| /* |
| * Copyright 2002-2005, Instant802 Networks, Inc. |
| * Copyright 2005-2006, Devicescape Software, Inc. |
| * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> |
| * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> |
| * Copyright 2013-2014 Intel Mobile Communications GmbH |
| * Copyright 2017 Intel Deutschland GmbH |
| * Copyright (C) 2018 Intel Corporation |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| |
| /** |
| * DOC: Wireless regulatory infrastructure |
| * |
| * The usual implementation is for a driver to read a device EEPROM to |
| * determine which regulatory domain it should be operating under, then |
| * looking up the allowable channels in a driver-local table and finally |
| * registering those channels in the wiphy structure. |
| * |
| * Another set of compliance enforcement is for drivers to use their |
| * own compliance limits which can be stored on the EEPROM. The host |
| * driver or firmware may ensure these are used. |
| * |
| * In addition to all this we provide an extra layer of regulatory |
| * conformance. For drivers which do not have any regulatory |
| * information CRDA provides the complete regulatory solution. |
| * For others it provides a community effort on further restrictions |
| * to enhance compliance. |
| * |
| * Note: When number of rules --> infinity we will not be able to |
| * index on alpha2 any more, instead we'll probably have to |
| * rely on some SHA1 checksum of the regdomain for example. |
| * |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/export.h> |
| #include <linux/slab.h> |
| #include <linux/list.h> |
| #include <linux/ctype.h> |
| #include <linux/nl80211.h> |
| #include <linux/platform_device.h> |
| #include <linux/verification.h> |
| #include <linux/moduleparam.h> |
| #include <linux/firmware.h> |
| #include <net/cfg80211.h> |
| #include "core.h" |
| #include "reg.h" |
| #include "rdev-ops.h" |
| #include "nl80211.h" |
| |
| /* |
| * Grace period we give before making sure all current interfaces reside on |
| * channels allowed by the current regulatory domain. |
| */ |
| #define REG_ENFORCE_GRACE_MS 60000 |
| |
| /** |
| * enum reg_request_treatment - regulatory request treatment |
| * |
| * @REG_REQ_OK: continue processing the regulatory request |
| * @REG_REQ_IGNORE: ignore the regulatory request |
| * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should |
| * be intersected with the current one. |
| * @REG_REQ_ALREADY_SET: the regulatory request will not change the current |
| * regulatory settings, and no further processing is required. |
| */ |
| enum reg_request_treatment { |
| REG_REQ_OK, |
| REG_REQ_IGNORE, |
| REG_REQ_INTERSECT, |
| REG_REQ_ALREADY_SET, |
| }; |
| |
| static struct regulatory_request core_request_world = { |
| .initiator = NL80211_REGDOM_SET_BY_CORE, |
| .alpha2[0] = '0', |
| .alpha2[1] = '0', |
| .intersect = false, |
| .processed = true, |
| .country_ie_env = ENVIRON_ANY, |
| }; |
| |
| /* |
| * Receipt of information from last regulatory request, |
| * protected by RTNL (and can be accessed with RCU protection) |
| */ |
| static struct regulatory_request __rcu *last_request = |
| (void __force __rcu *)&core_request_world; |
| |
| /* To trigger userspace events and load firmware */ |
| static struct platform_device *reg_pdev; |
| |
| /* |
| * Central wireless core regulatory domains, we only need two, |
| * the current one and a world regulatory domain in case we have no |
| * information to give us an alpha2. |
| * (protected by RTNL, can be read under RCU) |
| */ |
| const struct ieee80211_regdomain __rcu *cfg80211_regdomain; |
| |
| /* |
| * Number of devices that registered to the core |
| * that support cellular base station regulatory hints |
| * (protected by RTNL) |
| */ |
| static int reg_num_devs_support_basehint; |
| |
| /* |
| * State variable indicating if the platform on which the devices |
| * are attached is operating in an indoor environment. The state variable |
| * is relevant for all registered devices. |
| */ |
| static bool reg_is_indoor; |
| static spinlock_t reg_indoor_lock; |
| |
| /* Used to track the userspace process controlling the indoor setting */ |
| static u32 reg_is_indoor_portid; |
| |
| static void restore_regulatory_settings(bool reset_user); |
| |
| static const struct ieee80211_regdomain *get_cfg80211_regdom(void) |
| { |
| return rcu_dereference_rtnl(cfg80211_regdomain); |
| } |
| |
| const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) |
| { |
| return rcu_dereference_rtnl(wiphy->regd); |
| } |
| |
| static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) |
| { |
| switch (dfs_region) { |
| case NL80211_DFS_UNSET: |
| return "unset"; |
| case NL80211_DFS_FCC: |
| return "FCC"; |
| case NL80211_DFS_ETSI: |
| return "ETSI"; |
| case NL80211_DFS_JP: |
| return "JP"; |
| } |
| return "Unknown"; |
| } |
| |
| enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) |
| { |
| const struct ieee80211_regdomain *regd = NULL; |
| const struct ieee80211_regdomain *wiphy_regd = NULL; |
| |
| regd = get_cfg80211_regdom(); |
| if (!wiphy) |
| goto out; |
| |
| wiphy_regd = get_wiphy_regdom(wiphy); |
| if (!wiphy_regd) |
| goto out; |
| |
| if (wiphy_regd->dfs_region == regd->dfs_region) |
| goto out; |
| |
| pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", |
| dev_name(&wiphy->dev), |
| reg_dfs_region_str(wiphy_regd->dfs_region), |
| reg_dfs_region_str(regd->dfs_region)); |
| |
| out: |
| return regd->dfs_region; |
| } |
| |
| static void rcu_free_regdom(const struct ieee80211_regdomain *r) |
| { |
| if (!r) |
| return; |
| kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); |
| } |
| |
| static struct regulatory_request *get_last_request(void) |
| { |
| return rcu_dereference_rtnl(last_request); |
| } |
| |
| /* Used to queue up regulatory hints */ |
| static LIST_HEAD(reg_requests_list); |
| static spinlock_t reg_requests_lock; |
| |
| /* Used to queue up beacon hints for review */ |
| static LIST_HEAD(reg_pending_beacons); |
| static spinlock_t reg_pending_beacons_lock; |
| |
| /* Used to keep track of processed beacon hints */ |
| static LIST_HEAD(reg_beacon_list); |
| |
| struct reg_beacon { |
| struct list_head list; |
| struct ieee80211_channel chan; |
| }; |
| |
| static void reg_check_chans_work(struct work_struct *work); |
| static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); |
| |
| static void reg_todo(struct work_struct *work); |
| static DECLARE_WORK(reg_work, reg_todo); |
| |
| /* We keep a static world regulatory domain in case of the absence of CRDA */ |
| static const struct ieee80211_regdomain world_regdom = { |
| .n_reg_rules = 8, |
| .alpha2 = "00", |
| .reg_rules = { |
| /* IEEE 802.11b/g, channels 1..11 */ |
| REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), |
| /* IEEE 802.11b/g, channels 12..13. */ |
| REG_RULE(2467-10, 2472+10, 20, 6, 20, |
| NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), |
| /* IEEE 802.11 channel 14 - Only JP enables |
| * this and for 802.11b only */ |
| REG_RULE(2484-10, 2484+10, 20, 6, 20, |
| NL80211_RRF_NO_IR | |
| NL80211_RRF_NO_OFDM), |
| /* IEEE 802.11a, channel 36..48 */ |
| REG_RULE(5180-10, 5240+10, 80, 6, 20, |
| NL80211_RRF_NO_IR | |
| NL80211_RRF_AUTO_BW), |
| |
| /* IEEE 802.11a, channel 52..64 - DFS required */ |
| REG_RULE(5260-10, 5320+10, 80, 6, 20, |
| NL80211_RRF_NO_IR | |
| NL80211_RRF_AUTO_BW | |
| NL80211_RRF_DFS), |
| |
| /* IEEE 802.11a, channel 100..144 - DFS required */ |
| REG_RULE(5500-10, 5720+10, 160, 6, 20, |
| NL80211_RRF_NO_IR | |
| NL80211_RRF_DFS), |
| |
| /* IEEE 802.11a, channel 149..165 */ |
| REG_RULE(5745-10, 5825+10, 80, 6, 20, |
| NL80211_RRF_NO_IR), |
| |
| /* IEEE 802.11ad (60GHz), channels 1..3 */ |
| REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), |
| } |
| }; |
| |
| /* protected by RTNL */ |
| static const struct ieee80211_regdomain *cfg80211_world_regdom = |
| &world_regdom; |
| |
| static char *ieee80211_regdom = "00"; |
| static char user_alpha2[2]; |
| |
| module_param(ieee80211_regdom, charp, 0444); |
| MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); |
| |
| static void reg_free_request(struct regulatory_request *request) |
| { |
| if (request == &core_request_world) |
| return; |
| |
| if (request != get_last_request()) |
| kfree(request); |
| } |
| |
| static void reg_free_last_request(void) |
| { |
| struct regulatory_request *lr = get_last_request(); |
| |
| if (lr != &core_request_world && lr) |
| kfree_rcu(lr, rcu_head); |
| } |
| |
| static void reg_update_last_request(struct regulatory_request *request) |
| { |
| struct regulatory_request *lr; |
| |
| lr = get_last_request(); |
| if (lr == request) |
| return; |
| |
| reg_free_last_request(); |
| rcu_assign_pointer(last_request, request); |
| } |
| |
| static void reset_regdomains(bool full_reset, |
| const struct ieee80211_regdomain *new_regdom) |
| { |
| const struct ieee80211_regdomain *r; |
| |
| ASSERT_RTNL(); |
| |
| r = get_cfg80211_regdom(); |
| |
| /* avoid freeing static information or freeing something twice */ |
| if (r == cfg80211_world_regdom) |
| r = NULL; |
| if (cfg80211_world_regdom == &world_regdom) |
| cfg80211_world_regdom = NULL; |
| if (r == &world_regdom) |
| r = NULL; |
| |
| rcu_free_regdom(r); |
| rcu_free_regdom(cfg80211_world_regdom); |
| |
| cfg80211_world_regdom = &world_regdom; |
| rcu_assign_pointer(cfg80211_regdomain, new_regdom); |
| |
| if (!full_reset) |
| return; |
| |
| reg_update_last_request(&core_request_world); |
| } |
| |
| /* |
