| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2012-2015 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| */ |
| |
| #include <linux/compiler.h> |
| #include <linux/kvm_host.h> |
| |
| #include <asm/kprobes.h> |
| #include <asm/kvm_asm.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_hyp.h> |
| |
| /* |
| * Non-VHE: Both host and guest must save everything. |
| * |
| * VHE: Host and guest must save mdscr_el1 and sp_el0 (and the PC and pstate, |
| * which are handled as part of the el2 return state) on every switch. |
| * tpidr_el0 and tpidrro_el0 only need to be switched when going |
| * to host userspace or a different VCPU. EL1 registers only need to be |
| * switched when potentially going to run a different VCPU. The latter two |
| * classes are handled as part of kvm_arch_vcpu_load and kvm_arch_vcpu_put. |
| */ |
| |
| static void __hyp_text __sysreg_save_common_state(struct kvm_cpu_context *ctxt) |
| { |
| ctxt->sys_regs[MDSCR_EL1] = read_sysreg(mdscr_el1); |
| |
| /* |
| * The host arm64 Linux uses sp_el0 to point to 'current' and it must |
| * therefore be saved/restored on every entry/exit to/from the guest. |
| */ |
| ctxt->gp_regs.regs.sp = read_sysreg(sp_el0); |
| } |
| |
| static void __hyp_text __sysreg_save_user_state(struct kvm_cpu_context *ctxt) |
| { |
| ctxt->sys_regs[TPIDR_EL0] = read_sysreg(tpidr_el0); |
| ctxt->sys_regs[TPIDRRO_EL0] = read_sysreg(tpidrro_el0); |
| } |
| |
| static void __hyp_text __sysreg_save_el1_state(struct kvm_cpu_context *ctxt) |
| { |
| ctxt->sys_regs[CSSELR_EL1] = read_sysreg(csselr_el1); |
| ctxt->sys_regs[SCTLR_EL1] = read_sysreg_el1(SYS_SCTLR); |
| ctxt->sys_regs[ACTLR_EL1] = read_sysreg(actlr_el1); |
| ctxt->sys_regs[CPACR_EL1] = read_sysreg_el1(SYS_CPACR); |
| ctxt->sys_regs[TTBR0_EL1] = read_sysreg_el1(SYS_TTBR0); |
| ctxt->sys_regs[TTBR1_EL1] = read_sysreg_el1(SYS_TTBR1); |
| ctxt->sys_regs[TCR_EL1] = read_sysreg_el1(SYS_TCR); |
| ctxt->sys_regs[ESR_EL1] = read_sysreg_el1(SYS_ESR); |
| ctxt->sys_regs[AFSR0_EL1] = read_sysreg_el1(SYS_AFSR0); |
| ctxt->sys_regs[AFSR1_EL1] = read_sysreg_el1(SYS_AFSR1); |
| ctxt->sys_regs[FAR_EL1] = read_sysreg_el1(SYS_FAR); |
| ctxt->sys_regs[MAIR_EL1] = read_sysreg_el1(SYS_MAIR); |
| ctxt->sys_regs[VBAR_EL1] = read_sysreg_el1(SYS_VBAR); |
| ctxt->sys_regs[CONTEXTIDR_EL1] = read_sysreg_el1(SYS_CONTEXTIDR); |
| ctxt->sys_regs[AMAIR_EL1] = read_sysreg_el1(SYS_AMAIR); |
| ctxt->sys_regs[CNTKCTL_EL1] = read_sysreg_el1(SYS_CNTKCTL); |
| ctxt->sys_regs[PAR_EL1] = read_sysreg(par_el1); |
| ctxt->sys_regs[TPIDR_EL1] = read_sysreg(tpidr_el1); |
| |
| ctxt->gp_regs.sp_el1 = read_sysreg(sp_el1); |
| ctxt->gp_regs.elr_el1 = read_sysreg_el1(SYS_ELR); |
| ctxt->gp_regs.spsr[KVM_SPSR_EL1]= read_sysreg_el1(SYS_SPSR); |
| } |
| |
| static void __hyp_text __sysreg_save_el2_return_state(struct kvm_cpu_context *ctxt) |
| { |
| ctxt->gp_regs.regs.pc = read_sysreg_el2(SYS_ELR); |
| ctxt->gp_regs.regs.pstate = read_sysreg_el2(SYS_SPSR); |
| |
| if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN)) |
