |
| |
| t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]); |
| itd->hw_transaction [uframe] = 0; |
| |
| /* report transfer status */ |
| if (unlikely (t & ISO_ERRS)) { |
| urb->error_count++; |
| if (t & EHCI_ISOC_BUF_ERR) |
| desc->status = usb_pipein (urb->pipe) |
| ? -ENOSR /* hc couldn't read */ |
| : -ECOMM; /* hc couldn't write */ |
| else if (t & EHCI_ISOC_BABBLE) |
| desc->status = -EOVERFLOW; |
| else /* (t & EHCI_ISOC_XACTERR) */ |
| desc->status = -EPROTO; |
| |
| /* HC need not update length with this error */ |
| if (!(t & EHCI_ISOC_BABBLE)) { |
| desc->actual_length = EHCI_ITD_LENGTH(t); |
| urb->actual_length += desc->actual_length; |
| } |
| } else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) { |
| desc->status = 0; |
| desc->actual_length = EHCI_ITD_LENGTH(t); |
| urb->actual_length += desc->actual_length; |
| } else { |
| /* URB was too late */ |
| desc->status = -EXDEV; |
| } |
| } |
| |
| /* handle completion now? */ |
| if (likely ((urb_index + 1) != urb->number_of_packets)) |
| goto done; |
| |
| /* ASSERT: it's really the last itd for this urb |
| list_for_each_entry (itd, &stream->td_list, itd_list) |
| BUG_ON (itd->urb == urb); |
| */ |
| |
| /* give urb back to the driver; completion often (re)submits */ |
| dev = urb->dev; |
| ehci_urb_done(ehci, urb, 0); |
| retval = true; |
| urb = NULL; |
| (void) disable_periodic(ehci); |
| ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; |
| |
| if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { |
| if (ehci->amd_pll_fix == 1) |
| usb_amd_quirk_pll_enable(); |
| } |
| |
| if (unlikely(list_is_singular(&stream->td_list))) { |
| ehci_to_hcd(ehci)->self.bandwidth_allocated |
| -= stream->bandwidth; |
| ehci_vdbg (ehci, |
| "deschedule devp %s ep%d%s-iso\n", |
| dev->devpath, stream->bEndpointAddress & 0x0f, |
| (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out"); |
| } |
| iso_stream_put (ehci, stream); |
| |
| done: |
| itd->urb = NULL; |
| if (ehci->clock_frame != itd->frame || itd->index[7] != -1) { |
| /* OK to recycle this ITD now. */ |
| itd->stream = NULL; |
| list_move(&itd->itd_list, &stream->free_list); |
| iso_stream_put(ehci, stream); |
| } else { |
| /* HW might remember this ITD, so we can't recycle it yet. |
| * Move it to a safe place until a new frame starts. |
| */ |
| list_move(&itd->itd_list, &ehci->cached_itd_list); |
| if (stream->refcount == 2) { |
| /* If iso_stream_put() were called here, stream |
| * would be freed. Instead, just prevent reuse. |
| */ |
| stream->ep->hcpriv = NULL; |
| stream->ep = NULL; |
| } |
| } |
| return retval; |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| static int itd_submit (struct ehci_hcd *ehci, struct urb *urb, |
| gfp_t mem_flags) |
| { |
| int status = -EINVAL; |
| unsigned long flags; |
| struct ehci_iso_stream *stream; |
| |
| /* Get iso_stream head */ |
| stream = iso_stream_find (ehci, urb); |
| if (unlikely (stream == NULL)) { |
| ehci_dbg (ehci, "can't get iso stream\n"); |
| return -ENOMEM; |
| } |
| if (unlikely (urb->interval != stream->interval)) { |
| ehci_dbg (ehci, "can't change iso interval %d --> %d\n", |
| stream->interval, urb->interval); |
| goto done; |
| } |
| |
| #ifdef EHCI_URB_TRACE |
| ehci_dbg (ehci, |
| "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n", |
| __func__, urb->dev->devpath, urb, |
| usb_pipeendpoint (urb->pipe), |
| usb_pipein (urb->pipe) ? "in" : "out", |
| urb->transfer_buffer_length, |
| urb->number_of_packets, urb->interval, |
| stream); |
| #endif |
| |
| /* allocate ITDs w/o locking anything */ |
| status = itd_urb_transaction (stream, ehci, urb, mem_flags); |
| if (unlikely (status < 0)) { |
| ehci_dbg (ehci, "can't init itds\n"); |
| goto done; |
| } |