| * Dynamic world regulatory domain requested by the wireless |
| * core upon initialization |
| */ |
| static void update_world_regdomain(const struct ieee80211_regdomain *rd) |
| { |
| struct regulatory_request *lr; |
| |
| lr = get_last_request(); |
| |
| WARN_ON(!lr); |
| |
| reset_regdomains(false, rd); |
| |
| cfg80211_world_regdom = rd; |
| } |
| |
| bool is_world_regdom(const char *alpha2) |
| { |
| if (!alpha2) |
| return false; |
| return alpha2[0] == '0' && alpha2[1] == '0'; |
| } |
| |
| static bool is_alpha2_set(const char *alpha2) |
| { |
| if (!alpha2) |
| return false; |
| return alpha2[0] && alpha2[1]; |
| } |
| |
| static bool is_unknown_alpha2(const char *alpha2) |
| { |
| if (!alpha2) |
| return false; |
| /* |
| * Special case where regulatory domain was built by driver |
| * but a specific alpha2 cannot be determined |
| */ |
| return alpha2[0] == '9' && alpha2[1] == '9'; |
| } |
| |
| static bool is_intersected_alpha2(const char *alpha2) |
| { |
| if (!alpha2) |
| return false; |
| /* |
| * Special case where regulatory domain is the |
| * result of an intersection between two regulatory domain |
| * structures |
| */ |
| return alpha2[0] == '9' && alpha2[1] == '8'; |
| } |
| |
| static bool is_an_alpha2(const char *alpha2) |
| { |
| if (!alpha2) |
| return false; |
| return isalpha(alpha2[0]) && isalpha(alpha2[1]); |
| } |
| |
| static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) |
| { |
| if (!alpha2_x || !alpha2_y) |
| return false; |
| return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; |
| } |
| |
| static bool regdom_changes(const char *alpha2) |
| { |
| const struct ieee80211_regdomain *r = get_cfg80211_regdom(); |
| |
| if (!r) |
| return true; |
| return !alpha2_equal(r->alpha2, alpha2); |
| } |
| |
| /* |
| * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets |
| * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER |
| * has ever been issued. |
| */ |
| static bool is_user_regdom_saved(void) |
| { |
| if (user_alpha2[0] == '9' && user_alpha2[1] == '7') |
| return false; |
| |
| /* This would indicate a mistake on the design */ |
| if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), |
| "Unexpected user alpha2: %c%c\n", |
| user_alpha2[0], user_alpha2[1])) |
| return false; |
| |
| return true; |
| } |
| |
| static const struct ieee80211_regdomain * |
| reg_copy_regd(const struct ieee80211_regdomain *src_regd) |
| { |
| struct ieee80211_regdomain *regd; |
| int size_of_regd, size_of_wmms; |
| unsigned int i; |
| struct ieee80211_wmm_rule *d_wmm, *s_wmm; |
| |
| size_of_regd = |
| sizeof(struct ieee80211_regdomain) + |
| src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); |
| size_of_wmms = src_regd->n_wmm_rules * |
| sizeof(struct ieee80211_wmm_rule); |
| |
| regd = kzalloc(size_of_regd + size_of_wmms, GFP_KERNEL); |
| if (!regd) |
| return ERR_PTR(-ENOMEM); |
| |
| memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); |
| |
| d_wmm = (struct ieee80211_wmm_rule *)((u8 *)regd + size_of_regd); |
| s_wmm = (struct ieee80211_wmm_rule *)((u8 *)src_regd + size_of_regd); |
| memcpy(d_wmm, s_wmm, size_of_wmms); |
| |
| for (i = 0; i < src_regd->n_reg_rules; i++) { |
| memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], |
| sizeof(struct ieee80211_reg_rule)); |
| if (!src_regd->reg_rules[i].wmm_rule) |
| continue; |
| |
| regd->reg_rules[i].wmm_rule = d_wmm + |
| (src_regd->reg_rules[i].wmm_rule - s_wmm) / |
| sizeof(struct ieee80211_wmm_rule); |
| } |
| return regd; |
| } |
| |
| struct reg_regdb_apply_request { |
| struct list_head list; |
| const struct ieee80211_regdomain *regdom; |
| }; |
| |
| static LIST_HEAD(reg_regdb_apply_list); |
| static DEFINE_MUTEX(reg_regdb_apply_mutex); |
| |
| static void reg_regdb_apply(struct work_struct *work) |
| { |
| struct reg_regdb_apply_request *request; |
| |
| rtnl_lock(); |
| |
| mutex_lock(®_regdb_apply_mutex); |
| while (!list_empty(®_regdb_apply_list)) { |
| request = list_first_entry(®_regdb_apply_list, |
| struct reg_regdb_apply_request, |
| list); |
| list_del(&request->list); |
| |
| set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); |
| kfree(request); |
| } |
| mutex_unlock(®_regdb_apply_mutex); |
| |
| rtnl_unlock(); |
| } |
| |
| static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); |
| |
| static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) |
| { |
| struct reg_regdb_apply_request *request; |
| |
| request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); |
| if (!request) { |
| kfree(regdom); |
| return -ENOMEM; |
| } |
| |
| request->regdom = regdom; |
| |
| mutex_lock(®_regdb_apply_mutex); |
| list_add_tail(&request->list, ®_regdb_apply_list); |
| mutex_unlock(®_regdb_apply_mutex); |
| |
| schedule_work(®_regdb_work); |
| return 0; |
| } |
| |
| #ifdef CONFIG_CFG80211_CRDA_SUPPORT |
| /* Max number of consecutive attempts to communicate with CRDA */ |
| #define REG_MAX_CRDA_TIMEOUTS 10 |
| |
| static u32 reg_crda_timeouts; |
| |
| static void crda_timeout_work(struct work_struct *work); |
| static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); |
| |
| static void crda_timeout_work(struct work_struct *work) |
| { |
| pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); |
| rtnl_lock(); |
| reg_crda_timeouts++; |
| restore_regulatory_settings(true); |
| rtnl_unlock(); |
| } |
| |
| static void cancel_crda_timeout(void) |
| { |
| cancel_delayed_work(&crda_timeout); |
| } |
| |
| static void cancel_crda_timeout_sync(void) |
| { |
| cancel_delayed_work_sync(&crda_timeout); |
| } |
| |
| static void reset_crda_timeouts(void) |
| { |
| reg_crda_timeouts = 0; |
| } |
| |
| /* |
| * This lets us keep regulatory code which is updated on a regulatory |
| * basis in userspace. |
| */ |
| static int call_crda(const char *alpha2) |
| { |
| char country[12]; |
| char *env[] = { country, NULL }; |
| int ret; |
| |
| snprintf(country, sizeof(country), "COUNTRY=%c%c", |
| alpha2[0], alpha2[1]); |
| |
| if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { |
| pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); |
| return -EINVAL; |
| } |
| |
| if (!is_world_regdom((char *) alpha2)) |
| pr_debug("Calling CRDA for country: %c%c\n", |
| alpha2[0], alpha2[1]); |
| else |
| pr_debug("Calling CRDA to update world regulatory domain\n"); |
| |
| ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); |
| if (ret) |
| return ret; |
| |
| queue_delayed_work(system_power_efficient_wq, |
| &crda_timeout, msecs_to_jiffies(3142)); |
| return 0; |
| } |
| #else |
| static inline void cancel_crda_timeout(void) {} |
| static inline void cancel_crda_timeout_sync(void) {} |
| static inline void reset_crda_timeouts(void) {} |
| static inline int call_crda(const char *alpha2) |
| { |
| return -ENODATA; |
| } |
| #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ |
| |
| /* code to directly load a firmware database through request_firmware */ |
| static const struct fwdb_header *regdb; |
| |
| struct fwdb_country { |
| u8 alpha2[2]; |
| __be16 coll_ptr; |
| /* this struct cannot be extended */ |
| } __packed __aligned(4); |
| |
| struct fwdb_collection { |
| u8 len; |
| u8 n_rules; |
| u8 dfs_region; |
| /* no optional data yet */ |
| /* aligned to 2, then followed by __be16 array of rule pointers */ |
| } __packed __aligned(4); |
| |
| enum fwdb_flags { |
| FWDB_FLAG_NO_OFDM = BIT(0), |
| FWDB_FLAG_NO_OUTDOOR = BIT(1), |
| FWDB_FLAG_DFS = BIT(2), |
| FWDB_FLAG_NO_IR = BIT(3), |
| FWDB_FLAG_AUTO_BW = BIT(4), |
| }; |
| |
| struct fwdb_wmm_ac { |
| u8 ecw; |
| u8 aifsn; |
| __be16 cot; |
| } __packed; |
| |
| struct fwdb_wmm_rule { |
| struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; |
| struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; |
| } __packed; |
| |
| struct fwdb_rule { |
| u8 len; |
| u8 flags; |
| __be16 max_eirp; |
| __be32 start, end, max_bw; |
| /* start of optional data */ |
| __be16 cac_timeout; |
| __be16 wmm_ptr; |
| } __packed __aligned(4); |
| |
| #define FWDB_MAGIC 0x52474442 |
| #define FWDB_VERSION 20 |
| |
| struct fwdb_header { |
| __be32 magic; |
| __be32 version; |
| struct fwdb_country country[]; |
| } __packed __aligned(4); |
| |
| static int ecw2cw(int ecw) |
| { |
| return (1 << ecw) - 1; |
| } |
| |
| static bool valid_wmm(struct fwdb_wmm_rule *rule) |
| { |
| struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; |
| int i; |
| |
| for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { |
| u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); |
| u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); |
| u8 aifsn = ac[i].aifsn; |
| |
| if (cw_min >= cw_max) |
| return false; |
| |
| if (aifsn < 1) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) |
| { |
| struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); |
| |
| if ((u8 *)rule + sizeof(rule->len) > data + size) |
| return false; |
| |
| /* mandatory fields */ |
| if (rule->len < offsetofend(struct fwdb_rule, max_bw)) |
| return false; |
| if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { |
| u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; |
| struct fwdb_wmm_rule *wmm; |
| |
| if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) |
| return false; |
| |
| wmm = (void *)(data + wmm_ptr); |
| |
| if (!valid_wmm(wmm)) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool valid_country(const u8 *data, unsigned int size, |
| const struct fwdb_country *country) |
| { |
| unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; |
| struct fwdb_collection *coll = (void *)(data + ptr); |