| ctxt->sys_regs[DISR_EL1] = read_sysreg_s(SYS_VDISR_EL2); |
| } |
| |
| void __hyp_text __sysreg_save_state_nvhe(struct kvm_cpu_context *ctxt) |
| { |
| __sysreg_save_el1_state(ctxt); |
| __sysreg_save_common_state(ctxt); |
| __sysreg_save_user_state(ctxt); |
| __sysreg_save_el2_return_state(ctxt); |
| } |
| |
| void sysreg_save_host_state_vhe(struct kvm_cpu_context *ctxt) |
| { |
| __sysreg_save_common_state(ctxt); |
| } |
| NOKPROBE_SYMBOL(sysreg_save_host_state_vhe); |
| |
| void sysreg_save_guest_state_vhe(struct kvm_cpu_context *ctxt) |
| { |
| __sysreg_save_common_state(ctxt); |
| __sysreg_save_el2_return_state(ctxt); |
| } |
| NOKPROBE_SYMBOL(sysreg_save_guest_state_vhe); |
| |
| static void __hyp_text __sysreg_restore_common_state(struct kvm_cpu_context *ctxt) |
| { |
| write_sysreg(ctxt->sys_regs[MDSCR_EL1], mdscr_el1); |
| |
| /* |
| * The host arm64 Linux uses sp_el0 to point to 'current' and it must |
| * therefore be saved/restored on every entry/exit to/from the guest. |
| */ |
| write_sysreg(ctxt->gp_regs.regs.sp, sp_el0); |
| } |
| |
| static void __hyp_text __sysreg_restore_user_state(struct kvm_cpu_context *ctxt) |
| { |
| write_sysreg(ctxt->sys_regs[TPIDR_EL0], tpidr_el0); |
| write_sysreg(ctxt->sys_regs[TPIDRRO_EL0], tpidrro_el0); |
| } |
| |
| static void __hyp_text __sysreg_restore_el1_state(struct kvm_cpu_context *ctxt) |
| { |
| write_sysreg(ctxt->sys_regs[MPIDR_EL1], vmpidr_el2); |
| write_sysreg(ctxt->sys_regs[CSSELR_EL1], csselr_el1); |
| |
| if (!cpus_have_const_cap(ARM64_WORKAROUND_SPECULATIVE_AT_NVHE)) { |
| write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR); |
| write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR); |
| } else if (!ctxt->__hyp_running_vcpu) { |
| /* |
| * Must only be done for guest registers, hence the context |
| * test. We're coming from the host, so SCTLR.M is already |
| * set. Pairs with __activate_traps_nvhe(). |
| */ |
| write_sysreg_el1((ctxt->sys_regs[TCR_EL1] | |
| TCR_EPD1_MASK | TCR_EPD0_MASK), |
| SYS_TCR); |
| isb(); |
| } |
| |
| write_sysreg(ctxt->sys_regs[ACTLR_EL1], actlr_el1); |
| write_sysreg_el1(ctxt->sys_regs[CPACR_EL1], SYS_CPACR); |
| write_sysreg_el1(ctxt->sys_regs[TTBR0_EL1], SYS_TTBR0); |
| write_sysreg_el1(ctxt->sys_regs[TTBR1_EL1], SYS_TTBR1); |
| write_sysreg_el1(ctxt->sys_regs[ESR_EL1], SYS_ESR); |
| write_sysreg_el1(ctxt->sys_regs[AFSR0_EL1], SYS_AFSR0); |
| write_sysreg_el1(ctxt->sys_regs[AFSR1_EL1], SYS_AFSR1); |
| write_sysreg_el1(ctxt->sys_regs[FAR_EL1], SYS_FAR); |
| write_sysreg_el1(ctxt->sys_regs[MAIR_EL1], SYS_MAIR); |
| write_sysreg_el1(ctxt->sys_regs[VBAR_EL1], SYS_VBAR); |
| write_sysreg_el1(ctxt->sys_regs[CONTEXTIDR_EL1],SYS_CONTEXTIDR); |
| write_sysreg_el1(ctxt->sys_regs[AMAIR_EL1], SYS_AMAIR); |
| write_sysreg_el1(ctxt->sys_regs[CNTKCTL_EL1], SYS_CNTKCTL); |
| write_sysreg(ctxt->sys_regs[PAR_EL1], par_el1); |
| write_sysreg(ctxt->sys_regs[TPIDR_EL1], tpidr_el1); |
| |
| if (cpus_have_const_cap(ARM64_WORKAROUND_SPECULATIVE_AT_NVHE) && |
| ctxt->__hyp_running_vcpu) { |