| |
| /* schedule ... need to lock */ |
| spin_lock_irqsave (&ehci->lock, flags); |
| if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { |
| status = -ESHUTDOWN; |
| goto done_not_linked; |
| } |
| status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); |
| if (unlikely(status)) |
| goto done_not_linked; |
| status = iso_stream_schedule(ehci, urb, stream); |
| if (likely (status == 0)) |
| itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream); |
| else |
| usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); |
| done_not_linked: |
| spin_unlock_irqrestore (&ehci->lock, flags); |
| |
| done: |
| if (unlikely (status < 0)) |
| iso_stream_put (ehci, stream); |
| return status; |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| /* |
| * "Split ISO TDs" ... used for USB 1.1 devices going through the |
| * TTs in USB 2.0 hubs. These need microframe scheduling. |
| */ |
| |
| static inline void |
| sitd_sched_init( |
| struct ehci_hcd *ehci, |
| struct ehci_iso_sched *iso_sched, |
| struct ehci_iso_stream *stream, |
| struct urb *urb |
| ) |
| { |
| unsigned i; |
| dma_addr_t dma = urb->transfer_dma; |
| |
| /* how many frames are needed for these transfers */ |
| iso_sched->span = urb->number_of_packets * stream->interval; |
| |
| /* figure out per-frame sitd fields that we'll need later |
| * when we fit new sitds into the schedule. |
| */ |
| for (i = 0; i < urb->number_of_packets; i++) { |
| struct ehci_iso_packet *packet = &iso_sched->packet [i]; |
| unsigned length; |
| dma_addr_t buf; |
| u32 trans; |
| |
| length = urb->iso_frame_desc [i].length & 0x03ff; |
| buf = dma + urb->iso_frame_desc [i].offset; |
| |
| trans = SITD_STS_ACTIVE; |
| if (((i + 1) == urb->number_of_packets) |
| && !(urb->transfer_flags & URB_NO_INTERRUPT)) |
| trans |= SITD_IOC; |
| trans |= length << 16; |
| packet->transaction = cpu_to_hc32(ehci, trans); |
| |
| /* might need to cross a buffer page within a td */ |
| packet->bufp = buf; |
| packet->buf1 = (buf + length) & ~0x0fff; |
| if (packet->buf1 != (buf & ~(u64)0x0fff)) |
| packet->cross = 1; |
| |
| /* OUT uses multiple start-splits */ |
| if (stream->bEndpointAddress & USB_DIR_IN) |
| continue; |
| length = (length + 187) / 188; |
| if (length > 1) /* BEGIN vs ALL */ |
| length |= 1 << 3; |
| packet->buf1 |= length; |
| } |
| } |
| |
| static int |
| sitd_urb_transaction ( |
| struct ehci_iso_stream *stream, |
| struct ehci_hcd *ehci, |
| struct urb *urb, |
| gfp_t mem_flags |
| ) |
| { |
| struct ehci_sitd *sitd; |
| dma_addr_t sitd_dma; |
| int i; |
| struct ehci_iso_sched *iso_sched; |
| unsigned long flags; |
| |
| iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags); |
| if (iso_sched == NULL) |
| return -ENOMEM; |
| |
| sitd_sched_init(ehci, iso_sched, stream, urb); |
| |
| /* allocate/init sITDs */ |
| spin_lock_irqsave (&ehci->lock, flags); |
| for (i = 0; i < urb->number_of_packets; i++) { |
| |
| /* NOTE: for now, we don't try to handle wraparound cases |
| * for IN (using sitd->hw_backpointer, like a FSTN), which |
| * means we never need two sitds for full speed packets. |
| */ |
| |
| /* free_list.next might be cache-hot ... but maybe |
| * the HC caches it too. avoid that issue for now. |
| */ |
| |
| /* prefer previously-allocated sitds */ |
| if (!list_empty(&stream->free_list)) { |
| sitd = list_entry (stream->free_list.prev, |
| struct ehci_sitd, sitd_list); |
| list_del (&sitd->sitd_list); |
| sitd_dma = sitd->sitd_dma; |
| } else { |
| spin_unlock_irqrestore (&ehci->lock, flags); |
| sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags, |
| &sitd_dma); |
| spin_lock_irqsave (&ehci->lock, flags); |
| if (!sitd) { |
| iso_sched_free(stream, iso_sched); |
| spin_unlock_irqrestore(&ehci->lock, flags); |
