| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * imr.c -- Intel Isolated Memory Region driver |
| * |
| * Copyright(c) 2013 Intel Corporation. |
| * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie> |
| * |
| * IMR registers define an isolated region of memory that can |
| * be masked to prohibit certain system agents from accessing memory. |
| * When a device behind a masked port performs an access - snooped or |
| * not, an IMR may optionally prevent that transaction from changing |
| * the state of memory or from getting correct data in response to the |
| * operation. |
| * |
| * Write data will be dropped and reads will return 0xFFFFFFFF, the |
| * system will reset and system BIOS will print out an error message to |
| * inform the user that an IMR has been violated. |
| * |
| * This code is based on the Linux MTRR code and reference code from |
| * Intel's Quark BSP EFI, Linux and grub code. |
| * |
| * See quark-x1000-datasheet.pdf for register definitions. |
| * http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <asm-generic/sections.h> |
| #include <asm/cpu_device_id.h> |
| #include <asm/imr.h> |
| #include <asm/iosf_mbi.h> |
| #include <asm/io.h> |
| |
| #include <linux/debugfs.h> |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/types.h> |
| |
| struct imr_device { |
| bool init; |
| struct mutex lock; |
| int max_imr; |
| int reg_base; |
| }; |
| |
| static struct imr_device imr_dev; |
| |
| /* |
| * IMR read/write mask control registers. |
| * See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for |
| * bit definitions. |
| * |
| * addr_hi |
| * 31 Lock bit |
| * 30:24 Reserved |
| * 23:2 1 KiB aligned lo address |
| * 1:0 Reserved |
| * |
| * addr_hi |
| * 31:24 Reserved |
| * 23:2 1 KiB aligned hi address |
| * 1:0 Reserved |
| */ |
| #define IMR_LOCK BIT(31) |
| |
| struct imr_regs { |
| u32 addr_lo; |
| u32 addr_hi; |
| u32 rmask; |
| u32 wmask; |
| }; |
| |
| #define IMR_NUM_REGS (sizeof(struct imr_regs)/sizeof(u32)) |
| #define IMR_SHIFT 8 |
| #define imr_to_phys(x) ((x) << IMR_SHIFT) |
| #define phys_to_imr(x) ((x) >> IMR_SHIFT) |
| |
| /** |
| * imr_is_enabled - true if an IMR is enabled false otherwise. |
| * |
| * Determines if an IMR is enabled based on address range and read/write |
| * mask. An IMR set with an address range set to zero and a read/write |
| * access mask set to all is considered to be disabled. An IMR in any |
| * other state - for example set to zero but without read/write access |
| * all is considered to be enabled. This definition of disabled is how |
| * firmware switches off an IMR and is maintained in kernel for |
| * consistency. |
| * |
| * @imr: pointer to IMR descriptor. |
| * @return: true if IMR enabled false if disabled. |
| */ |
| static inline int imr_is_enabled(struct imr_regs *imr) |
| { |
| return !(imr->rmask == IMR_READ_ACCESS_ALL && |
| imr->wmask == IMR_WRITE_ACCESS_ALL && |
| imr_to_phys(imr->addr_lo) == 0 && |
| imr_to_phys(imr->addr_hi) == 0); |
| } |
| |
| /** |
| * imr_read - read an IMR at a given index. |
| * |
| * Requires caller to hold imr mutex. |
| * |
| * @idev: pointer to imr_device structure. |
| * @imr_id: IMR entry to read. |
| * @imr: IMR structure representing address and access masks. |
| * @return: 0 on success or error code passed from mbi_iosf on failure. |
| */ |
| static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr) |
| { |
| u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base; |
| int ret; |
| |
| ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_lo); |
| if (ret) |
| return ret; |
| |
| ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_hi); |
| if (ret) |
| return ret; |
| |
| ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->rmask); |
| if (ret) |
| return ret; |
| |
| return iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->wmask); |
| } |
| |
| /** |
| * imr_write - write an IMR at a given index. |
| * |
| * Requires caller to hold imr mutex. |
| * Note lock bits need to be written independently of address bits. |
| * |
| * @idev: pointer to imr_device structure. |
| * @imr_id: IMR entry to write. |
| * @imr: IMR structure representing address and access masks. |
| * @return: 0 on success or error code passed from mbi_iosf on failure. |
| */ |
