| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * GHES/EDAC Linux driver |
| * |
| * Copyright (c) 2013 by Mauro Carvalho Chehab |
| * |
| * Red Hat Inc. http://www.redhat.com |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <acpi/ghes.h> |
| #include <linux/edac.h> |
| #include <linux/dmi.h> |
| #include "edac_module.h" |
| #include <ras/ras_event.h> |
| |
| struct ghes_pvt { |
| struct mem_ctl_info *mci; |
| |
| /* Buffers for the error handling routine */ |
| char other_detail[400]; |
| char msg[80]; |
| }; |
| |
| static refcount_t ghes_refcount = REFCOUNT_INIT(0); |
| |
| /* |
| * Access to ghes_pvt must be protected by ghes_lock. The spinlock |
| * also provides the necessary (implicit) memory barrier for the SMP |
| * case to make the pointer visible on another CPU. |
| */ |
| static struct ghes_pvt *ghes_pvt; |
| |
| /* |
| * This driver's representation of the system hardware, as collected |
| * from DMI. |
| */ |
| struct ghes_hw_desc { |
| int num_dimms; |
| struct dimm_info *dimms; |
| } ghes_hw; |
| |
| /* GHES registration mutex */ |
| static DEFINE_MUTEX(ghes_reg_mutex); |
| |
| /* |
| * Sync with other, potentially concurrent callers of |
| * ghes_edac_report_mem_error(). We don't know what the |
| * "inventive" firmware would do. |
| */ |
| static DEFINE_SPINLOCK(ghes_lock); |
| |
| /* "ghes_edac.force_load=1" skips the platform check */ |
| static bool __read_mostly force_load; |
| module_param(force_load, bool, 0); |
| |
| static bool system_scanned; |
| |
| /* Memory Device - Type 17 of SMBIOS spec */ |
| struct memdev_dmi_entry { |
| u8 type; |
| u8 length; |
| u16 handle; |
| u16 phys_mem_array_handle; |
| u16 mem_err_info_handle; |
| u16 total_width; |
| u16 data_width; |
| u16 size; |
| u8 form_factor; |
| u8 device_set; |
| u8 device_locator; |
| u8 bank_locator; |
| u8 memory_type; |
| u16 type_detail; |
| u16 speed; |
| u8 manufacturer; |
| u8 serial_number; |
| u8 asset_tag; |
| u8 part_number; |
| u8 attributes; |
| u32 extended_size; |
| u16 conf_mem_clk_speed; |
| } __attribute__((__packed__)); |
| |
| static struct dimm_info *find_dimm_by_handle(struct mem_ctl_info *mci, u16 handle) |
| { |
| struct dimm_info *dimm; |
| |
| mci_for_each_dimm(mci, dimm) { |
| if (dimm->smbios_handle == handle) |
| return dimm; |
| } |
| |
| return NULL; |
| } |
| |
| static void dimm_setup_label(struct dimm_info *dimm, u16 handle) |
| { |
| const char *bank = NULL, *device = NULL; |
| |
| dmi_memdev_name(handle, &bank, &device); |
| |
| /* both strings must be non-zero */ |
| if (bank && *bank && device && *device) |
| snprintf(dimm->label, sizeof(dimm->label), "%s %s", bank, device); |
| } |
| |
| static void assign_dmi_dimm_info(struct dimm_info *dimm, struct memdev_dmi_entry *entry) |
| { |
| u16 rdr_mask = BIT(7) | BIT(13); |
| |
| if (entry->size == 0xffff) { |
| pr_info("Can't get DIMM%i size\n", dimm->idx); |
| dimm->nr_pages = MiB_TO_PAGES(32);/* Unknown */ |
