| /* |
| * Driver for |
| * Samsung S5H1420 and |
| * PnpNetwork PN1010 QPSK Demodulator |
| * |
| * Copyright (C) 2005 Andrew de Quincey <adq_dvb@lidskialf.net> |
| * Copyright (C) 2005-8 Patrick Boettcher <pb@linuxtv.org> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/jiffies.h> |
| #include <asm/div64.h> |
| |
| #include <linux/i2c.h> |
| |
| |
| #include <media/dvb_frontend.h> |
| #include "s5h1420.h" |
| #include "s5h1420_priv.h" |
| |
| #define TONE_FREQ 22000 |
| |
| struct s5h1420_state { |
| struct i2c_adapter* i2c; |
| const struct s5h1420_config* config; |
| |
| struct dvb_frontend frontend; |
| struct i2c_adapter tuner_i2c_adapter; |
| |
| u8 CON_1_val; |
| |
| u8 postlocked:1; |
| u32 fclk; |
| u32 tunedfreq; |
| enum fe_code_rate fec_inner; |
| u32 symbol_rate; |
| |
| /* FIXME: ugly workaround for flexcop's incapable i2c-controller |
| * it does not support repeated-start, workaround: write addr-1 |
| * and then read |
| */ |
| u8 shadow[256]; |
| }; |
| |
| static u32 s5h1420_getsymbolrate(struct s5h1420_state* state); |
| static int s5h1420_get_tune_settings(struct dvb_frontend* fe, |
| struct dvb_frontend_tune_settings* fesettings); |
| |
| |
| static int debug; |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "enable debugging"); |
| |
| #define dprintk(x...) do { \ |
| if (debug) \ |
| printk(KERN_DEBUG "S5H1420: " x); \ |
| } while (0) |
| |
| static u8 s5h1420_readreg(struct s5h1420_state *state, u8 reg) |
| { |
| int ret; |
| u8 b[2]; |
| struct i2c_msg msg[] = { |
| { .addr = state->config->demod_address, .flags = 0, .buf = b, .len = 2 }, |
| { .addr = state->config->demod_address, .flags = 0, .buf = ®, .len = 1 }, |
| { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b, .len = 1 }, |
| }; |
| |
| b[0] = (reg - 1) & 0xff; |
| b[1] = state->shadow[(reg - 1) & 0xff]; |
| |
| if (state->config->repeated_start_workaround) { |
| ret = i2c_transfer(state->i2c, msg, 3); |
| if (ret != 3) |
| return ret; |
| } else { |
| ret = i2c_transfer(state->i2c, &msg[1], 1); |
| if (ret != 1) |
| return ret; |
| ret = i2c_transfer(state->i2c, &msg[2], 1); |
| if (ret != 1) |
| return ret; |
| } |
| |
| /* dprintk("rd(%02x): %02x %02x\n", state->config->demod_address, reg, b[0]); */ |
| |
| return b[0]; |
| } |
| |
| static int s5h1420_writereg (struct s5h1420_state* state, u8 reg, u8 data) |
| { |
| u8 buf[] = { reg, data }; |
| struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 }; |
| int err; |
| |
| /* dprintk("wr(%02x): %02x %02x\n", state->config->demod_address, reg, data); */ |
| err = i2c_transfer(state->i2c, &msg, 1); |
| if (err != 1) { |
| dprintk("%s: writereg error (err == %i, reg == 0x%02x, data == 0x%02x)\n", __func__, err, reg, data); |
| return -EREMOTEIO; |
| } |
| state->shadow[reg] = data; |
| |
| return 0; |
| } |
| |
| static int s5h1420_set_voltage(struct dvb_frontend *fe, |
| enum fe_sec_voltage voltage) |
| { |
| struct s5h1420_state* state = fe->demodulator_priv; |
| |
| dprintk("enter %s\n", __func__); |
| |
| switch(voltage) { |
| case SEC_VOLTAGE_13: |
| s5h1420_writereg(state, 0x3c, |
| (s5h1420_readreg(state, 0x3c) & 0xfe) | 0x02); |
| break; |
| |
| case SEC_VOLTAGE_18: |
| s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) | 0x03); |
| break; |
| |
| case SEC_VOLTAGE_OFF: |
| s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) & 0xfd); |
| break; |
| } |
| |
