| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * hfcmulti.c low level driver for hfc-4s/hfc-8s/hfc-e1 based cards |
| * |
| * Author Andreas Eversberg (jolly@eversberg.eu) |
| * ported to mqueue mechanism: |
| * Peter Sprenger (sprengermoving-bytes.de) |
| * |
| * inspired by existing hfc-pci driver: |
| * Copyright 1999 by Werner Cornelius (werner@isdn-development.de) |
| * Copyright 2008 by Karsten Keil (kkeil@suse.de) |
| * Copyright 2008 by Andreas Eversberg (jolly@eversberg.eu) |
| * |
| * Thanks to Cologne Chip AG for this great controller! |
| */ |
| |
| /* |
| * module parameters: |
| * type: |
| * By default (0), the card is automatically detected. |
| * Or use the following combinations: |
| * Bit 0-7 = 0x00001 = HFC-E1 (1 port) |
| * or Bit 0-7 = 0x00004 = HFC-4S (4 ports) |
| * or Bit 0-7 = 0x00008 = HFC-8S (8 ports) |
| * Bit 8 = 0x00100 = uLaw (instead of aLaw) |
| * Bit 9 = 0x00200 = Disable DTMF detect on all B-channels via hardware |
| * Bit 10 = spare |
| * Bit 11 = 0x00800 = Force PCM bus into slave mode. (otherwhise auto) |
| * or Bit 12 = 0x01000 = Force PCM bus into master mode. (otherwhise auto) |
| * Bit 13 = spare |
| * Bit 14 = 0x04000 = Use external ram (128K) |
| * Bit 15 = 0x08000 = Use external ram (512K) |
| * Bit 16 = 0x10000 = Use 64 timeslots instead of 32 |
| * or Bit 17 = 0x20000 = Use 128 timeslots instead of anything else |
| * Bit 18 = spare |
| * Bit 19 = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog) |
| * (all other bits are reserved and shall be 0) |
| * example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM |
| * bus (PCM master) |
| * |
| * port: (optional or required for all ports on all installed cards) |
| * HFC-4S/HFC-8S only bits: |
| * Bit 0 = 0x001 = Use master clock for this S/T interface |
| * (ony once per chip). |
| * Bit 1 = 0x002 = transmitter line setup (non capacitive mode) |
| * Don't use this unless you know what you are doing! |
| * Bit 2 = 0x004 = Disable E-channel. (No E-channel processing) |
| * example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock |
| * received from port 1 |
| * |
| * HFC-E1 only bits: |
| * Bit 0 = 0x0001 = interface: 0=copper, 1=optical |
| * Bit 1 = 0x0002 = reserved (later for 32 B-channels transparent mode) |
| * Bit 2 = 0x0004 = Report LOS |
| * Bit 3 = 0x0008 = Report AIS |
| * Bit 4 = 0x0010 = Report SLIP |
| * Bit 5 = 0x0020 = Report RDI |
| * Bit 8 = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame |
| * mode instead. |
| * Bit 9 = 0x0200 = Force get clock from interface, even in NT mode. |
| * or Bit 10 = 0x0400 = Force put clock to interface, even in TE mode. |
| * Bit 11 = 0x0800 = Use direct RX clock for PCM sync rather than PLL. |
| * (E1 only) |
| * Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0 |
| * for default. |
| * (all other bits are reserved and shall be 0) |
| * |
| * debug: |
| * NOTE: only one debug value must be given for all cards |
| * enable debugging (see hfc_multi.h for debug options) |
| * |
| * poll: |
| * NOTE: only one poll value must be given for all cards |
| * Give the number of samples for each fifo process. |
| * By default 128 is used. Decrease to reduce delay, increase to |
| * reduce cpu load. If unsure, don't mess with it! |
| * Valid is 8, 16, 32, 64, 128, 256. |
| * |
| * pcm: |
| * NOTE: only one pcm value must be given for every card. |
| * The PCM bus id tells the mISDNdsp module about the connected PCM bus. |
| * By default (0), the PCM bus id is 100 for the card that is PCM master. |
| * If multiple cards are PCM master (because they are not interconnected), |
| * each card with PCM master will have increasing PCM id. |
| * All PCM busses with the same ID are expected to be connected and have |
| * common time slots slots. |
| * Only one chip of the PCM bus must be master, the others slave. |
| * -1 means no support of PCM bus not even. |
| * Omit this value, if all cards are interconnected or none is connected. |
| * If unsure, don't give this parameter. |
| * |
| * dmask and bmask: |
| * NOTE: One dmask value must be given for every HFC-E1 card. |
| * If omitted, the E1 card has D-channel on time slot 16, which is default. |
| * dmask is a 32 bit mask. The bit must be set for an alternate time slot. |
| * If multiple bits are set, multiple virtual card fragments are created. |
| * For each bit set, a bmask value must be given. Each bit on the bmask |
| * value stands for a B-channel. The bmask may not overlap with dmask or |
| * with other bmask values for that card. |
| * Example: dmask=0x00020002 bmask=0x0000fffc,0xfffc0000 |
| * This will create one fragment with D-channel on slot 1 with |
| * B-channels on slots 2..15, and a second fragment with D-channel |
| * on slot 17 with B-channels on slot 18..31. Slot 16 is unused. |
| * If bit 0 is set (dmask=0x00000001) the D-channel is on slot 0 and will |
| * not function. |
| * Example: dmask=0x00000001 bmask=0xfffffffe |
| * This will create a port with all 31 usable timeslots as |
| * B-channels. |
| * If no bits are set on bmask, no B-channel is created for that fragment. |
| * Example: dmask=0xfffffffe bmask=0,0,0,0.... (31 0-values for bmask) |
| * This will create 31 ports with one D-channel only. |
| * If you don't know how to use it, you don't need it! |
| * |
| * iomode: |
| * NOTE: only one mode value must be given for every card. |
| * -> See hfc_multi.h for HFC_IO_MODE_* values |
| * By default, the IO mode is pci memory IO (MEMIO). |
| * Some cards require specific IO mode, so it cannot be changed. |
| * It may be useful to set IO mode to register io (REGIO) to solve |
| * PCI bridge problems. |
| * If unsure, don't give this parameter. |
| * |
| * clockdelay_nt: |
| * NOTE: only one clockdelay_nt value must be given once for all cards. |
| * Give the value of the clock control register (A_ST_CLK_DLY) |
| * of the S/T interfaces in NT mode. |
| * This register is needed for the TBR3 certification, so don't change it. |
| * |
| * clockdelay_te: |
| * NOTE: only one clockdelay_te value must be given once |
| * Give the value of the clock control register (A_ST_CLK_DLY) |
| * of the S/T interfaces in TE mode. |
| * This register is needed for the TBR3 certification, so don't change it. |
| * |
| * clock: |
| * NOTE: only one clock value must be given once |
| * Selects interface with clock source for mISDN and applications. |
| * Set to card number starting with 1. Set to -1 to disable. |
| * By default, the first card is used as clock source. |
| * |
| * hwid: |
| * NOTE: only one hwid value must be given once |
| * Enable special embedded devices with XHFC controllers. |
| */ |
| |
| /* |
| * debug register access (never use this, it will flood your system log) |
| * #define HFC_REGISTER_DEBUG |
| */ |
| |
| #define HFC_MULTI_VERSION "2.03" |
| |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/mISDNhw.h> |
| #include <linux/mISDNdsp.h> |
| |
| /* |
| #define IRQCOUNT_DEBUG |
| #define IRQ_DEBUG |
| */ |
| |
| #include "hfc_multi.h" |
| #ifdef ECHOPREP |
| #include "gaintab.h" |
| #endif |
| |
| #define MAX_CARDS 8 |
| #define MAX_PORTS (8 * MAX_CARDS) |
| #define MAX_FRAGS (32 * MAX_CARDS) |
| |
| static LIST_HEAD(HFClist); |
| static DEFINE_SPINLOCK(HFClock); /* global hfc list lock */ |
| |
| static void ph_state_change(struct dchannel *); |
| |
| static struct hfc_multi *syncmaster; |
| static int plxsd_master; /* if we have a master card (yet) */ |
| static DEFINE_SPINLOCK(plx_lock); /* may not acquire other lock inside */ |
| |
| #define TYP_E1 1 |
| #define TYP_4S 4 |
| #define TYP_8S 8 |
| |
| static int poll_timer = 6; /* default = 128 samples = 16ms */ |
| /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */ |
| static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 }; |
| #define CLKDEL_TE 0x0f /* CLKDEL in TE mode */ |
| #define CLKDEL_NT 0x6c /* CLKDEL in NT mode |
| (0x60 MUST be included!) */ |
| |
| #define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */ |
| #define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */ |
| #define DIP_E1 0x3 /* DIP Switches for Beronet E1 cards */ |
| |
| /* |
| * module stuff |
| */ |
| |
| static uint type[MAX_CARDS]; |
| static int pcm[MAX_CARDS]; |
| static uint dmask[MAX_CARDS]; |
| static uint bmask[MAX_FRAGS]; |
| static uint iomode[MAX_CARDS]; |
| static uint port[MAX_PORTS]; |
| static uint debug; |
| static uint poll; |
| static int clock; |
| static uint timer; |
| static uint clockdelay_te = CLKDEL_TE; |
| static uint clockdelay_nt = CLKDEL_NT; |
| #define HWID_NONE 0 |
| #define HWID_MINIP4 1 |
| #define HWID_MINIP8 2 |
| #define HWID_MINIP16 3 |
| static uint hwid = HWID_NONE; |
| |
| static int HFC_cnt, E1_cnt, bmask_cnt, Port_cnt, PCM_cnt = 99; |
| |
| MODULE_AUTHOR("Andreas Eversberg"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(HFC_MULTI_VERSION); |
| module_param(debug, uint, S_IRUGO | S_IWUSR); |
| module_param(poll, uint, S_IRUGO | S_IWUSR); |
| module_param(clock, int, S_IRUGO | S_IWUSR); |
| module_param(timer, uint, S_IRUGO | S_IWUSR); |
| module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR); |
| module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR); |
| module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR); |
| module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR); |
| module_param_array(dmask, uint, NULL, S_IRUGO | S_IWUSR); |
| module_param_array(bmask, uint, NULL, S_IRUGO | S_IWUSR); |
| module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR); |
| module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR); |
| module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */ |
| |
| #ifdef HFC_REGISTER_DEBUG |
| #define HFC_outb(hc, reg, val) \ |
| (hc->HFC_outb(hc, reg, val, __func__, __LINE__)) |
| #define HFC_outb_nodebug(hc, reg, val) \ |
| (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__)) |
| #define HFC_inb(hc, reg) \ |
| (hc->HFC_inb(hc, reg, __func__, __LINE__)) |
| #define HFC_inb_nodebug(hc, reg) \ |
| (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__)) |
| #define HFC_inw(hc, reg) \ |
| (hc->HFC_inw(hc, reg, __func__, __LINE__)) |
| #define HFC_inw_nodebug(hc, reg) \ |
| (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__)) |
| #define HFC_wait(hc) \ |
| (hc->HFC_wait(hc, __func__, __LINE__)) |
| #define HFC_wait_nodebug(hc) \ |
| (hc->HFC_wait_nodebug(hc, __func__, __LINE__)) |
| #else |
| #define HFC_outb(hc, reg, val) (hc->HFC_outb(hc, reg, val)) |
| #define HFC_outb_nodebug(hc, reg, val) (hc->HFC_outb_nodebug(hc, reg, val)) |
| #define HFC_inb(hc, reg) (hc->HFC_inb(hc, reg)) |
| #define HFC_inb_nodebug(hc, reg) (hc->HFC_inb_nodebug(hc, reg)) |
| #define HFC_inw(hc, reg) (hc->HFC_inw(hc, reg)) |
| #define HFC_inw_nodebug(hc, reg) (hc->HFC_inw_nodebug(hc, reg)) |
| #define HFC_wait(hc) (hc->HFC_wait(hc)) |
| #define HFC_wait_nodebug(hc) (hc->HFC_wait_nodebug(hc)) |
| #endif |
| |
| #ifdef CONFIG_MISDN_HFCMULTI_8xx |
| #include "hfc_multi_8xx.h" |
| #endif |
| |
| /* HFC_IO_MODE_PCIMEM */ |
| static void |
| #ifdef HFC_REGISTER_DEBUG |
| HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val, |
| const char *function, int line) |
| #else |
| HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val) |
| #endif |
| { |
| writeb(val, hc->pci_membase + reg); |
| } |
| static u_char |
| #ifdef HFC_REGISTER_DEBUG |
| HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line) |
| #else |
| HFC_inb_pcimem(struct hfc_multi *hc, u_char reg) |
| #endif |
| { |
| return readb(hc->pci_membase + reg); |
| } |
| static u_short |
| #ifdef HFC_REGISTER_DEBUG |
| HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line) |
| #else |
| HFC_inw_pcimem(struct hfc_multi *hc, u_char reg) |
| #endif |
| { |
| return readw(hc->pci_membase + reg); |
| } |
| static void |
| #ifdef HFC_REGISTER_DEBUG |
| HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line) |
| #else |
| HFC_wait_pcimem(struct hfc_multi *hc) |
| #endif |
| { |
| while (readb(hc->pci_membase + R_STATUS) & V_BUSY) |
| cpu_relax(); |
| } |
| |
| /* HFC_IO_MODE_REGIO */ |
| static void |
| #ifdef HFC_REGISTER_DEBUG |
| HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val, |
| const char *function, int line) |
| #else |
| HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val) |
| #endif |
| { |
| outb(reg, hc->pci_iobase + 4); |
| outb(val, hc->pci_iobase); |
| } |
| static u_char |
| #ifdef HFC_REGISTER_DEBUG |
| HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line) |
| #else |
| HFC_inb_regio(struct hfc_multi *hc, u_char reg) |
| #endif |
| { |
| outb(reg, hc->pci_iobase + 4); |
| return inb(hc->pci_iobase); |
| } |
| static u_short |
| #ifdef HFC_REGISTER_DEBUG |
| HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line) |
| #else |
| HFC_inw_regio(struct hfc_multi *hc, u_char reg) |
| #endif |
| { |
| outb(reg, hc->pci_iobase + 4); |
| return inw(hc->pci_iobase); |
| } |
| static void |
| #ifdef HFC_REGISTER_DEBUG |
| HFC_wait_regio(struct hfc_multi *hc, const char *function, int line) |
| #else |
| HFC_wait_regio(struct hfc_multi *hc) |
| #endif |
| { |
| outb(R_STATUS, hc->pci_iobase + 4); |
| while (inb(hc->pci_iobase) & V_BUSY) |
| cpu_relax(); |
| } |
| |
| #ifdef HFC_REGISTER_DEBUG |
| static void |
| HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val, |
| const char *function, int line) |
| { |
| char regname[256] = "", bits[9] = "xxxxxxxx"; |
| int i; |
| |
| i = -1; |
| while (hfc_register_names[++i].name) { |
| if (hfc_register_names[i].reg == reg) |
| strcat(regname, hfc_register_names[i].name); |
| } |
| if (regname[0] == '\0') |
| strcpy(regname, "register"); |
| |
| bits[7] = '0' + (!!(val & 1)); |
| bits[6] = '0' + (!!(val & 2)); |
| bits[5] = '0' + (!!(val & 4)); |
| bits[4] = '0' + (!!(val & 8)); |
| bits[3] = '0' + (!!(val & 16)); |
| bits[2] = '0' + (!!(val & 32)); |
| bits[1] = '0' + (!!(val & 64)); |
| bits[0] = '0' + (!!(val & 128)); |
| printk(KERN_DEBUG |
| "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n", |
| hc->id, reg, regname, val, bits, function, line); |
| HFC_outb_nodebug(hc, reg, val); |
| } |
| static u_char |
| HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line) |
| { |
| char regname[256] = "", bits[9] = "xxxxxxxx"; |
| u_char val = HFC_inb_nodebug(hc, reg); |
| int i; |
| |
| i = 0; |
| while (hfc_register_names[i++].name) |
| ; |
| while (hfc_register_names[++i].name) { |
| if (hfc_register_names[i].reg == reg) |
| strcat(regname, hfc_register_names[i].name); |
| } |
| if (regname[0] == '\0') |
| strcpy(regname, "register"); |
| |
| bits[7] = '0' + (!!(val & 1)); |
| bits[6] = '0' + (!!(val & 2)); |
| bits[5] = '0' + (!!(val & 4)); |
| bits[4] = '0' + (!!(val & 8)); |
| bits[3] = '0' + (!!(val & 16)); |
| bits[2] = '0' + (!!(val & 32)); |
| bits[1] = '0' + (!!(val & 64)); |
| bits[0] = '0' + (!!(val & 128)); |
| printk(KERN_DEBUG |
| "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n", |
| hc->id, reg, regname, val, bits, function, line); |
| return val; |
| } |
| static u_short |
| HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line) |
| { |
| char regname[256] = ""; |
| u_short val = HFC_inw_nodebug(hc, reg); |
| int i; |
| |
| i = 0; |
| while (hfc_register_names[i++].name) |
| ; |
| while (hfc_register_names[++i].name) { |
| if (hfc_register_names[i].reg == reg) |
| strcat(regname, hfc_register_names[i].name); |
| } |
| if (regname[0] == '\0') |
| strcpy(regname, "register"); |
| |
| printk(KERN_DEBUG |
| "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n", |
| hc->id, reg, regname, val, function, line); |
| return val; |
| } |
| static void |
| HFC_wait_debug(struct hfc_multi *hc, const char *function, int line) |
| { |
| printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n", |
| hc->id, function, line); |
| HFC_wait_nodebug(hc); |
| } |
| #endif |
| |
| /* write fifo data (REGIO) */ |
| static void |
| write_fifo_regio(struct hfc_multi *hc, u_char *data, int len) |
| { |
| outb(A_FIFO_DATA0, (hc->pci_iobase) + 4); |
| while (len >> 2) { |
| outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase); |
| data += 4; |
| len -= 4; |
| } |
| while (len >> 1) { |
| outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase); |
| data += 2; |
| len -= 2; |
| } |
| while (len) { |
| outb(*data, hc->pci_iobase); |
| data++; |
| len--; |
| } |
| } |
| /* write fifo data (PCIMEM) */ |
| static void |
| write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len) |
| { |
| while (len >> 2) { |
| writel(cpu_to_le32(*(u32 *)data), |
| hc->pci_membase + A_FIFO_DATA0); |
| data += 4; |
| len -= 4; |
| } |
| while (len >> 1) { |
| writew(cpu_to_le16(*(u16 *)data), |
| hc->pci_membase + A_FIFO_DATA0); |
| data += 2; |
| len -= 2; |
| } |
| while (len) { |
| writeb(*data, hc->pci_membase + A_FIFO_DATA0); |
| data++; |
| len--; |
| } |
| } |
| |
| /* read fifo data (REGIO) */ |
| static void |
| read_fifo_regio(struct hfc_multi *hc, u_char *data, int len) |
| { |
| outb(A_FIFO_DATA0, (hc->pci_iobase) + 4); |
| while (len >> 2) { |
| *(u32 *)data = le32_to_cpu(inl(hc->pci_iobase)); |
| data += 4; |
| len -= 4; |
| } |
| while (len >> 1) { |
| *(u16 *)data = le16_to_cpu(inw(hc->pci_iobase)); |
| data += 2; |
| len -= 2; |
| } |
| while (len) { |
| *data = inb(hc->pci_iobase); |
| data++; |
| len--; |
| } |
| } |
| |
| /* read fifo data (PCIMEM) */ |
| static void |
| read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len) |
| { |
| while (len >> 2) { |
| *(u32 *)data = |
| le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0)); |
| data += 4; |
| len -= 4; |
| } |
| while (len >> 1) { |
| *(u16 *)data = |
| le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0)); |
| data += 2; |
| len -= 2; |
| } |
| while (len) { |
| *data = readb(hc->pci_membase + A_FIFO_DATA0); |
| data++; |
| len--; |
| } |
| } |
| |
| static void |
| enable_hwirq(struct hfc_multi *hc) |
| { |
| hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN; |
| HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl); |
| } |
| |
| static void |
| disable_hwirq(struct hfc_multi *hc) |
| { |
| hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN); |
| HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl); |
| } |
| |
| #define NUM_EC 2 |
| #define MAX_TDM_CHAN 32 |
| |
| |
| static inline void |
| enablepcibridge(struct hfc_multi *c) |
| { |
| HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */ |
| } |
| |
| static inline void |
| disablepcibridge(struct hfc_multi *c) |
| { |
| HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */ |
| } |
| |
| static inline unsigned char |
| readpcibridge(struct hfc_multi *hc, unsigned char address) |
| { |
| unsigned short cipv; |
| unsigned char data; |
| |
| if (!hc->pci_iobase) |
| return 0; |
| |
| /* slow down a PCI read access by 1 PCI clock cycle */ |
| HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/ |
| |
| if (address == 0) |
| cipv = 0x4000; |
| else |
| cipv = 0x5800; |
| |
| /* select local bridge port address by writing to CIP port */ |
| /* data = HFC_inb(c, cipv); * was _io before */ |
| outw(cipv, hc->pci_iobase + 4); |
| data = inb(hc->pci_iobase); |
| |
| /* restore R_CTRL for normal PCI read cycle speed */ |
| HFC_outb(hc, R_CTRL, 0x0); /* was _io before */ |
| |
| return data; |
| } |
| |
| static inline void |
| writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data) |
| { |
| unsigned short cipv; |
| unsigned int datav; |
| |
| if (!hc->pci_iobase) |
| return; |
| |
| if (address == 0) |
| cipv = 0x4000; |
| else |
| cipv = 0x5800; |
| |
| /* select local bridge port address by writing to CIP port */ |
| outw(cipv, hc->pci_iobase + 4); |
| /* define a 32 bit dword with 4 identical bytes for write sequence */ |
| datav = data | ((__u32) data << 8) | ((__u32) data << 16) | |
| ((__u32) data << 24); |
| |
| /* |
| * write this 32 bit dword to the bridge data port |
| * this will initiate a write sequence of up to 4 writes to the same |
| * address on the local bus interface the number of write accesses |
| * is undefined but >=1 and depends on the next PCI transaction |
| * during write sequence on the local bus |
| */ |
| outl(datav, hc->pci_iobase); |
| } |
| |
| static inline void |
| cpld_set_reg(struct hfc_multi *hc, unsigned char reg) |