| __be16 *rules_ptr; |
| unsigned int i; |
| |
| /* make sure we can read len/n_rules */ |
| if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) |
| return false; |
| |
| /* make sure base struct and all rules fit */ |
| if ((u8 *)coll + ALIGN(coll->len, 2) + |
| (coll->n_rules * 2) > data + size) |
| return false; |
| |
| /* mandatory fields must exist */ |
| if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) |
| return false; |
| |
| rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); |
| |
| for (i = 0; i < coll->n_rules; i++) { |
| u16 rule_ptr = be16_to_cpu(rules_ptr[i]); |
| |
| if (!valid_rule(data, size, rule_ptr)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB |
| static struct key *builtin_regdb_keys; |
| |
| static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) |
| { |
| const u8 *end = p + buflen; |
| size_t plen; |
| key_ref_t key; |
| |
| while (p < end) { |
| /* Each cert begins with an ASN.1 SEQUENCE tag and must be more |
| * than 256 bytes in size. |
| */ |
| if (end - p < 4) |
| goto dodgy_cert; |
| if (p[0] != 0x30 && |
| p[1] != 0x82) |
| goto dodgy_cert; |
| plen = (p[2] << 8) | p[3]; |
| plen += 4; |
| if (plen > end - p) |
| goto dodgy_cert; |
| |
| key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), |
| "asymmetric", NULL, p, plen, |
| ((KEY_POS_ALL & ~KEY_POS_SETATTR) | |
| KEY_USR_VIEW | KEY_USR_READ), |
| KEY_ALLOC_NOT_IN_QUOTA | |
| KEY_ALLOC_BUILT_IN | |
| KEY_ALLOC_BYPASS_RESTRICTION); |
| if (IS_ERR(key)) { |
| pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", |
| PTR_ERR(key)); |
| } else { |
| pr_notice("Loaded X.509 cert '%s'\n", |
| key_ref_to_ptr(key)->description); |
| key_ref_put(key); |
| } |
| p += plen; |
| } |
| |
| return; |
| |
| dodgy_cert: |
| pr_err("Problem parsing in-kernel X.509 certificate list\n"); |
| } |
| |
| static int __init load_builtin_regdb_keys(void) |
| { |
| builtin_regdb_keys = |
| keyring_alloc(".builtin_regdb_keys", |
| KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), |
| ((KEY_POS_ALL & ~KEY_POS_SETATTR) | |
| KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), |
| KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); |
| if (IS_ERR(builtin_regdb_keys)) |
| return PTR_ERR(builtin_regdb_keys); |
| |
| pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); |
| |
| #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS |
| load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); |
| #endif |
| #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR |
| if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') |
| load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); |
| #endif |
| |
| return 0; |
| } |
| |
| static bool regdb_has_valid_signature(const u8 *data, unsigned int size) |
| { |
| const struct firmware *sig; |
| bool result; |
| |
| if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) |
| return false; |
| |
| result = verify_pkcs7_signature(data, size, sig->data, sig->size, |
| builtin_regdb_keys, |
| VERIFYING_UNSPECIFIED_SIGNATURE, |
| NULL, NULL) == 0; |
| |
| release_firmware(sig); |
| |
| return result; |
| } |
| |
| static void free_regdb_keyring(void) |
| { |
| key_put(builtin_regdb_keys); |
| } |
| #else |
| static int load_builtin_regdb_keys(void) |
| { |
| return 0; |
| } |
| |
| static bool regdb_has_valid_signature(const u8 *data, unsigned int size) |
| { |
| return true; |
| } |
| |
| static void free_regdb_keyring(void) |
| { |
| } |
| #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ |
| |
| static bool valid_regdb(const u8 *data, unsigned int size) |
| { |
| const struct fwdb_header *hdr = (void *)data; |
| const struct fwdb_country *country; |
| |
| if (size < sizeof(*hdr)) |
| return false; |
| |
| if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) |
| return false; |
| |
| if (hdr->version != cpu_to_be32(FWDB_VERSION)) |
| return false; |
| |
| if (!regdb_has_valid_signature(data, size)) |
| return false; |
| |
| country = &hdr->country[0]; |
| while ((u8 *)(country + 1) <= data + size) { |
| if (!country->coll_ptr) |
| break; |
| if (!valid_country(data, size, country)) |
| return false; |
| country++; |
| } |
| |
| return true; |
| } |
| |
| static void set_wmm_rule(struct ieee80211_wmm_rule *rule, |
| struct fwdb_wmm_rule *wmm) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < IEEE80211_NUM_ACS; i++) { |
| rule->client[i].cw_min = |
| ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); |
| rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); |
| rule->client[i].aifsn = wmm->client[i].aifsn; |
| rule->client[i].cot = 1000 * be16_to_cpu(wmm->client[i].cot); |
| rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); |
| rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); |
| rule->ap[i].aifsn = wmm->ap[i].aifsn; |
| rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); |
| } |
| } |
| |
| static int __regdb_query_wmm(const struct fwdb_header *db, |
| const struct fwdb_country *country, int freq, |
| u32 *dbptr, struct ieee80211_wmm_rule *rule) |
| { |
| unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; |
| struct fwdb_collection *coll = (void *)((u8 *)db + ptr); |
| int i; |
| |
| for (i = 0; i < coll->n_rules; i++) { |
| __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); |
| unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; |
| struct fwdb_rule *rrule = (void *)((u8 *)db + rule_ptr); |
| struct fwdb_wmm_rule *wmm; |
| unsigned int wmm_ptr; |
| |
| if (rrule->len < offsetofend(struct fwdb_rule, wmm_ptr)) |
| continue; |
| |
| if (freq >= KHZ_TO_MHZ(be32_to_cpu(rrule->start)) && |
| freq <= KHZ_TO_MHZ(be32_to_cpu(rrule->end))) { |
| wmm_ptr = be16_to_cpu(rrule->wmm_ptr) << 2; |
| wmm = (void *)((u8 *)db + wmm_ptr); |
| set_wmm_rule(rule, wmm); |
| if (dbptr) |
| *dbptr = wmm_ptr; |
| return 0; |
| } |
| } |
| |
| return -ENODATA; |
| } |
| |
| int reg_query_regdb_wmm(char *alpha2, int freq, u32 *dbptr, |
| struct ieee80211_wmm_rule *rule) |
| { |
| const struct fwdb_header *hdr = regdb; |
| const struct fwdb_country *country; |
| |
| if (!regdb) |
| return -ENODATA; |
| |
| if (IS_ERR(regdb)) |
| return PTR_ERR(regdb); |
| |
| country = &hdr->country[0]; |
| while (country->coll_ptr) { |
| if (alpha2_equal(alpha2, country->alpha2)) |
| return __regdb_query_wmm(regdb, country, freq, dbptr, |
| rule); |
| |
| country++; |
| } |
| |
| return -ENODATA; |
| } |
| EXPORT_SYMBOL(reg_query_regdb_wmm); |
| |
| struct wmm_ptrs { |
| struct ieee80211_wmm_rule *rule; |
| u32 ptr; |
| }; |
| |
| static struct ieee80211_wmm_rule *find_wmm_ptr(struct wmm_ptrs *wmm_ptrs, |
| u32 wmm_ptr, int n_wmms) |
| { |
| int i; |
| |
| for (i = 0; i < n_wmms; i++) { |
| if (wmm_ptrs[i].ptr == wmm_ptr) |
| return wmm_ptrs[i].rule; |
| } |
| return NULL; |
| } |
| |
| static int regdb_query_country(const struct fwdb_header *db, |
| const struct fwdb_country *country) |
| { |
| unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; |
| struct fwdb_collection *coll = (void *)((u8 *)db + ptr); |
| struct ieee80211_regdomain *regdom; |
| struct ieee80211_regdomain *tmp_rd; |
| unsigned int size_of_regd, i, n_wmms = 0; |
| struct wmm_ptrs *wmm_ptrs; |
| |
| size_of_regd = sizeof(struct ieee80211_regdomain) + |
| coll->n_rules * sizeof(struct ieee80211_reg_rule); |
| |
| regdom = kzalloc(size_of_regd, GFP_KERNEL); |
| if (!regdom) |
| return -ENOMEM; |
| |
| wmm_ptrs = kcalloc(coll->n_rules, sizeof(*wmm_ptrs), GFP_KERNEL); |
| if (!wmm_ptrs) { |
| kfree(regdom); |
| return -ENOMEM; |
| } |
| |
| regdom->n_reg_rules = coll->n_rules; |
| regdom->alpha2[0] = country->alpha2[0]; |
| regdom->alpha2[1] = country->alpha2[1]; |
| regdom->dfs_region = coll->dfs_region; |
| |
| for (i = 0; i < regdom->n_reg_rules; i++) { |
| __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); |
| unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; |
| struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); |
| struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; |
| |
| rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); |
| rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); |
| rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); |
| |
| rrule->power_rule.max_antenna_gain = 0; |
| rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); |
| |
| rrule->flags = 0; |
| if (rule->flags & FWDB_FLAG_NO_OFDM) |
| rrule->flags |= NL80211_RRF_NO_OFDM; |
| if (rule->flags & FWDB_FLAG_NO_OUTDOOR) |
| rrule->flags |= NL80211_RRF_NO_OUTDOOR; |
| if (rule->flags & FWDB_FLAG_DFS) |
| rrule->flags |= NL80211_RRF_DFS; |
| if (rule->flags & FWDB_FLAG_NO_IR) |
| rrule->flags |= NL80211_RRF_NO_IR; |
| if (rule->flags & FWDB_FLAG_AUTO_BW) |
| rrule->flags |= NL80211_RRF_AUTO_BW; |
| |
| rrule->dfs_cac_ms = 0; |
| |
| /* handle optional data */ |
| if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) |
| rrule->dfs_cac_ms = |
| 1000 * be16_to_cpu(rule->cac_timeout); |
| if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { |
| u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; |
| struct ieee80211_wmm_rule *wmm_pos = |
| find_wmm_ptr(wmm_ptrs, wmm_ptr, n_wmms); |
| struct fwdb_wmm_rule *wmm; |
| struct ieee80211_wmm_rule *wmm_rule; |
| |
| if (wmm_pos) { |
| rrule->wmm_rule = wmm_pos; |
| continue; |
| } |
| wmm = (void *)((u8 *)db + wmm_ptr); |
| tmp_rd = krealloc(regdom, size_of_regd + (n_wmms + 1) * |
| sizeof(struct ieee80211_wmm_rule), |
| GFP_KERNEL); |
| |
| if (!tmp_rd) { |
| kfree(regdom); |
| kfree(wmm_ptrs); |
| return -ENOMEM; |