| dprintk("leave %s\n", __func__); |
| return 0; |
| } |
| |
| static int s5h1420_set_tone(struct dvb_frontend *fe, |
| enum fe_sec_tone_mode tone) |
| { |
| struct s5h1420_state* state = fe->demodulator_priv; |
| |
| dprintk("enter %s\n", __func__); |
| switch(tone) { |
| case SEC_TONE_ON: |
| s5h1420_writereg(state, 0x3b, |
| (s5h1420_readreg(state, 0x3b) & 0x74) | 0x08); |
| break; |
| |
| case SEC_TONE_OFF: |
| s5h1420_writereg(state, 0x3b, |
| (s5h1420_readreg(state, 0x3b) & 0x74) | 0x01); |
| break; |
| } |
| dprintk("leave %s\n", __func__); |
| |
| return 0; |
| } |
| |
| static int s5h1420_send_master_cmd (struct dvb_frontend* fe, |
| struct dvb_diseqc_master_cmd* cmd) |
| { |
| struct s5h1420_state* state = fe->demodulator_priv; |
| u8 val; |
| int i; |
| unsigned long timeout; |
| int result = 0; |
| |
| dprintk("enter %s\n", __func__); |
| if (cmd->msg_len > sizeof(cmd->msg)) |
| return -EINVAL; |
| |
| /* setup for DISEQC */ |
| val = s5h1420_readreg(state, 0x3b); |
| s5h1420_writereg(state, 0x3b, 0x02); |
| msleep(15); |
| |
| /* write the DISEQC command bytes */ |
| for(i=0; i< cmd->msg_len; i++) { |
| s5h1420_writereg(state, 0x3d + i, cmd->msg[i]); |
| } |
| |
| /* kick off transmission */ |
| s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | |
| ((cmd->msg_len-1) << 4) | 0x08); |
| |
| /* wait for transmission to complete */ |
| timeout = jiffies + ((100*HZ) / 1000); |
| while(time_before(jiffies, timeout)) { |
| if (!(s5h1420_readreg(state, 0x3b) & 0x08)) |
| break; |
| |
| msleep(5); |
| } |
| if (time_after(jiffies, timeout)) |
| result = -ETIMEDOUT; |
| |
| /* restore original settings */ |
| s5h1420_writereg(state, 0x3b, val); |
| msleep(15); |
| dprintk("leave %s\n", __func__); |
| return result; |
| } |
| |
| static int s5h1420_recv_slave_reply (struct dvb_frontend* fe, |
| struct dvb_diseqc_slave_reply* reply) |
| { |
| struct s5h1420_state* state = fe->demodulator_priv; |
| u8 val; |
| int i; |
| int length; |
| unsigned long timeout; |
| int result = 0; |
| |
| /* setup for DISEQC receive */ |
| val = s5h1420_readreg(state, 0x3b); |
| s5h1420_writereg(state, 0x3b, 0x82); /* FIXME: guess - do we need to set DIS_RDY(0x08) in receive mode? */ |
| msleep(15); |
| |
| /* wait for reception to complete */ |
| timeout = jiffies + ((reply->timeout*HZ) / 1000); |
| while(time_before(jiffies, timeout)) { |
| if (!(s5h1420_readreg(state, 0x3b) & 0x80)) /* FIXME: do we test DIS_RDY(0x08) or RCV_EN(0x80)? */ |
| break; |
| |
| msleep(5); |
| } |
| if (time_after(jiffies, timeout)) { |
| result = -ETIMEDOUT; |
| goto exit; |
| } |
| |
| /* check error flag - FIXME: not sure what this does - docs do not describe |
| * beyond "error flag for diseqc receive data :( */ |
| if (s5h1420_readreg(state, 0x49)) { |
| result = -EIO; |
| goto exit; |
| } |
| |
| /* check length */ |
| length = (s5h1420_readreg(state, 0x3b) & 0x70) >> 4; |
| if (length > sizeof(reply->msg)) { |
| result = -EOVERFLOW; |
| goto exit; |
| } |
| reply->msg_len = length; |
| |
| /* extract data */ |
| for(i=0; i< length; i++) { |
| reply->msg[i] = s5h1420_readreg(state, 0x3d + i); |
| } |
| |
| exit: |
| /* restore original settings */ |
| s5h1420_writereg(state, 0x3b, val); |
| msleep(15); |
| return result; |
| } |
| |
| static int s5h1420_send_burst(struct dvb_frontend *fe, |
| enum fe_sec_mini_cmd minicmd) |
| { |
| struct s5h1420_state* state = fe->demodulator_priv; |