| } else if (entry->size == 0x7fff) { |
| dimm->nr_pages = MiB_TO_PAGES(entry->extended_size); |
| } else { |
| if (entry->size & BIT(15)) |
| dimm->nr_pages = MiB_TO_PAGES((entry->size & 0x7fff) << 10); |
| else |
| dimm->nr_pages = MiB_TO_PAGES(entry->size); |
| } |
| |
| switch (entry->memory_type) { |
| case 0x12: |
| if (entry->type_detail & BIT(13)) |
| dimm->mtype = MEM_RDDR; |
| else |
| dimm->mtype = MEM_DDR; |
| break; |
| case 0x13: |
| if (entry->type_detail & BIT(13)) |
| dimm->mtype = MEM_RDDR2; |
| else |
| dimm->mtype = MEM_DDR2; |
| break; |
| case 0x14: |
| dimm->mtype = MEM_FB_DDR2; |
| break; |
| case 0x18: |
| if (entry->type_detail & BIT(12)) |
| dimm->mtype = MEM_NVDIMM; |
| else if (entry->type_detail & BIT(13)) |
| dimm->mtype = MEM_RDDR3; |
| else |
| dimm->mtype = MEM_DDR3; |
| break; |
| case 0x1a: |
| if (entry->type_detail & BIT(12)) |
| dimm->mtype = MEM_NVDIMM; |
| else if (entry->type_detail & BIT(13)) |
| dimm->mtype = MEM_RDDR4; |
| else |
| dimm->mtype = MEM_DDR4; |
| break; |
| default: |
| if (entry->type_detail & BIT(6)) |
| dimm->mtype = MEM_RMBS; |
| else if ((entry->type_detail & rdr_mask) == rdr_mask) |
| dimm->mtype = MEM_RDR; |
| else if (entry->type_detail & BIT(7)) |
| dimm->mtype = MEM_SDR; |
| else if (entry->type_detail & BIT(9)) |
| dimm->mtype = MEM_EDO; |
| else |
| dimm->mtype = MEM_UNKNOWN; |
| } |
| |
| /* |
| * Actually, we can only detect if the memory has bits for |
| * checksum or not |
| */ |
| if (entry->total_width == entry->data_width) |
| dimm->edac_mode = EDAC_NONE; |
| else |
| dimm->edac_mode = EDAC_SECDED; |
| |
| dimm->dtype = DEV_UNKNOWN; |
| dimm->grain = 128; /* Likely, worse case */ |
| |
| dimm_setup_label(dimm, entry->handle); |
| |
| if (dimm->nr_pages) { |
| edac_dbg(1, "DIMM%i: %s size = %d MB%s\n", |
| dimm->idx, edac_mem_types[dimm->mtype], |
| PAGES_TO_MiB(dimm->nr_pages), |
| (dimm->edac_mode != EDAC_NONE) ? "(ECC)" : ""); |
| edac_dbg(2, "\ttype %d, detail 0x%02x, width %d(total %d)\n", |
| entry->memory_type, entry->type_detail, |
| entry->total_width, entry->data_width); |
| } |
| |
| dimm->smbios_handle = entry->handle; |
| } |
| |
| static void enumerate_dimms(const struct dmi_header *dh, void *arg) |
| { |
| struct memdev_dmi_entry *entry = (struct memdev_dmi_entry *)dh; |
| struct ghes_hw_desc *hw = (struct ghes_hw_desc *)arg; |
| struct dimm_info *d; |
| |
| if (dh->type != DMI_ENTRY_MEM_DEVICE) |
| return; |
| |
| /* Enlarge the array with additional 16 */ |
| if (!hw->num_dimms || !(hw->num_dimms % 16)) { |
| struct dimm_info *new; |
| |
| new = krealloc(hw->dimms, (hw->num_dimms + 16) * sizeof(struct dimm_info), |
| GFP_KERNEL); |
| if (!new) { |
| WARN_ON_ONCE(1); |
| return; |
| } |
| |
| hw->dimms = new; |
| } |
| |
| d = &hw->dimms[hw->num_dimms]; |
| d->idx = hw->num_dimms; |
| |
| assign_dmi_dimm_info(d, entry); |
| |
| hw->num_dimms++; |
| } |
| |
| static void ghes_scan_system(void) |