| } |
| regdom = tmp_rd; |
| |
| wmm_rule = (struct ieee80211_wmm_rule *) |
| ((u8 *)regdom + size_of_regd + n_wmms * |
| sizeof(struct ieee80211_wmm_rule)); |
| |
| set_wmm_rule(wmm_rule, wmm); |
| wmm_ptrs[n_wmms].ptr = wmm_ptr; |
| wmm_ptrs[n_wmms++].rule = wmm_rule; |
| } |
| } |
| kfree(wmm_ptrs); |
| |
| return reg_schedule_apply(regdom); |
| } |
| |
| static int query_regdb(const char *alpha2) |
| { |
| const struct fwdb_header *hdr = regdb; |
| const struct fwdb_country *country; |
| |
| ASSERT_RTNL(); |
| |
| if (IS_ERR(regdb)) |
| return PTR_ERR(regdb); |
| |
| country = &hdr->country[0]; |
| while (country->coll_ptr) { |
| if (alpha2_equal(alpha2, country->alpha2)) |
| return regdb_query_country(regdb, country); |
| country++; |
| } |
| |
| return -ENODATA; |
| } |
| |
| static void regdb_fw_cb(const struct firmware *fw, void *context) |
| { |
| int set_error = 0; |
| bool restore = true; |
| void *db; |
| |
| if (!fw) { |
| pr_info("failed to load regulatory.db\n"); |
| set_error = -ENODATA; |
| } else if (!valid_regdb(fw->data, fw->size)) { |
| pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); |
| set_error = -EINVAL; |
| } |
| |
| rtnl_lock(); |
| if (WARN_ON(regdb && !IS_ERR(regdb))) { |
| /* just restore and free new db */ |
| } else if (set_error) { |
| regdb = ERR_PTR(set_error); |
| } else if (fw) { |
| db = kmemdup(fw->data, fw->size, GFP_KERNEL); |
| if (db) { |
| regdb = db; |
| restore = context && query_regdb(context); |
| } else { |
| restore = true; |
| } |
| } |
| |
| if (restore) |
| restore_regulatory_settings(true); |
| |
| rtnl_unlock(); |
| |
| kfree(context); |
| |
| release_firmware(fw); |
| } |
| |
| static int query_regdb_file(const char *alpha2) |
| { |
| ASSERT_RTNL(); |
| |
| if (regdb) |
| return query_regdb(alpha2); |
| |
| alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); |
| if (!alpha2) |
| return -ENOMEM; |
| |
| return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", |
| ®_pdev->dev, GFP_KERNEL, |
| (void *)alpha2, regdb_fw_cb); |
| } |
| |
| int reg_reload_regdb(void) |
| { |
| const struct firmware *fw; |
| void *db; |
| int err; |
| |
| err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); |
| if (err) |
| return err; |
| |
| if (!valid_regdb(fw->data, fw->size)) { |
| err = -ENODATA; |
| goto out; |
| } |
| |
| db = kmemdup(fw->data, fw->size, GFP_KERNEL); |
| if (!db) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| rtnl_lock(); |
| if (!IS_ERR_OR_NULL(regdb)) |
| kfree(regdb); |
| regdb = db; |
| rtnl_unlock(); |
| |
| out: |
| release_firmware(fw); |
| return err; |
| } |
| |
| static bool reg_query_database(struct regulatory_request *request) |
| { |
| if (query_regdb_file(request->alpha2) == 0) |
| return true; |
| |
| if (call_crda(request->alpha2) == 0) |
| return true; |
| |
| return false; |
| } |
| |
| bool reg_is_valid_request(const char *alpha2) |
| { |
| struct regulatory_request *lr = get_last_request(); |
| |
| if (!lr || lr->processed) |
| return false; |
| |
| return alpha2_equal(lr->alpha2, alpha2); |
| } |
| |
| static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) |
| { |
| struct regulatory_request *lr = get_last_request(); |
| |
| /* |
| * Follow the driver's regulatory domain, if present, unless a country |
| * IE has been processed or a user wants to help complaince further |
| */ |
| if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && |
| lr->initiator != NL80211_REGDOM_SET_BY_USER && |
| wiphy->regd) |
| return get_wiphy_regdom(wiphy); |
| |
| return get_cfg80211_regdom(); |
| } |
| |
| static unsigned int |
| reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, |
| const struct ieee80211_reg_rule *rule) |
| { |
| const struct ieee80211_freq_range *freq_range = &rule->freq_range; |
| const struct ieee80211_freq_range *freq_range_tmp; |
| const struct ieee80211_reg_rule *tmp; |
| u32 start_freq, end_freq, idx, no; |
| |
| for (idx = 0; idx < rd->n_reg_rules; idx++) |
| if (rule == &rd->reg_rules[idx]) |
| break; |
| |
| if (idx == rd->n_reg_rules) |
| return 0; |
| |
| /* get start_freq */ |
| no = idx; |
| |
| while (no) { |
| tmp = &rd->reg_rules[--no]; |
| freq_range_tmp = &tmp->freq_range; |
| |
| if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) |
| break; |
| |
| freq_range = freq_range_tmp; |
| } |
| |
| start_freq = freq_range->start_freq_khz; |
| |
| /* get end_freq */ |
| freq_range = &rule->freq_range; |
| no = idx; |
| |
| while (no < rd->n_reg_rules - 1) { |
| tmp = &rd->reg_rules[++no]; |
| freq_range_tmp = &tmp->freq_range; |
| |
| if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) |
| break; |
| |
| freq_range = freq_range_tmp; |
| } |
| |
| end_freq = freq_range->end_freq_khz; |
| |
| return end_freq - start_freq; |
| } |
| |
| unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, |
| const struct ieee80211_reg_rule *rule) |
| { |
| unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); |
| |
| if (rule->flags & NL80211_RRF_NO_160MHZ) |
| bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); |
| if (rule->flags & NL80211_RRF_NO_80MHZ) |
| bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); |
| |
| /* |
| * HT40+/HT40- limits are handled per-channel. Only limit BW if both |
| * are not allowed. |
| */ |
| if (rule->flags & NL80211_RRF_NO_HT40MINUS && |
| rule->flags & NL80211_RRF_NO_HT40PLUS) |
| bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); |
| |
| return bw; |
| } |
| |
| /* Sanity check on a regulatory rule */ |
| static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) |
| { |
| const struct ieee80211_freq_range *freq_range = &rule->freq_range; |
| u32 freq_diff; |
| |
| if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) |
| return false; |
| |
| if (freq_range->start_freq_khz > freq_range->end_freq_khz) |
| return false; |
| |
| freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; |
| |
| if (freq_range->end_freq_khz <= freq_range->start_freq_khz || |
| freq_range->max_bandwidth_khz > freq_diff) |
| return false; |
| |
| return true; |
| } |
| |
| static bool is_valid_rd(const struct ieee80211_regdomain *rd) |
| { |
| const struct ieee80211_reg_rule *reg_rule = NULL; |
| unsigned int i; |
| |
| if (!rd->n_reg_rules) |
| return false; |
| |
| if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) |
| return false; |
| |
| for (i = 0; i < rd->n_reg_rules; i++) { |
| reg_rule = &rd->reg_rules[i]; |
| if (!is_valid_reg_rule(reg_rule)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * freq_in_rule_band - tells us if a frequency is in a frequency band |
| * @freq_range: frequency rule we want to query |
| * @freq_khz: frequency we are inquiring about |
| * |
| * This lets us know if a specific frequency rule is or is not relevant to |
| * a specific frequency's band. Bands are device specific and artificial |
| * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), |
| * however it is safe for now to assume that a frequency rule should not be |
| * part of a frequency's band if the start freq or end freq are off by more |
| * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the |
| * 60 GHz band. |
| * This resolution can be lowered and should be considered as we add |
| * regulatory rule support for other "bands". |
| **/ |
| static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, |
| u32 freq_khz) |
| { |
| #define ONE_GHZ_IN_KHZ 1000000 |
| /* |
| * From 802.11ad: directional multi-gigabit (DMG): |
| * Pertaining to operation in a frequency band containing a channel |
| * with the Channel starting frequency above 45 GHz. |
| */ |
| u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? |
| 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; |
| if (abs(freq_khz - freq_range->start_freq_khz) <= limit) |
| return true; |
| if (abs(freq_khz - freq_range->end_freq_khz) <= limit) |
| return true; |
| return false; |
| #undef ONE_GHZ_IN_KHZ |
| } |
| |
| /* |
| * Later on we can perhaps use the more restrictive DFS |
| * region but we don't have information for that yet so |
| * for now simply disallow conflicts. |
| */ |
| static enum nl80211_dfs_regions |
| reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, |
| const enum nl80211_dfs_regions dfs_region2) |
| { |
| if (dfs_region1 != dfs_region2) |
| return NL80211_DFS_UNSET; |
| return dfs_region1; |
| } |
| |
| /* |
| * Helper for regdom_intersect(), this does the real |
| * mathematical intersection fun |
| */ |
| static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, |
| const struct ieee80211_regdomain *rd2, |
| const struct ieee80211_reg_rule *rule1, |
| const struct ieee80211_reg_rule *rule2, |
| struct ieee80211_reg_rule *intersected_rule) |
| { |
| const struct ieee80211_freq_range *freq_range1, *freq_range2; |
| struct ieee80211_freq_range *freq_range; |
| const struct ieee80211_power_rule *power_rule1, *power_rule2; |
| struct ieee80211_power_rule *power_rule; |
| u32 freq_diff, max_bandwidth1, max_bandwidth2; |
| |
| freq_range1 = &rule1->freq_range; |
| freq_range2 = &rule2->freq_range; |
| freq_range = &intersected_rule->freq_range; |
| |
| power_rule1 = &rule1->power_rule; |
| power_rule2 = &rule2->power_rule; |
| power_rule = &intersected_rule->power_rule; |
| |
| freq_range->start_freq_khz = max(freq_range1->start_freq_khz, |
| freq_range2->start_freq_khz); |
| freq_range->end_freq_khz = min(freq_range1->end_freq_khz, |
| freq_range2->end_freq_khz); |
| |
| max_bandwidth1 = freq_range1->max_bandwidth_khz; |
| max_bandwidth2 = freq_range2->max_bandwidth_khz; |
| |