| u8 val; |
| int result = 0; |
| unsigned long timeout; |
| |
| /* setup for tone burst */ |
| val = s5h1420_readreg(state, 0x3b); |
| s5h1420_writereg(state, 0x3b, (s5h1420_readreg(state, 0x3b) & 0x70) | 0x01); |
| |
| /* set value for B position if requested */ |
| if (minicmd == SEC_MINI_B) { |
| s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x04); |
| } |
| msleep(15); |
| |
| /* start transmission */ |
| s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x08); |
| |
| /* wait for transmission to complete */ |
| timeout = jiffies + ((100*HZ) / 1000); |
| while(time_before(jiffies, timeout)) { |
| if (!(s5h1420_readreg(state, 0x3b) & 0x08)) |
| break; |
| |
| msleep(5); |
| } |
| if (time_after(jiffies, timeout)) |
| result = -ETIMEDOUT; |
| |
| /* restore original settings */ |
| s5h1420_writereg(state, 0x3b, val); |
| msleep(15); |
| return result; |
| } |
| |
| static enum fe_status s5h1420_get_status_bits(struct s5h1420_state *state) |
| { |
| u8 val; |
| enum fe_status status = 0; |
| |
| val = s5h1420_readreg(state, 0x14); |
| if (val & 0x02) |
| status |= FE_HAS_SIGNAL; |
| if (val & 0x01) |
| status |= FE_HAS_CARRIER; |
| val = s5h1420_readreg(state, 0x36); |
| if (val & 0x01) |
| status |= FE_HAS_VITERBI; |
| if (val & 0x20) |
| status |= FE_HAS_SYNC; |
| if (status == (FE_HAS_SIGNAL|FE_HAS_CARRIER|FE_HAS_VITERBI|FE_HAS_SYNC)) |
| status |= FE_HAS_LOCK; |
| |
| return status; |
| } |
| |
| static int s5h1420_read_status(struct dvb_frontend *fe, |
| enum fe_status *status) |
| { |
| struct s5h1420_state* state = fe->demodulator_priv; |
| u8 val; |
| |
| dprintk("enter %s\n", __func__); |
| |
| if (status == NULL) |
| return -EINVAL; |
| |
| /* determine lock state */ |
| *status = s5h1420_get_status_bits(state); |
| |
| /* fix for FEC 5/6 inversion issue - if it doesn't quite lock, invert |
| the inversion, wait a bit and check again */ |
| if (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI)) { |
| val = s5h1420_readreg(state, Vit10); |
| if ((val & 0x07) == 0x03) { |
| if (val & 0x08) |
| s5h1420_writereg(state, Vit09, 0x13); |
| else |
| s5h1420_writereg(state, Vit09, 0x1b); |
| |
| /* wait a bit then update lock status */ |
| mdelay(200); |
| *status = s5h1420_get_status_bits(state); |
| } |
| } |
| |
| /* perform post lock setup */ |
| if ((*status & FE_HAS_LOCK) && !state->postlocked) { |
| |
| /* calculate the data rate */ |
| u32 tmp = s5h1420_getsymbolrate(state); |
| switch (s5h1420_readreg(state, Vit10) & 0x07) { |
| case 0: tmp = (tmp * 2 * 1) / 2; break; |
| case 1: tmp = (tmp * 2 * 2) / 3; break; |
| case 2: tmp = (tmp * 2 * 3) / 4; break; |
| case 3: tmp = (tmp * 2 * 5) / 6; break; |
| case 4: tmp = (tmp * 2 * 6) / 7; break; |
| case 5: tmp = (tmp * 2 * 7) / 8; break; |
| } |
| |
| if (tmp == 0) { |
| printk(KERN_ERR "s5h1420: avoided division by 0\n"); |
| tmp = 1; |
| } |
| tmp = state->fclk / tmp; |
| |
| |
| /* set the MPEG_CLK_INTL for the calculated data rate */ |
| if (tmp < 2) |
| val = 0x00; |
| else if (tmp < 5) |
| val = 0x01; |
| else if (tmp < 9) |
| val = 0x02; |
| else if (tmp < 13) |
| val = 0x03; |
| else if (tmp < 17) |
| val = 0x04; |
| else if (tmp < 25) |
| val = 0x05; |
| else if (tmp < 33) |
| val = 0x06; |
| else |
| val = 0x07; |
| dprintk("for MPEG_CLK_INTL %d %x\n", tmp, val); |
| |
| s5h1420_writereg(state, FEC01, 0x18); |