| { |
| if (system_scanned) |
| return; |
| |
| dmi_walk(enumerate_dimms, &ghes_hw); |
| |
| system_scanned = true; |
| } |
| |
| void ghes_edac_report_mem_error(int sev, struct cper_sec_mem_err *mem_err) |
| { |
| struct edac_raw_error_desc *e; |
| struct mem_ctl_info *mci; |
| struct ghes_pvt *pvt; |
| unsigned long flags; |
| char *p; |
| |
| /* |
| * We can do the locking below because GHES defers error processing |
| * from NMI to IRQ context. Whenever that changes, we'd at least |
| * know. |
| */ |
| if (WARN_ON_ONCE(in_nmi())) |
| return; |
| |
| spin_lock_irqsave(&ghes_lock, flags); |
| |
| pvt = ghes_pvt; |
| if (!pvt) |
| goto unlock; |
| |
| mci = pvt->mci; |
| e = &mci->error_desc; |
| |
| /* Cleans the error report buffer */ |
| memset(e, 0, sizeof (*e)); |
| e->error_count = 1; |
| e->grain = 1; |
| e->msg = pvt->msg; |
| e->other_detail = pvt->other_detail; |
| e->top_layer = -1; |
| e->mid_layer = -1; |
| e->low_layer = -1; |
| *pvt->other_detail = '\0'; |
| *pvt->msg = '\0'; |
| |
| switch (sev) { |
| case GHES_SEV_CORRECTED: |
| e->type = HW_EVENT_ERR_CORRECTED; |
| break; |
| case GHES_SEV_RECOVERABLE: |
| e->type = HW_EVENT_ERR_UNCORRECTED; |
| break; |
| case GHES_SEV_PANIC: |
| e->type = HW_EVENT_ERR_FATAL; |
| break; |
| default: |
| case GHES_SEV_NO: |
| e->type = HW_EVENT_ERR_INFO; |
| } |
| |
| edac_dbg(1, "error validation_bits: 0x%08llx\n", |
| (long long)mem_err->validation_bits); |
| |
| /* Error type, mapped on e->msg */ |
| if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_TYPE) { |
| p = pvt->msg; |
| switch (mem_err->error_type) { |
| case 0: |
| p += sprintf(p, "Unknown"); |
| break; |
| case 1: |
| p += sprintf(p, "No error"); |
| break; |
| case 2: |
| p += sprintf(p, "Single-bit ECC"); |
| break; |
| case 3: |
| p += sprintf(p, "Multi-bit ECC"); |
| break; |
| case 4: |
| p += sprintf(p, "Single-symbol ChipKill ECC"); |
| break; |
| case 5: |
| p += sprintf(p, "Multi-symbol ChipKill ECC"); |
| break; |
| case 6: |
| p += sprintf(p, "Master abort"); |
| break; |
| case 7: |
| p += sprintf(p, "Target abort"); |
| break; |
| case 8: |
| p += sprintf(p, "Parity Error"); |
| break; |
| case 9: |
| p += sprintf(p, "Watchdog timeout"); |
| break; |
| case 10: |
| p += sprintf(p, "Invalid address"); |
| break; |
| case 11: |
| p += sprintf(p, "Mirror Broken"); |
| break; |
| case 12: |
| p += sprintf(p, "Memory Sparing"); |
| break; |
| case 13: |
| p += sprintf(p, "Scrub corrected error"); |
| break; |
| case 14: |
| p += sprintf(p, "Scrub uncorrected error"); |
| break; |
| case 15: |
| p += sprintf(p, "Physical Memory Map-out event"); |
| break; |
| default: |
| p += sprintf(p, "reserved error (%d)", |
| mem_err->error_type); |
| } |
| } else { |
| strcpy(pvt->msg, "unknown error"); |
| } |
| |
| /* Error address */ |
| if (mem_err->validation_bits & CPER_MEM_VALID_PA) { |
| e->page_frame_number = PHYS_PFN(mem_err->physical_addr); |