| if (rule1->flags & NL80211_RRF_AUTO_BW) |
| max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); |
| if (rule2->flags & NL80211_RRF_AUTO_BW) |
| max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); |
| |
| freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); |
| |
| intersected_rule->flags = rule1->flags | rule2->flags; |
| |
| /* |
| * In case NL80211_RRF_AUTO_BW requested for both rules |
| * set AUTO_BW in intersected rule also. Next we will |
| * calculate BW correctly in handle_channel function. |
| * In other case remove AUTO_BW flag while we calculate |
| * maximum bandwidth correctly and auto calculation is |
| * not required. |
| */ |
| if ((rule1->flags & NL80211_RRF_AUTO_BW) && |
| (rule2->flags & NL80211_RRF_AUTO_BW)) |
| intersected_rule->flags |= NL80211_RRF_AUTO_BW; |
| else |
| intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; |
| |
| freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; |
| if (freq_range->max_bandwidth_khz > freq_diff) |
| freq_range->max_bandwidth_khz = freq_diff; |
| |
| power_rule->max_eirp = min(power_rule1->max_eirp, |
| power_rule2->max_eirp); |
| power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, |
| power_rule2->max_antenna_gain); |
| |
| intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, |
| rule2->dfs_cac_ms); |
| |
| if (!is_valid_reg_rule(intersected_rule)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* check whether old rule contains new rule */ |
| static bool rule_contains(struct ieee80211_reg_rule *r1, |
| struct ieee80211_reg_rule *r2) |
| { |
| /* for simplicity, currently consider only same flags */ |
| if (r1->flags != r2->flags) |
| return false; |
| |
| /* verify r1 is more restrictive */ |
| if ((r1->power_rule.max_antenna_gain > |
| r2->power_rule.max_antenna_gain) || |
| r1->power_rule.max_eirp > r2->power_rule.max_eirp) |
| return false; |
| |
| /* make sure r2's range is contained within r1 */ |
| if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || |
| r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) |
| return false; |
| |
| /* and finally verify that r1.max_bw >= r2.max_bw */ |
| if (r1->freq_range.max_bandwidth_khz < |
| r2->freq_range.max_bandwidth_khz) |
| return false; |
| |
| return true; |
| } |
| |
| /* add or extend current rules. do nothing if rule is already contained */ |
| static void add_rule(struct ieee80211_reg_rule *rule, |
| struct ieee80211_reg_rule *reg_rules, u32 *n_rules) |
| { |
| struct ieee80211_reg_rule *tmp_rule; |
| int i; |
| |
| for (i = 0; i < *n_rules; i++) { |
| tmp_rule = ®_rules[i]; |
| /* rule is already contained - do nothing */ |
| if (rule_contains(tmp_rule, rule)) |
| return; |
| |
| /* extend rule if possible */ |
| if (rule_contains(rule, tmp_rule)) { |
| memcpy(tmp_rule, rule, sizeof(*rule)); |
| return; |
| } |
| } |
| |
| memcpy(®_rules[*n_rules], rule, sizeof(*rule)); |
| (*n_rules)++; |
| } |
| |
| /** |
| * regdom_intersect - do the intersection between two regulatory domains |
| * @rd1: first regulatory domain |
| * @rd2: second regulatory domain |
| * |
| * Use this function to get the intersection between two regulatory domains. |
| * Once completed we will mark the alpha2 for the rd as intersected, "98", |
| * as no one single alpha2 can represent this regulatory domain. |
| * |
| * Returns a pointer to the regulatory domain structure which will hold the |
| * resulting intersection of rules between rd1 and rd2. We will |
| * kzalloc() this structure for you. |
| */ |
| static struct ieee80211_regdomain * |
| regdom_intersect(const struct ieee80211_regdomain *rd1, |
| const struct ieee80211_regdomain *rd2) |
| { |
| int r, size_of_regd; |
| unsigned int x, y; |
| unsigned int num_rules = 0; |
| const struct ieee80211_reg_rule *rule1, *rule2; |
| struct ieee80211_reg_rule intersected_rule; |
| struct ieee80211_regdomain *rd; |
| |
| if (!rd1 || !rd2) |
| return NULL; |
| |
| /* |
| * First we get a count of the rules we'll need, then we actually |
| * build them. This is to so we can malloc() and free() a |
| * regdomain once. The reason we use reg_rules_intersect() here |
| * is it will return -EINVAL if the rule computed makes no sense. |
| * All rules that do check out OK are valid. |
| */ |
| |
| for (x = 0; x < rd1->n_reg_rules; x++) { |
| rule1 = &rd1->reg_rules[x]; |
| for (y = 0; y < rd2->n_reg_rules; y++) { |
| rule2 = &rd2->reg_rules[y]; |
| if (!reg_rules_intersect(rd1, rd2, rule1, rule2, |
| &intersected_rule)) |
| num_rules++; |
| } |
| } |
| |
| if (!num_rules) |
| return NULL; |
| |
| size_of_regd = sizeof(struct ieee80211_regdomain) + |
| num_rules * sizeof(struct ieee80211_reg_rule); |
| |
| rd = kzalloc(size_of_regd, GFP_KERNEL); |
| if (!rd) |
| return NULL; |
| |
| for (x = 0; x < rd1->n_reg_rules; x++) { |
| rule1 = &rd1->reg_rules[x]; |
| for (y = 0; y < rd2->n_reg_rules; y++) { |
| rule2 = &rd2->reg_rules[y]; |
| r = reg_rules_intersect(rd1, rd2, rule1, rule2, |
| &intersected_rule); |
| /* |
| * No need to memset here the intersected rule here as |
| * we're not using the stack anymore |
| */ |
| if (r) |
| continue; |
| |
| add_rule(&intersected_rule, rd->reg_rules, |
| &rd->n_reg_rules); |
| } |
| } |
| |
| rd->alpha2[0] = '9'; |
| rd->alpha2[1] = '8'; |
| rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, |
| rd2->dfs_region); |
| |
| return rd; |
| } |
| |
| /* |
| * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may |
| * want to just have the channel structure use these |
| */ |
| static u32 map_regdom_flags(u32 rd_flags) |
| { |
| u32 channel_flags = 0; |
| if (rd_flags & NL80211_RRF_NO_IR_ALL) |
| channel_flags |= IEEE80211_CHAN_NO_IR; |
| if (rd_flags & NL80211_RRF_DFS) |
| channel_flags |= IEEE80211_CHAN_RADAR; |
| if (rd_flags & NL80211_RRF_NO_OFDM) |
| channel_flags |= IEEE80211_CHAN_NO_OFDM; |
| if (rd_flags & NL80211_RRF_NO_OUTDOOR) |
| channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; |
| if (rd_flags & NL80211_RRF_IR_CONCURRENT) |
| channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; |
| if (rd_flags & NL80211_RRF_NO_HT40MINUS) |
| channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; |
| if (rd_flags & NL80211_RRF_NO_HT40PLUS) |
| channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; |
| if (rd_flags & NL80211_RRF_NO_80MHZ) |
| channel_flags |= IEEE80211_CHAN_NO_80MHZ; |
| if (rd_flags & NL80211_RRF_NO_160MHZ) |
| channel_flags |= IEEE80211_CHAN_NO_160MHZ; |
| return channel_flags; |
| } |
| |
| static const struct ieee80211_reg_rule * |
| freq_reg_info_regd(u32 center_freq, |
| const struct ieee80211_regdomain *regd, u32 bw) |
| { |
| int i; |
| bool band_rule_found = false; |
| bool bw_fits = false; |
| |
| if (!regd) |
| return ERR_PTR(-EINVAL); |
| |
| for (i = 0; i < regd->n_reg_rules; i++) { |
| const struct ieee80211_reg_rule *rr; |
| const struct ieee80211_freq_range *fr = NULL; |
| |
| rr = ®d->reg_rules[i]; |
| fr = &rr->freq_range; |
| |
| /* |
| * We only need to know if one frequency rule was |
| * was in center_freq's band, that's enough, so lets |
| * not overwrite it once found |
| */ |
| if (!band_rule_found) |
| band_rule_found = freq_in_rule_band(fr, center_freq); |
| |
| bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); |
| |
| if (band_rule_found && bw_fits) |
| return rr; |
| } |
| |
| if (!band_rule_found) |
| return ERR_PTR(-ERANGE); |
| |
| return ERR_PTR(-EINVAL); |
| } |
| |
| static const struct ieee80211_reg_rule * |
| __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) |
| { |
| const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); |
| const struct ieee80211_reg_rule *reg_rule = NULL; |
| u32 bw; |
| |
| for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { |
| reg_rule = freq_reg_info_regd(center_freq, regd, bw); |
| if (!IS_ERR(reg_rule)) |
| return reg_rule; |
| } |
| |
| return reg_rule; |
| } |
| |
| const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, |
| u32 center_freq) |
| { |
| return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); |
| } |
| EXPORT_SYMBOL(freq_reg_info); |
| |
| const char *reg_initiator_name(enum nl80211_reg_initiator initiator) |
| { |
| switch (initiator) { |
| case NL80211_REGDOM_SET_BY_CORE: |
| return "core"; |
| case NL80211_REGDOM_SET_BY_USER: |
| return "user"; |
| case NL80211_REGDOM_SET_BY_DRIVER: |
| return "driver"; |
| case NL80211_REGDOM_SET_BY_COUNTRY_IE: |
| return "country element"; |
| default: |
| WARN_ON(1); |
| return "bug"; |
| } |
| } |
| EXPORT_SYMBOL(reg_initiator_name); |
| |
| static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, |
| const struct ieee80211_reg_rule *reg_rule, |
| const struct ieee80211_channel *chan) |
| { |
| const struct ieee80211_freq_range *freq_range = NULL; |
| u32 max_bandwidth_khz, bw_flags = 0; |
| |
| freq_range = ®_rule->freq_range; |
| |
| max_bandwidth_khz = freq_range->max_bandwidth_khz; |
| /* Check if auto calculation requested */ |
| if (reg_rule->flags & NL80211_RRF_AUTO_BW) |
| max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); |
| |
| /* If we get a reg_rule we can assume that at least 5Mhz fit */ |
| if (!cfg80211_does_bw_fit_range(freq_range, |
| MHZ_TO_KHZ(chan->center_freq), |
| MHZ_TO_KHZ(10))) |
| bw_flags |= IEEE80211_CHAN_NO_10MHZ; |
| if (!cfg80211_does_bw_fit_range(freq_range, |
| MHZ_TO_KHZ(chan->center_freq), |
| MHZ_TO_KHZ(20))) |
| bw_flags |= IEEE80211_CHAN_NO_20MHZ; |
| |
| if (max_bandwidth_khz < MHZ_TO_KHZ(10)) |
| bw_flags |= IEEE80211_CHAN_NO_10MHZ; |
| if (max_bandwidth_khz < MHZ_TO_KHZ(20)) |