| s5h1420_writereg(state, FEC01, 0x10); |
| s5h1420_writereg(state, FEC01, val); |
| |
| /* Enable "MPEG_Out" */ |
| val = s5h1420_readreg(state, Mpeg02); |
| s5h1420_writereg(state, Mpeg02, val | (1 << 6)); |
| |
| /* kicker disable */ |
| val = s5h1420_readreg(state, QPSK01) & 0x7f; |
| s5h1420_writereg(state, QPSK01, val); |
| |
| /* DC freeze TODO it was never activated by default or it can stay activated */ |
| |
| if (s5h1420_getsymbolrate(state) >= 20000000) { |
| s5h1420_writereg(state, Loop04, 0x8a); |
| s5h1420_writereg(state, Loop05, 0x6a); |
| } else { |
| s5h1420_writereg(state, Loop04, 0x58); |
| s5h1420_writereg(state, Loop05, 0x27); |
| } |
| |
| /* post-lock processing has been done! */ |
| state->postlocked = 1; |
| } |
| |
| dprintk("leave %s\n", __func__); |
| |
| return 0; |
| } |
| |
| static int s5h1420_read_ber(struct dvb_frontend* fe, u32* ber) |
| { |
| struct s5h1420_state* state = fe->demodulator_priv; |
| |
| s5h1420_writereg(state, 0x46, 0x1d); |
| mdelay(25); |
| |
| *ber = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47); |
| |
| return 0; |
| } |
| |
| static int s5h1420_read_signal_strength(struct dvb_frontend* fe, u16* strength) |
| { |
| struct s5h1420_state* state = fe->demodulator_priv; |
| |
| u8 val = s5h1420_readreg(state, 0x15); |
| |
| *strength = (u16) ((val << 8) | val); |
| |
| return 0; |
| } |
| |
| static int s5h1420_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks) |
| { |
| struct s5h1420_state* state = fe->demodulator_priv; |
| |
| s5h1420_writereg(state, 0x46, 0x1f); |
| mdelay(25); |
| |
| *ucblocks = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47); |
| |
| return 0; |
| } |
| |
| static void s5h1420_reset(struct s5h1420_state* state) |
| { |
| dprintk("%s\n", __func__); |
| s5h1420_writereg (state, 0x01, 0x08); |
| s5h1420_writereg (state, 0x01, 0x00); |
| udelay(10); |
| } |
| |
| static void s5h1420_setsymbolrate(struct s5h1420_state* state, |
| struct dtv_frontend_properties *p) |
| { |
| u8 v; |
| u64 val; |
| |
| dprintk("enter %s\n", __func__); |
| |
| val = ((u64) p->symbol_rate / 1000ULL) * (1ULL<<24); |
| if (p->symbol_rate < 29000000) |
| val *= 2; |
| do_div(val, (state->fclk / 1000)); |
| |
| dprintk("symbol rate register: %06llx\n", (unsigned long long)val); |
| |
| v = s5h1420_readreg(state, Loop01); |
| s5h1420_writereg(state, Loop01, v & 0x7f); |
| s5h1420_writereg(state, Tnco01, val >> 16); |
| s5h1420_writereg(state, Tnco02, val >> 8); |
| s5h1420_writereg(state, Tnco03, val & 0xff); |
| s5h1420_writereg(state, Loop01, v | 0x80); |
| dprintk("leave %s\n", __func__); |
| } |
| |
| static u32 s5h1420_getsymbolrate(struct s5h1420_state* state) |
| { |
| return state->symbol_rate; |
| } |
| |
| static void s5h1420_setfreqoffset(struct s5h1420_state* state, int freqoffset) |
| { |
| int val; |
| u8 v; |
| |
| dprintk("enter %s\n", __func__); |
| |
| /* remember freqoffset is in kHz, but the chip wants the offset in Hz, so |
| * divide fclk by 1000000 to get the correct value. */ |
| val = -(int) ((freqoffset * (1<<24)) / (state->fclk / 1000000)); |
| |
| dprintk("phase rotator/freqoffset: %d %06x\n", freqoffset, val); |
| |
| v = s5h1420_readreg(state, Loop01); |
| s5h1420_writereg(state, Loop01, v & 0xbf); |
| s5h1420_writereg(state, Pnco01, val >> 16); |
| s5h1420_writereg(state, Pnco02, val >> 8); |
| s5h1420_writereg(state, Pnco03, val & 0xff); |