| { |
| /* Do data pin read low byte */ |
| HFC_outb(hc, R_GPIO_OUT1, reg); |
| } |
| |
| static inline void |
| cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val) |
| { |
| cpld_set_reg(hc, reg); |
| |
| enablepcibridge(hc); |
| writepcibridge(hc, 1, val); |
| disablepcibridge(hc); |
| |
| return; |
| } |
| |
| static inline unsigned char |
| cpld_read_reg(struct hfc_multi *hc, unsigned char reg) |
| { |
| unsigned char bytein; |
| |
| cpld_set_reg(hc, reg); |
| |
| /* Do data pin read low byte */ |
| HFC_outb(hc, R_GPIO_OUT1, reg); |
| |
| enablepcibridge(hc); |
| bytein = readpcibridge(hc, 1); |
| disablepcibridge(hc); |
| |
| return bytein; |
| } |
| |
| static inline void |
| vpm_write_address(struct hfc_multi *hc, unsigned short addr) |
| { |
| cpld_write_reg(hc, 0, 0xff & addr); |
| cpld_write_reg(hc, 1, 0x01 & (addr >> 8)); |
| } |
| |
| static inline unsigned short |
| vpm_read_address(struct hfc_multi *c) |
| { |
| unsigned short addr; |
| unsigned short highbit; |
| |
| addr = cpld_read_reg(c, 0); |
| highbit = cpld_read_reg(c, 1); |
| |
| addr = addr | (highbit << 8); |
| |
| return addr & 0x1ff; |
| } |
| |
| static inline unsigned char |
| vpm_in(struct hfc_multi *c, int which, unsigned short addr) |
| { |
| unsigned char res; |
| |
| vpm_write_address(c, addr); |
| |
| if (!which) |
| cpld_set_reg(c, 2); |
| else |
| cpld_set_reg(c, 3); |
| |
| enablepcibridge(c); |
| res = readpcibridge(c, 1); |
| disablepcibridge(c); |
| |
| cpld_set_reg(c, 0); |
| |
| return res; |
| } |
| |
| static inline void |
| vpm_out(struct hfc_multi *c, int which, unsigned short addr, |
| unsigned char data) |
| { |
| vpm_write_address(c, addr); |
| |
| enablepcibridge(c); |
| |
| if (!which) |
| cpld_set_reg(c, 2); |
| else |
| cpld_set_reg(c, 3); |
| |
| writepcibridge(c, 1, data); |
| |
| cpld_set_reg(c, 0); |
| |
| disablepcibridge(c); |
| |
| { |
| unsigned char regin; |
| regin = vpm_in(c, which, addr); |
| if (regin != data) |
| printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back " |
| "0x%x\n", data, addr, regin); |
| } |
| |
| } |
| |
| |
| static void |
| vpm_init(struct hfc_multi *wc) |
| { |
| unsigned char reg; |
| unsigned int mask; |
| unsigned int i, x, y; |
| unsigned int ver; |
| |
| for (x = 0; x < NUM_EC; x++) { |
| /* Setup GPIO's */ |
| if (!x) { |
| ver = vpm_in(wc, x, 0x1a0); |
| printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver); |
| } |
| |
| for (y = 0; y < 4; y++) { |
| vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */ |
| vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */ |
| vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */ |
| } |
| |
| /* Setup TDM path - sets fsync and tdm_clk as inputs */ |
| reg = vpm_in(wc, x, 0x1a3); /* misc_con */ |
| vpm_out(wc, x, 0x1a3, reg & ~2); |
| |
| /* Setup Echo length (256 taps) */ |
| vpm_out(wc, x, 0x022, 1); |
| vpm_out(wc, x, 0x023, 0xff); |
| |
| /* Setup timeslots */ |
| vpm_out(wc, x, 0x02f, 0x00); |
| mask = 0x02020202 << (x * 4); |
| |
| /* Setup the tdm channel masks for all chips */ |
| for (i = 0; i < 4; i++) |
| vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff); |
| |
| /* Setup convergence rate */ |
| printk(KERN_DEBUG "VPM: A-law mode\n"); |
| reg = 0x00 | 0x10 | 0x01; |
| vpm_out(wc, x, 0x20, reg); |
| printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg); |
| /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */ |
| |
| vpm_out(wc, x, 0x24, 0x02); |
| reg = vpm_in(wc, x, 0x24); |
| printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg); |
| |
| /* Initialize echo cans */ |
| for (i = 0; i < MAX_TDM_CHAN; i++) { |
| if (mask & (0x00000001 << i)) |
| vpm_out(wc, x, i, 0x00); |
| } |
| |
| /* |
| * ARM arch at least disallows a udelay of |
| * more than 2ms... it gives a fake "__bad_udelay" |
| * reference at link-time. |
| * long delays in kernel code are pretty sucky anyway |
| * for now work around it using 5 x 2ms instead of 1 x 10ms |
| */ |
| |
| udelay(2000); |
| udelay(2000); |
| udelay(2000); |
| udelay(2000); |
| udelay(2000); |
| |
| /* Put in bypass mode */ |
| for (i = 0; i < MAX_TDM_CHAN; i++) { |
| if (mask & (0x00000001 << i)) |
| vpm_out(wc, x, i, 0x01); |
| } |
| |
| /* Enable bypass */ |
| for (i = 0; i < MAX_TDM_CHAN; i++) { |
| if (mask & (0x00000001 << i)) |
| vpm_out(wc, x, 0x78 + i, 0x01); |
| } |
| |
| } |
| } |
| |
| #ifdef UNUSED |
| static void |
| vpm_check(struct hfc_multi *hctmp) |
| { |
| unsigned char gpi2; |
| |
| gpi2 = HFC_inb(hctmp, R_GPI_IN2); |
| |
| if ((gpi2 & 0x3) != 0x3) |
| printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2); |
| } |
| #endif /* UNUSED */ |
| |
| |
| /* |
| * Interface to enable/disable the HW Echocan |
| * |
| * these functions are called within a spin_lock_irqsave on |
| * the channel instance lock, so we are not disturbed by irqs |
| * |
| * we can later easily change the interface to make other |
| * things configurable, for now we configure the taps |
| * |
| */ |
| |
| static void |
| vpm_echocan_on(struct hfc_multi *hc, int ch, int taps) |
| { |
| unsigned int timeslot; |
| unsigned int unit; |
| struct bchannel *bch = hc->chan[ch].bch; |
| #ifdef TXADJ |
| int txadj = -4; |
| struct sk_buff *skb; |
| #endif |
| if (hc->chan[ch].protocol != ISDN_P_B_RAW) |
| return; |
| |
| if (!bch) |
| return; |
| |
| #ifdef TXADJ |
| skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX, |
| sizeof(int), &txadj, GFP_ATOMIC); |
| if (skb) |
| recv_Bchannel_skb(bch, skb); |
| #endif |
| |
| timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1; |
| unit = ch % 4; |
| |
| printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n", |
| taps, timeslot); |
| |
| vpm_out(hc, unit, timeslot, 0x7e); |
| } |
| |
| static void |
| vpm_echocan_off(struct hfc_multi *hc, int ch) |
| { |
| unsigned int timeslot; |
| unsigned int unit; |
| struct bchannel *bch = hc->chan[ch].bch; |
| #ifdef TXADJ |
| int txadj = 0; |
| struct sk_buff *skb; |
| #endif |
| |
| if (hc->chan[ch].protocol != ISDN_P_B_RAW) |
| return; |
| |
| if (!bch) |
| return; |
| |
| #ifdef TXADJ |
| skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX, |
| sizeof(int), &txadj, GFP_ATOMIC); |
| if (skb) |
| recv_Bchannel_skb(bch, skb); |
| #endif |
| |
| timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1; |
| unit = ch % 4; |
| |
| printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n", |
| timeslot); |
| /* FILLME */ |
| vpm_out(hc, unit, timeslot, 0x01); |
| } |
| |
| |
| /* |
| * Speech Design resync feature |
| * NOTE: This is called sometimes outside interrupt handler. |
| * We must lock irqsave, so no other interrupt (other card) will occur! |
| * Also multiple interrupts may nest, so must lock each access (lists, card)! |
| */ |
| static inline void |
| hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm) |
| { |
| struct hfc_multi *hc, *next, *pcmmaster = NULL; |
| void __iomem *plx_acc_32; |
| u_int pv; |
| u_long flags; |
| |
| spin_lock_irqsave(&HFClock, flags); |
| spin_lock(&plx_lock); /* must be locked inside other locks */ |
| |
| if (debug & DEBUG_HFCMULTI_PLXSD) |
| printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n", |
| __func__, syncmaster); |
| |
| /* select new master */ |
| if (newmaster) { |
| if (debug & DEBUG_HFCMULTI_PLXSD) |
| printk(KERN_DEBUG "using provided controller\n"); |
| } else { |
| list_for_each_entry_safe(hc, next, &HFClist, list) { |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { |
| if (hc->syncronized) { |
| newmaster = hc; |
| break; |
| } |
| } |
| } |
| } |
| |
| /* Disable sync of all cards */ |
| list_for_each_entry_safe(hc, next, &HFClist, list) { |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { |
| plx_acc_32 = hc->plx_membase + PLX_GPIOC; |
| pv = readl(plx_acc_32); |
| pv &= ~PLX_SYNC_O_EN; |
| writel(pv, plx_acc_32); |
| if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) { |
| pcmmaster = hc; |
| if (hc->ctype == HFC_TYPE_E1) { |
| if (debug & DEBUG_HFCMULTI_PLXSD) |
| printk(KERN_DEBUG |
| "Schedule SYNC_I\n"); |
| hc->e1_resync |= 1; /* get SYNC_I */ |
| } |
| } |
| } |
| } |
| |
| if (newmaster) { |
| hc = newmaster; |
| if (debug & DEBUG_HFCMULTI_PLXSD) |
| printk(KERN_DEBUG "id=%d (0x%p) = syncronized with " |
| "interface.\n", hc->id, hc); |
| /* Enable new sync master */ |
| plx_acc_32 = hc->plx_membase + PLX_GPIOC; |
| pv = readl(plx_acc_32); |
| pv |= PLX_SYNC_O_EN; |
| writel(pv, plx_acc_32); |
| /* switch to jatt PLL, if not disabled by RX_SYNC */ |
| if (hc->ctype == HFC_TYPE_E1 |
| && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) { |
| if (debug & DEBUG_HFCMULTI_PLXSD) |
| printk(KERN_DEBUG "Schedule jatt PLL\n"); |
| hc->e1_resync |= 2; /* switch to jatt */ |
| } |
| } else { |
| if (pcmmaster) { |
| hc = pcmmaster; |
| if (debug & DEBUG_HFCMULTI_PLXSD) |
| printk(KERN_DEBUG |
| "id=%d (0x%p) = PCM master syncronized " |
| "with QUARTZ\n", hc->id, hc); |
| if (hc->ctype == HFC_TYPE_E1) { |
| /* Use the crystal clock for the PCM |
| master card */ |
| if (debug & DEBUG_HFCMULTI_PLXSD) |
| printk(KERN_DEBUG |
| "Schedule QUARTZ for HFC-E1\n"); |
| hc->e1_resync |= 4; /* switch quartz */ |
| } else { |
| if (debug & DEBUG_HFCMULTI_PLXSD) |
| printk(KERN_DEBUG |
| "QUARTZ is automatically " |
| "enabled by HFC-%dS\n", hc->ctype); |
| } |
| plx_acc_32 = hc->plx_membase + PLX_GPIOC; |
| pv = readl(plx_acc_32); |
| pv |= PLX_SYNC_O_EN; |
| writel(pv, plx_acc_32); |
| } else |
| if (!rm) |
| printk(KERN_ERR "%s no pcm master, this MUST " |
| "not happen!\n", __func__); |
| } |
| syncmaster = newmaster; |
| |
| spin_unlock(&plx_lock); |
| spin_unlock_irqrestore(&HFClock, flags); |
| } |
| |
| /* This must be called AND hc must be locked irqsave!!! */ |
| static inline void |
| plxsd_checksync(struct hfc_multi *hc, int rm) |
| { |
| if (hc->syncronized) { |
| if (syncmaster == NULL) { |
| if (debug & DEBUG_HFCMULTI_PLXSD) |
| printk(KERN_DEBUG "%s: GOT sync on card %d" |
| " (id=%d)\n", __func__, hc->id + 1, |
| hc->id); |
| hfcmulti_resync(hc, hc, rm); |
| } |
| } else { |
| if (syncmaster == hc) { |
| if (debug & DEBUG_HFCMULTI_PLXSD) |
| printk(KERN_DEBUG "%s: LOST sync on card %d" |
| " (id=%d)\n", __func__, hc->id + 1, |
| hc->id); |
| hfcmulti_resync(hc, NULL, rm); |
| } |
| } |
| } |
| |
| |
| /* |
| * free hardware resources used by driver |
| */ |
| static void |
| release_io_hfcmulti(struct hfc_multi *hc) |
| { |
| void __iomem *plx_acc_32; |
| u_int pv; |
| u_long plx_flags; |
| |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: entered\n", __func__); |
| |
| /* soft reset also masks all interrupts */ |
| hc->hw.r_cirm |= V_SRES; |
| HFC_outb(hc, R_CIRM, hc->hw.r_cirm); |
| udelay(1000); |
| hc->hw.r_cirm &= ~V_SRES; |
| HFC_outb(hc, R_CIRM, hc->hw.r_cirm); |
| udelay(1000); /* instead of 'wait' that may cause locking */ |
| |
| /* release Speech Design card, if PLX was initialized */ |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) { |
| if (debug & DEBUG_HFCMULTI_PLXSD) |
| printk(KERN_DEBUG "%s: release PLXSD card %d\n", |
| __func__, hc->id + 1); |
| spin_lock_irqsave(&plx_lock, plx_flags); |
| plx_acc_32 = hc->plx_membase + PLX_GPIOC; |
| writel(PLX_GPIOC_INIT, plx_acc_32); |
| pv = readl(plx_acc_32); |
| /* Termination off */ |
| pv &= ~PLX_TERM_ON; |
| /* Disconnect the PCM */ |
| pv |= PLX_SLAVE_EN_N; |
| pv &= ~PLX_MASTER_EN; |
| pv &= ~PLX_SYNC_O_EN; |
| /* Put the DSP in Reset */ |
| pv &= ~PLX_DSP_RES_N; |
| writel(pv, plx_acc_32); |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n", |
| __func__, pv); |
| spin_unlock_irqrestore(&plx_lock, plx_flags); |
| } |
| |
| /* disable memory mapped ports / io ports */ |
| test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */ |
| if (hc->pci_dev) |
| pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0); |
| if (hc->pci_membase) |
| iounmap(hc->pci_membase); |
| if (hc->plx_membase) |
| iounmap(hc->plx_membase); |
| if (hc->pci_iobase) |
| release_region(hc->pci_iobase, 8); |
| if (hc->xhfc_membase) |
| iounmap((void *)hc->xhfc_membase); |
| |
| if (hc->pci_dev) { |
| pci_disable_device(hc->pci_dev); |
| pci_set_drvdata(hc->pci_dev, NULL); |
| } |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: done\n", __func__); |
| } |
| |
| /* |
| * function called to reset the HFC chip. A complete software reset of chip |
| * and fifos is done. All configuration of the chip is done. |
| */ |
| |
| static int |
| init_chip(struct hfc_multi *hc) |
| { |
| u_long flags, val, val2 = 0, rev; |
| int i, err = 0; |
| u_char r_conf_en, rval; |
| void __iomem *plx_acc_32; |
| u_int pv; |
| u_long plx_flags, hfc_flags; |
| int plx_count; |
| struct hfc_multi *pos, *next, *plx_last_hc; |
| |
| spin_lock_irqsave(&hc->lock, flags); |
| /* reset all registers */ |
| memset(&hc->hw, 0, sizeof(struct hfcm_hw)); |
| |
| /* revision check */ |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: entered\n", __func__); |
| val = HFC_inb(hc, R_CHIP_ID); |
| if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe && |
| (val >> 1) != 0x31) { |
| printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val); |
| err = -EIO; |
| goto out; |
| } |
| rev = HFC_inb(hc, R_CHIP_RV); |
| printk(KERN_INFO |
| "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n", |
| val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ? |
| " (old FIFO handling)" : ""); |
| if (hc->ctype != HFC_TYPE_XHFC && rev == 0) { |
| test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip); |
| printk(KERN_WARNING |
| "HFC_multi: NOTE: Your chip is revision 0, " |
| "ask Cologne Chip for update. Newer chips " |
| "have a better FIFO handling. Old chips " |
| "still work but may have slightly lower " |
| "HDLC transmit performance.\n"); |
| } |
| if (rev > 1) { |
| printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't " |
| "consider chip revision = %ld. The chip / " |
| "bridge may not work.\n", rev); |
| } |
| |
| /* set s-ram size */ |
| hc->Flen = 0x10; |
| hc->Zmin = 0x80; |
| hc->Zlen = 384; |
| hc->DTMFbase = 0x1000; |
| if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: changing to 128K external RAM\n", |
| __func__); |
| hc->hw.r_ctrl |= V_EXT_RAM; |
| hc->hw.r_ram_sz = 1; |
| hc->Flen = 0x20; |
| hc->Zmin = 0xc0; |
| hc->Zlen = 1856; |
| hc->DTMFbase = 0x2000; |
| } |
| if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: changing to 512K external RAM\n", |
| __func__); |
| hc->hw.r_ctrl |= V_EXT_RAM; |
| hc->hw.r_ram_sz = 2; |
| hc->Flen = 0x20; |
| hc->Zmin = 0xc0; |
| hc->Zlen = 8000; |
| hc->DTMFbase = 0x2000; |
| } |
| if (hc->ctype == HFC_TYPE_XHFC) { |
| hc->Flen = 0x8; |
| hc->Zmin = 0x0; |
| hc->Zlen = 64; |
| hc->DTMFbase = 0x0; |
| } |
| hc->max_trans = poll << 1; |
| if (hc->max_trans > hc->Zlen) |
| hc->max_trans = hc->Zlen; |
| |
| /* Speech Design PLX bridge */ |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { |
| if (debug & DEBUG_HFCMULTI_PLXSD) |
| printk(KERN_DEBUG "%s: initializing PLXSD card %d\n", |
| __func__, hc->id + 1); |
| spin_lock_irqsave(&plx_lock, plx_flags); |
| plx_acc_32 = hc->plx_membase + PLX_GPIOC; |
| writel(PLX_GPIOC_INIT, plx_acc_32); |
| pv = readl(plx_acc_32); |
| /* The first and the last cards are terminating the PCM bus */ |
| pv |= PLX_TERM_ON; /* hc is currently the last */ |
| /* Disconnect the PCM */ |
| pv |= PLX_SLAVE_EN_N; |
| pv &= ~PLX_MASTER_EN; |
| pv &= ~PLX_SYNC_O_EN; |
| /* Put the DSP in Reset */ |
| pv &= ~PLX_DSP_RES_N; |
| writel(pv, plx_acc_32); |
| spin_unlock_irqrestore(&plx_lock, plx_flags); |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n", |
| __func__, pv); |
| /* |
| * If we are the 3rd PLXSD card or higher, we must turn |
| * termination of last PLXSD card off. |
| */ |
| spin_lock_irqsave(&HFClock, hfc_flags); |
| plx_count = 0; |
| plx_last_hc = NULL; |
| list_for_each_entry_safe(pos, next, &HFClist, list) { |
| if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) { |
| plx_count++; |
| if (pos != hc) |
| plx_last_hc = pos; |
| } |
| } |
| if (plx_count >= 3) { |
| if (debug & DEBUG_HFCMULTI_PLXSD) |
| printk(KERN_DEBUG "%s: card %d is between, so " |
| "we disable termination\n", |
| __func__, plx_last_hc->id + 1); |
| spin_lock_irqsave(&plx_lock, plx_flags); |
| plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC; |
| pv = readl(plx_acc_32); |
| pv &= ~PLX_TERM_ON; |
| writel(pv, plx_acc_32); |
| spin_unlock_irqrestore(&plx_lock, plx_flags); |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG |
| "%s: term off: PLX_GPIO=%x\n", |
| __func__, pv); |
| } |
| spin_unlock_irqrestore(&HFClock, hfc_flags); |
| hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */ |
| } |
| |
| if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) |
| hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */ |
| |
| /* we only want the real Z2 read-pointer for revision > 0 */ |
| if (!test_bit(HFC_CHIP_REVISION0, &hc->chip)) |
| hc->hw.r_ram_sz |= V_FZ_MD; |
| |
| /* select pcm mode */ |
| if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: setting PCM into slave mode\n", |
| __func__); |
| } else |
| if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: setting PCM into master mode\n", |
| __func__); |
| hc->hw.r_pcm_md0 |= V_PCM_MD; |
| } else { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: performing PCM auto detect\n", |
| __func__); |
| } |
| |
| /* soft reset */ |
| HFC_outb(hc, R_CTRL, hc->hw.r_ctrl); |
| if (hc->ctype == HFC_TYPE_XHFC) |
| HFC_outb(hc, 0x0C /* R_FIFO_THRES */, |
| 0x11 /* 16 Bytes TX/RX */); |
| else |
| HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz); |
| HFC_outb(hc, R_FIFO_MD, 0); |
| if (hc->ctype == HFC_TYPE_XHFC) |
| hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES; |
| else |
| hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES |
| | V_RLD_EPR; |
| HFC_outb(hc, R_CIRM, hc->hw.r_cirm); |
| udelay(100); |
| hc->hw.r_cirm = 0; |
| HFC_outb(hc, R_CIRM, hc->hw.r_cirm); |
| udelay(100); |
| if (hc->ctype != HFC_TYPE_XHFC) |
| HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz); |
| |
| /* Speech Design PLX bridge pcm and sync mode */ |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { |
| spin_lock_irqsave(&plx_lock, plx_flags); |
| plx_acc_32 = hc->plx_membase + PLX_GPIOC; |
| pv = readl(plx_acc_32); |
| /* Connect PCM */ |
| if (hc->hw.r_pcm_md0 & V_PCM_MD) { |
| pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N; |
| pv |= PLX_SYNC_O_EN; |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n", |
| __func__, pv); |
| } else { |
| pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N); |
| pv &= ~PLX_SYNC_O_EN; |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n", |
| __func__, pv); |
| } |
| writel(pv, plx_acc_32); |
| spin_unlock_irqrestore(&plx_lock, plx_flags); |
| } |
| |
| /* PCM setup */ |
| HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90); |
| if (hc->slots == 32) |
| HFC_outb(hc, R_PCM_MD1, 0x00); |
| if (hc->slots == 64) |
| HFC_outb(hc, R_PCM_MD1, 0x10); |
| if (hc->slots == 128) |
| HFC_outb(hc, R_PCM_MD1, 0x20); |
| HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0); |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) |
| HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */ |
| else if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) |
| HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */ |
| else |
| HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */ |
| HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00); |
| for (i = 0; i < 256; i++) { |
| HFC_outb_nodebug(hc, R_SLOT, i); |
| HFC_outb_nodebug(hc, A_SL_CFG, 0); |
| if (hc->ctype != HFC_TYPE_XHFC) |
| HFC_outb_nodebug(hc, A_CONF, 0); |
| hc->slot_owner[i] = -1; |
| } |
| |
| /* set clock speed */ |
| if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG |
| "%s: setting double clock\n", __func__); |
| HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK); |
| } |
| |
| if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) |
| HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */); |
| |
| /* B410P GPIO */ |
| if (test_bit(HFC_CHIP_B410P, &hc->chip)) { |
| printk(KERN_NOTICE "Setting GPIOs\n"); |
| HFC_outb(hc, R_GPIO_SEL, 0x30); |
| HFC_outb(hc, R_GPIO_EN1, 0x3); |
| udelay(1000); |
| printk(KERN_NOTICE "calling vpm_init\n"); |