| bw_flags |= IEEE80211_CHAN_NO_20MHZ; |
| if (max_bandwidth_khz < MHZ_TO_KHZ(40)) |
| bw_flags |= IEEE80211_CHAN_NO_HT40; |
| if (max_bandwidth_khz < MHZ_TO_KHZ(80)) |
| bw_flags |= IEEE80211_CHAN_NO_80MHZ; |
| if (max_bandwidth_khz < MHZ_TO_KHZ(160)) |
| bw_flags |= IEEE80211_CHAN_NO_160MHZ; |
| return bw_flags; |
| } |
| |
| /* |
| * Note that right now we assume the desired channel bandwidth |
| * is always 20 MHz for each individual channel (HT40 uses 20 MHz |
| * per channel, the primary and the extension channel). |
| */ |
| static void handle_channel(struct wiphy *wiphy, |
| enum nl80211_reg_initiator initiator, |
| struct ieee80211_channel *chan) |
| { |
| u32 flags, bw_flags = 0; |
| const struct ieee80211_reg_rule *reg_rule = NULL; |
| const struct ieee80211_power_rule *power_rule = NULL; |
| struct wiphy *request_wiphy = NULL; |
| struct regulatory_request *lr = get_last_request(); |
| const struct ieee80211_regdomain *regd; |
| |
| request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); |
| |
| flags = chan->orig_flags; |
| |
| reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); |
| if (IS_ERR(reg_rule)) { |
| /* |
| * We will disable all channels that do not match our |
| * received regulatory rule unless the hint is coming |
| * from a Country IE and the Country IE had no information |
| * about a band. The IEEE 802.11 spec allows for an AP |
| * to send only a subset of the regulatory rules allowed, |
| * so an AP in the US that only supports 2.4 GHz may only send |
| * a country IE with information for the 2.4 GHz band |
| * while 5 GHz is still supported. |
| */ |
| if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && |
| PTR_ERR(reg_rule) == -ERANGE) |
| return; |
| |
| if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && |
| request_wiphy && request_wiphy == wiphy && |
| request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { |
| pr_debug("Disabling freq %d MHz for good\n", |
| chan->center_freq); |
| chan->orig_flags |= IEEE80211_CHAN_DISABLED; |
| chan->flags = chan->orig_flags; |
| } else { |
| pr_debug("Disabling freq %d MHz\n", |
| chan->center_freq); |
| chan->flags |= IEEE80211_CHAN_DISABLED; |
| } |
| return; |
| } |
| |
| regd = reg_get_regdomain(wiphy); |
| |
| power_rule = ®_rule->power_rule; |
| bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); |
| |
| if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && |
| request_wiphy && request_wiphy == wiphy && |
| request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { |
| /* |
| * This guarantees the driver's requested regulatory domain |
| * will always be used as a base for further regulatory |
| * settings |
| */ |
| chan->flags = chan->orig_flags = |
| map_regdom_flags(reg_rule->flags) | bw_flags; |
| chan->max_antenna_gain = chan->orig_mag = |
| (int) MBI_TO_DBI(power_rule->max_antenna_gain); |
| chan->max_reg_power = chan->max_power = chan->orig_mpwr = |
| (int) MBM_TO_DBM(power_rule->max_eirp); |
| |
| if (chan->flags & IEEE80211_CHAN_RADAR) { |
| chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; |
| if (reg_rule->dfs_cac_ms) |
| chan->dfs_cac_ms = reg_rule->dfs_cac_ms; |
| } |
| |
| return; |
| } |
| |
| chan->dfs_state = NL80211_DFS_USABLE; |
| chan->dfs_state_entered = jiffies; |
| |
| chan->beacon_found = false; |
| chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); |
| chan->max_antenna_gain = |
| min_t(int, chan->orig_mag, |
| MBI_TO_DBI(power_rule->max_antenna_gain)); |
| chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); |
| |
| if (chan->flags & IEEE80211_CHAN_RADAR) { |
| if (reg_rule->dfs_cac_ms) |
| chan->dfs_cac_ms = reg_rule->dfs_cac_ms; |
| else |
| chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; |
| } |
| |
| if (chan->orig_mpwr) { |
| /* |
| * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER |
| * will always follow the passed country IE power settings. |
| */ |
| if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && |
| wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) |
| chan->max_power = chan->max_reg_power; |
| else |
| chan->max_power = min(chan->orig_mpwr, |
| chan->max_reg_power); |
| } else |
| chan->max_power = chan->max_reg_power; |
| } |
| |
| static void handle_band(struct wiphy *wiphy, |
| enum nl80211_reg_initiator initiator, |
| struct ieee80211_supported_band *sband) |
| { |
| unsigned int i; |
| |
| if (!sband) |
| return; |
| |
| for (i = 0; i < sband->n_channels; i++) |
| handle_channel(wiphy, initiator, &sband->channels[i]); |
| } |
| |
| static bool reg_request_cell_base(struct regulatory_request *request) |
| { |
| if (request->initiator != NL80211_REGDOM_SET_BY_USER) |
| return false; |
| return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; |
| } |
| |
| bool reg_last_request_cell_base(void) |
| { |
| return reg_request_cell_base(get_last_request()); |
| } |
| |
| #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS |
| /* Core specific check */ |
| static enum reg_request_treatment |
| reg_ignore_cell_hint(struct regulatory_request *pending_request) |
| { |
| struct regulatory_request *lr = get_last_request(); |
| |
| if (!reg_num_devs_support_basehint) |
| return REG_REQ_IGNORE; |
| |
| if (reg_request_cell_base(lr) && |
| !regdom_changes(pending_request->alpha2)) |
| return REG_REQ_ALREADY_SET; |
| |
| return REG_REQ_OK; |
| } |
| |
| /* Device specific check */ |
| static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) |
| { |
| return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); |
| } |
| #else |
| static enum reg_request_treatment |
| reg_ignore_cell_hint(struct regulatory_request *pending_request) |
| { |
| return REG_REQ_IGNORE; |
| } |
| |
| static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) |
| { |
| return true; |
| } |
| #endif |
| |
| static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) |
| { |
| if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && |
| !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) |
| return true; |
| return false; |
| } |
| |
| static bool ignore_reg_update(struct wiphy *wiphy, |
| enum nl80211_reg_initiator initiator) |
| { |
| struct regulatory_request *lr = get_last_request(); |
| |
| if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) |
| return true; |
| |
| if (!lr) { |
| pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", |
| reg_initiator_name(initiator)); |
| return true; |
| } |
| |
| if (initiator == NL80211_REGDOM_SET_BY_CORE && |
| wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { |
| pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", |
| reg_initiator_name(initiator)); |
| return true; |
| } |
| |
| /* |
| * wiphy->regd will be set once the device has its own |
| * desired regulatory domain set |
| */ |
| if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && |
| initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && |
| !is_world_regdom(lr->alpha2)) { |
| pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", |
| reg_initiator_name(initiator)); |
| return true; |
| } |
| |
| if (reg_request_cell_base(lr)) |
| return reg_dev_ignore_cell_hint(wiphy); |
| |
| return false; |
| } |
| |
| static bool reg_is_world_roaming(struct wiphy *wiphy) |
| { |
| const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); |
| const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); |
| struct regulatory_request *lr = get_last_request(); |
| |
| if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) |
| return true; |
| |
| if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && |
| wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) |
| return true; |
| |
| return false; |
| } |
| |
| static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, |
| struct reg_beacon *reg_beacon) |
| { |
| struct ieee80211_supported_band *sband; |
| struct ieee80211_channel *chan; |
| bool channel_changed = false; |
| struct ieee80211_channel chan_before; |
| |
| sband = wiphy->bands[reg_beacon->chan.band]; |
| chan = &sband->channels[chan_idx]; |
| |
| if (likely(chan->center_freq != reg_beacon->chan.center_freq)) |
| return; |
| |
| if (chan->beacon_found) |
| return; |
| |
| chan->beacon_found = true; |
| |
| if (!reg_is_world_roaming(wiphy)) |
| return; |
| |
| if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) |
| return; |
| |
| chan_before = *chan; |
| |
| if (chan->flags & IEEE80211_CHAN_NO_IR) { |
| chan->flags &= ~IEEE80211_CHAN_NO_IR; |
| channel_changed = true; |
| } |
| |
| if (channel_changed) |
| nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); |
| } |
| |
| /* |
| * Called when a scan on a wiphy finds a beacon on |
| * new channel |
| */ |
| static void wiphy_update_new_beacon(struct wiphy *wiphy, |
| struct reg_beacon *reg_beacon) |
| { |
| unsigned int i; |
| struct ieee80211_supported_band *sband; |
| |
| if (!wiphy->bands[reg_beacon->chan.band]) |
| return; |
| |
| sband = wiphy->bands[reg_beacon->chan.band]; |
| |
| for (i = 0; i < sband->n_channels; i++) |
| handle_reg_beacon(wiphy, i, reg_beacon); |
| } |
| |
| /* |
| * Called upon reg changes or a new wiphy is added |
| */ |
| static void wiphy_update_beacon_reg(struct wiphy *wiphy) |
| { |
| unsigned int i; |
| struct ieee80211_supported_band *sband; |
| struct reg_beacon *reg_beacon; |
| |
| list_for_each_entry(reg_beacon, ®_beacon_list, list) { |
| if (!wiphy->bands[reg_beacon->chan.band]) |
| continue; |
| sband = wiphy->bands[reg_beacon->chan.band]; |
| for (i = 0; i < sband->n_channels; i++) |
| handle_reg_beacon(wiphy, i, reg_beacon); |