| e->offset_in_page = offset_in_page(mem_err->physical_addr); |
| } |
| |
| /* Error grain */ |
| if (mem_err->validation_bits & CPER_MEM_VALID_PA_MASK) |
| e->grain = ~mem_err->physical_addr_mask + 1; |
| |
| /* Memory error location, mapped on e->location */ |
| p = e->location; |
| if (mem_err->validation_bits & CPER_MEM_VALID_NODE) |
| p += sprintf(p, "node:%d ", mem_err->node); |
| if (mem_err->validation_bits & CPER_MEM_VALID_CARD) |
| p += sprintf(p, "card:%d ", mem_err->card); |
| if (mem_err->validation_bits & CPER_MEM_VALID_MODULE) |
| p += sprintf(p, "module:%d ", mem_err->module); |
| if (mem_err->validation_bits & CPER_MEM_VALID_RANK_NUMBER) |
| p += sprintf(p, "rank:%d ", mem_err->rank); |
| if (mem_err->validation_bits & CPER_MEM_VALID_BANK) |
| p += sprintf(p, "bank:%d ", mem_err->bank); |
| if (mem_err->validation_bits & CPER_MEM_VALID_ROW) |
| p += sprintf(p, "row:%d ", mem_err->row); |
| if (mem_err->validation_bits & CPER_MEM_VALID_COLUMN) |
| p += sprintf(p, "col:%d ", mem_err->column); |
| if (mem_err->validation_bits & CPER_MEM_VALID_BIT_POSITION) |
| p += sprintf(p, "bit_pos:%d ", mem_err->bit_pos); |
| if (mem_err->validation_bits & CPER_MEM_VALID_MODULE_HANDLE) { |
| const char *bank = NULL, *device = NULL; |
| struct dimm_info *dimm; |
| |
| dmi_memdev_name(mem_err->mem_dev_handle, &bank, &device); |
| if (bank != NULL && device != NULL) |
| p += sprintf(p, "DIMM location:%s %s ", bank, device); |
| else |
| p += sprintf(p, "DIMM DMI handle: 0x%.4x ", |
| mem_err->mem_dev_handle); |
| |
| dimm = find_dimm_by_handle(mci, mem_err->mem_dev_handle); |
| if (dimm) { |
| e->top_layer = dimm->idx; |
| strcpy(e->label, dimm->label); |
| } |
| } |
| if (p > e->location) |
| *(p - 1) = '\0'; |
| |
| if (!*e->label) |
| strcpy(e->label, "unknown memory"); |
| |
| /* All other fields are mapped on e->other_detail */ |
| p = pvt->other_detail; |
| p += snprintf(p, sizeof(pvt->other_detail), |
| "APEI location: %s ", e->location); |
| if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_STATUS) { |
| u64 status = mem_err->error_status; |
| |
| p += sprintf(p, "status(0x%016llx): ", (long long)status); |
| switch ((status >> 8) & 0xff) { |
| case 1: |
| p += sprintf(p, "Error detected internal to the component "); |
| break; |
| case 16: |
| p += sprintf(p, "Error detected in the bus "); |
| break; |
| case 4: |
| p += sprintf(p, "Storage error in DRAM memory "); |
| break; |
| case 5: |
| p += sprintf(p, "Storage error in TLB "); |
| break; |
| case 6: |
| p += sprintf(p, "Storage error in cache "); |
| break; |
| case 7: |
| p += sprintf(p, "Error in one or more functional units "); |
| break; |
| case 8: |
| p += sprintf(p, "component failed self test "); |
| break; |
| case 9: |
| p += sprintf(p, "Overflow or undervalue of internal queue "); |
| break; |
| case 17: |
| p += sprintf(p, "Virtual address not found on IO-TLB or IO-PDIR "); |
| break; |