| static int imr_write(struct imr_device *idev, u32 imr_id, struct imr_regs *imr) |
| { |
| unsigned long flags; |
| u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base; |
| int ret; |
| |
| local_irq_save(flags); |
| |
| ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_lo); |
| if (ret) |
| goto failed; |
| |
| ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_hi); |
| if (ret) |
| goto failed; |
| |
| ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->rmask); |
| if (ret) |
| goto failed; |
| |
| ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->wmask); |
| if (ret) |
| goto failed; |
| |
| local_irq_restore(flags); |
| return 0; |
| failed: |
| /* |
| * If writing to the IOSF failed then we're in an unknown state, |
| * likely a very bad state. An IMR in an invalid state will almost |
| * certainly lead to a memory access violation. |
| */ |
| local_irq_restore(flags); |
| WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n", |
| imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK); |
| |
| return ret; |
| } |
| |
| /** |
| * imr_dbgfs_state_show - print state of IMR registers. |
| * |
| * @s: pointer to seq_file for output. |
| * @unused: unused parameter. |
| * @return: 0 on success or error code passed from mbi_iosf on failure. |
| */ |
| static int imr_dbgfs_state_show(struct seq_file *s, void *unused) |
| { |
| phys_addr_t base; |
| phys_addr_t end; |
| int i; |
| struct imr_device *idev = s->private; |
| struct imr_regs imr; |
| size_t size; |
| int ret = -ENODEV; |
| |
| mutex_lock(&idev->lock); |
| |
| for (i = 0; i < idev->max_imr; i++) { |
| |
| ret = imr_read(idev, i, &imr); |
| if (ret) |
| break; |
| |
| /* |
| * Remember to add IMR_ALIGN bytes to size to indicate the |
| * inherent IMR_ALIGN size bytes contained in the masked away |
| * lower ten bits. |
| */ |
| if (imr_is_enabled(&imr)) { |
| base = imr_to_phys(imr.addr_lo); |
| end = imr_to_phys(imr.addr_hi) + IMR_MASK; |
| size = end - base + 1; |
| } else { |
| base = 0; |
| end = 0; |
| size = 0; |
| } |
| seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx " |
| "rmask=0x%08x, wmask=0x%08x, %s, %s\n", i, |
| &base, &end, size, imr.rmask, imr.wmask, |
| imr_is_enabled(&imr) ? "enabled " : "disabled", |
| imr.addr_lo & IMR_LOCK ? "locked" : "unlocked"); |
| } |
| |
| mutex_unlock(&idev->lock); |
| return ret; |
| } |
| DEFINE_SHOW_ATTRIBUTE(imr_dbgfs_state); |
| |
| /** |
| * imr_debugfs_register - register debugfs hooks. |
| * |
| * @idev: pointer to imr_device structure. |
| */ |
| static void imr_debugfs_register(struct imr_device *idev) |
| { |
| debugfs_create_file("imr_state", 0444, NULL, idev, |
| &imr_dbgfs_state_fops); |
| } |
| |
| /** |
| * imr_check_params - check passed address range IMR alignment and non-zero size |
| * |
| * @base: base address of intended IMR. |
| * @size: size of intended IMR. |
| * @return: zero on valid range -EINVAL on unaligned base/size. |
| */ |
| static int imr_check_params(phys_addr_t base, size_t size) |
| { |
| if ((base & IMR_MASK) || (size & IMR_MASK)) { |
| pr_err("base %pa size 0x%08zx must align to 1KiB\n", |
| &base, size); |
| return -EINVAL; |
| } |
| if (size == 0) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /** |
| * imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends. |
| * |
| * IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the |
| * value in the register. We need to subtract IMR_ALIGN bytes from input sizes |
| * as a result. |
| * |
| * @size: input size bytes. |
| * @return: reduced size. |
| */ |
| static inline size_t imr_raw_size(size_t size) |
| { |
| return size - IMR_ALIGN; |
| } |
| |
| /** |
| * imr_address_overlap - detects an address overlap. |
| * |
| * @addr: address to check against an existing IMR. |
| * @imr: imr being checked. |
| * @return: true for overlap false for no overlap. |
| */ |
| static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr) |
| { |
| return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi); |
| } |
| |
| /** |
| * imr_add_range - add an Isolated Memory Region. |
| * |
| * @base: physical base address of region aligned to 1KiB. |
| * @size: physical size of region in bytes must be aligned to 1KiB. |
| * @read_mask: read access mask. |
| * @write_mask: write access mask. |
| * @return: zero on success or negative value indicating error. |