| s5h1420_writereg(state, Loop01, v | 0x40); |
| dprintk("leave %s\n", __func__); |
| } |
| |
| static int s5h1420_getfreqoffset(struct s5h1420_state* state) |
| { |
| int val; |
| |
| s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) | 0x08); |
| val = s5h1420_readreg(state, 0x0e) << 16; |
| val |= s5h1420_readreg(state, 0x0f) << 8; |
| val |= s5h1420_readreg(state, 0x10); |
| s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) & 0xf7); |
| |
| if (val & 0x800000) |
| val |= 0xff000000; |
| |
| /* remember freqoffset is in kHz, but the chip wants the offset in Hz, so |
| * divide fclk by 1000000 to get the correct value. */ |
| val = (((-val) * (state->fclk/1000000)) / (1<<24)); |
| |
| return val; |
| } |
| |
| static void s5h1420_setfec_inversion(struct s5h1420_state* state, |
| struct dtv_frontend_properties *p) |
| { |
| u8 inversion = 0; |
| u8 vit08, vit09; |
| |
| dprintk("enter %s\n", __func__); |
| |
| if (p->inversion == INVERSION_OFF) |
| inversion = state->config->invert ? 0x08 : 0; |
| else if (p->inversion == INVERSION_ON) |
| inversion = state->config->invert ? 0 : 0x08; |
| |
| if ((p->fec_inner == FEC_AUTO) || (p->inversion == INVERSION_AUTO)) { |
| vit08 = 0x3f; |
| vit09 = 0; |
| } else { |
| switch (p->fec_inner) { |
| case FEC_1_2: |
| vit08 = 0x01; |
| vit09 = 0x10; |
| break; |
| |
| case FEC_2_3: |
| vit08 = 0x02; |
| vit09 = 0x11; |
| break; |
| |
| case FEC_3_4: |
| vit08 = 0x04; |
| vit09 = 0x12; |
| break; |
| |
| case FEC_5_6: |
| vit08 = 0x08; |
| vit09 = 0x13; |
| break; |
| |
| case FEC_6_7: |
| vit08 = 0x10; |
| vit09 = 0x14; |
| break; |
| |
| case FEC_7_8: |
| vit08 = 0x20; |
| vit09 = 0x15; |
| break; |
| |
| default: |
| return; |
| } |
| } |
| vit09 |= inversion; |
| dprintk("fec: %02x %02x\n", vit08, vit09); |
| s5h1420_writereg(state, Vit08, vit08); |
| s5h1420_writereg(state, Vit09, vit09); |
| dprintk("leave %s\n", __func__); |
| } |
| |
| static enum fe_code_rate s5h1420_getfec(struct s5h1420_state *state) |
| { |
| switch(s5h1420_readreg(state, 0x32) & 0x07) { |
| case 0: |
| return FEC_1_2; |
| |
| case 1: |
| return FEC_2_3; |
| |
| case 2: |
| return FEC_3_4; |
| |
| case 3: |
| return FEC_5_6; |
| |
| case 4: |
| return FEC_6_7; |
| |
| case 5: |
| return FEC_7_8; |
| } |
| |
| return FEC_NONE; |
| } |
| |
| static enum fe_spectral_inversion |
| s5h1420_getinversion(struct s5h1420_state *state) |
| { |
| if (s5h1420_readreg(state, 0x32) & 0x08) |
| return INVERSION_ON; |
| |
| return INVERSION_OFF; |
| } |
| |
| static int s5h1420_set_frontend(struct dvb_frontend *fe) |
| { |
| struct dtv_frontend_properties *p = &fe->dtv_property_cache; |
| struct s5h1420_state* state = fe->demodulator_priv; |
| int frequency_delta; |
| struct dvb_frontend_tune_settings fesettings; |
| |
| dprintk("enter %s\n", __func__); |
| |
| /* check if we should do a fast-tune */ |
| s5h1420_get_tune_settings(fe, &fesettings); |
| frequency_delta = p->frequency - state->tunedfreq; |
| if ((frequency_delta > -fesettings.max_drift) && |
| (frequency_delta < fesettings.max_drift) && |
| (frequency_delta != 0) && |
| (state->fec_inner == p->fec_inner) && |
| (state->symbol_rate == p->symbol_rate)) { |
| |
| if (fe->ops.tuner_ops.set_params) { |
| fe->ops.tuner_ops.set_params(fe); |
| if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); |
| } |
| if (fe->ops.tuner_ops.get_frequency) { |
| u32 tmp; |