| /* |
| * Must only be done for host registers, hence the context |
| * test. Pairs with __deactivate_traps_nvhe(). |
| */ |
| isb(); |
| /* |
| * At this stage, and thanks to the above isb(), S2 is |
| * deconfigured and disabled. We can now restore the host's |
| * S1 configuration: SCTLR, and only then TCR. |
| */ |
| write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR); |
| isb(); |
| write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR); |
| } |
| |
| write_sysreg(ctxt->gp_regs.sp_el1, sp_el1); |
| write_sysreg_el1(ctxt->gp_regs.elr_el1, SYS_ELR); |
| write_sysreg_el1(ctxt->gp_regs.spsr[KVM_SPSR_EL1],SYS_SPSR); |
| } |
| |
| static void __hyp_text |
| __sysreg_restore_el2_return_state(struct kvm_cpu_context *ctxt) |
| { |
| u64 pstate = ctxt->gp_regs.regs.pstate; |
| u64 mode = pstate & PSR_AA32_MODE_MASK; |
| |
| /* |
| * Safety check to ensure we're setting the CPU up to enter the guest |
| * in a less privileged mode. |
| * |
| * If we are attempting a return to EL2 or higher in AArch64 state, |
| * program SPSR_EL2 with M=EL2h and the IL bit set which ensures that |
| * we'll take an illegal exception state exception immediately after |
| * the ERET to the guest. Attempts to return to AArch32 Hyp will |
| * result in an illegal exception return because EL2's execution state |
| * is determined by SCR_EL3.RW. |
| */ |
| if (!(mode & PSR_MODE32_BIT) && mode >= PSR_MODE_EL2t) |
| pstate = PSR_MODE_EL2h | PSR_IL_BIT; |
| |
| write_sysreg_el2(ctxt->gp_regs.regs.pc, SYS_ELR); |
| write_sysreg_el2(pstate, SYS_SPSR); |
| |
| if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN)) |
| write_sysreg_s(ctxt->sys_regs[DISR_EL1], SYS_VDISR_EL2); |
| } |
| |
| void __hyp_text __sysreg_restore_state_nvhe(struct kvm_cpu_context *ctxt) |
| { |
| __sysreg_restore_el1_state(ctxt); |
| __sysreg_restore_common_state(ctxt); |
| __sysreg_restore_user_state(ctxt); |
| __sysreg_restore_el2_return_state(ctxt); |
| } |
| |
| void sysreg_restore_host_state_vhe(struct kvm_cpu_context *ctxt) |
| { |
| __sysreg_restore_common_state(ctxt); |
| } |
| NOKPROBE_SYMBOL(sysreg_restore_host_state_vhe); |
| |
| void sysreg_restore_guest_state_vhe(struct kvm_cpu_context *ctxt) |
| { |
| __sysreg_restore_common_state(ctxt); |
| __sysreg_restore_el2_return_state(ctxt); |
| } |
| NOKPROBE_SYMBOL(sysreg_restore_guest_state_vhe); |
| |
| void __hyp_text __sysreg32_save_state(struct kvm_vcpu *vcpu) |
| { |
| u64 *spsr, *sysreg; |
| |
| if (!vcpu_el1_is_32bit(vcpu)) |
| return; |
| |
| spsr = vcpu->arch.ctxt.gp_regs.spsr; |
| sysreg = vcpu->arch.ctxt.sys_regs; |
| |
| spsr[KVM_SPSR_ABT] = read_sysreg(spsr_abt); |
| spsr[KVM_SPSR_UND] = read_sysreg(spsr_und); |
| spsr[KVM_SPSR_IRQ] = read_sysreg(spsr_irq); |
| spsr[KVM_SPSR_FIQ] = read_sysreg(spsr_fiq); |
| |
| sysreg[DACR32_EL2] = read_sysreg(dacr32_el2); |
| sysreg[IFSR32_EL2] = read_sysreg(ifsr32_el2); |
| |
| if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY) |
| sysreg[DBGVCR32_EL2] = read_sysreg(dbgvcr32_el2); |
| } |