| return -ENOMEM; |
| } |
| } |
| |
| memset (sitd, 0, sizeof *sitd); |
| sitd->sitd_dma = sitd_dma; |
| list_add (&sitd->sitd_list, &iso_sched->td_list); |
| } |
| |
| /* temporarily store schedule info in hcpriv */ |
| urb->hcpriv = iso_sched; |
| urb->error_count = 0; |
| |
| spin_unlock_irqrestore (&ehci->lock, flags); |
| return 0; |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| static inline void |
| sitd_patch( |
| struct ehci_hcd *ehci, |
| struct ehci_iso_stream *stream, |
| struct ehci_sitd *sitd, |
| struct ehci_iso_sched *iso_sched, |
| unsigned index |
| ) |
| { |
| struct ehci_iso_packet *uf = &iso_sched->packet [index]; |
| u64 bufp = uf->bufp; |
| |
| sitd->hw_next = EHCI_LIST_END(ehci); |
| sitd->hw_fullspeed_ep = stream->address; |
| sitd->hw_uframe = stream->splits; |
| sitd->hw_results = uf->transaction; |
| sitd->hw_backpointer = EHCI_LIST_END(ehci); |
| |
| bufp = uf->bufp; |
| sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp); |
| sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32); |
| |
| sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1); |
| if (uf->cross) |
| bufp += 4096; |
| sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32); |
| sitd->index = index; |
| } |
| |
| static inline void |
| sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd) |
| { |
| /* note: sitd ordering could matter (CSPLIT then SSPLIT) */ |
| sitd->sitd_next = ehci->pshadow [frame]; |
| sitd->hw_next = ehci->periodic [frame]; |
| ehci->pshadow [frame].sitd = sitd; |
| sitd->frame = frame; |
| wmb (); |
| ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD); |
| } |
| |
| /* fit urb's sitds into the selected schedule slot; activate as needed */ |
| static int |
| sitd_link_urb ( |
| struct ehci_hcd *ehci, |
| struct urb *urb, |
| unsigned mod, |
| struct ehci_iso_stream *stream |
| ) |
| { |
| int packet; |
| unsigned next_uframe; |
| struct ehci_iso_sched *sched = urb->hcpriv; |
| struct ehci_sitd *sitd; |
| |
| next_uframe = stream->next_uframe; |
| |
| if (list_empty(&stream->td_list)) { |
| /* usbfs ignores TT bandwidth */ |
| ehci_to_hcd(ehci)->self.bandwidth_allocated |
| += stream->bandwidth; |
| ehci_vdbg (ehci, |
| "sched devp %s ep%d%s-iso [%d] %dms/%04x\n", |
| urb->dev->devpath, stream->bEndpointAddress & 0x0f, |
| (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out", |
| (next_uframe >> 3) & (ehci->periodic_size - 1), |
| stream->interval, hc32_to_cpu(ehci, stream->splits)); |
| } |
| |
| if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { |
| if (ehci->amd_pll_fix == 1) |
| usb_amd_quirk_pll_disable(); |
| } |
| |
| ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; |
| |
| /* fill sITDs frame by frame */ |
| for (packet = 0, sitd = NULL; |
| packet < urb->number_of_packets; |
| packet++) { |
| |
| /* ASSERT: we have all necessary sitds */ |
| BUG_ON (list_empty (&sched->td_list)); |
| |
| /* ASSERT: no itds for this endpoint in this frame */ |
| |
| sitd = list_entry (sched->td_list.next, |
| struct ehci_sitd, sitd_list); |
| list_move_tail (&sitd->sitd_list, &stream->td_list); |
| sitd->stream = iso_stream_get (stream); |
| sitd->urb = urb; |
| |
| sitd_patch(ehci, stream, sitd, sched, packet); |
| sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1), |
| sitd); |
| |
| next_uframe += stream->interval << 3; |
| } |
| stream->next_uframe = next_uframe & (mod - 1); |
| |
| /* don't need that schedule data any more */ |
| iso_sched_free (stream, sched); |
| urb->hcpriv = NULL; |
| |
| timer_action (ehci, TIMER_IO_WATCHDOG); |
| return enable_periodic(ehci); |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \ |
| | SITD_STS_XACT | SITD_STS_MMF) |
| |