| fe->ops.tuner_ops.get_frequency(fe, &tmp); |
| if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); |
| s5h1420_setfreqoffset(state, p->frequency - tmp); |
| } else { |
| s5h1420_setfreqoffset(state, 0); |
| } |
| dprintk("simple tune\n"); |
| return 0; |
| } |
| dprintk("tuning demod\n"); |
| |
| /* first of all, software reset */ |
| s5h1420_reset(state); |
| |
| /* set s5h1420 fclk PLL according to desired symbol rate */ |
| if (p->symbol_rate > 33000000) |
| state->fclk = 80000000; |
| else if (p->symbol_rate > 28500000) |
| state->fclk = 59000000; |
| else if (p->symbol_rate > 25000000) |
| state->fclk = 86000000; |
| else if (p->symbol_rate > 1900000) |
| state->fclk = 88000000; |
| else |
| state->fclk = 44000000; |
| |
| dprintk("pll01: %d, ToneFreq: %d\n", state->fclk/1000000 - 8, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32)); |
| s5h1420_writereg(state, PLL01, state->fclk/1000000 - 8); |
| s5h1420_writereg(state, PLL02, 0x40); |
| s5h1420_writereg(state, DiS01, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32)); |
| |
| /* TODO DC offset removal, config parameter ? */ |
| if (p->symbol_rate > 29000000) |
| s5h1420_writereg(state, QPSK01, 0xae | 0x10); |
| else |
| s5h1420_writereg(state, QPSK01, 0xac | 0x10); |
| |
| /* set misc registers */ |
| s5h1420_writereg(state, CON_1, 0x00); |
| s5h1420_writereg(state, QPSK02, 0x00); |
| s5h1420_writereg(state, Pre01, 0xb0); |
| |
| s5h1420_writereg(state, Loop01, 0xF0); |
| s5h1420_writereg(state, Loop02, 0x2a); /* e7 for s5h1420 */ |
| s5h1420_writereg(state, Loop03, 0x79); /* 78 for s5h1420 */ |
| if (p->symbol_rate > 20000000) |
| s5h1420_writereg(state, Loop04, 0x79); |
| else |
| s5h1420_writereg(state, Loop04, 0x58); |
| s5h1420_writereg(state, Loop05, 0x6b); |
| |
| if (p->symbol_rate >= 8000000) |
| s5h1420_writereg(state, Post01, (0 << 6) | 0x10); |
| else if (p->symbol_rate >= 4000000) |
| s5h1420_writereg(state, Post01, (1 << 6) | 0x10); |
| else |
| s5h1420_writereg(state, Post01, (3 << 6) | 0x10); |
| |
| s5h1420_writereg(state, Monitor12, 0x00); /* unfreeze DC compensation */ |
| |
| s5h1420_writereg(state, Sync01, 0x33); |
| s5h1420_writereg(state, Mpeg01, state->config->cdclk_polarity); |
| s5h1420_writereg(state, Mpeg02, 0x3d); /* Parallel output more, disabled -> enabled later */ |
| s5h1420_writereg(state, Err01, 0x03); /* 0x1d for s5h1420 */ |
| |
| s5h1420_writereg(state, Vit06, 0x6e); /* 0x8e for s5h1420 */ |
| s5h1420_writereg(state, DiS03, 0x00); |
| s5h1420_writereg(state, Rf01, 0x61); /* Tuner i2c address - for the gate controller */ |
| |
| /* set tuner PLL */ |
| if (fe->ops.tuner_ops.set_params) { |
| fe->ops.tuner_ops.set_params(fe); |
| if (fe->ops.i2c_gate_ctrl) |
| fe->ops.i2c_gate_ctrl(fe, 0); |
| s5h1420_setfreqoffset(state, 0); |
| } |
| |
| /* set the reset of the parameters */ |
| s5h1420_setsymbolrate(state, p); |
| s5h1420_setfec_inversion(state, p); |
| |
| /* start QPSK */ |
| s5h1420_writereg(state, QPSK01, s5h1420_readreg(state, QPSK01) | 1); |
| |
| state->fec_inner = p->fec_inner; |
| state->symbol_rate = p->symbol_rate; |
| state->postlocked = 0; |
| state->tunedfreq = p->frequency; |
| |
| dprintk("leave %s\n", __func__); |
| return 0; |
| } |
| |
| static int s5h1420_get_frontend(struct dvb_frontend* fe, |
| struct dtv_frontend_properties *p) |
| { |
| struct s5h1420_state* state = fe->demodulator_priv; |
| |