| vpm_init(hc); |
| } |
| |
| /* check if R_F0_CNT counts (8 kHz frame count) */ |
| val = HFC_inb(hc, R_F0_CNTL); |
| val += HFC_inb(hc, R_F0_CNTH) << 8; |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG |
| "HFC_multi F0_CNT %ld after reset\n", val); |
| spin_unlock_irqrestore(&hc->lock, flags); |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| schedule_timeout((HZ / 100) ? : 1); /* Timeout minimum 10ms */ |
| spin_lock_irqsave(&hc->lock, flags); |
| val2 = HFC_inb(hc, R_F0_CNTL); |
| val2 += HFC_inb(hc, R_F0_CNTH) << 8; |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG |
| "HFC_multi F0_CNT %ld after 10 ms (1st try)\n", |
| val2); |
| if (val2 >= val + 8) { /* 1 ms */ |
| /* it counts, so we keep the pcm mode */ |
| if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) |
| printk(KERN_INFO "controller is PCM bus MASTER\n"); |
| else |
| if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) |
| printk(KERN_INFO "controller is PCM bus SLAVE\n"); |
| else { |
| test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip); |
| printk(KERN_INFO "controller is PCM bus SLAVE " |
| "(auto detected)\n"); |
| } |
| } else { |
| /* does not count */ |
| if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) { |
| controller_fail: |
| printk(KERN_ERR "HFC_multi ERROR, getting no 125us " |
| "pulse. Seems that controller fails.\n"); |
| err = -EIO; |
| goto out; |
| } |
| if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) { |
| printk(KERN_INFO "controller is PCM bus SLAVE " |
| "(ignoring missing PCM clock)\n"); |
| } else { |
| /* only one pcm master */ |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip) |
| && plxsd_master) { |
| printk(KERN_ERR "HFC_multi ERROR, no clock " |
| "on another Speech Design card found. " |
| "Please be sure to connect PCM cable.\n"); |
| err = -EIO; |
| goto out; |
| } |
| /* retry with master clock */ |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { |
| spin_lock_irqsave(&plx_lock, plx_flags); |
| plx_acc_32 = hc->plx_membase + PLX_GPIOC; |
| pv = readl(plx_acc_32); |
| pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N; |
| pv |= PLX_SYNC_O_EN; |
| writel(pv, plx_acc_32); |
| spin_unlock_irqrestore(&plx_lock, plx_flags); |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: master: " |
| "PLX_GPIO=%x\n", __func__, pv); |
| } |
| hc->hw.r_pcm_md0 |= V_PCM_MD; |
| HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00); |
| spin_unlock_irqrestore(&hc->lock, flags); |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| schedule_timeout((HZ / 100) ?: 1); /* Timeout min. 10ms */ |
| spin_lock_irqsave(&hc->lock, flags); |
| val2 = HFC_inb(hc, R_F0_CNTL); |
| val2 += HFC_inb(hc, R_F0_CNTH) << 8; |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "HFC_multi F0_CNT %ld after " |
| "10 ms (2nd try)\n", val2); |
| if (val2 >= val + 8) { /* 1 ms */ |
| test_and_set_bit(HFC_CHIP_PCM_MASTER, |
| &hc->chip); |
| printk(KERN_INFO "controller is PCM bus MASTER " |
| "(auto detected)\n"); |
| } else |
| goto controller_fail; |
| } |
| } |
| |
| /* Release the DSP Reset */ |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { |
| if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) |
| plxsd_master = 1; |
| spin_lock_irqsave(&plx_lock, plx_flags); |
| plx_acc_32 = hc->plx_membase + PLX_GPIOC; |
| pv = readl(plx_acc_32); |
| pv |= PLX_DSP_RES_N; |
| writel(pv, plx_acc_32); |
| spin_unlock_irqrestore(&plx_lock, plx_flags); |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n", |
| __func__, pv); |
| } |
| |
| /* pcm id */ |
| if (hc->pcm) |
| printk(KERN_INFO "controller has given PCM BUS ID %d\n", |
| hc->pcm); |
| else { |
| if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) |
| || test_bit(HFC_CHIP_PLXSD, &hc->chip)) { |
| PCM_cnt++; /* SD has proprietary bridging */ |
| } |
| hc->pcm = PCM_cnt; |
| printk(KERN_INFO "controller has PCM BUS ID %d " |
| "(auto selected)\n", hc->pcm); |
| } |
| |
| /* set up timer */ |
| HFC_outb(hc, R_TI_WD, poll_timer); |
| hc->hw.r_irqmsk_misc |= V_TI_IRQMSK; |
| |
| /* set E1 state machine IRQ */ |
| if (hc->ctype == HFC_TYPE_E1) |
| hc->hw.r_irqmsk_misc |= V_STA_IRQMSK; |
| |
| /* set DTMF detection */ |
| if (test_bit(HFC_CHIP_DTMF, &hc->chip)) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: enabling DTMF detection " |
| "for all B-channel\n", __func__); |
| hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP; |
| if (test_bit(HFC_CHIP_ULAW, &hc->chip)) |
| hc->hw.r_dtmf |= V_ULAW_SEL; |
| HFC_outb(hc, R_DTMF_N, 102 - 1); |
| hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK; |
| } |
| |
| /* conference engine */ |
| if (test_bit(HFC_CHIP_ULAW, &hc->chip)) |
| r_conf_en = V_CONF_EN | V_ULAW; |
| else |
| r_conf_en = V_CONF_EN; |
| if (hc->ctype != HFC_TYPE_XHFC) |
| HFC_outb(hc, R_CONF_EN, r_conf_en); |
| |
| /* setting leds */ |
| switch (hc->leds) { |
| case 1: /* HFC-E1 OEM */ |
| if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip)) |
| HFC_outb(hc, R_GPIO_SEL, 0x32); |
| else |
| HFC_outb(hc, R_GPIO_SEL, 0x30); |
| |
| HFC_outb(hc, R_GPIO_EN1, 0x0f); |
| HFC_outb(hc, R_GPIO_OUT1, 0x00); |
| |
| HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3); |
| break; |
| |
| case 2: /* HFC-4S OEM */ |
| case 3: |
| HFC_outb(hc, R_GPIO_SEL, 0xf0); |
| HFC_outb(hc, R_GPIO_EN1, 0xff); |
| HFC_outb(hc, R_GPIO_OUT1, 0x00); |
| break; |
| } |
| |
| if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) { |
| hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */ |
| HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync); |
| } |
| |
| /* set master clock */ |
| if (hc->masterclk >= 0) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: setting ST master clock " |
| "to port %d (0..%d)\n", |
| __func__, hc->masterclk, hc->ports - 1); |
| hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC); |
| HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync); |
| } |
| |
| |
| |
| /* setting misc irq */ |
| HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc); |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n", |
| hc->hw.r_irqmsk_misc); |
| |
| /* RAM access test */ |
| HFC_outb(hc, R_RAM_ADDR0, 0); |
| HFC_outb(hc, R_RAM_ADDR1, 0); |
| HFC_outb(hc, R_RAM_ADDR2, 0); |
| for (i = 0; i < 256; i++) { |
| HFC_outb_nodebug(hc, R_RAM_ADDR0, i); |
| HFC_outb_nodebug(hc, R_RAM_DATA, ((i * 3) & 0xff)); |
| } |
| for (i = 0; i < 256; i++) { |
| HFC_outb_nodebug(hc, R_RAM_ADDR0, i); |
| HFC_inb_nodebug(hc, R_RAM_DATA); |
| rval = HFC_inb_nodebug(hc, R_INT_DATA); |
| if (rval != ((i * 3) & 0xff)) { |
| printk(KERN_DEBUG |
| "addr:%x val:%x should:%x\n", i, rval, |
| (i * 3) & 0xff); |
| err++; |
| } |
| } |
| if (err) { |
| printk(KERN_DEBUG "aborting - %d RAM access errors\n", err); |
| err = -EIO; |
| goto out; |
| } |
| |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: done\n", __func__); |
| out: |
| spin_unlock_irqrestore(&hc->lock, flags); |
| return err; |
| } |
| |
| |
| /* |
| * control the watchdog |
| */ |
| static void |
| hfcmulti_watchdog(struct hfc_multi *hc) |
| { |
| hc->wdcount++; |
| |
| if (hc->wdcount > 10) { |
| hc->wdcount = 0; |
| hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ? |
| V_GPIO_OUT3 : V_GPIO_OUT2; |
| |
| /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */ |
| HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3); |
| HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte); |
| } |
| } |
| |
| |
| |
| /* |
| * output leds |
| */ |
| static void |
| hfcmulti_leds(struct hfc_multi *hc) |
| { |
| unsigned long lled; |
| unsigned long leddw; |
| int i, state, active, leds; |
| struct dchannel *dch; |
| int led[4]; |
| |
| switch (hc->leds) { |
| case 1: /* HFC-E1 OEM */ |
| /* 2 red steady: LOS |
| * 1 red steady: L1 not active |
| * 2 green steady: L1 active |
| * 1st green flashing: activity on TX |
| * 2nd green flashing: activity on RX |
| */ |
| led[0] = 0; |
| led[1] = 0; |
| led[2] = 0; |
| led[3] = 0; |
| dch = hc->chan[hc->dnum[0]].dch; |
| if (dch) { |
| if (hc->chan[hc->dnum[0]].los) |
| led[1] = 1; |
| if (hc->e1_state != 1) { |
| led[0] = 1; |
| hc->flash[2] = 0; |
| hc->flash[3] = 0; |
| } else { |
| led[2] = 1; |
| led[3] = 1; |
| if (!hc->flash[2] && hc->activity_tx) |
| hc->flash[2] = poll; |
| if (!hc->flash[3] && hc->activity_rx) |
| hc->flash[3] = poll; |
| if (hc->flash[2] && hc->flash[2] < 1024) |
| led[2] = 0; |
| if (hc->flash[3] && hc->flash[3] < 1024) |
| led[3] = 0; |
| if (hc->flash[2] >= 2048) |
| hc->flash[2] = 0; |
| if (hc->flash[3] >= 2048) |
| hc->flash[3] = 0; |
| if (hc->flash[2]) |
| hc->flash[2] += poll; |
| if (hc->flash[3]) |
| hc->flash[3] += poll; |
| } |
| } |
| leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF; |
| /* leds are inverted */ |
| if (leds != (int)hc->ledstate) { |
| HFC_outb_nodebug(hc, R_GPIO_OUT1, leds); |
| hc->ledstate = leds; |
| } |
| break; |
| |
| case 2: /* HFC-4S OEM */ |
| /* red steady: PH_DEACTIVATE |
| * green steady: PH_ACTIVATE |
| * green flashing: activity on TX |
| */ |
| for (i = 0; i < 4; i++) { |
| state = 0; |
| active = -1; |
| dch = hc->chan[(i << 2) | 2].dch; |
| if (dch) { |
| state = dch->state; |
| if (dch->dev.D.protocol == ISDN_P_NT_S0) |
| active = 3; |
| else |
| active = 7; |
| } |
| if (state) { |
| if (state == active) { |
| led[i] = 1; /* led green */ |
| hc->activity_tx |= hc->activity_rx; |
| if (!hc->flash[i] && |
| (hc->activity_tx & (1 << i))) |
| hc->flash[i] = poll; |
| if (hc->flash[i] && hc->flash[i] < 1024) |
| led[i] = 0; /* led off */ |
| if (hc->flash[i] >= 2048) |
| hc->flash[i] = 0; |
| if (hc->flash[i]) |
| hc->flash[i] += poll; |
| } else { |
| led[i] = 2; /* led red */ |
| hc->flash[i] = 0; |
| } |
| } else |
| led[i] = 0; /* led off */ |
| } |
| if (test_bit(HFC_CHIP_B410P, &hc->chip)) { |
| leds = 0; |
| for (i = 0; i < 4; i++) { |
| if (led[i] == 1) { |
| /*green*/ |
| leds |= (0x2 << (i * 2)); |
| } else if (led[i] == 2) { |
| /*red*/ |
| leds |= (0x1 << (i * 2)); |
| } |
| } |
| if (leds != (int)hc->ledstate) { |
| vpm_out(hc, 0, 0x1a8 + 3, leds); |
| hc->ledstate = leds; |
| } |
| } else { |
| leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) | |
| ((led[0] > 0) << 2) | ((led[2] > 0) << 3) | |
| ((led[3] & 1) << 4) | ((led[1] & 1) << 5) | |
| ((led[0] & 1) << 6) | ((led[2] & 1) << 7); |
| if (leds != (int)hc->ledstate) { |
| HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F); |
| HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4); |
| hc->ledstate = leds; |
| } |
| } |
| break; |
| |
| case 3: /* HFC 1S/2S Beronet */ |
| /* red steady: PH_DEACTIVATE |
| * green steady: PH_ACTIVATE |
| * green flashing: activity on TX |
| */ |
| for (i = 0; i < 2; i++) { |
| state = 0; |
| active = -1; |
| dch = hc->chan[(i << 2) | 2].dch; |
| if (dch) { |
| state = dch->state; |
| if (dch->dev.D.protocol == ISDN_P_NT_S0) |
| active = 3; |
| else |
| active = 7; |
| } |
| if (state) { |
| if (state == active) { |
| led[i] = 1; /* led green */ |
| hc->activity_tx |= hc->activity_rx; |
| if (!hc->flash[i] && |
| (hc->activity_tx & (1 << i))) |
| hc->flash[i] = poll; |
| if (hc->flash[i] < 1024) |
| led[i] = 0; /* led off */ |
| if (hc->flash[i] >= 2048) |
| hc->flash[i] = 0; |
| if (hc->flash[i]) |
| hc->flash[i] += poll; |
| } else { |
| led[i] = 2; /* led red */ |
| hc->flash[i] = 0; |
| } |
| } else |
| led[i] = 0; /* led off */ |
| } |
| leds = (led[0] > 0) | ((led[1] > 0) << 1) | ((led[0]&1) << 2) |
| | ((led[1]&1) << 3); |
| if (leds != (int)hc->ledstate) { |
| HFC_outb_nodebug(hc, R_GPIO_EN1, |
| ((led[0] > 0) << 2) | ((led[1] > 0) << 3)); |
| HFC_outb_nodebug(hc, R_GPIO_OUT1, |
| ((led[0] & 1) << 2) | ((led[1] & 1) << 3)); |
| hc->ledstate = leds; |
| } |
| break; |
| case 8: /* HFC 8S+ Beronet */ |
| /* off: PH_DEACTIVATE |
| * steady: PH_ACTIVATE |
| * flashing: activity on TX |
| */ |
| lled = 0xff; /* leds off */ |
| for (i = 0; i < 8; i++) { |
| state = 0; |
| active = -1; |
| dch = hc->chan[(i << 2) | 2].dch; |
| if (dch) { |
| state = dch->state; |
| if (dch->dev.D.protocol == ISDN_P_NT_S0) |
| active = 3; |
| else |
| active = 7; |
| } |
| if (state) { |
| if (state == active) { |
| lled &= ~(1 << i); /* led on */ |
| hc->activity_tx |= hc->activity_rx; |
| if (!hc->flash[i] && |
| (hc->activity_tx & (1 << i))) |
| hc->flash[i] = poll; |
| if (hc->flash[i] < 1024) |
| lled |= 1 << i; /* led off */ |
| if (hc->flash[i] >= 2048) |
| hc->flash[i] = 0; |
| if (hc->flash[i]) |
| hc->flash[i] += poll; |
| } else |
| hc->flash[i] = 0; |
| } |
| } |
| leddw = lled << 24 | lled << 16 | lled << 8 | lled; |
| if (leddw != hc->ledstate) { |
| /* HFC_outb(hc, R_BRG_PCM_CFG, 1); |
| HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */ |
| /* was _io before */ |
| HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK); |
| outw(0x4000, hc->pci_iobase + 4); |
| outl(leddw, hc->pci_iobase); |
| HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK); |
| hc->ledstate = leddw; |
| } |
| break; |
| } |
| hc->activity_tx = 0; |
| hc->activity_rx = 0; |
| } |
| /* |
| * read dtmf coefficients |
| */ |
| |
| static void |
| hfcmulti_dtmf(struct hfc_multi *hc) |
| { |
| s32 *coeff; |
| u_int mantissa; |
| int co, ch; |
| struct bchannel *bch = NULL; |
| u8 exponent; |
| int dtmf = 0; |
| int addr; |
| u16 w_float; |
| struct sk_buff *skb; |
| struct mISDNhead *hh; |
| |
| if (debug & DEBUG_HFCMULTI_DTMF) |
| printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__); |
| for (ch = 0; ch <= 31; ch++) { |
| /* only process enabled B-channels */ |
| bch = hc->chan[ch].bch; |
| if (!bch) |
| continue; |
| if (!hc->created[hc->chan[ch].port]) |
| continue; |
| if (!test_bit(FLG_TRANSPARENT, &bch->Flags)) |
| continue; |
| if (debug & DEBUG_HFCMULTI_DTMF) |
| printk(KERN_DEBUG "%s: dtmf channel %d:", |
| __func__, ch); |
| coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]); |
| dtmf = 1; |
| for (co = 0; co < 8; co++) { |
| /* read W(n-1) coefficient */ |
| addr = hc->DTMFbase + ((co << 7) | (ch << 2)); |
| HFC_outb_nodebug(hc, R_RAM_ADDR0, addr); |
| HFC_outb_nodebug(hc, R_RAM_ADDR1, addr >> 8); |
| HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr >> 16) |
| | V_ADDR_INC); |
| w_float = HFC_inb_nodebug(hc, R_RAM_DATA); |
| w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8); |
| if (debug & DEBUG_HFCMULTI_DTMF) |
| printk(" %04x", w_float); |
| |
| /* decode float (see chip doc) */ |
| mantissa = w_float & 0x0fff; |
| if (w_float & 0x8000) |
| mantissa |= 0xfffff000; |
| exponent = (w_float >> 12) & 0x7; |
| if (exponent) { |
| mantissa ^= 0x1000; |
| mantissa <<= (exponent - 1); |
| } |
| |
| /* store coefficient */ |
| coeff[co << 1] = mantissa; |
| |
| /* read W(n) coefficient */ |
| w_float = HFC_inb_nodebug(hc, R_RAM_DATA); |
| w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8); |
| if (debug & DEBUG_HFCMULTI_DTMF) |
| printk(" %04x", w_float); |
| |
| /* decode float (see chip doc) */ |
| mantissa = w_float & 0x0fff; |
| if (w_float & 0x8000) |
| mantissa |= 0xfffff000; |
| exponent = (w_float >> 12) & 0x7; |
| if (exponent) { |
| mantissa ^= 0x1000; |
| mantissa <<= (exponent - 1); |
| } |
| |
| /* store coefficient */ |
| coeff[(co << 1) | 1] = mantissa; |
| } |
| if (debug & DEBUG_HFCMULTI_DTMF) |
| printk(" DTMF ready %08x %08x %08x %08x " |
| "%08x %08x %08x %08x\n", |
| coeff[0], coeff[1], coeff[2], coeff[3], |
| coeff[4], coeff[5], coeff[6], coeff[7]); |
| hc->chan[ch].coeff_count++; |
| if (hc->chan[ch].coeff_count == 8) { |
| hc->chan[ch].coeff_count = 0; |
| skb = mI_alloc_skb(512, GFP_ATOMIC); |
| if (!skb) { |
| printk(KERN_DEBUG "%s: No memory for skb\n", |
| __func__); |
| continue; |
| } |
| hh = mISDN_HEAD_P(skb); |
| hh->prim = PH_CONTROL_IND; |
| hh->id = DTMF_HFC_COEF; |
| skb_put_data(skb, hc->chan[ch].coeff, 512); |
| recv_Bchannel_skb(bch, skb); |
| } |
| } |
| |
| /* restart DTMF processing */ |
| hc->dtmf = dtmf; |
| if (dtmf) |
| HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF); |
| } |
| |
| |
| /* |
| * fill fifo as much as possible |
| */ |
| |
| static void |
| hfcmulti_tx(struct hfc_multi *hc, int ch) |
| { |
| int i, ii, temp, len = 0; |
| int Zspace, z1, z2; /* must be int for calculation */ |
| int Fspace, f1, f2; |
| u_char *d; |
| int *txpending, slot_tx; |
| struct bchannel *bch; |
| struct dchannel *dch; |
| struct sk_buff **sp = NULL; |
| int *idxp; |
| |
| bch = hc->chan[ch].bch; |
| dch = hc->chan[ch].dch; |
| if ((!dch) && (!bch)) |
| return; |
| |
| txpending = &hc->chan[ch].txpending; |
| slot_tx = hc->chan[ch].slot_tx; |
| if (dch) { |
| if (!test_bit(FLG_ACTIVE, &dch->Flags)) |
| return; |
| sp = &dch->tx_skb; |
| idxp = &dch->tx_idx; |
| } else { |
| if (!test_bit(FLG_ACTIVE, &bch->Flags)) |
| return; |
| sp = &bch->tx_skb; |
| idxp = &bch->tx_idx; |
| } |
| if (*sp) |
| len = (*sp)->len; |
| |
| if ((!len) && *txpending != 1) |
| return; /* no data */ |
| |
| if (test_bit(HFC_CHIP_B410P, &hc->chip) && |
| (hc->chan[ch].protocol == ISDN_P_B_RAW) && |
| (hc->chan[ch].slot_rx < 0) && |
| (hc->chan[ch].slot_tx < 0)) |
| HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1)); |
| else |
| HFC_outb_nodebug(hc, R_FIFO, ch << 1); |
| HFC_wait_nodebug(hc); |
| |
| if (*txpending == 2) { |
| /* reset fifo */ |
| HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F); |
| HFC_wait_nodebug(hc); |
| HFC_outb(hc, A_SUBCH_CFG, 0); |
| *txpending = 1; |
| } |
| next_frame: |
| if (dch || test_bit(FLG_HDLC, &bch->Flags)) { |
| f1 = HFC_inb_nodebug(hc, A_F1); |
| f2 = HFC_inb_nodebug(hc, A_F2); |
| while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) { |
| if (debug & DEBUG_HFCMULTI_FIFO) |
| printk(KERN_DEBUG |
| "%s(card %d): reread f2 because %d!=%d\n", |
| __func__, hc->id + 1, temp, f2); |
| f2 = temp; /* repeat until F2 is equal */ |
| } |
| Fspace = f2 - f1 - 1; |
| if (Fspace < 0) |
| Fspace += hc->Flen; |
| /* |
| * Old FIFO handling doesn't give us the current Z2 read |
| * pointer, so we cannot send the next frame before the fifo |
| * is empty. It makes no difference except for a slightly |
| * lower performance. |
| */ |
| if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) { |
| if (f1 != f2) |
| Fspace = 0; |
| else |
| Fspace = 1; |
| } |
| /* one frame only for ST D-channels, to allow resending */ |
| if (hc->ctype != HFC_TYPE_E1 && dch) { |
| if (f1 != f2) |
| Fspace = 0; |
| } |
| /* F-counter full condition */ |
| if (Fspace == 0) |
| return; |
| } |
| z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin; |
| z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin; |
| while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) { |
| if (debug & DEBUG_HFCMULTI_FIFO) |
| printk(KERN_DEBUG "%s(card %d): reread z2 because " |
| "%d!=%d\n", __func__, hc->id + 1, temp, z2); |
| z2 = temp; /* repeat unti Z2 is equal */ |
| } |
| hc->chan[ch].Zfill = z1 - z2; |
| if (hc->chan[ch].Zfill < 0) |
| hc->chan[ch].Zfill += hc->Zlen; |
| Zspace = z2 - z1; |
| if (Zspace <= 0) |
| Zspace += hc->Zlen; |
| Zspace -= 4; /* keep not too full, so pointers will not overrun */ |
| /* fill transparent data only to maxinum transparent load (minus 4) */ |
| if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags)) |
| Zspace = Zspace - hc->Zlen + hc->max_trans; |
| if (Zspace <= 0) /* no space of 4 bytes */ |
| return; |
| |
| /* if no data */ |
| if (!len) { |
| if (z1 == z2) { /* empty */ |
| /* if done with FIFO audio data during PCM connection */ |
| if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && |
| *txpending && slot_tx >= 0) { |
| if (debug & DEBUG_HFCMULTI_MODE) |
| printk(KERN_DEBUG |
| "%s: reconnecting PCM due to no " |
| "more FIFO data: channel %d " |
| "slot_tx %d\n", |
| __func__, ch, slot_tx); |
| /* connect slot */ |
| if (hc->ctype == HFC_TYPE_XHFC) |
| HFC_outb(hc, A_CON_HDLC, 0xc0 |
| | 0x07 << 2 | V_HDLC_TRP | V_IFF); |
| /* Enable FIFO, no interrupt */ |
| else |
| HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 | |
| V_HDLC_TRP | V_IFF); |
| HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1); |
| HFC_wait_nodebug(hc); |
| if (hc->ctype == HFC_TYPE_XHFC) |
| HFC_outb(hc, A_CON_HDLC, 0xc0 |
| | 0x07 << 2 | V_HDLC_TRP | V_IFF); |
| /* Enable FIFO, no interrupt */ |
| else |
| HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 | |