| /* Process and recycle a completed SITD. Return true iff its urb completed, |
| * and hence its completion callback probably added things to the hardware |
| * schedule. |
| * |
| * Note that we carefully avoid recycling this descriptor until after any |
| * completion callback runs, so that it won't be reused quickly. That is, |
| * assuming (a) no more than two urbs per frame on this endpoint, and also |
| * (b) only this endpoint's completions submit URBs. It seems some silicon |
| * corrupts things if you reuse completed descriptors very quickly... |
| */ |
| static unsigned |
| sitd_complete ( |
| struct ehci_hcd *ehci, |
| struct ehci_sitd *sitd |
| ) { |
| struct urb *urb = sitd->urb; |
| struct usb_iso_packet_descriptor *desc; |
| u32 t; |
| int urb_index = -1; |
| struct ehci_iso_stream *stream = sitd->stream; |
| struct usb_device *dev; |
| unsigned retval = false; |
| |
| urb_index = sitd->index; |
| desc = &urb->iso_frame_desc [urb_index]; |
| t = hc32_to_cpup(ehci, &sitd->hw_results); |
| |
| /* report transfer status */ |
| if (t & SITD_ERRS) { |
| urb->error_count++; |
| if (t & SITD_STS_DBE) |
| desc->status = usb_pipein (urb->pipe) |
| ? -ENOSR /* hc couldn't read */ |
| : -ECOMM; /* hc couldn't write */ |
| else if (t & SITD_STS_BABBLE) |
| desc->status = -EOVERFLOW; |
| else /* XACT, MMF, etc */ |
| desc->status = -EPROTO; |
| } else { |
| desc->status = 0; |
| desc->actual_length = desc->length - SITD_LENGTH(t); |
| urb->actual_length += desc->actual_length; |
| } |
| |
| /* handle completion now? */ |
| if ((urb_index + 1) != urb->number_of_packets) |
| goto done; |
| |
| /* ASSERT: it's really the last sitd for this urb |
| list_for_each_entry (sitd, &stream->td_list, sitd_list) |
| BUG_ON (sitd->urb == urb); |
| */ |
| |
| /* give urb back to the driver; completion often (re)submits */ |
| dev = urb->dev; |
| ehci_urb_done(ehci, urb, 0); |
| retval = true; |
| urb = NULL; |
| (void) disable_periodic(ehci); |
| ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; |
| |
| if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { |
| if (ehci->amd_pll_fix == 1) |
| usb_amd_quirk_pll_enable(); |
| } |
| |
| if (list_is_singular(&stream->td_list)) { |
| ehci_to_hcd(ehci)->self.bandwidth_allocated |
| -= stream->bandwidth; |
| ehci_vdbg (ehci, |
| "deschedule devp %s ep%d%s-iso\n", |
| dev->devpath, stream->bEndpointAddress & 0x0f, |
| (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out"); |
| } |
| iso_stream_put (ehci, stream); |
| |
| done: |
| sitd->urb = NULL; |
| if (ehci->clock_frame != sitd->frame) { |
| /* OK to recycle this SITD now. */ |
| sitd->stream = NULL; |
| list_move(&sitd->sitd_list, &stream->free_list); |
| iso_stream_put(ehci, stream); |
| } else { |
| /* HW might remember this SITD, so we can't recycle it yet. |
| * Move it to a safe place until a new frame starts. |
| */ |
| list_move(&sitd->sitd_list, &ehci->cached_sitd_list); |
| if (stream->refcount == 2) { |
| /* If iso_stream_put() were called here, stream |
| * would be freed. Instead, just prevent reuse. |
| */ |
| stream->ep->hcpriv = NULL; |
| stream->ep = NULL; |
| } |
| } |
| return retval; |
| } |
| |
| |
| static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb, |
| gfp_t mem_flags) |
| { |
| int status = -EINVAL; |
| unsigned long flags; |
| struct ehci_iso_stream *stream; |
| |
| /* Get iso_stream head */ |
| stream = iso_stream_find (ehci, urb); |
| if (stream == NULL) { |
| ehci_dbg (ehci, "can't get iso stream\n"); |
| return -ENOMEM; |
| } |
| if (urb->interval != stream->interval) { |
| ehci_dbg (ehci, "can't change iso interval %d --> %d\n", |
| stream->interval, urb->interval); |
| goto done; |
| } |
| |
| #ifdef EHCI_URB_TRACE |
| ehci_dbg (ehci, |
| "submit %p dev%s ep%d%s-iso len %d\n", |