| p->frequency = state->tunedfreq + s5h1420_getfreqoffset(state); |
| p->inversion = s5h1420_getinversion(state); |
| p->symbol_rate = s5h1420_getsymbolrate(state); |
| p->fec_inner = s5h1420_getfec(state); |
| |
| return 0; |
| } |
| |
| static int s5h1420_get_tune_settings(struct dvb_frontend* fe, |
| struct dvb_frontend_tune_settings* fesettings) |
| { |
| struct dtv_frontend_properties *p = &fe->dtv_property_cache; |
| if (p->symbol_rate > 20000000) { |
| fesettings->min_delay_ms = 50; |
| fesettings->step_size = 2000; |
| fesettings->max_drift = 8000; |
| } else if (p->symbol_rate > 12000000) { |
| fesettings->min_delay_ms = 100; |
| fesettings->step_size = 1500; |
| fesettings->max_drift = 9000; |
| } else if (p->symbol_rate > 8000000) { |
| fesettings->min_delay_ms = 100; |
| fesettings->step_size = 1000; |
| fesettings->max_drift = 8000; |
| } else if (p->symbol_rate > 4000000) { |
| fesettings->min_delay_ms = 100; |
| fesettings->step_size = 500; |
| fesettings->max_drift = 7000; |
| } else if (p->symbol_rate > 2000000) { |
| fesettings->min_delay_ms = 200; |
| fesettings->step_size = (p->symbol_rate / 8000); |
| fesettings->max_drift = 14 * fesettings->step_size; |
| } else { |
| fesettings->min_delay_ms = 200; |
| fesettings->step_size = (p->symbol_rate / 8000); |
| fesettings->max_drift = 18 * fesettings->step_size; |
| } |
| |
| return 0; |
| } |
| |
| static int s5h1420_i2c_gate_ctrl(struct dvb_frontend* fe, int enable) |
| { |
| struct s5h1420_state* state = fe->demodulator_priv; |
| |
| if (enable) |
| return s5h1420_writereg(state, 0x02, state->CON_1_val | 1); |
| else |
| return s5h1420_writereg(state, 0x02, state->CON_1_val & 0xfe); |
| } |
| |
| static int s5h1420_init (struct dvb_frontend* fe) |
| { |
| struct s5h1420_state* state = fe->demodulator_priv; |
| |
| /* disable power down and do reset */ |
| state->CON_1_val = state->config->serial_mpeg << 4; |
| s5h1420_writereg(state, 0x02, state->CON_1_val); |
| msleep(10); |
| s5h1420_reset(state); |
| |
| return 0; |
| } |
| |
| static int s5h1420_sleep(struct dvb_frontend* fe) |
| { |
| struct s5h1420_state* state = fe->demodulator_priv; |
| state->CON_1_val = 0x12; |
| return s5h1420_writereg(state, 0x02, state->CON_1_val); |
| } |
| |
| static void s5h1420_release(struct dvb_frontend* fe) |
| { |
| struct s5h1420_state* state = fe->demodulator_priv; |
| i2c_del_adapter(&state->tuner_i2c_adapter); |
| kfree(state); |
| } |
| |
| static u32 s5h1420_tuner_i2c_func(struct i2c_adapter *adapter) |
| { |
| return I2C_FUNC_I2C; |
| } |
| |
| static int s5h1420_tuner_i2c_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) |
| { |
| struct s5h1420_state *state = i2c_get_adapdata(i2c_adap); |
| struct i2c_msg m[3]; |
| u8 tx_open[2] = { CON_1, state->CON_1_val | 1 }; /* repeater stops once there was a stop condition */ |
| |
| if (1 + num > ARRAY_SIZE(m)) { |
| printk(KERN_WARNING |
| "%s: i2c xfer: num=%d is too big!\n", |
| KBUILD_MODNAME, num); |
| return -EOPNOTSUPP; |
| } |
| |
| memset(m, 0, sizeof(struct i2c_msg) * (1 + num)); |
| |
| m[0].addr = state->config->demod_address; |
| m[0].buf = tx_open; |
| m[0].len = 2; |
| |
| memcpy(&m[1], msg, sizeof(struct i2c_msg) * num); |
| |
| return i2c_transfer(state->i2c, m, 1 + num) == 1 + num ? num : -EIO; |
| } |
| |
| static const struct i2c_algorithm s5h1420_tuner_i2c_algo = { |
| .master_xfer = s5h1420_tuner_i2c_tuner_xfer, |