| } |
| } |
| |
| /* Reap the advantages of previously found beacons */ |
| static void reg_process_beacons(struct wiphy *wiphy) |
| { |
| /* |
| * Means we are just firing up cfg80211, so no beacons would |
| * have been processed yet. |
| */ |
| if (!last_request) |
| return; |
| wiphy_update_beacon_reg(wiphy); |
| } |
| |
| static bool is_ht40_allowed(struct ieee80211_channel *chan) |
| { |
| if (!chan) |
| return false; |
| if (chan->flags & IEEE80211_CHAN_DISABLED) |
| return false; |
| /* This would happen when regulatory rules disallow HT40 completely */ |
| if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) |
| return false; |
| return true; |
| } |
| |
| static void reg_process_ht_flags_channel(struct wiphy *wiphy, |
| struct ieee80211_channel *channel) |
| { |
| struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; |
| struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; |
| const struct ieee80211_regdomain *regd; |
| unsigned int i; |
| u32 flags; |
| |
| if (!is_ht40_allowed(channel)) { |
| channel->flags |= IEEE80211_CHAN_NO_HT40; |
| return; |
| } |
| |
| /* |
| * We need to ensure the extension channels exist to |
| * be able to use HT40- or HT40+, this finds them (or not) |
| */ |
| for (i = 0; i < sband->n_channels; i++) { |
| struct ieee80211_channel *c = &sband->channels[i]; |
| |
| if (c->center_freq == (channel->center_freq - 20)) |
| channel_before = c; |
| if (c->center_freq == (channel->center_freq + 20)) |
| channel_after = c; |
| } |
| |
| flags = 0; |
| regd = get_wiphy_regdom(wiphy); |
| if (regd) { |
| const struct ieee80211_reg_rule *reg_rule = |
| freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), |
| regd, MHZ_TO_KHZ(20)); |
| |
| if (!IS_ERR(reg_rule)) |
| flags = reg_rule->flags; |
| } |
| |
| /* |
| * Please note that this assumes target bandwidth is 20 MHz, |
| * if that ever changes we also need to change the below logic |
| * to include that as well. |
| */ |
| if (!is_ht40_allowed(channel_before) || |
| flags & NL80211_RRF_NO_HT40MINUS) |
| channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; |
| else |
| channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; |
| |
| if (!is_ht40_allowed(channel_after) || |
| flags & NL80211_RRF_NO_HT40PLUS) |
| channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; |
| else |
| channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; |
| } |
| |
| static void reg_process_ht_flags_band(struct wiphy *wiphy, |
| struct ieee80211_supported_band *sband) |
| { |
| unsigned int i; |
| |
| if (!sband) |
| return; |
| |
| for (i = 0; i < sband->n_channels; i++) |
| reg_process_ht_flags_channel(wiphy, &sband->channels[i]); |
| } |
| |
| static void reg_process_ht_flags(struct wiphy *wiphy) |
| { |
| enum nl80211_band band; |
| |
| if (!wiphy) |
| return; |
| |
| for (band = 0; band < NUM_NL80211_BANDS; band++) |
| reg_process_ht_flags_band(wiphy, wiphy->bands[band]); |
| } |
| |
| static void reg_call_notifier(struct wiphy *wiphy, |
| struct regulatory_request *request) |
| { |
| if (wiphy->reg_notifier) |
| wiphy->reg_notifier(wiphy, request); |
| } |
| |
| static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) |
| { |
| struct cfg80211_chan_def chandef; |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| enum nl80211_iftype iftype; |
| |
| wdev_lock(wdev); |
| iftype = wdev->iftype; |
| |
| /* make sure the interface is active */ |
| if (!wdev->netdev || !netif_running(wdev->netdev)) |
| goto wdev_inactive_unlock; |
| |
| switch (iftype) { |
| case NL80211_IFTYPE_AP: |
| case NL80211_IFTYPE_P2P_GO: |
| if (!wdev->beacon_interval) |
| goto wdev_inactive_unlock; |
| chandef = wdev->chandef; |
| break; |
| case NL80211_IFTYPE_ADHOC: |
| if (!wdev->ssid_len) |
| goto wdev_inactive_unlock; |
| chandef = wdev->chandef; |
| break; |
| case NL80211_IFTYPE_STATION: |
| case NL80211_IFTYPE_P2P_CLIENT: |
| if (!wdev->current_bss || |
| !wdev->current_bss->pub.channel) |
| goto wdev_inactive_unlock; |
| |
| if (!rdev->ops->get_channel || |
| rdev_get_channel(rdev, wdev, &chandef)) |
| cfg80211_chandef_create(&chandef, |
| wdev->current_bss->pub.channel, |
| NL80211_CHAN_NO_HT); |
| break; |
| case NL80211_IFTYPE_MONITOR: |
| case NL80211_IFTYPE_AP_VLAN: |
| case NL80211_IFTYPE_P2P_DEVICE: |
| /* no enforcement required */ |
| break; |
| default: |
| /* others not implemented for now */ |
| WARN_ON(1); |
| break; |
| } |
| |
| wdev_unlock(wdev); |
| |
| switch (iftype) { |
| case NL80211_IFTYPE_AP: |
| case NL80211_IFTYPE_P2P_GO: |
| case NL80211_IFTYPE_ADHOC: |
| return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); |
| case NL80211_IFTYPE_STATION: |
| case NL80211_IFTYPE_P2P_CLIENT: |
| return cfg80211_chandef_usable(wiphy, &chandef, |
| IEEE80211_CHAN_DISABLED); |
| default: |
| break; |
| } |
| |
| return true; |
| |
| wdev_inactive_unlock: |
| wdev_unlock(wdev); |
| return true; |
| } |
| |
| static void reg_leave_invalid_chans(struct wiphy *wiphy) |
| { |
| struct wireless_dev *wdev; |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| |
| ASSERT_RTNL(); |
| |
| list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) |
| if (!reg_wdev_chan_valid(wiphy, wdev)) |
| cfg80211_leave(rdev, wdev); |
| } |
| |
| static void reg_check_chans_work(struct work_struct *work) |
| { |
| struct cfg80211_registered_device *rdev; |
| |
| pr_debug("Verifying active interfaces after reg change\n"); |
| rtnl_lock(); |
| |
| list_for_each_entry(rdev, &cfg80211_rdev_list, list) |
| if (!(rdev->wiphy.regulatory_flags & |
| REGULATORY_IGNORE_STALE_KICKOFF)) |
| reg_leave_invalid_chans(&rdev->wiphy); |
| |
| rtnl_unlock(); |
| } |
| |
| static void reg_check_channels(void) |
| { |
| /* |
| * Give usermode a chance to do something nicer (move to another |
| * channel, orderly disconnection), before forcing a disconnection. |
| */ |
| mod_delayed_work(system_power_efficient_wq, |
| ®_check_chans, |
| msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); |
| } |
| |
| static void wiphy_update_regulatory(struct wiphy *wiphy, |
| enum nl80211_reg_initiator initiator) |
| { |
| enum nl80211_band band; |
| struct regulatory_request *lr = get_last_request(); |
| |
| if (ignore_reg_update(wiphy, initiator)) { |
| /* |
| * Regulatory updates set by CORE are ignored for custom |
| * regulatory cards. Let us notify the changes to the driver, |
| * as some drivers used this to restore its orig_* reg domain. |
| */ |
| if (initiator == NL80211_REGDOM_SET_BY_CORE && |
| wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) |
| reg_call_notifier(wiphy, lr); |
| return; |
| } |
| |
| lr->dfs_region = get_cfg80211_regdom()->dfs_region; |
| |
| for (band = 0; band < NUM_NL80211_BANDS; band++) |
| handle_band(wiphy, initiator, wiphy->bands[band]); |
| |
| reg_process_beacons(wiphy); |
| reg_process_ht_flags(wiphy); |
| reg_call_notifier(wiphy, lr); |
| } |
| |
| static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) |
| { |
| struct cfg80211_registered_device *rdev; |
| struct wiphy *wiphy; |
| |
| ASSERT_RTNL(); |
| |
| list_for_each_entry(rdev, &cfg80211_rdev_list, list) { |
| wiphy = &rdev->wiphy; |
| wiphy_update_regulatory(wiphy, initiator); |
| } |
| |
| reg_check_channels(); |
| } |
| |
| static void handle_channel_custom(struct wiphy *wiphy, |
| struct ieee80211_channel *chan, |
| const struct ieee80211_regdomain *regd) |
| { |
| u32 bw_flags = 0; |
| const struct ieee80211_reg_rule *reg_rule = NULL; |
| const struct ieee80211_power_rule *power_rule = NULL; |
| u32 bw; |
| |
| for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) { |
| reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq), |
| regd, bw); |
| if (!IS_ERR(reg_rule)) |
| break; |
| } |
| |
| if (IS_ERR(reg_rule)) { |
| pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n", |
| chan->center_freq); |
| if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { |
| chan->flags |= IEEE80211_CHAN_DISABLED; |
| } else { |
| chan->orig_flags |= IEEE80211_CHAN_DISABLED; |
| chan->flags = chan->orig_flags; |
| } |
| return; |
| } |
| |
| power_rule = ®_rule->power_rule; |
| bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); |
| |
| chan->dfs_state_entered = jiffies; |
| chan->dfs_state = NL80211_DFS_USABLE; |
| |
| chan->beacon_found = false; |
| |
| if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) |
| chan->flags = chan->orig_flags | bw_flags | |
| map_regdom_flags(reg_rule->flags); |
| else |
| chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; |
| |
| chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); |
| chan->max_reg_power = chan->max_power = |
| (int) MBM_TO_DBM(power_rule->max_eirp); |
| |
| if (chan->flags & IEEE80211_CHAN_RADAR) { |
| if (reg_rule->dfs_cac_ms) |
| chan->dfs_cac_ms = reg_rule->dfs_cac_ms; |
| else |
| chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; |
| } |
| |
| chan->max_power = chan->max_reg_power; |
| } |
| |
| static void handle_band_custom(struct wiphy *wiphy, |
| struct ieee80211_supported_band *sband, |
| const struct ieee80211_regdomain *regd) |
| { |
| unsigned int i; |
| |
| if (!sband) |
| return; |
| |
| for (i = 0; i < sband->n_channels; i++) |
| handle_channel_custom(wiphy, &sband->channels[i], regd); |
| } |
| |
| /* Used by drivers prior to wiphy registration */ |
| void wiphy_apply_custom_regulatory(struct wiphy *wiphy, |
| const struct ieee80211_regdomain *regd) |
| { |
| enum nl80211_band band; |
| unsigned int bands_set = 0; |
| |
| WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), |