| urb, urb->dev->devpath, |
| usb_pipeendpoint (urb->pipe), |
| usb_pipein (urb->pipe) ? "in" : "out", |
| urb->transfer_buffer_length); |
| #endif |
| |
| /* allocate SITDs */ |
| status = sitd_urb_transaction (stream, ehci, urb, mem_flags); |
| if (status < 0) { |
| ehci_dbg (ehci, "can't init sitds\n"); |
| goto done; |
| } |
| |
| /* schedule ... need to lock */ |
| spin_lock_irqsave (&ehci->lock, flags); |
| if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { |
| status = -ESHUTDOWN; |
| goto done_not_linked; |
| } |
| status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); |
| if (unlikely(status)) |
| goto done_not_linked; |
| status = iso_stream_schedule(ehci, urb, stream); |
| if (status == 0) |
| sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream); |
| else |
| usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); |
| done_not_linked: |
| spin_unlock_irqrestore (&ehci->lock, flags); |
| |
| done: |
| if (status < 0) |
| iso_stream_put (ehci, stream); |
| return status; |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| static void free_cached_lists(struct ehci_hcd *ehci) |
| { |
| struct ehci_itd *itd, *n; |
| struct ehci_sitd *sitd, *sn; |
| |
| list_for_each_entry_safe(itd, n, &ehci->cached_itd_list, itd_list) { |
| struct ehci_iso_stream *stream = itd->stream; |
| itd->stream = NULL; |
| list_move(&itd->itd_list, &stream->free_list); |
| iso_stream_put(ehci, stream); |
| } |
| |
| list_for_each_entry_safe(sitd, sn, &ehci->cached_sitd_list, sitd_list) { |
| struct ehci_iso_stream *stream = sitd->stream; |
| sitd->stream = NULL; |
| list_move(&sitd->sitd_list, &stream->free_list); |
| iso_stream_put(ehci, stream); |
| } |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| static void |
| scan_periodic (struct ehci_hcd *ehci) |
| { |
| unsigned now_uframe, frame, clock, clock_frame, mod; |
| unsigned modified; |
| |
| mod = ehci->periodic_size << 3; |
| |
| /* |
| * When running, scan from last scan point up to "now" |
| * else clean up by scanning everything that's left. |
| * Touches as few pages as possible: cache-friendly. |
| */ |
| now_uframe = ehci->next_uframe; |
| if (ehci->rh_state >= EHCI_RH_RUNNING) { |
| clock = ehci_read_frame_index(ehci); |
| clock_frame = (clock >> 3) & (ehci->periodic_size - 1); |
| } else { |
| clock = now_uframe + mod - 1; |
| clock_frame = -1; |
| } |
| if (ehci->clock_frame != clock_frame) { |
| free_cached_lists(ehci); |
| ehci->clock_frame = clock_frame; |
| } |
| clock &= mod - 1; |
| clock_frame = clock >> 3; |
| ++ehci->periodic_stamp; |
| |
| for (;;) { |
| union ehci_shadow q, *q_p; |
| __hc32 type, *hw_p; |
| unsigned incomplete = false; |
| |
| frame = now_uframe >> 3; |
| |
| restart: |
| /* scan each element in frame's queue for completions */ |
| q_p = &ehci->pshadow [frame]; |
| hw_p = &ehci->periodic [frame]; |
| q.ptr = q_p->ptr; |
| type = Q_NEXT_TYPE(ehci, *hw_p); |
| modified = 0; |
| |
| while (q.ptr != NULL) { |
| unsigned uf; |
| union ehci_shadow temp; |
| int live; |
| |
| live = (ehci->rh_state >= EHCI_RH_RUNNING); |
| switch (hc32_to_cpu(ehci, type)) { |
| case Q_TYPE_QH: |
| /* handle any completions */ |
| temp.qh = q.qh; |
| type = Q_NEXT_TYPE(ehci, q.qh->hw->hw_next); |
| q = q.qh->qh_next; |
| if (temp.qh->stamp != ehci->periodic_stamp) { |
| modified = qh_completions(ehci, temp.qh); |
| if (!modified) |
| temp.qh->stamp = ehci->periodic_stamp; |
| if (unlikely(list_empty(&temp.qh->qtd_list) || |
| temp.qh->needs_rescan)) |
| intr_deschedule(ehci, temp.qh); |
| } |
| break; |
| case Q_TYPE_FSTN: |
| /* for "save place" FSTNs, look at QH entries |
| * in the previous frame for completions. |
| */ |
| if (q.fstn->hw_prev != EHCI_LIST_END(ehci)) { |