| |
| void __hyp_text __sysreg32_restore_state(struct kvm_vcpu *vcpu) |
| { |
| u64 *spsr, *sysreg; |
| |
| if (!vcpu_el1_is_32bit(vcpu)) |
| return; |
| |
| spsr = vcpu->arch.ctxt.gp_regs.spsr; |
| sysreg = vcpu->arch.ctxt.sys_regs; |
| |
| write_sysreg(spsr[KVM_SPSR_ABT], spsr_abt); |
| write_sysreg(spsr[KVM_SPSR_UND], spsr_und); |
| write_sysreg(spsr[KVM_SPSR_IRQ], spsr_irq); |
| write_sysreg(spsr[KVM_SPSR_FIQ], spsr_fiq); |
| |
| write_sysreg(sysreg[DACR32_EL2], dacr32_el2); |
| write_sysreg(sysreg[IFSR32_EL2], ifsr32_el2); |
| |
| if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY) |
| write_sysreg(sysreg[DBGVCR32_EL2], dbgvcr32_el2); |
| } |
| |
| /** |
| * kvm_vcpu_load_sysregs - Load guest system registers to the physical CPU |
| * |
| * @vcpu: The VCPU pointer |
| * |
| * Load system registers that do not affect the host's execution, for |
| * example EL1 system registers on a VHE system where the host kernel |
| * runs at EL2. This function is called from KVM's vcpu_load() function |
| * and loading system register state early avoids having to load them on |
| * every entry to the VM. |
| */ |
| void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpu_context *host_ctxt = vcpu->arch.host_cpu_context; |
| struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt; |
| |
| if (!has_vhe()) |
| return; |
| |
| __sysreg_save_user_state(host_ctxt); |
| |
| /* |
| * Load guest EL1 and user state |
| * |
| * We must restore the 32-bit state before the sysregs, thanks |
| * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72). |
| */ |
| __sysreg32_restore_state(vcpu); |
| __sysreg_restore_user_state(guest_ctxt); |
| __sysreg_restore_el1_state(guest_ctxt); |
| |
| vcpu->arch.sysregs_loaded_on_cpu = true; |
| |
| activate_traps_vhe_load(vcpu); |
| } |
| |
| /** |
| * kvm_vcpu_put_sysregs - Restore host system registers to the physical CPU |
| * |
| * @vcpu: The VCPU pointer |
| * |
| * Save guest system registers that do not affect the host's execution, for |
| * example EL1 system registers on a VHE system where the host kernel |
| * runs at EL2. This function is called from KVM's vcpu_put() function |
| * and deferring saving system register state until we're no longer running the |
| * VCPU avoids having to save them on every exit from the VM. |
| */ |
| void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpu_context *host_ctxt = vcpu->arch.host_cpu_context; |
| struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt; |
| |
| if (!has_vhe()) |
| return; |
| |
| deactivate_traps_vhe_put(); |
| |
| __sysreg_save_el1_state(guest_ctxt); |
| __sysreg_save_user_state(guest_ctxt); |
| __sysreg32_save_state(vcpu); |
| |
| /* Restore host user state */ |
| __sysreg_restore_user_state(host_ctxt); |
| |
| vcpu->arch.sysregs_loaded_on_cpu = false; |
| } |
| |
| void __hyp_text __kvm_enable_ssbs(void) |
| { |
| u64 tmp; |
| |
| asm volatile( |
| "mrs %0, sctlr_el2\n" |
| "orr %0, %0, %1\n" |
| "msr sctlr_el2, %0" |
| : "=&r" (tmp) : "L" (SCTLR_ELx_DSSBS)); |
| } |