| */ |
| int imr_add_range(phys_addr_t base, size_t size, |
| unsigned int rmask, unsigned int wmask) |
| { |
| phys_addr_t end; |
| unsigned int i; |
| struct imr_device *idev = &imr_dev; |
| struct imr_regs imr; |
| size_t raw_size; |
| int reg; |
| int ret; |
| |
| if (WARN_ONCE(idev->init == false, "driver not initialized")) |
| return -ENODEV; |
| |
| ret = imr_check_params(base, size); |
| if (ret) |
| return ret; |
| |
| /* Tweak the size value. */ |
| raw_size = imr_raw_size(size); |
| end = base + raw_size; |
| |
| /* |
| * Check for reserved IMR value common to firmware, kernel and grub |
| * indicating a disabled IMR. |
| */ |
| imr.addr_lo = phys_to_imr(base); |
| imr.addr_hi = phys_to_imr(end); |
| imr.rmask = rmask; |
| imr.wmask = wmask; |
| if (!imr_is_enabled(&imr)) |
| return -ENOTSUPP; |
| |
| mutex_lock(&idev->lock); |
| |
| /* |
| * Find a free IMR while checking for an existing overlapping range. |
| * Note there's no restriction in silicon to prevent IMR overlaps. |
| * For the sake of simplicity and ease in defining/debugging an IMR |
| * memory map we exclude IMR overlaps. |
| */ |
| reg = -1; |
| for (i = 0; i < idev->max_imr; i++) { |
| ret = imr_read(idev, i, &imr); |
| if (ret) |
| goto failed; |
| |
| /* Find overlap @ base or end of requested range. */ |
| ret = -EINVAL; |
| if (imr_is_enabled(&imr)) { |
| if (imr_address_overlap(base, &imr)) |
| goto failed; |
| if (imr_address_overlap(end, &imr)) |
| goto failed; |
| } else { |
| reg = i; |
| } |
| } |
| |
| /* Error out if we have no free IMR entries. */ |
| if (reg == -1) { |
| ret = -ENOMEM; |
| goto failed; |
| } |
| |
| pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n", |
| reg, &base, &end, raw_size, rmask, wmask); |
| |
| /* Enable IMR at specified range and access mask. */ |
| imr.addr_lo = phys_to_imr(base); |
| imr.addr_hi = phys_to_imr(end); |
| imr.rmask = rmask; |
| imr.wmask = wmask; |
| |
| ret = imr_write(idev, reg, &imr); |
| if (ret < 0) { |
| /* |
| * In the highly unlikely event iosf_mbi_write failed |
| * attempt to rollback the IMR setup skipping the trapping |
| * of further IOSF write failures. |
| */ |
| imr.addr_lo = 0; |
| imr.addr_hi = 0; |
| imr.rmask = IMR_READ_ACCESS_ALL; |
| imr.wmask = IMR_WRITE_ACCESS_ALL; |
| imr_write(idev, reg, &imr); |
| } |
| failed: |
| mutex_unlock(&idev->lock); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(imr_add_range); |
| |
| /** |
| * __imr_remove_range - delete an Isolated Memory Region. |
| * |
| * This function allows you to delete an IMR by its index specified by reg or |
| * by address range specified by base and size respectively. If you specify an |
| * index on its own the base and size parameters are ignored. |
| * imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored. |
| * imr_remove_range(-1, base, size); delete IMR from base to base+size. |
| * |
| * @reg: imr index to remove. |
| * @base: physical base address of region aligned to 1 KiB. |
| * @size: physical size of region in bytes aligned to 1 KiB. |
| * @return: -EINVAL on invalid range or out or range id |
| * -ENODEV if reg is valid but no IMR exists or is locked |
| * 0 on success. |
| */ |
| static int __imr_remove_range(int reg, phys_addr_t base, size_t size) |
| { |
| phys_addr_t end; |
| bool found = false; |
| unsigned int i; |
| struct imr_device *idev = &imr_dev; |
| struct imr_regs imr; |
| size_t raw_size; |
| int ret = 0; |
| |
| if (WARN_ONCE(idev->init == false, "driver not initialized")) |
| return -ENODEV; |
| |
| /* |
| * Validate address range if deleting by address, else we are |
| * deleting by index where base and size will be ignored. |
| */ |
| if (reg == -1) { |
| ret = imr_check_params(base, size); |
| if (ret) |
| return ret; |
| } |
| |
| /* Tweak the size value. */ |
| raw_size = imr_raw_size(size); |
| end = base + raw_size; |
| |
| mutex_lock(&idev->lock); |
| |
| if (reg >= 0) { |
| /* If a specific IMR is given try to use it. */ |
| ret = imr_read(idev, reg, &imr); |
| if (ret) |
| goto failed; |
| |
| if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) { |
| ret = -ENODEV; |
| goto failed; |
| } |
| found = true; |
| } else { |
| /* Search for match based on address range. */ |
| for (i = 0; i < idev->max_imr; i++) { |
| ret = imr_read(idev, i, &imr); |
| if (ret) |