| V_HDLC_TRP | V_IFF); |
| HFC_outb_nodebug(hc, R_FIFO, ch << 1); |
| HFC_wait_nodebug(hc); |
| } |
| *txpending = 0; |
| } |
| return; /* no data */ |
| } |
| |
| /* "fill fifo if empty" feature */ |
| if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags) |
| && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) { |
| if (debug & DEBUG_HFCMULTI_FILL) |
| printk(KERN_DEBUG "%s: buffer empty, so we have " |
| "underrun\n", __func__); |
| /* fill buffer, to prevent future underrun */ |
| hc->write_fifo(hc, hc->silence_data, poll >> 1); |
| Zspace -= (poll >> 1); |
| } |
| |
| /* if audio data and connected slot */ |
| if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending) |
| && slot_tx >= 0) { |
| if (debug & DEBUG_HFCMULTI_MODE) |
| printk(KERN_DEBUG "%s: disconnecting PCM due to " |
| "FIFO data: channel %d slot_tx %d\n", |
| __func__, ch, slot_tx); |
| /* disconnect slot */ |
| if (hc->ctype == HFC_TYPE_XHFC) |
| HFC_outb(hc, A_CON_HDLC, 0x80 |
| | 0x07 << 2 | V_HDLC_TRP | V_IFF); |
| /* Enable FIFO, no interrupt */ |
| else |
| HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | |
| V_HDLC_TRP | V_IFF); |
| HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1); |
| HFC_wait_nodebug(hc); |
| if (hc->ctype == HFC_TYPE_XHFC) |
| HFC_outb(hc, A_CON_HDLC, 0x80 |
| | 0x07 << 2 | V_HDLC_TRP | V_IFF); |
| /* Enable FIFO, no interrupt */ |
| else |
| HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | |
| V_HDLC_TRP | V_IFF); |
| HFC_outb_nodebug(hc, R_FIFO, ch << 1); |
| HFC_wait_nodebug(hc); |
| } |
| *txpending = 1; |
| |
| /* show activity */ |
| if (dch) |
| hc->activity_tx |= 1 << hc->chan[ch].port; |
| |
| /* fill fifo to what we have left */ |
| ii = len; |
| if (dch || test_bit(FLG_HDLC, &bch->Flags)) |
| temp = 1; |
| else |
| temp = 0; |
| i = *idxp; |
| d = (*sp)->data + i; |
| if (ii - i > Zspace) |
| ii = Zspace + i; |
| if (debug & DEBUG_HFCMULTI_FIFO) |
| printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space " |
| "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n", |
| __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i, |
| temp ? "HDLC" : "TRANS"); |
| |
| /* Have to prep the audio data */ |
| hc->write_fifo(hc, d, ii - i); |
| hc->chan[ch].Zfill += ii - i; |
| *idxp = ii; |
| |
| /* if not all data has been written */ |
| if (ii != len) { |
| /* NOTE: fifo is started by the calling function */ |
| return; |
| } |
| |
| /* if all data has been written, terminate frame */ |
| if (dch || test_bit(FLG_HDLC, &bch->Flags)) { |
| /* increment f-counter */ |
| HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F); |
| HFC_wait_nodebug(hc); |
| } |
| |
| dev_kfree_skb(*sp); |
| /* check for next frame */ |
| if (bch && get_next_bframe(bch)) { |
| len = (*sp)->len; |
| goto next_frame; |
| } |
| if (dch && get_next_dframe(dch)) { |
| len = (*sp)->len; |
| goto next_frame; |
| } |
| |
| /* |
| * now we have no more data, so in case of transparent, |
| * we set the last byte in fifo to 'silence' in case we will get |
| * no more data at all. this prevents sending an undefined value. |
| */ |
| if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags)) |
| HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence); |
| } |
| |
| |
| /* NOTE: only called if E1 card is in active state */ |
| static void |
| hfcmulti_rx(struct hfc_multi *hc, int ch) |
| { |
| int temp; |
| int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */ |
| int f1 = 0, f2 = 0; /* = 0, to make GCC happy */ |
| int again = 0; |
| struct bchannel *bch; |
| struct dchannel *dch = NULL; |
| struct sk_buff *skb, **sp = NULL; |
| int maxlen; |
| |
| bch = hc->chan[ch].bch; |
| if (bch) { |
| if (!test_bit(FLG_ACTIVE, &bch->Flags)) |
| return; |
| } else if (hc->chan[ch].dch) { |
| dch = hc->chan[ch].dch; |
| if (!test_bit(FLG_ACTIVE, &dch->Flags)) |
| return; |
| } else { |
| return; |
| } |
| next_frame: |
| /* on first AND before getting next valid frame, R_FIFO must be written |
| to. */ |
| if (test_bit(HFC_CHIP_B410P, &hc->chip) && |
| (hc->chan[ch].protocol == ISDN_P_B_RAW) && |
| (hc->chan[ch].slot_rx < 0) && |
| (hc->chan[ch].slot_tx < 0)) |
| HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1) | 1); |
| else |
| HFC_outb_nodebug(hc, R_FIFO, (ch << 1) | 1); |
| HFC_wait_nodebug(hc); |
| |
| /* ignore if rx is off BUT change fifo (above) to start pending TX */ |
| if (hc->chan[ch].rx_off) { |
| if (bch) |
| bch->dropcnt += poll; /* not exact but fair enough */ |
| return; |
| } |
| |
| if (dch || test_bit(FLG_HDLC, &bch->Flags)) { |
| f1 = HFC_inb_nodebug(hc, A_F1); |
| while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) { |
| if (debug & DEBUG_HFCMULTI_FIFO) |
| printk(KERN_DEBUG |
| "%s(card %d): reread f1 because %d!=%d\n", |
| __func__, hc->id + 1, temp, f1); |
| f1 = temp; /* repeat until F1 is equal */ |
| } |
| f2 = HFC_inb_nodebug(hc, A_F2); |
| } |
| z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin; |
| while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) { |
| if (debug & DEBUG_HFCMULTI_FIFO) |
| printk(KERN_DEBUG "%s(card %d): reread z2 because " |
| "%d!=%d\n", __func__, hc->id + 1, temp, z2); |
| z1 = temp; /* repeat until Z1 is equal */ |
| } |
| z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin; |
| Zsize = z1 - z2; |
| if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2) |
| /* complete hdlc frame */ |
| Zsize++; |
| if (Zsize < 0) |
| Zsize += hc->Zlen; |
| /* if buffer is empty */ |
| if (Zsize <= 0) |
| return; |
| |
| if (bch) { |
| maxlen = bchannel_get_rxbuf(bch, Zsize); |
| if (maxlen < 0) { |
| pr_warn("card%d.B%d: No bufferspace for %d bytes\n", |
| hc->id + 1, bch->nr, Zsize); |
| return; |
| } |
| sp = &bch->rx_skb; |
| maxlen = bch->maxlen; |
| } else { /* Dchannel */ |
| sp = &dch->rx_skb; |
| maxlen = dch->maxlen + 3; |
| if (*sp == NULL) { |
| *sp = mI_alloc_skb(maxlen, GFP_ATOMIC); |
| if (*sp == NULL) { |
| pr_warn("card%d: No mem for dch rx_skb\n", |
| hc->id + 1); |
| return; |
| } |
| } |
| } |
| /* show activity */ |
| if (dch) |
| hc->activity_rx |= 1 << hc->chan[ch].port; |
| |
| /* empty fifo with what we have */ |
| if (dch || test_bit(FLG_HDLC, &bch->Flags)) { |
| if (debug & DEBUG_HFCMULTI_FIFO) |
| printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d " |
| "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) " |
| "got=%d (again %d)\n", __func__, hc->id + 1, ch, |
| Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE", |
| f1, f2, Zsize + (*sp)->len, again); |
| /* HDLC */ |
| if ((Zsize + (*sp)->len) > maxlen) { |
| if (debug & DEBUG_HFCMULTI_FIFO) |
| printk(KERN_DEBUG |
| "%s(card %d): hdlc-frame too large.\n", |
| __func__, hc->id + 1); |
| skb_trim(*sp, 0); |
| HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F); |
| HFC_wait_nodebug(hc); |
| return; |
| } |
| |
| hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize); |
| |
| if (f1 != f2) { |
| /* increment Z2,F2-counter */ |
| HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F); |
| HFC_wait_nodebug(hc); |
| /* check size */ |
| if ((*sp)->len < 4) { |
| if (debug & DEBUG_HFCMULTI_FIFO) |
| printk(KERN_DEBUG |
| "%s(card %d): Frame below minimum " |
| "size\n", __func__, hc->id + 1); |
| skb_trim(*sp, 0); |
| goto next_frame; |
| } |
| /* there is at least one complete frame, check crc */ |
| if ((*sp)->data[(*sp)->len - 1]) { |
| if (debug & DEBUG_HFCMULTI_CRC) |
| printk(KERN_DEBUG |
| "%s: CRC-error\n", __func__); |
| skb_trim(*sp, 0); |
| goto next_frame; |
| } |
| skb_trim(*sp, (*sp)->len - 3); |
| if ((*sp)->len < MISDN_COPY_SIZE) { |
| skb = *sp; |
| *sp = mI_alloc_skb(skb->len, GFP_ATOMIC); |
| if (*sp) { |
| skb_put_data(*sp, skb->data, skb->len); |
| skb_trim(skb, 0); |
| } else { |
| printk(KERN_DEBUG "%s: No mem\n", |
| __func__); |
| *sp = skb; |
| skb = NULL; |
| } |
| } else { |
| skb = NULL; |
| } |
| if (debug & DEBUG_HFCMULTI_FIFO) { |
| printk(KERN_DEBUG "%s(card %d):", |
| __func__, hc->id + 1); |
| temp = 0; |
| while (temp < (*sp)->len) |
| printk(" %02x", (*sp)->data[temp++]); |
| printk("\n"); |
| } |
| if (dch) |
| recv_Dchannel(dch); |
| else |
| recv_Bchannel(bch, MISDN_ID_ANY, false); |
| *sp = skb; |
| again++; |
| goto next_frame; |
| } |
| /* there is an incomplete frame */ |
| } else { |
| /* transparent */ |
| hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize); |
| if (debug & DEBUG_HFCMULTI_FIFO) |
| printk(KERN_DEBUG |
| "%s(card %d): fifo(%d) reading %d bytes " |
| "(z1=%04x, z2=%04x) TRANS\n", |
| __func__, hc->id + 1, ch, Zsize, z1, z2); |
| /* only bch is transparent */ |
| recv_Bchannel(bch, hc->chan[ch].Zfill, false); |
| } |
| } |
| |
| |
| /* |
| * Interrupt handler |
| */ |
| static void |
| signal_state_up(struct dchannel *dch, int info, char *msg) |
| { |
| struct sk_buff *skb; |
| int id, data = info; |
| |
| if (debug & DEBUG_HFCMULTI_STATE) |
| printk(KERN_DEBUG "%s: %s\n", __func__, msg); |
| |
| id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */ |
| |
| skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data, |
| GFP_ATOMIC); |
| if (!skb) |
| return; |
| recv_Dchannel_skb(dch, skb); |
| } |
| |
| static inline void |
| handle_timer_irq(struct hfc_multi *hc) |
| { |
| int ch, temp; |
| struct dchannel *dch; |
| u_long flags; |
| |
| /* process queued resync jobs */ |
| if (hc->e1_resync) { |
| /* lock, so e1_resync gets not changed */ |
| spin_lock_irqsave(&HFClock, flags); |
| if (hc->e1_resync & 1) { |
| if (debug & DEBUG_HFCMULTI_PLXSD) |
| printk(KERN_DEBUG "Enable SYNC_I\n"); |
| HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC); |
| /* disable JATT, if RX_SYNC is set */ |
| if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) |
| HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX); |
| } |
| if (hc->e1_resync & 2) { |
| if (debug & DEBUG_HFCMULTI_PLXSD) |
| printk(KERN_DEBUG "Enable jatt PLL\n"); |
| HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS); |
| } |
| if (hc->e1_resync & 4) { |
| if (debug & DEBUG_HFCMULTI_PLXSD) |
| printk(KERN_DEBUG |
| "Enable QUARTZ for HFC-E1\n"); |
| /* set jatt to quartz */ |
| HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
| | V_JATT_OFF); |
| /* switch to JATT, in case it is not already */ |
| HFC_outb(hc, R_SYNC_OUT, 0); |
| } |
| hc->e1_resync = 0; |
| spin_unlock_irqrestore(&HFClock, flags); |
| } |
| |
| if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1) |
| for (ch = 0; ch <= 31; ch++) { |
| if (hc->created[hc->chan[ch].port]) { |
| hfcmulti_tx(hc, ch); |
| /* fifo is started when switching to rx-fifo */ |
| hfcmulti_rx(hc, ch); |
| if (hc->chan[ch].dch && |
| hc->chan[ch].nt_timer > -1) { |
| dch = hc->chan[ch].dch; |
| if (!(--hc->chan[ch].nt_timer)) { |
| schedule_event(dch, |
| FLG_PHCHANGE); |
| if (debug & |
| DEBUG_HFCMULTI_STATE) |
| printk(KERN_DEBUG |
| "%s: nt_timer at " |
| "state %x\n", |
| __func__, |
| dch->state); |
| } |
| } |
| } |
| } |
| if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) { |
| dch = hc->chan[hc->dnum[0]].dch; |
| /* LOS */ |
| temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS; |
| hc->chan[hc->dnum[0]].los = temp; |
| if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) { |
| if (!temp && hc->chan[hc->dnum[0]].los) |
| signal_state_up(dch, L1_SIGNAL_LOS_ON, |
| "LOS detected"); |
| if (temp && !hc->chan[hc->dnum[0]].los) |
| signal_state_up(dch, L1_SIGNAL_LOS_OFF, |
| "LOS gone"); |
| } |
| if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dnum[0]].cfg)) { |
| /* AIS */ |
| temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS; |
| if (!temp && hc->chan[hc->dnum[0]].ais) |
| signal_state_up(dch, L1_SIGNAL_AIS_ON, |
| "AIS detected"); |
| if (temp && !hc->chan[hc->dnum[0]].ais) |
| signal_state_up(dch, L1_SIGNAL_AIS_OFF, |
| "AIS gone"); |
| hc->chan[hc->dnum[0]].ais = temp; |
| } |
| if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dnum[0]].cfg)) { |
| /* SLIP */ |
| temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX; |
| if (!temp && hc->chan[hc->dnum[0]].slip_rx) |
| signal_state_up(dch, L1_SIGNAL_SLIP_RX, |
| " bit SLIP detected RX"); |
| hc->chan[hc->dnum[0]].slip_rx = temp; |
| temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX; |
| if (!temp && hc->chan[hc->dnum[0]].slip_tx) |
| signal_state_up(dch, L1_SIGNAL_SLIP_TX, |
| " bit SLIP detected TX"); |
| hc->chan[hc->dnum[0]].slip_tx = temp; |
| } |
| if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dnum[0]].cfg)) { |
| /* RDI */ |
| temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A; |
| if (!temp && hc->chan[hc->dnum[0]].rdi) |
| signal_state_up(dch, L1_SIGNAL_RDI_ON, |
| "RDI detected"); |
| if (temp && !hc->chan[hc->dnum[0]].rdi) |
| signal_state_up(dch, L1_SIGNAL_RDI_OFF, |
| "RDI gone"); |
| hc->chan[hc->dnum[0]].rdi = temp; |
| } |
| temp = HFC_inb_nodebug(hc, R_JATT_DIR); |
| switch (hc->chan[hc->dnum[0]].sync) { |
| case 0: |
| if ((temp & 0x60) == 0x60) { |
| if (debug & DEBUG_HFCMULTI_SYNC) |
| printk(KERN_DEBUG |
| "%s: (id=%d) E1 now " |
| "in clock sync\n", |
| __func__, hc->id); |
| HFC_outb(hc, R_RX_OFF, |
| hc->chan[hc->dnum[0]].jitter | V_RX_INIT); |
| HFC_outb(hc, R_TX_OFF, |
| hc->chan[hc->dnum[0]].jitter | V_RX_INIT); |
| hc->chan[hc->dnum[0]].sync = 1; |
| goto check_framesync; |
| } |
| break; |
| case 1: |
| if ((temp & 0x60) != 0x60) { |
| if (debug & DEBUG_HFCMULTI_SYNC) |
| printk(KERN_DEBUG |
| "%s: (id=%d) E1 " |
| "lost clock sync\n", |
| __func__, hc->id); |
| hc->chan[hc->dnum[0]].sync = 0; |
| break; |
| } |
| check_framesync: |
| temp = HFC_inb_nodebug(hc, R_SYNC_STA); |
| if (temp == 0x27) { |
| if (debug & DEBUG_HFCMULTI_SYNC) |
| printk(KERN_DEBUG |
| "%s: (id=%d) E1 " |
| "now in frame sync\n", |
| __func__, hc->id); |
| hc->chan[hc->dnum[0]].sync = 2; |
| } |
| break; |
| case 2: |
| if ((temp & 0x60) != 0x60) { |
| if (debug & DEBUG_HFCMULTI_SYNC) |
| printk(KERN_DEBUG |
| "%s: (id=%d) E1 lost " |
| "clock & frame sync\n", |
| __func__, hc->id); |
| hc->chan[hc->dnum[0]].sync = 0; |
| break; |
| } |
| temp = HFC_inb_nodebug(hc, R_SYNC_STA); |
| if (temp != 0x27) { |
| if (debug & DEBUG_HFCMULTI_SYNC) |
| printk(KERN_DEBUG |
| "%s: (id=%d) E1 " |
| "lost frame sync\n", |
| __func__, hc->id); |
| hc->chan[hc->dnum[0]].sync = 1; |
| } |
| break; |
| } |
| } |
| |
| if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip)) |
| hfcmulti_watchdog(hc); |
| |
| if (hc->leds) |
| hfcmulti_leds(hc); |
| } |
| |
| static void |
| ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech) |
| { |
| struct dchannel *dch; |
| int ch; |
| int active; |
| u_char st_status, temp; |
| |
| /* state machine */ |
| for (ch = 0; ch <= 31; ch++) { |
| if (hc->chan[ch].dch) { |
| dch = hc->chan[ch].dch; |
| if (r_irq_statech & 1) { |
| HFC_outb_nodebug(hc, R_ST_SEL, |
| hc->chan[ch].port); |
| /* undocumented: delay after R_ST_SEL */ |
| udelay(1); |
| /* undocumented: status changes during read */ |
| st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE); |
| while (st_status != (temp = |
| HFC_inb_nodebug(hc, A_ST_RD_STATE))) { |
| if (debug & DEBUG_HFCMULTI_STATE) |
| printk(KERN_DEBUG "%s: reread " |
| "STATE because %d!=%d\n", |
| __func__, temp, |
| st_status); |
| st_status = temp; /* repeat */ |
| } |
| |
| /* Speech Design TE-sync indication */ |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && |
| dch->dev.D.protocol == ISDN_P_TE_S0) { |
| if (st_status & V_FR_SYNC_ST) |
| hc->syncronized |= |
| (1 << hc->chan[ch].port); |
| else |
| hc->syncronized &= |
| ~(1 << hc->chan[ch].port); |
| } |
| dch->state = st_status & 0x0f; |
| if (dch->dev.D.protocol == ISDN_P_NT_S0) |
| active = 3; |
| else |
| active = 7; |
| if (dch->state == active) { |
| HFC_outb_nodebug(hc, R_FIFO, |
| (ch << 1) | 1); |
| HFC_wait_nodebug(hc); |
| HFC_outb_nodebug(hc, |
| R_INC_RES_FIFO, V_RES_F); |
| HFC_wait_nodebug(hc); |
| dch->tx_idx = 0; |
| } |
| schedule_event(dch, FLG_PHCHANGE); |
| if (debug & DEBUG_HFCMULTI_STATE) |
| printk(KERN_DEBUG |
| "%s: S/T newstate %x port %d\n", |
| __func__, dch->state, |
| hc->chan[ch].port); |
| } |
| r_irq_statech >>= 1; |
| } |
| } |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) |
| plxsd_checksync(hc, 0); |
| } |
| |
| static void |
| fifo_irq(struct hfc_multi *hc, int block) |
| { |
| int ch, j; |
| struct dchannel *dch; |
| struct bchannel *bch; |
| u_char r_irq_fifo_bl; |
| |
| r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block); |
| j = 0; |
| while (j < 8) { |
| ch = (block << 2) + (j >> 1); |
| dch = hc->chan[ch].dch; |
| bch = hc->chan[ch].bch; |
| if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) { |
| j += 2; |
| continue; |
| } |
| if (dch && (r_irq_fifo_bl & (1 << j)) && |
| test_bit(FLG_ACTIVE, &dch->Flags)) { |
| hfcmulti_tx(hc, ch); |
| /* start fifo */ |
| HFC_outb_nodebug(hc, R_FIFO, 0); |
| HFC_wait_nodebug(hc); |
| } |
| if (bch && (r_irq_fifo_bl & (1 << j)) && |
| test_bit(FLG_ACTIVE, &bch->Flags)) { |
| hfcmulti_tx(hc, ch); |
| /* start fifo */ |
| HFC_outb_nodebug(hc, R_FIFO, 0); |
| HFC_wait_nodebug(hc); |
| } |
| j++; |
| if (dch && (r_irq_fifo_bl & (1 << j)) && |
| test_bit(FLG_ACTIVE, &dch->Flags)) { |
| hfcmulti_rx(hc, ch); |
| } |
| if (bch && (r_irq_fifo_bl & (1 << j)) && |
| test_bit(FLG_ACTIVE, &bch->Flags)) { |
| hfcmulti_rx(hc, ch); |
| } |
| j++; |
| } |
| } |
| |
| #ifdef IRQ_DEBUG |
| int irqsem; |
| #endif |
| static irqreturn_t |
| hfcmulti_interrupt(int intno, void *dev_id) |
| { |
| #ifdef IRQCOUNT_DEBUG |
| static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0, |
| iq5 = 0, iq6 = 0, iqcnt = 0; |
| #endif |
| struct hfc_multi *hc = dev_id; |
| struct dchannel *dch; |
| u_char r_irq_statech, status, r_irq_misc, r_irq_oview; |
| int i; |
| void __iomem *plx_acc; |
| u_short wval; |
| u_char e1_syncsta, temp, temp2; |
| u_long flags; |
| |
| if (!hc) { |
| printk(KERN_ERR "HFC-multi: Spurious interrupt!\n"); |
| return IRQ_NONE; |
| } |
| |
| spin_lock(&hc->lock); |
| |
| #ifdef IRQ_DEBUG |
| if (irqsem) |
| printk(KERN_ERR "irq for card %d during irq from " |
| "card %d, this is no bug.\n", hc->id + 1, irqsem); |
| irqsem = hc->id + 1; |
| #endif |
| #ifdef CONFIG_MISDN_HFCMULTI_8xx |
| if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk) |
| goto irq_notforus; |
| #endif |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { |
| spin_lock_irqsave(&plx_lock, flags); |
| plx_acc = hc->plx_membase + PLX_INTCSR; |
| wval = readw(plx_acc); |
| spin_unlock_irqrestore(&plx_lock, flags); |
| if (!(wval & PLX_INTCSR_LINTI1_STATUS)) |
| goto irq_notforus; |
| } |
| |
| status = HFC_inb_nodebug(hc, R_STATUS); |
| r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH); |
| #ifdef IRQCOUNT_DEBUG |
| if (r_irq_statech) |
| iq1++; |
| if (status & V_DTMF_STA) |
| iq2++; |
| if (status & V_LOST_STA) |
| iq3++; |
| if (status & V_EXT_IRQSTA) |
| iq4++; |
| if (status & V_MISC_IRQSTA) |
| iq5++; |
| if (status & V_FR_IRQSTA) |
| iq6++; |
| if (iqcnt++ > 5000) { |
| printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n", |
| iq1, iq2, iq3, iq4, iq5, iq6); |
| iqcnt = 0; |
| } |
| #endif |
| |
| if (!r_irq_statech && |
| !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA | |
| V_MISC_IRQSTA | V_FR_IRQSTA))) { |
| /* irq is not for us */ |
| goto irq_notforus; |
| } |
| hc->irqcnt++; |
| if (r_irq_statech) { |
| if (hc->ctype != HFC_TYPE_E1) |
| ph_state_irq(hc, r_irq_statech); |
| } |
| if (status & V_LOST_STA) { |
| /* LOST IRQ */ |
| HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */ |
| } |
| if (status & V_MISC_IRQSTA) { |
| /* misc IRQ */ |
| r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC); |
| r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */ |
| if (r_irq_misc & V_STA_IRQ) { |
| if (hc->ctype == HFC_TYPE_E1) { |
| /* state machine */ |
| dch = hc->chan[hc->dnum[0]].dch; |
| e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA); |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip) |
| && hc->e1_getclock) { |
| if (e1_syncsta & V_FR_SYNC_E1) |
| hc->syncronized = 1; |
| else |
| hc->syncronized = 0; |
| } |
| /* undocumented: status changes during read */ |
| temp = HFC_inb_nodebug(hc, R_E1_RD_STA); |
| while (temp != (temp2 = |
| HFC_inb_nodebug(hc, R_E1_RD_STA))) { |
| if (debug & DEBUG_HFCMULTI_STATE) |