| case 18: |
| p += sprintf(p, "Improper access error "); |
| break; |
| case 19: |
| p += sprintf(p, "Access to a memory address which is not mapped to any component "); |
| break; |
| case 20: |
| p += sprintf(p, "Loss of Lockstep "); |
| break; |
| case 21: |
| p += sprintf(p, "Response not associated with a request "); |
| break; |
| case 22: |
| p += sprintf(p, "Bus parity error - must also set the A, C, or D Bits "); |
| break; |
| case 23: |
| p += sprintf(p, "Detection of a PATH_ERROR "); |
| break; |
| case 25: |
| p += sprintf(p, "Bus operation timeout "); |
| break; |
| case 26: |
| p += sprintf(p, "A read was issued to data that has been poisoned "); |
| break; |
| default: |
| p += sprintf(p, "reserved "); |
| break; |
| } |
| } |
| if (mem_err->validation_bits & CPER_MEM_VALID_REQUESTOR_ID) |
| p += sprintf(p, "requestorID: 0x%016llx ", |
| (long long)mem_err->requestor_id); |
| if (mem_err->validation_bits & CPER_MEM_VALID_RESPONDER_ID) |
| p += sprintf(p, "responderID: 0x%016llx ", |
| (long long)mem_err->responder_id); |
| if (mem_err->validation_bits & CPER_MEM_VALID_TARGET_ID) |
| p += sprintf(p, "targetID: 0x%016llx ", |
| (long long)mem_err->responder_id); |
| if (p > pvt->other_detail) |
| *(p - 1) = '\0'; |
| |
| edac_raw_mc_handle_error(e); |
| |
| unlock: |
| spin_unlock_irqrestore(&ghes_lock, flags); |
| } |
| |
| /* |
| * Known systems that are safe to enable this module. |
| */ |
| static struct acpi_platform_list plat_list[] = { |
| {"HPE ", "Server ", 0, ACPI_SIG_FADT, all_versions}, |
| { } /* End */ |
| }; |
| |
| int ghes_edac_register(struct ghes *ghes, struct device *dev) |
| { |
| bool fake = false; |
| struct mem_ctl_info *mci; |
| struct ghes_pvt *pvt; |
| struct edac_mc_layer layers[1]; |
| unsigned long flags; |
| int idx = -1; |
| int rc = 0; |
| |
| if (IS_ENABLED(CONFIG_X86)) { |
| /* Check if safe to enable on this system */ |
| idx = acpi_match_platform_list(plat_list); |
| if (!force_load && idx < 0) |
| return -ENODEV; |
| } else { |
| force_load = true; |
| idx = 0; |
| } |
| |
| /* finish another registration/unregistration instance first */ |
| mutex_lock(&ghes_reg_mutex); |
| |
| /* |
| * We have only one logical memory controller to which all DIMMs belong. |
| */ |
| if (refcount_inc_not_zero(&ghes_refcount)) |
| goto unlock; |
| |
| ghes_scan_system(); |
| |
| /* Check if we've got a bogus BIOS */ |
| if (!ghes_hw.num_dimms) { |
| fake = true; |
| ghes_hw.num_dimms = 1; |
| } |
| |
| layers[0].type = EDAC_MC_LAYER_ALL_MEM; |
| layers[0].size = ghes_hw.num_dimms; |
| layers[0].is_virt_csrow = true; |
| |
| mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(struct ghes_pvt)); |
| if (!mci) { |
| pr_info("Can't allocate memory for EDAC data\n"); |
| rc = -ENOMEM; |
| goto unlock; |
| } |
| |
| pvt = mci->pvt_info; |
| pvt->mci = mci; |
| |
| mci->pdev = dev; |
| mci->mtype_cap = MEM_FLAG_EMPTY; |
| mci->edac_ctl_cap = EDAC_FLAG_NONE; |