| goto failed; |
| |
| if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) |
| continue; |
| |
| if ((imr_to_phys(imr.addr_lo) == base) && |
| (imr_to_phys(imr.addr_hi) == end)) { |
| found = true; |
| reg = i; |
| break; |
| } |
| } |
| } |
| |
| if (!found) { |
| ret = -ENODEV; |
| goto failed; |
| } |
| |
| pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size); |
| |
| /* Tear down the IMR. */ |
| imr.addr_lo = 0; |
| imr.addr_hi = 0; |
| imr.rmask = IMR_READ_ACCESS_ALL; |
| imr.wmask = IMR_WRITE_ACCESS_ALL; |
| |
| ret = imr_write(idev, reg, &imr); |
| |
| failed: |
| mutex_unlock(&idev->lock); |
| return ret; |
| } |
| |
| /** |
| * imr_remove_range - delete an Isolated Memory Region by address |
| * |
| * This function allows you to delete an IMR by an address range specified |
| * by base and size respectively. |
| * imr_remove_range(base, size); delete IMR from base to base+size. |
| * |
| * @base: physical base address of region aligned to 1 KiB. |
| * @size: physical size of region in bytes aligned to 1 KiB. |
| * @return: -EINVAL on invalid range or out or range id |
| * -ENODEV if reg is valid but no IMR exists or is locked |
| * 0 on success. |
| */ |
| int imr_remove_range(phys_addr_t base, size_t size) |
| { |
| return __imr_remove_range(-1, base, size); |
| } |
| EXPORT_SYMBOL_GPL(imr_remove_range); |
| |
| /** |
| * imr_clear - delete an Isolated Memory Region by index |
| * |
| * This function allows you to delete an IMR by an address range specified |
| * by the index of the IMR. Useful for initial sanitization of the IMR |
| * address map. |
| * imr_ge(base, size); delete IMR from base to base+size. |
| * |
| * @reg: imr index to remove. |
| * @return: -EINVAL on invalid range or out or range id |
| * -ENODEV if reg is valid but no IMR exists or is locked |
| * 0 on success. |
| */ |
| static inline int imr_clear(int reg) |
| { |
| return __imr_remove_range(reg, 0, 0); |
| } |
| |
| /** |
| * imr_fixup_memmap - Tear down IMRs used during bootup. |
| * |
| * BIOS and Grub both setup IMRs around compressed kernel, initrd memory |
| * that need to be removed before the kernel hands out one of the IMR |
| * encased addresses to a downstream DMA agent such as the SD or Ethernet. |
| * IMRs on Galileo are setup to immediately reset the system on violation. |
| * As a result if you're running a root filesystem from SD - you'll need |
| * the boot-time IMRs torn down or you'll find seemingly random resets when |
| * using your filesystem. |
| * |
| * @idev: pointer to imr_device structure. |
| * @return: |
| */ |
| static void __init imr_fixup_memmap(struct imr_device *idev) |
| { |
| phys_addr_t base = virt_to_phys(&_text); |
| size_t size = virt_to_phys(&__end_rodata) - base; |
| unsigned long start, end; |
| int i; |
| int ret; |
| |
| /* Tear down all existing unlocked IMRs. */ |
| for (i = 0; i < idev->max_imr; i++) |
| imr_clear(i); |
| |
| start = (unsigned long)_text; |
| end = (unsigned long)__end_rodata - 1; |
| |
| /* |
| * Setup an unlocked IMR around the physical extent of the kernel |
| * from the beginning of the .text section to the end of the |
| * .rodata section as one physically contiguous block. |
| * |
| * We don't round up @size since it is already PAGE_SIZE aligned. |
| * See vmlinux.lds.S for details. |
| */ |
| ret = imr_add_range(base, size, IMR_CPU, IMR_CPU); |
| if (ret < 0) { |
| pr_err("unable to setup IMR for kernel: %zu KiB (%lx - %lx)\n", |
| size / 1024, start, end); |
| } else { |
| pr_info("protecting kernel .text - .rodata: %zu KiB (%lx - %lx)\n", |
| size / 1024, start, end); |
| } |
| |
| } |
| |
| static const struct x86_cpu_id imr_ids[] __initconst = { |
| X86_MATCH_VENDOR_FAM_MODEL(INTEL, 5, INTEL_FAM5_QUARK_X1000, NULL), |
| {} |
| }; |
| |
| /** |
| * imr_init - entry point for IMR driver. |
| * |
| * return: -ENODEV for no IMR support 0 if good to go. |
| */ |
| static int __init imr_init(void) |
| { |
| struct imr_device *idev = &imr_dev; |
| |
| if (!x86_match_cpu(imr_ids) || !iosf_mbi_available()) |
| return -ENODEV; |
| |
| idev->max_imr = QUARK_X1000_IMR_MAX; |
| idev->reg_base = QUARK_X1000_IMR_REGBASE; |
| idev->init = true; |
| |
| mutex_init(&idev->lock); |
| imr_debugfs_register(idev); |
| imr_fixup_memmap(idev); |
| return 0; |
| } |
| device_initcall(imr_init); |