| printk(KERN_DEBUG "%s: reread " |
| "STATE because %d!=%d\n", |
| __func__, temp, temp2); |
| temp = temp2; /* repeat */ |
| } |
| /* broadcast state change to all fragments */ |
| if (debug & DEBUG_HFCMULTI_STATE) |
| printk(KERN_DEBUG |
| "%s: E1 (id=%d) newstate %x\n", |
| __func__, hc->id, temp & 0x7); |
| for (i = 0; i < hc->ports; i++) { |
| dch = hc->chan[hc->dnum[i]].dch; |
| dch->state = temp & 0x7; |
| schedule_event(dch, FLG_PHCHANGE); |
| } |
| |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) |
| plxsd_checksync(hc, 0); |
| } |
| } |
| if (r_irq_misc & V_TI_IRQ) { |
| if (hc->iclock_on) |
| mISDN_clock_update(hc->iclock, poll, NULL); |
| handle_timer_irq(hc); |
| } |
| |
| if (r_irq_misc & V_DTMF_IRQ) |
| hfcmulti_dtmf(hc); |
| |
| if (r_irq_misc & V_IRQ_PROC) { |
| static int irq_proc_cnt; |
| if (!irq_proc_cnt++) |
| printk(KERN_DEBUG "%s: got V_IRQ_PROC -" |
| " this should not happen\n", __func__); |
| } |
| |
| } |
| if (status & V_FR_IRQSTA) { |
| /* FIFO IRQ */ |
| r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW); |
| for (i = 0; i < 8; i++) { |
| if (r_irq_oview & (1 << i)) |
| fifo_irq(hc, i); |
| } |
| } |
| |
| #ifdef IRQ_DEBUG |
| irqsem = 0; |
| #endif |
| spin_unlock(&hc->lock); |
| return IRQ_HANDLED; |
| |
| irq_notforus: |
| #ifdef IRQ_DEBUG |
| irqsem = 0; |
| #endif |
| spin_unlock(&hc->lock); |
| return IRQ_NONE; |
| } |
| |
| |
| /* |
| * timer callback for D-chan busy resolution. Currently no function |
| */ |
| |
| static void |
| hfcmulti_dbusy_timer(struct timer_list *t) |
| { |
| } |
| |
| |
| /* |
| * activate/deactivate hardware for selected channels and mode |
| * |
| * configure B-channel with the given protocol |
| * ch eqals to the HFC-channel (0-31) |
| * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31 |
| * for S/T, 1-31 for E1) |
| * the hdlc interrupts will be set/unset |
| */ |
| static int |
| mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx, |
| int bank_tx, int slot_rx, int bank_rx) |
| { |
| int flow_tx = 0, flow_rx = 0, routing = 0; |
| int oslot_tx, oslot_rx; |
| int conf; |
| |
| if (ch < 0 || ch > 31) |
| return -EINVAL; |
| oslot_tx = hc->chan[ch].slot_tx; |
| oslot_rx = hc->chan[ch].slot_rx; |
| conf = hc->chan[ch].conf; |
| |
| if (debug & DEBUG_HFCMULTI_MODE) |
| printk(KERN_DEBUG |
| "%s: card %d channel %d protocol %x slot old=%d new=%d " |
| "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n", |
| __func__, hc->id, ch, protocol, oslot_tx, slot_tx, |
| bank_tx, oslot_rx, slot_rx, bank_rx); |
| |
| if (oslot_tx >= 0 && slot_tx != oslot_tx) { |
| /* remove from slot */ |
| if (debug & DEBUG_HFCMULTI_MODE) |
| printk(KERN_DEBUG "%s: remove from slot %d (TX)\n", |
| __func__, oslot_tx); |
| if (hc->slot_owner[oslot_tx << 1] == ch) { |
| HFC_outb(hc, R_SLOT, oslot_tx << 1); |
| HFC_outb(hc, A_SL_CFG, 0); |
| if (hc->ctype != HFC_TYPE_XHFC) |
| HFC_outb(hc, A_CONF, 0); |
| hc->slot_owner[oslot_tx << 1] = -1; |
| } else { |
| if (debug & DEBUG_HFCMULTI_MODE) |
| printk(KERN_DEBUG |
| "%s: we are not owner of this tx slot " |
| "anymore, channel %d is.\n", |
| __func__, hc->slot_owner[oslot_tx << 1]); |
| } |
| } |
| |
| if (oslot_rx >= 0 && slot_rx != oslot_rx) { |
| /* remove from slot */ |
| if (debug & DEBUG_HFCMULTI_MODE) |
| printk(KERN_DEBUG |
| "%s: remove from slot %d (RX)\n", |
| __func__, oslot_rx); |
| if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) { |
| HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR); |
| HFC_outb(hc, A_SL_CFG, 0); |
| hc->slot_owner[(oslot_rx << 1) | 1] = -1; |
| } else { |
| if (debug & DEBUG_HFCMULTI_MODE) |
| printk(KERN_DEBUG |
| "%s: we are not owner of this rx slot " |
| "anymore, channel %d is.\n", |
| __func__, |
| hc->slot_owner[(oslot_rx << 1) | 1]); |
| } |
| } |
| |
| if (slot_tx < 0) { |
| flow_tx = 0x80; /* FIFO->ST */ |
| /* disable pcm slot */ |
| hc->chan[ch].slot_tx = -1; |
| hc->chan[ch].bank_tx = 0; |
| } else { |
| /* set pcm slot */ |
| if (hc->chan[ch].txpending) |
| flow_tx = 0x80; /* FIFO->ST */ |
| else |
| flow_tx = 0xc0; /* PCM->ST */ |
| /* put on slot */ |
| routing = bank_tx ? 0xc0 : 0x80; |
| if (conf >= 0 || bank_tx > 1) |
| routing = 0x40; /* loop */ |
| if (debug & DEBUG_HFCMULTI_MODE) |
| printk(KERN_DEBUG "%s: put channel %d to slot %d bank" |
| " %d flow %02x routing %02x conf %d (TX)\n", |
| __func__, ch, slot_tx, bank_tx, |
| flow_tx, routing, conf); |
| HFC_outb(hc, R_SLOT, slot_tx << 1); |
| HFC_outb(hc, A_SL_CFG, (ch << 1) | routing); |
| if (hc->ctype != HFC_TYPE_XHFC) |
| HFC_outb(hc, A_CONF, |
| (conf < 0) ? 0 : (conf | V_CONF_SL)); |
| hc->slot_owner[slot_tx << 1] = ch; |
| hc->chan[ch].slot_tx = slot_tx; |
| hc->chan[ch].bank_tx = bank_tx; |
| } |
| if (slot_rx < 0) { |
| /* disable pcm slot */ |
| flow_rx = 0x80; /* ST->FIFO */ |
| hc->chan[ch].slot_rx = -1; |
| hc->chan[ch].bank_rx = 0; |
| } else { |
| /* set pcm slot */ |
| if (hc->chan[ch].txpending) |
| flow_rx = 0x80; /* ST->FIFO */ |
| else |
| flow_rx = 0xc0; /* ST->(FIFO,PCM) */ |
| /* put on slot */ |
| routing = bank_rx ? 0x80 : 0xc0; /* reversed */ |
| if (conf >= 0 || bank_rx > 1) |
| routing = 0x40; /* loop */ |
| if (debug & DEBUG_HFCMULTI_MODE) |
| printk(KERN_DEBUG "%s: put channel %d to slot %d bank" |
| " %d flow %02x routing %02x conf %d (RX)\n", |
| __func__, ch, slot_rx, bank_rx, |
| flow_rx, routing, conf); |
| HFC_outb(hc, R_SLOT, (slot_rx << 1) | V_SL_DIR); |
| HFC_outb(hc, A_SL_CFG, (ch << 1) | V_CH_DIR | routing); |
| hc->slot_owner[(slot_rx << 1) | 1] = ch; |
| hc->chan[ch].slot_rx = slot_rx; |
| hc->chan[ch].bank_rx = bank_rx; |
| } |
| |
| switch (protocol) { |
| case (ISDN_P_NONE): |
| /* disable TX fifo */ |
| HFC_outb(hc, R_FIFO, ch << 1); |
| HFC_wait(hc); |
| HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF); |
| HFC_outb(hc, A_SUBCH_CFG, 0); |
| HFC_outb(hc, A_IRQ_MSK, 0); |
| HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); |
| HFC_wait(hc); |
| /* disable RX fifo */ |
| HFC_outb(hc, R_FIFO, (ch << 1) | 1); |
| HFC_wait(hc); |
| HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00); |
| HFC_outb(hc, A_SUBCH_CFG, 0); |
| HFC_outb(hc, A_IRQ_MSK, 0); |
| HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); |
| HFC_wait(hc); |
| if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) { |
| hc->hw.a_st_ctrl0[hc->chan[ch].port] &= |
| ((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN; |
| HFC_outb(hc, R_ST_SEL, hc->chan[ch].port); |
| /* undocumented: delay after R_ST_SEL */ |
| udelay(1); |
| HFC_outb(hc, A_ST_CTRL0, |
| hc->hw.a_st_ctrl0[hc->chan[ch].port]); |
| } |
| if (hc->chan[ch].bch) { |
| test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags); |
| test_and_clear_bit(FLG_TRANSPARENT, |
| &hc->chan[ch].bch->Flags); |
| } |
| break; |
| case (ISDN_P_B_RAW): /* B-channel */ |
| |
| if (test_bit(HFC_CHIP_B410P, &hc->chip) && |
| (hc->chan[ch].slot_rx < 0) && |
| (hc->chan[ch].slot_tx < 0)) { |
| |
| printk(KERN_DEBUG |
| "Setting B-channel %d to echo cancelable " |
| "state on PCM slot %d\n", ch, |
| ((ch / 4) * 8) + ((ch % 4) * 4) + 1); |
| printk(KERN_DEBUG |
| "Enabling pass through for channel\n"); |
| vpm_out(hc, ch, ((ch / 4) * 8) + |
| ((ch % 4) * 4) + 1, 0x01); |
| /* rx path */ |
| /* S/T -> PCM */ |
| HFC_outb(hc, R_FIFO, (ch << 1)); |
| HFC_wait(hc); |
| HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF); |
| HFC_outb(hc, R_SLOT, (((ch / 4) * 8) + |
| ((ch % 4) * 4) + 1) << 1); |
| HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1)); |
| |
| /* PCM -> FIFO */ |
| HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1); |
| HFC_wait(hc); |
| HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF); |
| HFC_outb(hc, A_SUBCH_CFG, 0); |
| HFC_outb(hc, A_IRQ_MSK, 0); |
| if (hc->chan[ch].protocol != protocol) { |
| HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); |
| HFC_wait(hc); |
| } |
| HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) + |
| ((ch % 4) * 4) + 1) << 1) | 1); |
| HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1); |
| |
| /* tx path */ |
| /* PCM -> S/T */ |
| HFC_outb(hc, R_FIFO, (ch << 1) | 1); |
| HFC_wait(hc); |
| HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF); |
| HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) + |
| ((ch % 4) * 4)) << 1) | 1); |
| HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1); |
| |
| /* FIFO -> PCM */ |
| HFC_outb(hc, R_FIFO, 0x20 | (ch << 1)); |
| HFC_wait(hc); |
| HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF); |
| HFC_outb(hc, A_SUBCH_CFG, 0); |
| HFC_outb(hc, A_IRQ_MSK, 0); |
| if (hc->chan[ch].protocol != protocol) { |
| HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); |
| HFC_wait(hc); |
| } |
| /* tx silence */ |
| HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence); |
| HFC_outb(hc, R_SLOT, (((ch / 4) * 8) + |
| ((ch % 4) * 4)) << 1); |
| HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1)); |
| } else { |
| /* enable TX fifo */ |
| HFC_outb(hc, R_FIFO, ch << 1); |
| HFC_wait(hc); |
| if (hc->ctype == HFC_TYPE_XHFC) |
| HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 | |
| V_HDLC_TRP | V_IFF); |
| /* Enable FIFO, no interrupt */ |
| else |
| HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | |
| V_HDLC_TRP | V_IFF); |
| HFC_outb(hc, A_SUBCH_CFG, 0); |
| HFC_outb(hc, A_IRQ_MSK, 0); |
| if (hc->chan[ch].protocol != protocol) { |
| HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); |
| HFC_wait(hc); |
| } |
| /* tx silence */ |
| HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence); |
| /* enable RX fifo */ |
| HFC_outb(hc, R_FIFO, (ch << 1) | 1); |
| HFC_wait(hc); |
| if (hc->ctype == HFC_TYPE_XHFC) |
| HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 | |
| V_HDLC_TRP); |
| /* Enable FIFO, no interrupt*/ |
| else |
| HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 | |
| V_HDLC_TRP); |
| HFC_outb(hc, A_SUBCH_CFG, 0); |
| HFC_outb(hc, A_IRQ_MSK, 0); |
| if (hc->chan[ch].protocol != protocol) { |
| HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); |
| HFC_wait(hc); |
| } |
| } |
| if (hc->ctype != HFC_TYPE_E1) { |
| hc->hw.a_st_ctrl0[hc->chan[ch].port] |= |
| ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN; |
| HFC_outb(hc, R_ST_SEL, hc->chan[ch].port); |
| /* undocumented: delay after R_ST_SEL */ |
| udelay(1); |
| HFC_outb(hc, A_ST_CTRL0, |
| hc->hw.a_st_ctrl0[hc->chan[ch].port]); |
| } |
| if (hc->chan[ch].bch) |
| test_and_set_bit(FLG_TRANSPARENT, |
| &hc->chan[ch].bch->Flags); |
| break; |
| case (ISDN_P_B_HDLC): /* B-channel */ |
| case (ISDN_P_TE_S0): /* D-channel */ |
| case (ISDN_P_NT_S0): |
| case (ISDN_P_TE_E1): |
| case (ISDN_P_NT_E1): |
| /* enable TX fifo */ |
| HFC_outb(hc, R_FIFO, ch << 1); |
| HFC_wait(hc); |
| if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) { |
| /* E1 or B-channel */ |
| HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04); |
| HFC_outb(hc, A_SUBCH_CFG, 0); |
| } else { |
| /* D-Channel without HDLC fill flags */ |
| HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF); |
| HFC_outb(hc, A_SUBCH_CFG, 2); |
| } |
| HFC_outb(hc, A_IRQ_MSK, V_IRQ); |
| HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); |
| HFC_wait(hc); |
| /* enable RX fifo */ |
| HFC_outb(hc, R_FIFO, (ch << 1) | 1); |
| HFC_wait(hc); |
| HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04); |
| if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) |
| HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */ |
| else |
| HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */ |
| HFC_outb(hc, A_IRQ_MSK, V_IRQ); |
| HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); |
| HFC_wait(hc); |
| if (hc->chan[ch].bch) { |
| test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags); |
| if (hc->ctype != HFC_TYPE_E1) { |
| hc->hw.a_st_ctrl0[hc->chan[ch].port] |= |
| ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN; |
| HFC_outb(hc, R_ST_SEL, hc->chan[ch].port); |
| /* undocumented: delay after R_ST_SEL */ |
| udelay(1); |
| HFC_outb(hc, A_ST_CTRL0, |
| hc->hw.a_st_ctrl0[hc->chan[ch].port]); |
| } |
| } |
| break; |
| default: |
| printk(KERN_DEBUG "%s: protocol not known %x\n", |
| __func__, protocol); |
| hc->chan[ch].protocol = ISDN_P_NONE; |
| return -ENOPROTOOPT; |
| } |
| hc->chan[ch].protocol = protocol; |
| return 0; |
| } |
| |
| |
| /* |
| * connect/disconnect PCM |
| */ |
| |
| static void |
| hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx, |
| int slot_rx, int bank_rx) |
| { |
| if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) { |
| /* disable PCM */ |
| mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0); |
| return; |
| } |
| |
| /* enable pcm */ |
| mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx, |
| slot_rx, bank_rx); |
| } |
| |
| /* |
| * set/disable conference |
| */ |
| |
| static void |
| hfcmulti_conf(struct hfc_multi *hc, int ch, int num) |
| { |
| if (num >= 0 && num <= 7) |
| hc->chan[ch].conf = num; |
| else |
| hc->chan[ch].conf = -1; |
| mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx, |
| hc->chan[ch].bank_tx, hc->chan[ch].slot_rx, |
| hc->chan[ch].bank_rx); |
| } |
| |
| |
| /* |
| * set/disable sample loop |
| */ |
| |
| /* NOTE: this function is experimental and therefore disabled */ |
| |
| /* |
| * Layer 1 callback function |
| */ |
| static int |
| hfcm_l1callback(struct dchannel *dch, u_int cmd) |
| { |
| struct hfc_multi *hc = dch->hw; |
| u_long flags; |
| |
| switch (cmd) { |
| case INFO3_P8: |
| case INFO3_P10: |
| break; |
| case HW_RESET_REQ: |
| /* start activation */ |
| spin_lock_irqsave(&hc->lock, flags); |
| if (hc->ctype == HFC_TYPE_E1) { |
| if (debug & DEBUG_HFCMULTI_MSG) |
| printk(KERN_DEBUG |
| "%s: HW_RESET_REQ no BRI\n", |
| __func__); |
| } else { |
| HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port); |
| /* undocumented: delay after R_ST_SEL */ |
| udelay(1); |
| HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */ |
| udelay(6); /* wait at least 5,21us */ |
| HFC_outb(hc, A_ST_WR_STATE, 3); |
| HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT * 3)); |
| /* activate */ |
| } |
| spin_unlock_irqrestore(&hc->lock, flags); |
| l1_event(dch->l1, HW_POWERUP_IND); |
| break; |
| case HW_DEACT_REQ: |
| /* start deactivation */ |
| spin_lock_irqsave(&hc->lock, flags); |
| if (hc->ctype == HFC_TYPE_E1) { |
| if (debug & DEBUG_HFCMULTI_MSG) |
| printk(KERN_DEBUG |
| "%s: HW_DEACT_REQ no BRI\n", |
| __func__); |
| } else { |
| HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port); |
| /* undocumented: delay after R_ST_SEL */ |
| udelay(1); |
| HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2); |
| /* deactivate */ |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { |
| hc->syncronized &= |
| ~(1 << hc->chan[dch->slot].port); |
| plxsd_checksync(hc, 0); |
| } |
| } |
| skb_queue_purge(&dch->squeue); |
| if (dch->tx_skb) { |
| dev_kfree_skb(dch->tx_skb); |
| dch->tx_skb = NULL; |
| } |
| dch->tx_idx = 0; |
| if (dch->rx_skb) { |
| dev_kfree_skb(dch->rx_skb); |
| dch->rx_skb = NULL; |
| } |
| test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); |
| if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags)) |
| del_timer(&dch->timer); |
| spin_unlock_irqrestore(&hc->lock, flags); |
| break; |
| case HW_POWERUP_REQ: |
| spin_lock_irqsave(&hc->lock, flags); |
| if (hc->ctype == HFC_TYPE_E1) { |
| if (debug & DEBUG_HFCMULTI_MSG) |
| printk(KERN_DEBUG |
| "%s: HW_POWERUP_REQ no BRI\n", |
| __func__); |
| } else { |
| HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port); |
| /* undocumented: delay after R_ST_SEL */ |
| udelay(1); |
| HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */ |
| udelay(6); /* wait at least 5,21us */ |
| HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */ |
| } |
| spin_unlock_irqrestore(&hc->lock, flags); |
| break; |
| case PH_ACTIVATE_IND: |
| test_and_set_bit(FLG_ACTIVE, &dch->Flags); |
| _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, |
| GFP_ATOMIC); |
| break; |
| case PH_DEACTIVATE_IND: |
| test_and_clear_bit(FLG_ACTIVE, &dch->Flags); |
| _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, |
| GFP_ATOMIC); |
| break; |
| default: |
| if (dch->debug & DEBUG_HW) |
| printk(KERN_DEBUG "%s: unknown command %x\n", |
| __func__, cmd); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Layer2 -> Layer 1 Transfer |
| */ |
| |
| static int |
| handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb) |
| { |
| struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); |
| struct dchannel *dch = container_of(dev, struct dchannel, dev); |
| struct hfc_multi *hc = dch->hw; |
| struct mISDNhead *hh = mISDN_HEAD_P(skb); |
| int ret = -EINVAL; |
| unsigned int id; |
| u_long flags; |
| |
| switch (hh->prim) { |
| case PH_DATA_REQ: |
| if (skb->len < 1) |
| break; |
| spin_lock_irqsave(&hc->lock, flags); |
| ret = dchannel_senddata(dch, skb); |
| if (ret > 0) { /* direct TX */ |
| id = hh->id; /* skb can be freed */ |
| hfcmulti_tx(hc, dch->slot); |
| ret = 0; |
| /* start fifo */ |
| HFC_outb(hc, R_FIFO, 0); |
| HFC_wait(hc); |
| spin_unlock_irqrestore(&hc->lock, flags); |
| queue_ch_frame(ch, PH_DATA_CNF, id, NULL); |
| } else |
| spin_unlock_irqrestore(&hc->lock, flags); |
| return ret; |
| case PH_ACTIVATE_REQ: |
| if (dch->dev.D.protocol != ISDN_P_TE_S0) { |
| spin_lock_irqsave(&hc->lock, flags); |
| ret = 0; |
| if (debug & DEBUG_HFCMULTI_MSG) |
| printk(KERN_DEBUG |
| "%s: PH_ACTIVATE port %d (0..%d)\n", |
| __func__, hc->chan[dch->slot].port, |
| hc->ports - 1); |
| /* start activation */ |
| if (hc->ctype == HFC_TYPE_E1) { |
| ph_state_change(dch); |
| if (debug & DEBUG_HFCMULTI_STATE) |
| printk(KERN_DEBUG |
| "%s: E1 report state %x \n", |
| __func__, dch->state); |
| } else { |
| HFC_outb(hc, R_ST_SEL, |
| hc->chan[dch->slot].port); |
| /* undocumented: delay after R_ST_SEL */ |
| udelay(1); |
| HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1); |
| /* G1 */ |
| udelay(6); /* wait at least 5,21us */ |
| HFC_outb(hc, A_ST_WR_STATE, 1); |
| HFC_outb(hc, A_ST_WR_STATE, 1 | |
| (V_ST_ACT * 3)); /* activate */ |
| dch->state = 1; |
| } |
| spin_unlock_irqrestore(&hc->lock, flags); |
| } else |
| ret = l1_event(dch->l1, hh->prim); |
| break; |
| case PH_DEACTIVATE_REQ: |
| test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); |
| if (dch->dev.D.protocol != ISDN_P_TE_S0) { |
| spin_lock_irqsave(&hc->lock, flags); |
| if (debug & DEBUG_HFCMULTI_MSG) |
| printk(KERN_DEBUG |
| "%s: PH_DEACTIVATE port %d (0..%d)\n", |
| __func__, hc->chan[dch->slot].port, |
| hc->ports - 1); |
| /* start deactivation */ |
| if (hc->ctype == HFC_TYPE_E1) { |
| if (debug & DEBUG_HFCMULTI_MSG) |
| printk(KERN_DEBUG |
| "%s: PH_DEACTIVATE no BRI\n", |
| __func__); |
| } else { |
| HFC_outb(hc, R_ST_SEL, |
| hc->chan[dch->slot].port); |
| /* undocumented: delay after R_ST_SEL */ |
| udelay(1); |
| HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2); |
| /* deactivate */ |
| dch->state = 1; |
| } |
| skb_queue_purge(&dch->squeue); |
| if (dch->tx_skb) { |
| dev_kfree_skb(dch->tx_skb); |
| dch->tx_skb = NULL; |
| } |
| dch->tx_idx = 0; |
| if (dch->rx_skb) { |
| dev_kfree_skb(dch->rx_skb); |
| dch->rx_skb = NULL; |
| } |
| test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); |
| if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags)) |
| del_timer(&dch->timer); |
| #ifdef FIXME |
| if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags)) |
| dchannel_sched_event(&hc->dch, D_CLEARBUSY); |
| #endif |
| ret = 0; |
| spin_unlock_irqrestore(&hc->lock, flags); |
| } else |
| ret = l1_event(dch->l1, hh->prim); |
| break; |
| } |
| if (!ret) |
| dev_kfree_skb(skb); |
| return ret; |
| } |
| |
| static void |
| deactivate_bchannel(struct bchannel *bch) |
| { |
| struct hfc_multi *hc = bch->hw; |
| u_long flags; |
| |
| spin_lock_irqsave(&hc->lock, flags); |
| mISDN_clear_bchannel(bch); |
| hc->chan[bch->slot].coeff_count = 0; |
| hc->chan[bch->slot].rx_off = 0; |
| hc->chan[bch->slot].conf = -1; |
| mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0); |
| spin_unlock_irqrestore(&hc->lock, flags); |
| } |
| |
| static int |
| handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb) |
| { |
| struct bchannel *bch = container_of(ch, struct bchannel, ch); |