| .functionality = s5h1420_tuner_i2c_func, |
| }; |
| |
| struct i2c_adapter *s5h1420_get_tuner_i2c_adapter(struct dvb_frontend *fe) |
| { |
| struct s5h1420_state *state = fe->demodulator_priv; |
| return &state->tuner_i2c_adapter; |
| } |
| EXPORT_SYMBOL(s5h1420_get_tuner_i2c_adapter); |
| |
| static const struct dvb_frontend_ops s5h1420_ops; |
| |
| struct dvb_frontend *s5h1420_attach(const struct s5h1420_config *config, |
| struct i2c_adapter *i2c) |
| { |
| /* allocate memory for the internal state */ |
| struct s5h1420_state *state = kzalloc(sizeof(struct s5h1420_state), GFP_KERNEL); |
| u8 i; |
| |
| if (state == NULL) |
| goto error; |
| |
| /* setup the state */ |
| state->config = config; |
| state->i2c = i2c; |
| state->postlocked = 0; |
| state->fclk = 88000000; |
| state->tunedfreq = 0; |
| state->fec_inner = FEC_NONE; |
| state->symbol_rate = 0; |
| |
| /* check if the demod is there + identify it */ |
| i = s5h1420_readreg(state, ID01); |
| if (i != 0x03) |
| goto error; |
| |
| memset(state->shadow, 0xff, sizeof(state->shadow)); |
| |
| for (i = 0; i < 0x50; i++) |
| state->shadow[i] = s5h1420_readreg(state, i); |
| |
| /* create dvb_frontend */ |
| memcpy(&state->frontend.ops, &s5h1420_ops, sizeof(struct dvb_frontend_ops)); |
| state->frontend.demodulator_priv = state; |
| |
| /* create tuner i2c adapter */ |
| strscpy(state->tuner_i2c_adapter.name, "S5H1420-PN1010 tuner I2C bus", |
| sizeof(state->tuner_i2c_adapter.name)); |
| state->tuner_i2c_adapter.algo = &s5h1420_tuner_i2c_algo; |
| state->tuner_i2c_adapter.algo_data = NULL; |
| i2c_set_adapdata(&state->tuner_i2c_adapter, state); |
| if (i2c_add_adapter(&state->tuner_i2c_adapter) < 0) { |
| printk(KERN_ERR "S5H1420/PN1010: tuner i2c bus could not be initialized\n"); |
| goto error; |
| } |
| |
| return &state->frontend; |
| |
| error: |
| kfree(state); |
| return NULL; |
| } |
| EXPORT_SYMBOL(s5h1420_attach); |
| |
| static const struct dvb_frontend_ops s5h1420_ops = { |
| .delsys = { SYS_DVBS }, |
| .info = { |
| .name = "Samsung S5H1420/PnpNetwork PN1010 DVB-S", |
| .frequency_min_hz = 950 * MHz, |
| .frequency_max_hz = 2150 * MHz, |
| .frequency_stepsize_hz = 125 * kHz, |
| .frequency_tolerance_hz = 29500 * kHz, |
| .symbol_rate_min = 1000000, |
| .symbol_rate_max = 45000000, |
| /* .symbol_rate_tolerance = ???,*/ |
| .caps = FE_CAN_INVERSION_AUTO | |
| FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | |
| FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | |
| FE_CAN_QPSK |
| }, |
| |
| .release = s5h1420_release, |
| |
| .init = s5h1420_init, |
| .sleep = s5h1420_sleep, |
| .i2c_gate_ctrl = s5h1420_i2c_gate_ctrl, |
| |
| .set_frontend = s5h1420_set_frontend, |
| .get_frontend = s5h1420_get_frontend, |
| .get_tune_settings = s5h1420_get_tune_settings, |
| |
| .read_status = s5h1420_read_status, |
| .read_ber = s5h1420_read_ber, |
| .read_signal_strength = s5h1420_read_signal_strength, |
| .read_ucblocks = s5h1420_read_ucblocks, |
| |
| .diseqc_send_master_cmd = s5h1420_send_master_cmd, |
| .diseqc_recv_slave_reply = s5h1420_recv_slave_reply, |
| .diseqc_send_burst = s5h1420_send_burst, |
| .set_tone = s5h1420_set_tone, |
| .set_voltage = s5h1420_set_voltage, |
| }; |
| |
| MODULE_DESCRIPTION("Samsung S5H1420/PnpNetwork PN1010 DVB-S Demodulator driver"); |
| MODULE_AUTHOR("Andrew de Quincey, Patrick Boettcher"); |
| MODULE_LICENSE("GPL"); |