| ehci_dbg(ehci, |
| "ignoring completions from FSTNs\n"); |
| } |
| type = Q_NEXT_TYPE(ehci, q.fstn->hw_next); |
| q = q.fstn->fstn_next; |
| break; |
| case Q_TYPE_ITD: |
| /* If this ITD is still active, leave it for |
| * later processing ... check the next entry. |
| * No need to check for activity unless the |
| * frame is current. |
| */ |
| if (frame == clock_frame && live) { |
| rmb(); |
| for (uf = 0; uf < 8; uf++) { |
| if (q.itd->hw_transaction[uf] & |
| ITD_ACTIVE(ehci)) |
| break; |
| } |
| if (uf < 8) { |
| incomplete = true; |
| q_p = &q.itd->itd_next; |
| hw_p = &q.itd->hw_next; |
| type = Q_NEXT_TYPE(ehci, |
| q.itd->hw_next); |
| q = *q_p; |
| break; |
| } |
| } |
| |
| /* Take finished ITDs out of the schedule |
| * and process them: recycle, maybe report |
| * URB completion. HC won't cache the |
| * pointer for much longer, if at all. |
| */ |
| *q_p = q.itd->itd_next; |
| if (!ehci->use_dummy_qh || |
| q.itd->hw_next != EHCI_LIST_END(ehci)) |
| *hw_p = q.itd->hw_next; |
| else |
| *hw_p = ehci->dummy->qh_dma; |
| type = Q_NEXT_TYPE(ehci, q.itd->hw_next); |
| wmb(); |
| modified = itd_complete (ehci, q.itd); |
| q = *q_p; |
| break; |
| case Q_TYPE_SITD: |
| /* If this SITD is still active, leave it for |
| * later processing ... check the next entry. |
| * No need to check for activity unless the |
| * frame is current. |
| */ |
| if (((frame == clock_frame) || |
| (((frame + 1) & (ehci->periodic_size - 1)) |
| == clock_frame)) |
| && live |
| && (q.sitd->hw_results & |
| SITD_ACTIVE(ehci))) { |
| |
| incomplete = true; |
| q_p = &q.sitd->sitd_next; |
| hw_p = &q.sitd->hw_next; |
| type = Q_NEXT_TYPE(ehci, |
| q.sitd->hw_next); |
| q = *q_p; |
| break; |
| } |
| |
| /* Take finished SITDs out of the schedule |
| * and process them: recycle, maybe report |
| * URB completion. |
| */ |
| *q_p = q.sitd->sitd_next; |
| if (!ehci->use_dummy_qh || |
| q.sitd->hw_next != EHCI_LIST_END(ehci)) |
| *hw_p = q.sitd->hw_next; |
| else |
| *hw_p = ehci->dummy->qh_dma; |
| type = Q_NEXT_TYPE(ehci, q.sitd->hw_next); |
| wmb(); |
| modified = sitd_complete (ehci, q.sitd); |
| q = *q_p; |
| break; |
| default: |
| ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n", |
| type, frame, q.ptr); |
| // BUG (); |
| q.ptr = NULL; |
| } |
| |
| /* assume completion callbacks modify the queue */ |
| if (unlikely (modified)) { |
| if (likely(ehci->periodic_sched > 0)) |
| goto restart; |
| /* short-circuit this scan */ |
| now_uframe = clock; |
| break; |
| } |
| } |
| |
| /* If we can tell we caught up to the hardware, stop now. |
| * We can't advance our scan without collecting the ISO |
| * transfers that are still pending in this frame. |
| */ |
| if (incomplete && ehci->rh_state >= EHCI_RH_RUNNING) { |
| ehci->next_uframe = now_uframe; |
| break; |
| } |
| |
| // FIXME: this assumes we won't get lapped when |
| // latencies climb; that should be rare, but... |
| // detect it, and just go all the way around. |
| // FLR might help detect this case, so long as latencies |
| // don't exceed periodic_size msec (default 1.024 sec). |
| |
| // FIXME: likewise assumes HC doesn't halt mid-scan |
| |
| if (now_uframe == clock) { |
| unsigned now; |
| |
| if (ehci->rh_state < EHCI_RH_RUNNING |
| || ehci->periodic_sched == 0) |
| break; |
| ehci->next_uframe = now_uframe; |
| now = ehci_read_frame_index(ehci) & (mod - 1); |
| if (now_uframe == now) |
| break; |
| |
| /* rescan the rest of this frame, then ... */ |
| clock = now; |
| clock_frame = clock >> 3; |
| if (ehci->clock_frame != clock_frame) { |
| free_cached_lists(ehci); |
| ehci->clock_frame = clock_frame; |
| ++ehci->periodic_stamp; |
| } |
| } else { |
| now_uframe++; |
| now_uframe &= mod - 1; |
| } |
| } |
| } |