| mci->edac_cap = EDAC_FLAG_NONE; |
| mci->mod_name = "ghes_edac.c"; |
| mci->ctl_name = "ghes_edac"; |
| mci->dev_name = "ghes"; |
| |
| if (fake) { |
| pr_info("This system has a very crappy BIOS: It doesn't even list the DIMMS.\n"); |
| pr_info("Its SMBIOS info is wrong. It is doubtful that the error report would\n"); |
| pr_info("work on such system. Use this driver with caution\n"); |
| } else if (idx < 0) { |
| pr_info("This EDAC driver relies on BIOS to enumerate memory and get error reports.\n"); |
| pr_info("Unfortunately, not all BIOSes reflect the memory layout correctly.\n"); |
| pr_info("So, the end result of using this driver varies from vendor to vendor.\n"); |
| pr_info("If you find incorrect reports, please contact your hardware vendor\n"); |
| pr_info("to correct its BIOS.\n"); |
| pr_info("This system has %d DIMM sockets.\n", ghes_hw.num_dimms); |
| } |
| |
| if (!fake) { |
| struct dimm_info *src, *dst; |
| int i = 0; |
| |
| mci_for_each_dimm(mci, dst) { |
| src = &ghes_hw.dimms[i]; |
| |
| dst->idx = src->idx; |
| dst->smbios_handle = src->smbios_handle; |
| dst->nr_pages = src->nr_pages; |
| dst->mtype = src->mtype; |
| dst->edac_mode = src->edac_mode; |
| dst->dtype = src->dtype; |
| dst->grain = src->grain; |
| |
| /* |
| * If no src->label, preserve default label assigned |
| * from EDAC core. |
| */ |
| if (strlen(src->label)) |
| memcpy(dst->label, src->label, sizeof(src->label)); |
| |
| i++; |
| } |
| |
| } else { |
| struct dimm_info *dimm = edac_get_dimm(mci, 0, 0, 0); |
| |
| dimm->nr_pages = 1; |
| dimm->grain = 128; |
| dimm->mtype = MEM_UNKNOWN; |
| dimm->dtype = DEV_UNKNOWN; |
| dimm->edac_mode = EDAC_SECDED; |
| } |
| |
| rc = edac_mc_add_mc(mci); |
| if (rc < 0) { |
| pr_info("Can't register with the EDAC core\n"); |
| edac_mc_free(mci); |
| rc = -ENODEV; |
| goto unlock; |
| } |
| |
| spin_lock_irqsave(&ghes_lock, flags); |
| ghes_pvt = pvt; |
| spin_unlock_irqrestore(&ghes_lock, flags); |
| |
| /* only set on success */ |
| refcount_set(&ghes_refcount, 1); |
| |
| unlock: |
| |
| /* Not needed anymore */ |
| kfree(ghes_hw.dimms); |
| ghes_hw.dimms = NULL; |
| |
| mutex_unlock(&ghes_reg_mutex); |
| |
| return rc; |
| } |
| |
| void ghes_edac_unregister(struct ghes *ghes) |
| { |
| struct mem_ctl_info *mci; |
| unsigned long flags; |
| |
| if (!force_load) |
| return; |
| |
| mutex_lock(&ghes_reg_mutex); |
| |
| system_scanned = false; |
| memset(&ghes_hw, 0, sizeof(struct ghes_hw_desc)); |
| |
| if (!refcount_dec_and_test(&ghes_refcount)) |
| goto unlock; |
| |
| /* |
| * Wait for the irq handler being finished. |
| */ |
| spin_lock_irqsave(&ghes_lock, flags); |
| mci = ghes_pvt ? ghes_pvt->mci : NULL; |
| ghes_pvt = NULL; |
| spin_unlock_irqrestore(&ghes_lock, flags); |
| |
| if (!mci) |
| goto unlock; |
| |
| mci = edac_mc_del_mc(mci->pdev); |
| if (mci) |
| edac_mc_free(mci); |
| |
| unlock: |
| mutex_unlock(&ghes_reg_mutex); |
| } |