| struct hfc_multi *hc = bch->hw; |
| int ret = -EINVAL; |
| struct mISDNhead *hh = mISDN_HEAD_P(skb); |
| unsigned long flags; |
| |
| switch (hh->prim) { |
| case PH_DATA_REQ: |
| if (!skb->len) |
| break; |
| spin_lock_irqsave(&hc->lock, flags); |
| ret = bchannel_senddata(bch, skb); |
| if (ret > 0) { /* direct TX */ |
| hfcmulti_tx(hc, bch->slot); |
| ret = 0; |
| /* start fifo */ |
| HFC_outb_nodebug(hc, R_FIFO, 0); |
| HFC_wait_nodebug(hc); |
| } |
| spin_unlock_irqrestore(&hc->lock, flags); |
| return ret; |
| case PH_ACTIVATE_REQ: |
| if (debug & DEBUG_HFCMULTI_MSG) |
| printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n", |
| __func__, bch->slot); |
| spin_lock_irqsave(&hc->lock, flags); |
| /* activate B-channel if not already activated */ |
| if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) { |
| hc->chan[bch->slot].txpending = 0; |
| ret = mode_hfcmulti(hc, bch->slot, |
| ch->protocol, |
| hc->chan[bch->slot].slot_tx, |
| hc->chan[bch->slot].bank_tx, |
| hc->chan[bch->slot].slot_rx, |
| hc->chan[bch->slot].bank_rx); |
| if (!ret) { |
| if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf |
| && test_bit(HFC_CHIP_DTMF, &hc->chip)) { |
| /* start decoder */ |
| hc->dtmf = 1; |
| if (debug & DEBUG_HFCMULTI_DTMF) |
| printk(KERN_DEBUG |
| "%s: start dtmf decoder\n", |
| __func__); |
| HFC_outb(hc, R_DTMF, hc->hw.r_dtmf | |
| V_RST_DTMF); |
| } |
| } |
| } else |
| ret = 0; |
| spin_unlock_irqrestore(&hc->lock, flags); |
| if (!ret) |
| _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL, |
| GFP_KERNEL); |
| break; |
| case PH_CONTROL_REQ: |
| spin_lock_irqsave(&hc->lock, flags); |
| switch (hh->id) { |
| case HFC_SPL_LOOP_ON: /* set sample loop */ |
| if (debug & DEBUG_HFCMULTI_MSG) |
| printk(KERN_DEBUG |
| "%s: HFC_SPL_LOOP_ON (len = %d)\n", |
| __func__, skb->len); |
| ret = 0; |
| break; |
| case HFC_SPL_LOOP_OFF: /* set silence */ |
| if (debug & DEBUG_HFCMULTI_MSG) |
| printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n", |
| __func__); |
| ret = 0; |
| break; |
| default: |
| printk(KERN_ERR |
| "%s: unknown PH_CONTROL_REQ info %x\n", |
| __func__, hh->id); |
| ret = -EINVAL; |
| } |
| spin_unlock_irqrestore(&hc->lock, flags); |
| break; |
| case PH_DEACTIVATE_REQ: |
| deactivate_bchannel(bch); /* locked there */ |
| _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL, |
| GFP_KERNEL); |
| ret = 0; |
| break; |
| } |
| if (!ret) |
| dev_kfree_skb(skb); |
| return ret; |
| } |
| |
| /* |
| * bchannel control function |
| */ |
| static int |
| channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq) |
| { |
| int ret = 0; |
| struct dsp_features *features = |
| (struct dsp_features *)(*((u_long *)&cq->p1)); |
| struct hfc_multi *hc = bch->hw; |
| int slot_tx; |
| int bank_tx; |
| int slot_rx; |
| int bank_rx; |
| int num; |
| |
| switch (cq->op) { |
| case MISDN_CTRL_GETOP: |
| ret = mISDN_ctrl_bchannel(bch, cq); |
| cq->op |= MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP; |
| break; |
| case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */ |
| ret = mISDN_ctrl_bchannel(bch, cq); |
| hc->chan[bch->slot].rx_off = !!cq->p1; |
| if (!hc->chan[bch->slot].rx_off) { |
| /* reset fifo on rx on */ |
| HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1); |
| HFC_wait_nodebug(hc); |
| HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F); |
| HFC_wait_nodebug(hc); |
| } |
| if (debug & DEBUG_HFCMULTI_MSG) |
| printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n", |
| __func__, bch->nr, hc->chan[bch->slot].rx_off); |
| break; |
| case MISDN_CTRL_FILL_EMPTY: |
| ret = mISDN_ctrl_bchannel(bch, cq); |
| hc->silence = bch->fill[0]; |
| memset(hc->silence_data, hc->silence, sizeof(hc->silence_data)); |
| break; |
| case MISDN_CTRL_HW_FEATURES: /* fill features structure */ |
| if (debug & DEBUG_HFCMULTI_MSG) |
| printk(KERN_DEBUG "%s: HW_FEATURE request\n", |
| __func__); |
| /* create confirm */ |
| features->hfc_id = hc->id; |
| if (test_bit(HFC_CHIP_DTMF, &hc->chip)) |
| features->hfc_dtmf = 1; |
| if (test_bit(HFC_CHIP_CONF, &hc->chip)) |
| features->hfc_conf = 1; |
| features->hfc_loops = 0; |
| if (test_bit(HFC_CHIP_B410P, &hc->chip)) { |
| features->hfc_echocanhw = 1; |
| } else { |
| features->pcm_id = hc->pcm; |
| features->pcm_slots = hc->slots; |
| features->pcm_banks = 2; |
| } |
| break; |
| case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */ |
| slot_tx = cq->p1 & 0xff; |
| bank_tx = cq->p1 >> 8; |
| slot_rx = cq->p2 & 0xff; |
| bank_rx = cq->p2 >> 8; |
| if (debug & DEBUG_HFCMULTI_MSG) |
| printk(KERN_DEBUG |
| "%s: HFC_PCM_CONN slot %d bank %d (TX) " |
| "slot %d bank %d (RX)\n", |
| __func__, slot_tx, bank_tx, |
| slot_rx, bank_rx); |
| if (slot_tx < hc->slots && bank_tx <= 2 && |
| slot_rx < hc->slots && bank_rx <= 2) |
| hfcmulti_pcm(hc, bch->slot, |
| slot_tx, bank_tx, slot_rx, bank_rx); |
| else { |
| printk(KERN_WARNING |
| "%s: HFC_PCM_CONN slot %d bank %d (TX) " |
| "slot %d bank %d (RX) out of range\n", |
| __func__, slot_tx, bank_tx, |
| slot_rx, bank_rx); |
| ret = -EINVAL; |
| } |
| break; |
| case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */ |
| if (debug & DEBUG_HFCMULTI_MSG) |
| printk(KERN_DEBUG "%s: HFC_PCM_DISC\n", |
| __func__); |
| hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0); |
| break; |
| case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */ |
| num = cq->p1 & 0xff; |
| if (debug & DEBUG_HFCMULTI_MSG) |
| printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n", |
| __func__, num); |
| if (num <= 7) |
| hfcmulti_conf(hc, bch->slot, num); |
| else { |
| printk(KERN_WARNING |
| "%s: HW_CONF_JOIN conf %d out of range\n", |
| __func__, num); |
| ret = -EINVAL; |
| } |
| break; |
| case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */ |
| if (debug & DEBUG_HFCMULTI_MSG) |
| printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__); |
| hfcmulti_conf(hc, bch->slot, -1); |
| break; |
| case MISDN_CTRL_HFC_ECHOCAN_ON: |
| if (debug & DEBUG_HFCMULTI_MSG) |
| printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__); |
| if (test_bit(HFC_CHIP_B410P, &hc->chip)) |
| vpm_echocan_on(hc, bch->slot, cq->p1); |
| else |
| ret = -EINVAL; |
| break; |
| |
| case MISDN_CTRL_HFC_ECHOCAN_OFF: |
| if (debug & DEBUG_HFCMULTI_MSG) |
| printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n", |
| __func__); |
| if (test_bit(HFC_CHIP_B410P, &hc->chip)) |
| vpm_echocan_off(hc, bch->slot); |
| else |
| ret = -EINVAL; |
| break; |
| default: |
| ret = mISDN_ctrl_bchannel(bch, cq); |
| break; |
| } |
| return ret; |
| } |
| |
| static int |
| hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg) |
| { |
| struct bchannel *bch = container_of(ch, struct bchannel, ch); |
| struct hfc_multi *hc = bch->hw; |
| int err = -EINVAL; |
| u_long flags; |
| |
| if (bch->debug & DEBUG_HW) |
| printk(KERN_DEBUG "%s: cmd:%x %p\n", |
| __func__, cmd, arg); |
| switch (cmd) { |
| case CLOSE_CHANNEL: |
| test_and_clear_bit(FLG_OPEN, &bch->Flags); |
| deactivate_bchannel(bch); /* locked there */ |
| ch->protocol = ISDN_P_NONE; |
| ch->peer = NULL; |
| module_put(THIS_MODULE); |
| err = 0; |
| break; |
| case CONTROL_CHANNEL: |
| spin_lock_irqsave(&hc->lock, flags); |
| err = channel_bctrl(bch, arg); |
| spin_unlock_irqrestore(&hc->lock, flags); |
| break; |
| default: |
| printk(KERN_WARNING "%s: unknown prim(%x)\n", |
| __func__, cmd); |
| } |
| return err; |
| } |
| |
| /* |
| * handle D-channel events |
| * |
| * handle state change event |
| */ |
| static void |
| ph_state_change(struct dchannel *dch) |
| { |
| struct hfc_multi *hc; |
| int ch, i; |
| |
| if (!dch) { |
| printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__); |
| return; |
| } |
| hc = dch->hw; |
| ch = dch->slot; |
| |
| if (hc->ctype == HFC_TYPE_E1) { |
| if (dch->dev.D.protocol == ISDN_P_TE_E1) { |
| if (debug & DEBUG_HFCMULTI_STATE) |
| printk(KERN_DEBUG |
| "%s: E1 TE (id=%d) newstate %x\n", |
| __func__, hc->id, dch->state); |
| } else { |
| if (debug & DEBUG_HFCMULTI_STATE) |
| printk(KERN_DEBUG |
| "%s: E1 NT (id=%d) newstate %x\n", |
| __func__, hc->id, dch->state); |
| } |
| switch (dch->state) { |
| case (1): |
| if (hc->e1_state != 1) { |
| for (i = 1; i <= 31; i++) { |
| /* reset fifos on e1 activation */ |
| HFC_outb_nodebug(hc, R_FIFO, |
| (i << 1) | 1); |
| HFC_wait_nodebug(hc); |
| HFC_outb_nodebug(hc, R_INC_RES_FIFO, |
| V_RES_F); |
| HFC_wait_nodebug(hc); |
| } |
| } |
| test_and_set_bit(FLG_ACTIVE, &dch->Flags); |
| _queue_data(&dch->dev.D, PH_ACTIVATE_IND, |
| MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); |
| break; |
| |
| default: |
| if (hc->e1_state != 1) |
| return; |
| test_and_clear_bit(FLG_ACTIVE, &dch->Flags); |
| _queue_data(&dch->dev.D, PH_DEACTIVATE_IND, |
| MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); |
| } |
| hc->e1_state = dch->state; |
| } else { |
| if (dch->dev.D.protocol == ISDN_P_TE_S0) { |
| if (debug & DEBUG_HFCMULTI_STATE) |
| printk(KERN_DEBUG |
| "%s: S/T TE newstate %x\n", |
| __func__, dch->state); |
| switch (dch->state) { |
| case (0): |
| l1_event(dch->l1, HW_RESET_IND); |
| break; |
| case (3): |
| l1_event(dch->l1, HW_DEACT_IND); |
| break; |
| case (5): |
| case (8): |
| l1_event(dch->l1, ANYSIGNAL); |
| break; |
| case (6): |
| l1_event(dch->l1, INFO2); |
| break; |
| case (7): |
| l1_event(dch->l1, INFO4_P8); |
| break; |
| } |
| } else { |
| if (debug & DEBUG_HFCMULTI_STATE) |
| printk(KERN_DEBUG "%s: S/T NT newstate %x\n", |
| __func__, dch->state); |
| switch (dch->state) { |
| case (2): |
| if (hc->chan[ch].nt_timer == 0) { |
| hc->chan[ch].nt_timer = -1; |
| HFC_outb(hc, R_ST_SEL, |
| hc->chan[ch].port); |
| /* undocumented: delay after R_ST_SEL */ |
| udelay(1); |
| HFC_outb(hc, A_ST_WR_STATE, 4 | |
| V_ST_LD_STA); /* G4 */ |
| udelay(6); /* wait at least 5,21us */ |
| HFC_outb(hc, A_ST_WR_STATE, 4); |
| dch->state = 4; |
| } else { |
| /* one extra count for the next event */ |
| hc->chan[ch].nt_timer = |
| nt_t1_count[poll_timer] + 1; |
| HFC_outb(hc, R_ST_SEL, |
| hc->chan[ch].port); |
| /* undocumented: delay after R_ST_SEL */ |
| udelay(1); |
| /* allow G2 -> G3 transition */ |
| HFC_outb(hc, A_ST_WR_STATE, 2 | |
| V_SET_G2_G3); |
| } |
| break; |
| case (1): |
| hc->chan[ch].nt_timer = -1; |
| test_and_clear_bit(FLG_ACTIVE, &dch->Flags); |
| _queue_data(&dch->dev.D, PH_DEACTIVATE_IND, |
| MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); |
| break; |
| case (4): |
| hc->chan[ch].nt_timer = -1; |
| break; |
| case (3): |
| hc->chan[ch].nt_timer = -1; |
| test_and_set_bit(FLG_ACTIVE, &dch->Flags); |
| _queue_data(&dch->dev.D, PH_ACTIVATE_IND, |
| MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); |
| break; |
| } |
| } |
| } |
| } |
| |
| /* |
| * called for card mode init message |
| */ |
| |
| static void |
| hfcmulti_initmode(struct dchannel *dch) |
| { |
| struct hfc_multi *hc = dch->hw; |
| u_char a_st_wr_state, r_e1_wr_sta; |
| int i, pt; |
| |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: entered\n", __func__); |
| |
| i = dch->slot; |
| pt = hc->chan[i].port; |
| if (hc->ctype == HFC_TYPE_E1) { |
| /* E1 */ |
| hc->chan[hc->dnum[pt]].slot_tx = -1; |
| hc->chan[hc->dnum[pt]].slot_rx = -1; |
| hc->chan[hc->dnum[pt]].conf = -1; |
| if (hc->dnum[pt]) { |
| mode_hfcmulti(hc, dch->slot, dch->dev.D.protocol, |
| -1, 0, -1, 0); |
| timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0); |
| } |
| for (i = 1; i <= 31; i++) { |
| if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */ |
| continue; |
| hc->chan[i].slot_tx = -1; |
| hc->chan[i].slot_rx = -1; |
| hc->chan[i].conf = -1; |
| mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0); |
| } |
| } |
| if (hc->ctype == HFC_TYPE_E1 && pt == 0) { |
| /* E1, port 0 */ |
| dch = hc->chan[hc->dnum[0]].dch; |
| if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) { |
| HFC_outb(hc, R_LOS0, 255); /* 2 ms */ |
| HFC_outb(hc, R_LOS1, 255); /* 512 ms */ |
| } |
| if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dnum[0]].cfg)) { |
| HFC_outb(hc, R_RX0, 0); |
| hc->hw.r_tx0 = 0 | V_OUT_EN; |
| } else { |
| HFC_outb(hc, R_RX0, 1); |
| hc->hw.r_tx0 = 1 | V_OUT_EN; |
| } |
| hc->hw.r_tx1 = V_ATX | V_NTRI; |
| HFC_outb(hc, R_TX0, hc->hw.r_tx0); |
| HFC_outb(hc, R_TX1, hc->hw.r_tx1); |
| HFC_outb(hc, R_TX_FR0, 0x00); |
| HFC_outb(hc, R_TX_FR1, 0xf8); |
| |
| if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg)) |
| HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E); |
| |
| HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0); |
| |
| if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg)) |
| HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC); |
| |
| if (dch->dev.D.protocol == ISDN_P_NT_E1) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: E1 port is NT-mode\n", |
| __func__); |
| r_e1_wr_sta = 0; /* G0 */ |
| hc->e1_getclock = 0; |
| } else { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: E1 port is TE-mode\n", |
| __func__); |
| r_e1_wr_sta = 0; /* F0 */ |
| hc->e1_getclock = 1; |
| } |
| if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) |
| HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX); |
| else |
| HFC_outb(hc, R_SYNC_OUT, 0); |
| if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip)) |
| hc->e1_getclock = 1; |
| if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip)) |
| hc->e1_getclock = 0; |
| if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) { |
| /* SLAVE (clock master) */ |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG |
| "%s: E1 port is clock master " |
| "(clock from PCM)\n", __func__); |
| HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC); |
| } else { |
| if (hc->e1_getclock) { |
| /* MASTER (clock slave) */ |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG |
| "%s: E1 port is clock slave " |
| "(clock to PCM)\n", __func__); |
| HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS); |
| } else { |
| /* MASTER (clock master) */ |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: E1 port is " |
| "clock master " |
| "(clock from QUARTZ)\n", |
| __func__); |
| HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | |
| V_PCM_SYNC | V_JATT_OFF); |
| HFC_outb(hc, R_SYNC_OUT, 0); |
| } |
| } |
| HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */ |
| HFC_outb(hc, R_PWM_MD, V_PWM0_MD); |
| HFC_outb(hc, R_PWM0, 0x50); |
| HFC_outb(hc, R_PWM1, 0xff); |
| /* state machine setup */ |
| HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA); |
| udelay(6); /* wait at least 5,21us */ |
| HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta); |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { |
| hc->syncronized = 0; |
| plxsd_checksync(hc, 0); |
| } |
| } |
| if (hc->ctype != HFC_TYPE_E1) { |
| /* ST */ |
| hc->chan[i].slot_tx = -1; |
| hc->chan[i].slot_rx = -1; |
| hc->chan[i].conf = -1; |
| mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0); |
| timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0); |
| hc->chan[i - 2].slot_tx = -1; |
| hc->chan[i - 2].slot_rx = -1; |
| hc->chan[i - 2].conf = -1; |
| mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0); |
| hc->chan[i - 1].slot_tx = -1; |
| hc->chan[i - 1].slot_rx = -1; |
| hc->chan[i - 1].conf = -1; |
| mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0); |
| /* select interface */ |
| HFC_outb(hc, R_ST_SEL, pt); |
| /* undocumented: delay after R_ST_SEL */ |
| udelay(1); |
| if (dch->dev.D.protocol == ISDN_P_NT_S0) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG |
| "%s: ST port %d is NT-mode\n", |
| __func__, pt); |
| /* clock delay */ |
| HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt); |
| a_st_wr_state = 1; /* G1 */ |
| hc->hw.a_st_ctrl0[pt] = V_ST_MD; |
| } else { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG |
| "%s: ST port %d is TE-mode\n", |
| __func__, pt); |
| /* clock delay */ |
| HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te); |
| a_st_wr_state = 2; /* F2 */ |
| hc->hw.a_st_ctrl0[pt] = 0; |
| } |
| if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg)) |
| hc->hw.a_st_ctrl0[pt] |= V_TX_LI; |
| if (hc->ctype == HFC_TYPE_XHFC) { |
| hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */; |
| HFC_outb(hc, 0x35 /* A_ST_CTRL3 */, |
| 0x7c << 1 /* V_ST_PULSE */); |
| } |
| /* line setup */ |
| HFC_outb(hc, A_ST_CTRL0, hc->hw.a_st_ctrl0[pt]); |
| /* disable E-channel */ |
| if ((dch->dev.D.protocol == ISDN_P_NT_S0) || |
| test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg)) |
| HFC_outb(hc, A_ST_CTRL1, V_E_IGNO); |
| else |
| HFC_outb(hc, A_ST_CTRL1, 0); |
| /* enable B-channel receive */ |
| HFC_outb(hc, A_ST_CTRL2, V_B1_RX_EN | V_B2_RX_EN); |
| /* state machine setup */ |
| HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA); |
| udelay(6); /* wait at least 5,21us */ |
| HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state); |
| hc->hw.r_sci_msk |= 1 << pt; |
| /* state machine interrupts */ |
| HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk); |
| /* unset sync on port */ |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { |
| hc->syncronized &= |
| ~(1 << hc->chan[dch->slot].port); |
| plxsd_checksync(hc, 0); |
| } |
| } |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk("%s: done\n", __func__); |
| } |
| |
| |
| static int |
| open_dchannel(struct hfc_multi *hc, struct dchannel *dch, |
| struct channel_req *rq) |
| { |
| int err = 0; |
| u_long flags; |
| |
| if (debug & DEBUG_HW_OPEN) |
| printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__, |
| dch->dev.id, __builtin_return_address(0)); |
| if (rq->protocol == ISDN_P_NONE) |
| return -EINVAL; |
| if ((dch->dev.D.protocol != ISDN_P_NONE) && |
| (dch->dev.D.protocol != rq->protocol)) { |
| if (debug & DEBUG_HFCMULTI_MODE) |
| printk(KERN_DEBUG "%s: change protocol %x to %x\n", |
| __func__, dch->dev.D.protocol, rq->protocol); |
| } |
| if ((dch->dev.D.protocol == ISDN_P_TE_S0) && |
| (rq->protocol != ISDN_P_TE_S0)) |
| l1_event(dch->l1, CLOSE_CHANNEL); |
| if (dch->dev.D.protocol != rq->protocol) { |
| if (rq->protocol == ISDN_P_TE_S0) { |
| err = create_l1(dch, hfcm_l1callback); |
| if (err) |
| return err; |
| } |
| dch->dev.D.protocol = rq->protocol; |
| spin_lock_irqsave(&hc->lock, flags); |
| hfcmulti_initmode(dch); |
| spin_unlock_irqrestore(&hc->lock, flags); |
| } |
| if (test_bit(FLG_ACTIVE, &dch->Flags)) |
| _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY, |
| 0, NULL, GFP_KERNEL); |
| rq->ch = &dch->dev.D; |
| if (!try_module_get(THIS_MODULE)) |
| printk(KERN_WARNING "%s:cannot get module\n", __func__); |
| return 0; |
| } |
| |
| static int |
| open_bchannel(struct hfc_multi *hc, struct dchannel *dch, |
| struct channel_req *rq) |
| { |
| struct bchannel *bch; |
| int ch; |
| |
| if (!test_channelmap(rq->adr.channel, dch->dev.channelmap)) |
| return -EINVAL; |
| if (rq->protocol == ISDN_P_NONE) |
| return -EINVAL; |
| if (hc->ctype == HFC_TYPE_E1) |
| ch = rq->adr.channel; |
| else |
| ch = (rq->adr.channel - 1) + (dch->slot - 2); |
| bch = hc->chan[ch].bch; |
| if (!bch) { |
| printk(KERN_ERR "%s:internal error ch %d has no bch\n", |
| __func__, ch); |
| return -EINVAL; |
| } |
| if (test_and_set_bit(FLG_OPEN, &bch->Flags)) |
| return -EBUSY; /* b-channel can be only open once */ |
| bch->ch.protocol = rq->protocol; |
| hc->chan[ch].rx_off = 0; |
| rq->ch = &bch->ch; |
| if (!try_module_get(THIS_MODULE)) |
| printk(KERN_WARNING "%s:cannot get module\n", __func__); |
| return 0; |
| } |
| |
| /* |
| * device control function |
| */ |
| static int |
| channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq) |
| { |
| struct hfc_multi *hc = dch->hw; |
| int ret = 0; |
| int wd_mode, wd_cnt; |
| |
| switch (cq->op) { |
| case MISDN_CTRL_GETOP: |
| cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_L1_TIMER3; |
| break; |
| case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */ |
| wd_cnt = cq->p1 & 0xf; |
| wd_mode = !!(cq->p1 >> 4); |
| if (debug & DEBUG_HFCMULTI_MSG) |
| printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s" |
| ", counter 0x%x\n", __func__, |
| wd_mode ? "AUTO" : "MANUAL", wd_cnt); |
| /* set the watchdog timer */ |
| HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4)); |
| hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0); |
| if (hc->ctype == HFC_TYPE_XHFC) |
| hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */; |
| /* init the watchdog register and reset the counter */ |
| HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES); |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { |
| /* enable the watchdog output for Speech-Design */ |
| HFC_outb(hc, R_GPIO_SEL, V_GPIO_SEL7); |
| HFC_outb(hc, R_GPIO_EN1, V_GPIO_EN15); |
| HFC_outb(hc, R_GPIO_OUT1, 0); |
| HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15); |
| } |
| break; |
| case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */ |
| if (debug & DEBUG_HFCMULTI_MSG) |
| printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n", |
| __func__); |
| HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES); |
| break; |
| case MISDN_CTRL_L1_TIMER3: |
| ret = l1_event(dch->l1, HW_TIMER3_VALUE | (cq->p1 & 0xff)); |
| break; |
| default: |
| printk(KERN_WARNING "%s: unknown Op %x\n", |
| __func__, cq->op); |
| ret = -EINVAL; |
| break; |
| } |
| return ret; |
| } |
| |
| static int |
| hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg) |
| { |
| struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); |
| struct dchannel *dch = container_of(dev, struct dchannel, dev); |
| struct hfc_multi *hc = dch->hw; |
| struct channel_req *rq; |
| int err = 0; |
| u_long flags; |
| |
| if (dch->debug & DEBUG_HW) |
| printk(KERN_DEBUG "%s: cmd:%x %p\n", |
| __func__, cmd, arg); |
| switch (cmd) { |
| case OPEN_CHANNEL: |
| rq = arg; |
| switch (rq->protocol) { |
| case ISDN_P_TE_S0: |
| case ISDN_P_NT_S0: |
| if (hc->ctype == HFC_TYPE_E1) { |
| err = -EINVAL; |
| break; |
| } |
| err = open_dchannel(hc, dch, rq); /* locked there */ |
| break; |
| case ISDN_P_TE_E1: |
| case ISDN_P_NT_E1: |
| if (hc->ctype != HFC_TYPE_E1) { |
| err = -EINVAL; |
| break; |
| } |
| err = open_dchannel(hc, dch, rq); /* locked there */ |
| break; |
| default: |
| spin_lock_irqsave(&hc->lock, flags); |
| err = open_bchannel(hc, dch, rq); |
| spin_unlock_irqrestore(&hc->lock, flags); |
| } |
| break; |
| case CLOSE_CHANNEL: |
| if (debug & DEBUG_HW_OPEN) |
| printk(KERN_DEBUG "%s: dev(%d) close from %p\n", |
| __func__, dch->dev.id, |
| __builtin_return_address(0)); |
| module_put(THIS_MODULE); |
| break; |
| case CONTROL_CHANNEL: |
| spin_lock_irqsave(&hc->lock, flags); |
| err = channel_dctrl(dch, arg); |
| spin_unlock_irqrestore(&hc->lock, flags); |
| break; |
| default: |
| if (dch->debug & DEBUG_HW) |
| printk(KERN_DEBUG "%s: unknown command %x\n", |
| __func__, cmd); |
| err = -EINVAL; |
| } |
| return err; |
| } |
| |
| static int |
| clockctl(void *priv, int enable) |
| { |
| struct hfc_multi *hc = priv; |
| |
| hc->iclock_on = enable; |
| return 0; |
| } |
| |
| /* |
| * initialize the card |
| */ |
| |
| /* |
| * start timer irq, wait some time and check if we have interrupts. |
| * if not, reset chip and try again. |
| */ |
| static int |
| init_card(struct hfc_multi *hc) |
| { |
| int err = -EIO; |
| u_long flags; |
| void __iomem *plx_acc; |
| u_long plx_flags; |
| |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: entered\n", __func__); |
| |
| spin_lock_irqsave(&hc->lock, flags); |
| /* set interrupts but leave global interrupt disabled */ |
| hc->hw.r_irq_ctrl = V_FIFO_IRQ; |
| disable_hwirq(hc); |
| spin_unlock_irqrestore(&hc->lock, flags); |
| |
| if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED, |
| "HFC-multi", hc)) { |
| printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n", |
| hc->irq); |
| hc->irq = 0; |
| return -EIO; |
| } |
| |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { |
| spin_lock_irqsave(&plx_lock, plx_flags); |
| plx_acc = hc->plx_membase + PLX_INTCSR; |
| writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE), |
| plx_acc); /* enable PCI & LINT1 irq */ |
| spin_unlock_irqrestore(&plx_lock, plx_flags); |
| } |
| |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: IRQ %d count %d\n", |
| __func__, hc->irq, hc->irqcnt); |
| err = init_chip(hc); |
| if (err) |
| goto error; |
| /* |
| * Finally enable IRQ output |
| * this is only allowed, if an IRQ routine is already |
| * established for this HFC, so don't do that earlier |
| */ |
| spin_lock_irqsave(&hc->lock, flags); |
| enable_hwirq(hc); |
| spin_unlock_irqrestore(&hc->lock, flags); |
| /* printk(KERN_DEBUG "no master irq set!!!\n"); */ |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| schedule_timeout((100 * HZ) / 1000); /* Timeout 100ms */ |
| /* turn IRQ off until chip is completely initialized */ |
| spin_lock_irqsave(&hc->lock, flags); |
| disable_hwirq(hc); |
| spin_unlock_irqrestore(&hc->lock, flags); |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: IRQ %d count %d\n", |
| __func__, hc->irq, hc->irqcnt); |
| if (hc->irqcnt) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: done\n", __func__); |
| |
| return 0; |
| } |
| if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) { |
| printk(KERN_INFO "ignoring missing interrupts\n"); |
| return 0; |
| } |
| |
| printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n", |
| hc->irq); |
| |
| err = -EIO; |
| |
| error: |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { |
| spin_lock_irqsave(&plx_lock, plx_flags); |
| plx_acc = hc->plx_membase + PLX_INTCSR; |
| writew(0x00, plx_acc); /*disable IRQs*/ |
| spin_unlock_irqrestore(&plx_lock, plx_flags); |
| } |
| |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq); |
| if (hc->irq) { |
| free_irq(hc->irq, hc); |
| hc->irq = 0; |
| } |
| |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err); |
| return err; |
| } |
| |
| /* |
| * find pci device and set it up |
| */ |
| |
| static int |
| setup_pci(struct hfc_multi *hc, struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| struct hm_map *m = (struct hm_map *)ent->driver_data; |
| |
| printk(KERN_INFO |
| "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n", |
| m->vendor_name, m->card_name, m->clock2 ? "double" : "normal"); |
| |
| hc->pci_dev = pdev; |
| if (m->clock2) |
| test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip); |
| |
| if (ent->vendor == PCI_VENDOR_ID_DIGIUM && |
| ent->device == PCI_DEVICE_ID_DIGIUM_HFC4S) { |
| test_and_set_bit(HFC_CHIP_B410P, &hc->chip); |
| test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip); |
| test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip); |
| hc->slots = 32; |
| } |
| |
| if (hc->pci_dev->irq <= 0) { |
| printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n"); |
| return -EIO; |
| } |
| if (pci_enable_device(hc->pci_dev)) { |
| printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n"); |
| return -EIO; |
| } |
| hc->leds = m->leds; |
| hc->ledstate = 0xAFFEAFFE; |
| hc->opticalsupport = m->opticalsupport; |
| |
| hc->pci_iobase = 0; |
| hc->pci_membase = NULL; |
| hc->plx_membase = NULL; |
| |
| /* set memory access methods */ |
| if (m->io_mode) /* use mode from card config */ |
| hc->io_mode = m->io_mode; |
| switch (hc->io_mode) { |
| case HFC_IO_MODE_PLXSD: |
| test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip); |
| hc->slots = 128; /* required */ |
| hc->HFC_outb = HFC_outb_pcimem; |
| hc->HFC_inb = HFC_inb_pcimem; |
| hc->HFC_inw = HFC_inw_pcimem; |
| hc->HFC_wait = HFC_wait_pcimem; |
| hc->read_fifo = read_fifo_pcimem; |
| hc->write_fifo = write_fifo_pcimem; |
| hc->plx_origmembase = hc->pci_dev->resource[0].start; |
| /* MEMBASE 1 is PLX PCI Bridge */ |
| |
| if (!hc->plx_origmembase) { |
| printk(KERN_WARNING |
| "HFC-multi: No IO-Memory for PCI PLX bridge found\n"); |
| pci_disable_device(hc->pci_dev); |
| return -EIO; |
| } |
| |
| hc->plx_membase = ioremap(hc->plx_origmembase, 0x80); |
| if (!hc->plx_membase) { |
| printk(KERN_WARNING |
| "HFC-multi: failed to remap plx address space. " |
| "(internal error)\n"); |
| pci_disable_device(hc->pci_dev); |
| return -EIO; |
| } |
| printk(KERN_INFO |
| "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n", |
| (u_long)hc->plx_membase, hc->plx_origmembase); |
| |
| hc->pci_origmembase = hc->pci_dev->resource[2].start; |
| /* MEMBASE 1 is PLX PCI Bridge */ |
| if (!hc->pci_origmembase) { |
| printk(KERN_WARNING |
| "HFC-multi: No IO-Memory for PCI card found\n"); |
| pci_disable_device(hc->pci_dev); |
| return -EIO; |
| } |
| |
| hc->pci_membase = ioremap(hc->pci_origmembase, 0x400); |
| if (!hc->pci_membase) { |
| printk(KERN_WARNING "HFC-multi: failed to remap io " |
| "address space. (internal error)\n"); |
| pci_disable_device(hc->pci_dev); |
| return -EIO; |
| } |
| |
| printk(KERN_INFO |
| "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d " |
| "leds-type %d\n", |
| hc->id, (u_long)hc->pci_membase, hc->pci_origmembase, |
| hc->pci_dev->irq, HZ, hc->leds); |
| pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO); |
| break; |
| case HFC_IO_MODE_PCIMEM: |
| hc->HFC_outb = HFC_outb_pcimem; |
| hc->HFC_inb = HFC_inb_pcimem; |
| hc->HFC_inw = HFC_inw_pcimem; |
| hc->HFC_wait = HFC_wait_pcimem; |
| hc->read_fifo = read_fifo_pcimem; |
| hc->write_fifo = write_fifo_pcimem; |
| hc->pci_origmembase = hc->pci_dev->resource[1].start; |
| if (!hc->pci_origmembase) { |
| printk(KERN_WARNING |
| "HFC-multi: No IO-Memory for PCI card found\n"); |
| pci_disable_device(hc->pci_dev); |
| return -EIO; |
| } |
| |
| hc->pci_membase = ioremap(hc->pci_origmembase, 256); |
| if (!hc->pci_membase) { |
| printk(KERN_WARNING |
| "HFC-multi: failed to remap io address space. " |
| "(internal error)\n"); |
| pci_disable_device(hc->pci_dev); |
| return -EIO; |
| } |
| printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ " |
| "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase, |
| hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds); |
| pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO); |
| break; |
| case HFC_IO_MODE_REGIO: |
| hc->HFC_outb = HFC_outb_regio; |
| hc->HFC_inb = HFC_inb_regio; |
| hc->HFC_inw = HFC_inw_regio; |
| hc->HFC_wait = HFC_wait_regio; |
| hc->read_fifo = read_fifo_regio; |
| hc->write_fifo = write_fifo_regio; |
| hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start; |
| if (!hc->pci_iobase) { |
| printk(KERN_WARNING |
| "HFC-multi: No IO for PCI card found\n"); |
| pci_disable_device(hc->pci_dev); |
| return -EIO; |
| } |
| |
| if (!request_region(hc->pci_iobase, 8, "hfcmulti")) { |
| printk(KERN_WARNING "HFC-multi: failed to request " |
| "address space at 0x%08lx (internal error)\n", |
| hc->pci_iobase); |
| pci_disable_device(hc->pci_dev); |
| return -EIO; |
| } |
| |
| printk(KERN_INFO |
| "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n", |
| m->vendor_name, m->card_name, (u_int) hc->pci_iobase, |
| hc->pci_dev->irq, HZ, hc->leds); |
| pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO); |
| break; |
| default: |
| printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n"); |
| pci_disable_device(hc->pci_dev); |
| return -EIO; |
| } |
| |
| pci_set_drvdata(hc->pci_dev, hc); |
| |
| /* At this point the needed PCI config is done */ |
| /* fifos are still not enabled */ |
| return 0; |
| } |
| |
| |
| /* |
| * remove port |
| */ |
| |
| static void |
| release_port(struct hfc_multi *hc, struct dchannel *dch) |
| { |
| int pt, ci, i = 0; |
| u_long flags; |
| struct bchannel *pb; |
| |
| ci = dch->slot; |
| pt = hc->chan[ci].port; |
| |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: entered for port %d\n", |
| __func__, pt + 1); |
| |
| if (pt >= hc->ports) { |
| printk(KERN_WARNING "%s: ERROR port out of range (%d).\n", |
| __func__, pt + 1); |
| return; |
| } |
| |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: releasing port=%d\n", |
| __func__, pt + 1); |
| |
| if (dch->dev.D.protocol == ISDN_P_TE_S0) |
| l1_event(dch->l1, CLOSE_CHANNEL); |
| |
| hc->chan[ci].dch = NULL; |
| |
| if (hc->created[pt]) { |
| hc->created[pt] = 0; |
| mISDN_unregister_device(&dch->dev); |
| } |
| |
| spin_lock_irqsave(&hc->lock, flags); |
| |
| if (dch->timer.function) { |
| del_timer(&dch->timer); |
| dch->timer.function = NULL; |
| } |
| |
| if (hc->ctype == HFC_TYPE_E1) { /* E1 */ |
| /* remove sync */ |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { |
| hc->syncronized = 0; |
| plxsd_checksync(hc, 1); |
| } |
| /* free channels */ |
| for (i = 0; i <= 31; i++) { |
| if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */ |
| continue; |
| if (hc->chan[i].bch) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG |
| "%s: free port %d channel %d\n", |
| __func__, hc->chan[i].port + 1, i); |
| pb = hc->chan[i].bch; |
| hc->chan[i].bch = NULL; |
| spin_unlock_irqrestore(&hc->lock, flags); |
| mISDN_freebchannel(pb); |
| kfree(pb); |
| kfree(hc->chan[i].coeff); |
| spin_lock_irqsave(&hc->lock, flags); |
| } |
| } |
| } else { |
| /* remove sync */ |
| if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { |
| hc->syncronized &= |
| ~(1 << hc->chan[ci].port); |
| plxsd_checksync(hc, 1); |
| } |
| /* free channels */ |
| if (hc->chan[ci - 2].bch) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG |
| "%s: free port %d channel %d\n", |
| __func__, hc->chan[ci - 2].port + 1, |
| ci - 2); |
| pb = hc->chan[ci - 2].bch; |
| hc->chan[ci - 2].bch = NULL; |
| spin_unlock_irqrestore(&hc->lock, flags); |
| mISDN_freebchannel(pb); |
| kfree(pb); |
| kfree(hc->chan[ci - 2].coeff); |
| spin_lock_irqsave(&hc->lock, flags); |
| } |
| if (hc->chan[ci - 1].bch) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG |
| "%s: free port %d channel %d\n", |
| __func__, hc->chan[ci - 1].port + 1, |
| ci - 1); |
| pb = hc->chan[ci - 1].bch; |
| hc->chan[ci - 1].bch = NULL; |
| spin_unlock_irqrestore(&hc->lock, flags); |
| mISDN_freebchannel(pb); |
| kfree(pb); |
| kfree(hc->chan[ci - 1].coeff); |
| spin_lock_irqsave(&hc->lock, flags); |
| } |
| } |
| |
| spin_unlock_irqrestore(&hc->lock, flags); |
| |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: free port %d channel D(%d)\n", __func__, |
| pt+1, ci); |
| mISDN_freedchannel(dch); |
| kfree(dch); |
| |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: done!\n", __func__); |
| } |
| |
| static void |
| release_card(struct hfc_multi *hc) |
| { |
| u_long flags; |
| int ch; |
| |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: release card (%d) entered\n", |
| __func__, hc->id); |
| |
| /* unregister clock source */ |
| if (hc->iclock) |
| mISDN_unregister_clock(hc->iclock); |
| |
| /* disable and free irq */ |
| spin_lock_irqsave(&hc->lock, flags); |
| disable_hwirq(hc); |
| spin_unlock_irqrestore(&hc->lock, flags); |
| udelay(1000); |
| if (hc->irq) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: free irq %d (hc=%p)\n", |
| __func__, hc->irq, hc); |
| free_irq(hc->irq, hc); |
| hc->irq = 0; |
| |
| } |
| |
| /* disable D-channels & B-channels */ |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: disable all channels (d and b)\n", |
| __func__); |
| for (ch = 0; ch <= 31; ch++) { |
| if (hc->chan[ch].dch) |
| release_port(hc, hc->chan[ch].dch); |
| } |
| |
| /* dimm leds */ |
| if (hc->leds) |
| hfcmulti_leds(hc); |
| |
| /* release hardware */ |
| release_io_hfcmulti(hc); |
| |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: remove instance from list\n", |
| __func__); |
| list_del(&hc->list); |
| |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: delete instance\n", __func__); |
| if (hc == syncmaster) |
| syncmaster = NULL; |
| kfree(hc); |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: card successfully removed\n", |
| __func__); |
| } |
| |
| static void |
| init_e1_port_hw(struct hfc_multi *hc, struct hm_map *m) |
| { |
| /* set optical line type */ |
| if (port[Port_cnt] & 0x001) { |
| if (!m->opticalsupport) { |
| printk(KERN_INFO |
| "This board has no optical " |
| "support\n"); |
| } else { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG |
| "%s: PORT set optical " |
| "interfacs: card(%d) " |
| "port(%d)\n", |
| __func__, |
| HFC_cnt + 1, 1); |
| test_and_set_bit(HFC_CFG_OPTICAL, |
| &hc->chan[hc->dnum[0]].cfg); |
| } |
| } |
| /* set LOS report */ |
| if (port[Port_cnt] & 0x004) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: PORT set " |
| "LOS report: card(%d) port(%d)\n", |
| __func__, HFC_cnt + 1, 1); |
| test_and_set_bit(HFC_CFG_REPORT_LOS, |
| &hc->chan[hc->dnum[0]].cfg); |
| } |
| /* set AIS report */ |
| if (port[Port_cnt] & 0x008) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: PORT set " |
| "AIS report: card(%d) port(%d)\n", |
| __func__, HFC_cnt + 1, 1); |
| test_and_set_bit(HFC_CFG_REPORT_AIS, |
| &hc->chan[hc->dnum[0]].cfg); |
| } |
| /* set SLIP report */ |
| if (port[Port_cnt] & 0x010) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG |
| "%s: PORT set SLIP report: " |
| "card(%d) port(%d)\n", |
| __func__, HFC_cnt + 1, 1); |
| test_and_set_bit(HFC_CFG_REPORT_SLIP, |
| &hc->chan[hc->dnum[0]].cfg); |
| } |
| /* set RDI report */ |
| if (port[Port_cnt] & 0x020) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG |
| "%s: PORT set RDI report: " |
| "card(%d) port(%d)\n", |
| __func__, HFC_cnt + 1, 1); |
| test_and_set_bit(HFC_CFG_REPORT_RDI, |
| &hc->chan[hc->dnum[0]].cfg); |
| } |
| /* set CRC-4 Mode */ |
| if (!(port[Port_cnt] & 0x100)) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: PORT turn on CRC4 report:" |
| " card(%d) port(%d)\n", |
| __func__, HFC_cnt + 1, 1); |
| test_and_set_bit(HFC_CFG_CRC4, |
| &hc->chan[hc->dnum[0]].cfg); |
| } else { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: PORT turn off CRC4" |
| " report: card(%d) port(%d)\n", |
| __func__, HFC_cnt + 1, 1); |
| } |
| /* set forced clock */ |
| if (port[Port_cnt] & 0x0200) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: PORT force getting clock from " |
| "E1: card(%d) port(%d)\n", |
| __func__, HFC_cnt + 1, 1); |
| test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip); |
| } else |
| if (port[Port_cnt] & 0x0400) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: PORT force putting clock to " |
| "E1: card(%d) port(%d)\n", |
| __func__, HFC_cnt + 1, 1); |
| test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip); |
| } |
| /* set JATT PLL */ |
| if (port[Port_cnt] & 0x0800) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: PORT disable JATT PLL on " |
| "E1: card(%d) port(%d)\n", |
| __func__, HFC_cnt + 1, 1); |
| test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip); |
| } |
| /* set elastic jitter buffer */ |
| if (port[Port_cnt] & 0x3000) { |
| hc->chan[hc->dnum[0]].jitter = (port[Port_cnt]>>12) & 0x3; |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG |
| "%s: PORT set elastic " |
| "buffer to %d: card(%d) port(%d)\n", |
| __func__, hc->chan[hc->dnum[0]].jitter, |
| HFC_cnt + 1, 1); |
| } else |
| hc->chan[hc->dnum[0]].jitter = 2; /* default */ |
| } |
| |
| static int |
| init_e1_port(struct hfc_multi *hc, struct hm_map *m, int pt) |
| { |
| struct dchannel *dch; |
| struct bchannel *bch; |
| int ch, ret = 0; |
| char name[MISDN_MAX_IDLEN]; |
| int bcount = 0; |
| |
| dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL); |
| if (!dch) |
| return -ENOMEM; |
| dch->debug = debug; |
| mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change); |
| dch->hw = hc; |
| dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1); |
| dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) | |
| (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK)); |
| dch->dev.D.send = handle_dmsg; |
| dch->dev.D.ctrl = hfcm_dctrl; |
| dch->slot = hc->dnum[pt]; |
| hc->chan[hc->dnum[pt]].dch = dch; |
| hc->chan[hc->dnum[pt]].port = pt; |
| hc->chan[hc->dnum[pt]].nt_timer = -1; |
| for (ch = 1; ch <= 31; ch++) { |
| if (!((1 << ch) & hc->bmask[pt])) /* skip unused channel */ |
| continue; |
| bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL); |
| if (!bch) { |
| printk(KERN_ERR "%s: no memory for bchannel\n", |
| __func__); |
| ret = -ENOMEM; |
| goto free_chan; |
| } |
| hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL); |
| if (!hc->chan[ch].coeff) { |
| printk(KERN_ERR "%s: no memory for coeffs\n", |
| __func__); |
| ret = -ENOMEM; |
| kfree(bch); |
| goto free_chan; |
| } |
| bch->nr = ch; |
| bch->slot = ch; |
| bch->debug = debug; |
| mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1); |
| bch->hw = hc; |
| bch->ch.send = handle_bmsg; |
| bch->ch.ctrl = hfcm_bctrl; |
| bch->ch.nr = ch; |
| list_add(&bch->ch.list, &dch->dev.bchannels); |
| hc->chan[ch].bch = bch; |
| hc->chan[ch].port = pt; |
| set_channelmap(bch->nr, dch->dev.channelmap); |
| bcount++; |
| } |
| dch->dev.nrbchan = bcount; |
| if (pt == 0) |
| init_e1_port_hw(hc, m); |
| if (hc->ports > 1) |
| snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d-%d", |
| HFC_cnt + 1, pt+1); |
| else |
| snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1); |
| ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name); |
| if (ret) |
| goto free_chan; |
| hc->created[pt] = 1; |
| return ret; |
| free_chan: |
| release_port(hc, dch); |
| return ret; |
| } |
| |
| static int |
| init_multi_port(struct hfc_multi *hc, int pt) |
| { |
| struct dchannel *dch; |
| struct bchannel *bch; |
| int ch, i, ret = 0; |
| char name[MISDN_MAX_IDLEN]; |
| |
| dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL); |
| if (!dch) |
| return -ENOMEM; |
| dch->debug = debug; |
| mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change); |
| dch->hw = hc; |
| dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0); |
| dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) | |
| (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK)); |
| dch->dev.D.send = handle_dmsg; |
| dch->dev.D.ctrl = hfcm_dctrl; |
| dch->dev.nrbchan = 2; |
| i = pt << 2; |
| dch->slot = i + 2; |
| hc->chan[i + 2].dch = dch; |
| hc->chan[i + 2].port = pt; |
| hc->chan[i + 2].nt_timer = -1; |
| for (ch = 0; ch < dch->dev.nrbchan; ch++) { |
| bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL); |
| if (!bch) { |
| printk(KERN_ERR "%s: no memory for bchannel\n", |
| __func__); |
| ret = -ENOMEM; |
| goto free_chan; |
| } |
| hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL); |
| if (!hc->chan[i + ch].coeff) { |
| printk(KERN_ERR "%s: no memory for coeffs\n", |
| __func__); |
| ret = -ENOMEM; |
| kfree(bch); |
| goto free_chan; |
| } |
| bch->nr = ch + 1; |
| bch->slot = i + ch; |
| bch->debug = debug; |
| mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1); |
| bch->hw = hc; |
| bch->ch.send = handle_bmsg; |
| bch->ch.ctrl = hfcm_bctrl; |
| bch->ch.nr = ch + 1; |
| list_add(&bch->ch.list, &dch->dev.bchannels); |
| hc->chan[i + ch].bch = bch; |
| hc->chan[i + ch].port = pt; |
| set_channelmap(bch->nr, dch->dev.channelmap); |
| } |
| /* set master clock */ |
| if (port[Port_cnt] & 0x001) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG |
| "%s: PROTOCOL set master clock: " |
| "card(%d) port(%d)\n", |
| __func__, HFC_cnt + 1, pt + 1); |
| if (dch->dev.D.protocol != ISDN_P_TE_S0) { |
| printk(KERN_ERR "Error: Master clock " |
| "for port(%d) of card(%d) is only" |
| " possible with TE-mode\n", |
| pt + 1, HFC_cnt + 1); |
| ret = -EINVAL; |
| goto free_chan; |
| } |
| if (hc->masterclk >= 0) { |
| printk(KERN_ERR "Error: Master clock " |
| "for port(%d) of card(%d) already " |
| "defined for port(%d)\n", |
| pt + 1, HFC_cnt + 1, hc->masterclk + 1); |
| ret = -EINVAL; |
| goto free_chan; |
| } |
| hc->masterclk = pt; |
| } |
| /* set transmitter line to non capacitive */ |
| if (port[Port_cnt] & 0x002) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG |
| "%s: PROTOCOL set non capacitive " |
| "transmitter: card(%d) port(%d)\n", |
| __func__, HFC_cnt + 1, pt + 1); |
| test_and_set_bit(HFC_CFG_NONCAP_TX, |
| &hc->chan[i + 2].cfg); |
| } |
| /* disable E-channel */ |
| if (port[Port_cnt] & 0x004) { |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG |
| "%s: PROTOCOL disable E-channel: " |
| "card(%d) port(%d)\n", |
| __func__, HFC_cnt + 1, pt + 1); |
| test_and_set_bit(HFC_CFG_DIS_ECHANNEL, |
| &hc->chan[i + 2].cfg); |
| } |
| if (hc->ctype == HFC_TYPE_XHFC) { |
| snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d", |
| HFC_cnt + 1, pt + 1); |
| ret = mISDN_register_device(&dch->dev, NULL, name); |
| } else { |
| snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d", |
| hc->ctype, HFC_cnt + 1, pt + 1); |
| ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name); |
| } |
| if (ret) |
| goto free_chan; |
| hc->created[pt] = 1; |
| return ret; |
| free_chan: |
| release_port(hc, dch); |
| return ret; |
| } |
| |
| static int |
| hfcmulti_init(struct hm_map *m, struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| int ret_err = 0; |
| int pt; |
| struct hfc_multi *hc; |
| u_long flags; |
| u_char dips = 0, pmj = 0; /* dip settings, port mode Jumpers */ |
| int i, ch; |
| u_int maskcheck; |
| |
| if (HFC_cnt >= MAX_CARDS) { |
| printk(KERN_ERR "too many cards (max=%d).\n", |
| MAX_CARDS); |
| return -EINVAL; |
| } |
| if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) { |
| printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but " |
| "type[%d] %d was supplied as module parameter\n", |
| m->vendor_name, m->card_name, m->type, HFC_cnt, |
| type[HFC_cnt] & 0xff); |
| printk(KERN_WARNING "HFC-MULTI: Load module without parameters " |
| "first, to see cards and their types."); |
| return -EINVAL; |
| } |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n", |
| __func__, m->vendor_name, m->card_name, m->type, |
| type[HFC_cnt]); |
| |
| /* allocate card+fifo structure */ |
| hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL); |
| if (!hc) { |
| printk(KERN_ERR "No kmem for HFC-Multi card\n"); |
| return -ENOMEM; |
| } |
| spin_lock_init(&hc->lock); |
| hc->mtyp = m; |
| hc->ctype = m->type; |
| hc->ports = m->ports; |
| hc->id = HFC_cnt; |
| hc->pcm = pcm[HFC_cnt]; |
| hc->io_mode = iomode[HFC_cnt]; |
| if (hc->ctype == HFC_TYPE_E1 && dmask[E1_cnt]) { |
| /* fragment card */ |
| pt = 0; |
| maskcheck = 0; |
| for (ch = 0; ch <= 31; ch++) { |
| if (!((1 << ch) & dmask[E1_cnt])) |
| continue; |
| hc->dnum[pt] = ch; |
| hc->bmask[pt] = bmask[bmask_cnt++]; |
| if ((maskcheck & hc->bmask[pt]) |
| || (dmask[E1_cnt] & hc->bmask[pt])) { |
| printk(KERN_INFO |
| "HFC-E1 #%d has overlapping B-channels on fragment #%d\n", |
| E1_cnt + 1, pt); |
| kfree(hc); |
| return -EINVAL; |
| } |
| maskcheck |= hc->bmask[pt]; |
| printk(KERN_INFO |
| "HFC-E1 #%d uses D-channel on slot %d and a B-channel map of 0x%08x\n", |
| E1_cnt + 1, ch, hc->bmask[pt]); |
| pt++; |
| } |
| hc->ports = pt; |
| } |
| if (hc->ctype == HFC_TYPE_E1 && !dmask[E1_cnt]) { |
| /* default card layout */ |
| hc->dnum[0] = 16; |
| hc->bmask[0] = 0xfffefffe; |
| hc->ports = 1; |
| } |
| |
| /* set chip specific features */ |
| hc->masterclk = -1; |
| if (type[HFC_cnt] & 0x100) { |
| test_and_set_bit(HFC_CHIP_ULAW, &hc->chip); |
| hc->silence = 0xff; /* ulaw silence */ |
| } else |
| hc->silence = 0x2a; /* alaw silence */ |
| if ((poll >> 1) > sizeof(hc->silence_data)) { |
| printk(KERN_ERR "HFCMULTI error: silence_data too small, " |
| "please fix\n"); |
| kfree(hc); |
| return -EINVAL; |
| } |
| for (i = 0; i < (poll >> 1); i++) |
| hc->silence_data[i] = hc->silence; |
| |
| if (hc->ctype != HFC_TYPE_XHFC) { |
| if (!(type[HFC_cnt] & 0x200)) |
| test_and_set_bit(HFC_CHIP_DTMF, &hc->chip); |
| test_and_set_bit(HFC_CHIP_CONF, &hc->chip); |
| } |
| |
| if (type[HFC_cnt] & 0x800) |
| test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip); |
| if (type[HFC_cnt] & 0x1000) { |
| test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip); |
| test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip); |
| } |
| if (type[HFC_cnt] & 0x4000) |
| test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip); |
| if (type[HFC_cnt] & 0x8000) |
| test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip); |
| hc->slots = 32; |
| if (type[HFC_cnt] & 0x10000) |
| hc->slots = 64; |
| if (type[HFC_cnt] & 0x20000) |
| hc->slots = 128; |
| if (type[HFC_cnt] & 0x80000) { |
| test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip); |
| hc->wdcount = 0; |
| hc->wdbyte = V_GPIO_OUT2; |
| printk(KERN_NOTICE "Watchdog enabled\n"); |
| } |
| |
| if (pdev && ent) |
| /* setup pci, hc->slots may change due to PLXSD */ |
| ret_err = setup_pci(hc, pdev, ent); |
| else |
| #ifdef CONFIG_MISDN_HFCMULTI_8xx |
| ret_err = setup_embedded(hc, m); |
| #else |
| { |
| printk(KERN_WARNING "Embedded IO Mode not selected\n"); |
| ret_err = -EIO; |
| } |
| #endif |
| if (ret_err) { |
| if (hc == syncmaster) |
| syncmaster = NULL; |
| kfree(hc); |
| return ret_err; |
| } |
| |
| hc->HFC_outb_nodebug = hc->HFC_outb; |
| hc->HFC_inb_nodebug = hc->HFC_inb; |
| hc->HFC_inw_nodebug = hc->HFC_inw; |
| hc->HFC_wait_nodebug = hc->HFC_wait; |
| #ifdef HFC_REGISTER_DEBUG |
| hc->HFC_outb = HFC_outb_debug; |
| hc->HFC_inb = HFC_inb_debug; |
| hc->HFC_inw = HFC_inw_debug; |
| hc->HFC_wait = HFC_wait_debug; |
| #endif |
| /* create channels */ |
| for (pt = 0; pt < hc->ports; pt++) { |
| if (Port_cnt >= MAX_PORTS) { |
| printk(KERN_ERR "too many ports (max=%d).\n", |
| MAX_PORTS); |
| ret_err = -EINVAL; |
| goto free_card; |
| } |
| if (hc->ctype == HFC_TYPE_E1) |
| ret_err = init_e1_port(hc, m, pt); |
| else |
| ret_err = init_multi_port(hc, pt); |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG |
| "%s: Registering D-channel, card(%d) port(%d) " |
| "result %d\n", |
| __func__, HFC_cnt + 1, pt + 1, ret_err); |
| |
| if (ret_err) { |
| while (pt) { /* release already registered ports */ |
| pt--; |
| if (hc->ctype == HFC_TYPE_E1) |
| release_port(hc, |
| hc->chan[hc->dnum[pt]].dch); |
| else |
| release_port(hc, |
| hc->chan[(pt << 2) + 2].dch); |
| } |
| goto free_card; |
| } |
| if (hc->ctype != HFC_TYPE_E1) |
| Port_cnt++; /* for each S0 port */ |
| } |
| if (hc->ctype == HFC_TYPE_E1) { |
| Port_cnt++; /* for each E1 port */ |
| E1_cnt++; |
| } |
| |
| /* disp switches */ |
| switch (m->dip_type) { |
| case DIP_4S: |
| /* |
| * Get DIP setting for beroNet 1S/2S/4S cards |
| * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) + |
| * GPI 19/23 (R_GPI_IN2)) |
| */ |
| dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) | |
| ((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) | |
| (~HFC_inb(hc, R_GPI_IN2) & 0x08); |
| |
| /* Port mode (TE/NT) jumpers */ |
| pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4) & 0xf); |
| |
| if (test_bit(HFC_CHIP_B410P, &hc->chip)) |
| pmj = ~pmj & 0xf; |
| |
| printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n", |
| m->vendor_name, m->card_name, dips, pmj); |
| break; |
| case DIP_8S: |
| /* |
| * Get DIP Setting for beroNet 8S0+ cards |
| * Enable PCI auxbridge function |
| */ |
| HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK); |
| /* prepare access to auxport */ |
| outw(0x4000, hc->pci_iobase + 4); |
| /* |
| * some dummy reads are required to |
| * read valid DIP switch data |
| */ |
| dips = inb(hc->pci_iobase); |
| dips = inb(hc->pci_iobase); |
| dips = inb(hc->pci_iobase); |
| dips = ~inb(hc->pci_iobase) & 0x3F; |
| outw(0x0, hc->pci_iobase + 4); |
| /* disable PCI auxbridge function */ |
| HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK); |
| printk(KERN_INFO "%s: %s DIPs(0x%x)\n", |
| m->vendor_name, m->card_name, dips); |
| break; |
| case DIP_E1: |
| /* |
| * get DIP Setting for beroNet E1 cards |
| * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0) |
| */ |
| dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0) >> 4; |
| printk(KERN_INFO "%s: %s DIPs(0x%x)\n", |
| m->vendor_name, m->card_name, dips); |
| break; |
| } |
| |
| /* add to list */ |
| spin_lock_irqsave(&HFClock, flags); |
| list_add_tail(&hc->list, &HFClist); |
| spin_unlock_irqrestore(&HFClock, flags); |
| |
| /* use as clock source */ |
| if (clock == HFC_cnt + 1) |
| hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc); |
| |
| /* initialize hardware */ |
| hc->irq = (m->irq) ? : hc->pci_dev->irq; |
| ret_err = init_card(hc); |
| if (ret_err) { |
| printk(KERN_ERR "init card returns %d\n", ret_err); |
| release_card(hc); |
| return ret_err; |
| } |
| |
| /* start IRQ and return */ |
| spin_lock_irqsave(&hc->lock, flags); |
| enable_hwirq(hc); |
| spin_unlock_irqrestore(&hc->lock, flags); |
| return 0; |
| |
| free_card: |
| release_io_hfcmulti(hc); |
| if (hc == syncmaster) |
| syncmaster = NULL; |
| kfree(hc); |
| return ret_err; |
| } |
| |
| static void hfc_remove_pci(struct pci_dev *pdev) |
| { |
| struct hfc_multi *card = pci_get_drvdata(pdev); |
| u_long flags; |
| |
| if (debug) |
| printk(KERN_INFO "removing hfc_multi card vendor:%x " |
| "device:%x subvendor:%x subdevice:%x\n", |
| pdev->vendor, pdev->device, |
| pdev->subsystem_vendor, pdev->subsystem_device); |
| |
| if (card) { |
| spin_lock_irqsave(&HFClock, flags); |
| release_card(card); |
| spin_unlock_irqrestore(&HFClock, flags); |
| } else { |
| if (debug) |
| printk(KERN_DEBUG "%s: drvdata already removed\n", |
| __func__); |
| } |
| } |
| |
| #define VENDOR_CCD "Cologne Chip AG" |
| #define VENDOR_BN "beroNet GmbH" |
| #define VENDOR_DIG "Digium Inc." |
| #define VENDOR_JH "Junghanns.NET GmbH" |
| #define VENDOR_PRIM "PrimuX" |
| |
| static const struct hm_map hfcm_map[] = { |
| /*0*/ {VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0}, |
| /*1*/ {VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0}, |
| /*2*/ {VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0}, |
| /*3*/ {VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0}, |
| /*4*/ {VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0}, |
| /*5*/ {VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0}, |
| /*6*/ {VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0}, |
| /*7*/ {VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0}, |
| /*8*/ {VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0}, |
| /*9*/ {VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0}, |
| /*10*/ {VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0}, |
| /*11*/ {VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0}, |
| |
| /*12*/ {VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0}, |
| /*13*/ {VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S, |
| HFC_IO_MODE_REGIO, 0}, |
| /*14*/ {VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0}, |
| /*15*/ {VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0}, |
| |
| /*16*/ {VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0}, |
| /*17*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0}, |
| /*18*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0}, |
| |
| /*19*/ {VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0}, |
| /*20*/ {VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0}, |
| /*21*/ {VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0}, |
| /*22*/ {VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0}, |
| |
| /*23*/ {VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0}, |
| /*24*/ {VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0}, |
| /*25*/ {VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0}, |
| |
| /*26*/ {VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0, |
| HFC_IO_MODE_PLXSD, 0}, |
| /*27*/ {VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0, |
| HFC_IO_MODE_PLXSD, 0}, |
| /*28*/ {VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0}, |
| /*29*/ {VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0}, |
| /*30*/ {VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0}, |
| /*31*/ {VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0, |
| HFC_IO_MODE_EMBSD, XHFC_IRQ}, |
| /*32*/ {VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0}, |
| /*33*/ {VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0}, |
| /*34*/ {VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0}, |
| }; |
| |
| #undef H |
| #define H(x) ((unsigned long)&hfcm_map[x]) |
| static const struct pci_device_id hfmultipci_ids[] = { |
| |
| /* Cards with HFC-4S Chip */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, |
| PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */ |
| { PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, |
| PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)}, |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)}, |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, |
| 0xb761, 0, 0, H(33)}, /* BN2S PCIe */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, |
| 0xb762, 0, 0, H(34)}, /* BN4S PCIe */ |
| |
| /* Cards with HFC-8S Chip */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, |
| PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S */ |
| |
| |
| /* Cards with HFC-E1 Chip */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */ |
| |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, |
| PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */ |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */ |
| |
| { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */ |
| { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */ |
| |
| { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, |
| PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */ |
| |
| { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 }, |
| { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 }, |
| { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 }, |
| {0, } |
| }; |
| #undef H |
| |
| MODULE_DEVICE_TABLE(pci, hfmultipci_ids); |
| |
| static int |
| hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| struct hm_map *m = (struct hm_map *)ent->driver_data; |
| int ret; |
| |
| if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && ( |
| ent->device == PCI_DEVICE_ID_CCD_HFC4S || |
| ent->device == PCI_DEVICE_ID_CCD_HFC8S || |
| ent->device == PCI_DEVICE_ID_CCD_HFCE1)) { |
| printk(KERN_ERR |
| "Unknown HFC multiport controller (vendor:%04x device:%04x " |
| "subvendor:%04x subdevice:%04x)\n", pdev->vendor, |
| pdev->device, pdev->subsystem_vendor, |
| pdev->subsystem_device); |
| printk(KERN_ERR |
| "Please contact the driver maintainer for support.\n"); |
| return -ENODEV; |
| } |
| ret = hfcmulti_init(m, pdev, ent); |
| if (ret) |
| return ret; |
| HFC_cnt++; |
| printk(KERN_INFO "%d devices registered\n", HFC_cnt); |
| return 0; |
| } |
| |
| static struct pci_driver hfcmultipci_driver = { |
| .name = "hfc_multi", |
| .probe = hfcmulti_probe, |
| .remove = hfc_remove_pci, |
| .id_table = hfmultipci_ids, |
| }; |
| |
| static void __exit |
| HFCmulti_cleanup(void) |
| { |
| struct hfc_multi *card, *next; |
| |
| /* get rid of all devices of this driver */ |
| list_for_each_entry_safe(card, next, &HFClist, list) |
| release_card(card); |
| pci_unregister_driver(&hfcmultipci_driver); |
| } |
| |
| static int __init |
| HFCmulti_init(void) |
| { |
| int err; |
| int i, xhfc = 0; |
| struct hm_map m; |
| |
| printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION); |
| |
| #ifdef IRQ_DEBUG |
| printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__); |
| #endif |
| |
| if (debug & DEBUG_HFCMULTI_INIT) |
| printk(KERN_DEBUG "%s: init entered\n", __func__); |
| |
| switch (poll) { |
| case 0: |
| poll_timer = 6; |
| poll = 128; |
| break; |
| case 8: |
| poll_timer = 2; |
| break; |
| case 16: |
| poll_timer = 3; |
| break; |
| case 32: |
| poll_timer = 4; |
| break; |
| case 64: |
| poll_timer = 5; |
| break; |
| case 128: |
| poll_timer = 6; |
| break; |
| case 256: |
| poll_timer = 7; |
| break; |
| default: |
| printk(KERN_ERR |
| "%s: Wrong poll value (%d).\n", __func__, poll); |
| err = -EINVAL; |
| return err; |
| |
| } |
| |
| if (!clock) |
| clock = 1; |
| |
| /* Register the embedded devices. |
| * This should be done before the PCI cards registration */ |
| switch (hwid) { |
| case HWID_MINIP4: |
| xhfc = 1; |
| m = hfcm_map[31]; |
| break; |
| case HWID_MINIP8: |
| xhfc = 2; |
| m = hfcm_map[31]; |
| break; |
| case HWID_MINIP16: |
| xhfc = 4; |
| m = hfcm_map[31]; |
| break; |
| default: |
| xhfc = 0; |
| } |
| |
| for (i = 0; i < xhfc; ++i) { |
| err = hfcmulti_init(&m, NULL, NULL); |
| if (err) { |
| printk(KERN_ERR "error registering embedded driver: " |
| "%x\n", err); |
| return err; |
| } |
| HFC_cnt++; |
| printk(KERN_INFO "%d devices registered\n", HFC_cnt); |
| } |
| |
| /* Register the PCI cards */ |
| err = pci_register_driver(&hfcmultipci_driver); |
| if (err < 0) { |
| printk(KERN_ERR "error registering pci driver: %x\n", err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| |
| module_init(HFCmulti_init); |
| module_exit(HFCmulti_cleanup); |