| "wiphy should have REGULATORY_CUSTOM_REG\n"); |
| wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; |
| |
| for (band = 0; band < NUM_NL80211_BANDS; band++) { |
| if (!wiphy->bands[band]) |
| continue; |
| handle_band_custom(wiphy, wiphy->bands[band], regd); |
| bands_set++; |
| } |
| |
| /* |
| * no point in calling this if it won't have any effect |
| * on your device's supported bands. |
| */ |
| WARN_ON(!bands_set); |
| } |
| EXPORT_SYMBOL(wiphy_apply_custom_regulatory); |
| |
| static void reg_set_request_processed(void) |
| { |
| bool need_more_processing = false; |
| struct regulatory_request *lr = get_last_request(); |
| |
| lr->processed = true; |
| |
| spin_lock(®_requests_lock); |
| if (!list_empty(®_requests_list)) |
| need_more_processing = true; |
| spin_unlock(®_requests_lock); |
| |
| cancel_crda_timeout(); |
| |
| if (need_more_processing) |
| schedule_work(®_work); |
| } |
| |
| /** |
| * reg_process_hint_core - process core regulatory requests |
| * @pending_request: a pending core regulatory request |
| * |
| * The wireless subsystem can use this function to process |
| * a regulatory request issued by the regulatory core. |
| */ |
| static enum reg_request_treatment |
| reg_process_hint_core(struct regulatory_request *core_request) |
| { |
| if (reg_query_database(core_request)) { |
| core_request->intersect = false; |
| core_request->processed = false; |
| reg_update_last_request(core_request); |
| return REG_REQ_OK; |
| } |
| |
| return REG_REQ_IGNORE; |
| } |
| |
| static enum reg_request_treatment |
| __reg_process_hint_user(struct regulatory_request *user_request) |
| { |
| struct regulatory_request *lr = get_last_request(); |
| |
| if (reg_request_cell_base(user_request)) |
| return reg_ignore_cell_hint(user_request); |
| |
| if (reg_request_cell_base(lr)) |
| return REG_REQ_IGNORE; |
| |
| if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) |
| return REG_REQ_INTERSECT; |
| /* |
| * If the user knows better the user should set the regdom |
| * to their country before the IE is picked up |
| */ |
| if (lr->initiator == NL80211_REGDOM_SET_BY_USER && |
| lr->intersect) |
| return REG_REQ_IGNORE; |
| /* |
| * Process user requests only after previous user/driver/core |
| * requests have been processed |
| */ |
| if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || |
| lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || |
| lr->initiator == NL80211_REGDOM_SET_BY_USER) && |
| regdom_changes(lr->alpha2)) |
| return REG_REQ_IGNORE; |
| |
| if (!regdom_changes(user_request->alpha2)) |
| return REG_REQ_ALREADY_SET; |
| |
| return REG_REQ_OK; |
| } |
| |
| /** |
| * reg_process_hint_user - process user regulatory requests |
| * @user_request: a pending user regulatory request |
| * |
| * The wireless subsystem can use this function to process |
| * a regulatory request initiated by userspace. |
| */ |
| static enum reg_request_treatment |
| reg_process_hint_user(struct regulatory_request *user_request) |
| { |
| enum reg_request_treatment treatment; |
| |
| treatment = __reg_process_hint_user(user_request); |
| if (treatment == REG_REQ_IGNORE || |
| treatment == REG_REQ_ALREADY_SET) |
| return REG_REQ_IGNORE; |
| |
| user_request->intersect = treatment == REG_REQ_INTERSECT; |
| user_request->processed = false; |
| |
| if (reg_query_database(user_request)) { |
| reg_update_last_request(user_request); |
| user_alpha2[0] = user_request->alpha2[0]; |
| user_alpha2[1] = user_request->alpha2[1]; |
| return REG_REQ_OK; |
| } |
| |
| return REG_REQ_IGNORE; |
| } |
| |
| static enum reg_request_treatment |
| __reg_process_hint_driver(struct regulatory_request *driver_request) |
| { |
| struct regulatory_request *lr = get_last_request(); |
| |
| if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { |
| if (regdom_changes(driver_request->alpha2)) |
| return REG_REQ_OK; |
| return REG_REQ_ALREADY_SET; |
| } |
| |
| /* |
| * This would happen if you unplug and plug your card |
| * back in or if you add a new device for which the previously |
| * loaded card also agrees on the regulatory domain. |
| */ |
| if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && |
| !regdom_changes(driver_request->alpha2)) |
| return REG_REQ_ALREADY_SET; |
| |
| return REG_REQ_INTERSECT; |
| } |
| |
| /** |
| * reg_process_hint_driver - process driver regulatory requests |
| * @driver_request: a pending driver regulatory request |
| * |
| * The wireless subsystem can use this function to process |
| * a regulatory request issued by an 802.11 driver. |
| * |
| * Returns one of the different reg request treatment values. |
| */ |
| static enum reg_request_treatment |
| reg_process_hint_driver(struct wiphy *wiphy, |
| struct regulatory_request *driver_request) |
| { |
| const struct ieee80211_regdomain *regd, *tmp; |
| enum reg_request_treatment treatment; |
| |
| treatment = __reg_process_hint_driver(driver_request); |
| |
| switch (treatment) { |
| case REG_REQ_OK: |
| break; |
| case REG_REQ_IGNORE: |
| return REG_REQ_IGNORE; |
| case REG_REQ_INTERSECT: |
| case REG_REQ_ALREADY_SET: |
| regd = reg_copy_regd(get_cfg80211_regdom()); |
| if (IS_ERR(regd)) |
| return REG_REQ_IGNORE; |
| |
| tmp = get_wiphy_regdom(wiphy); |
| rcu_assign_pointer(wiphy->regd, regd); |
| rcu_free_regdom(tmp); |
| } |
| |
| |
| driver_request->intersect = treatment == REG_REQ_INTERSECT; |
| driver_request->processed = false; |
| |
| /* |
| * Since CRDA will not be called in this case as we already |
| * have applied the requested regulatory domain before we just |
| * inform userspace we have processed the request |
| */ |
| if (treatment == REG_REQ_ALREADY_SET) { |
| nl80211_send_reg_change_event(driver_request); |
| reg_update_last_request(driver_request); |
| reg_set_request_processed(); |
| return REG_REQ_ALREADY_SET; |
| } |
| |
| if (reg_query_database(driver_request)) { |
| reg_update_last_request(driver_request); |
| return REG_REQ_OK; |
| } |
| |
| return REG_REQ_IGNORE; |
| } |
| |
| static enum reg_request_treatment |
| __reg_process_hint_country_ie(struct wiphy *wiphy, |
| struct regulatory_request *country_ie_request) |
| { |
| struct wiphy *last_wiphy = NULL; |
| struct regulatory_request *lr = get_last_request(); |
| |
| if (reg_request_cell_base(lr)) { |
| /* Trust a Cell base station over the AP's country IE */ |
| if (regdom_changes(country_ie_request->alpha2)) |
| return REG_REQ_IGNORE; |
| return REG_REQ_ALREADY_SET; |
| } else { |
| if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) |
| return REG_REQ_IGNORE; |
| } |
| |
| if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) |
| return -EINVAL; |
| |
| if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) |
| return REG_REQ_OK; |
| |
| last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); |
| |
| if (last_wiphy != wiphy) { |
| /* |
| * Two cards with two APs claiming different |
| * Country IE alpha2s. We could |
| * intersect them, but that seems unlikely |
| * to be correct. Reject second one for now. |
| */ |
| if (regdom_changes(country_ie_request->alpha2)) |
| return REG_REQ_IGNORE; |
| return REG_REQ_ALREADY_SET; |
| } |
| |
| if (regdom_changes(country_ie_request->alpha2)) |
| return REG_REQ_OK; |
| return REG_REQ_ALREADY_SET; |
| } |
| |
| /** |
| * reg_process_hint_country_ie - process regulatory requests from country IEs |
| * @country_ie_request: a regulatory request from a country IE |
| * |
| * The wireless subsystem can use this function to process |
| * a regulatory request issued by a country Information Element. |
| * |
| * Returns one of the different reg request treatment values. |
| */ |
| static enum reg_request_treatment |
| reg_process_hint_country_ie(struct wiphy *wiphy, |
| struct regulatory_request *country_ie_request) |
| { |
| enum reg_request_treatment treatment; |
| |
| treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); |
| |
| switch (treatment) { |
| case REG_REQ_OK: |
| break; |
| case REG_REQ_IGNORE: |
| return REG_REQ_IGNORE; |
| case REG_REQ_ALREADY_SET: |
| reg_free_request(country_ie_request); |
| return REG_REQ_ALREADY_SET; |
| case REG_REQ_INTERSECT: |
| /* |
| * This doesn't happen yet, not sure we |
| * ever want to support it for this case. |
| */ |
| WARN_ONCE(1, "Unexpected intersection for country elements"); |
| return REG_REQ_IGNORE; |
| } |
| |
| country_ie_request->intersect = false; |
| country_ie_request->processed = false; |
| |
| if (reg_query_database(country_ie_request)) { |
| reg_update_last_request(country_ie_request); |
| return REG_REQ_OK; |
| } |
| |
| return REG_REQ_IGNORE; |
| } |
| |
| bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) |
| { |
| const struct ieee80211_regdomain *wiphy1_regd = NULL; |
| const struct ieee80211_regdomain *wiphy2_regd = NULL; |
| const struct ieee80211_regdomain *cfg80211_regd = NULL; |
| bool dfs_domain_same; |
| |
| rcu_read_lock(); |
| |
| cfg80211_regd = rcu_dereference(cfg80211_regdomain); |
| wiphy1_regd = rcu_dereference(wiphy1->regd); |
| if (!wiphy1_regd) |
| wiphy1_regd = cfg80211_regd; |
| |
| wiphy2_regd = rcu_dereference(wiphy2->regd); |
| if (!wiphy2_regd) |
| wiphy2_regd = cfg80211_regd; |
| |
| dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; |
| |
| rcu_read_unlock(); |
| |
| return dfs_domain_same; |
| } |
| |
| static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, |
| struct ieee80211_channel *src_chan) |
| { |
| if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || |
| !(src_chan->flags & IEEE80211_CHAN_RADAR)) |
| return; |
| |
| if (dst_chan->flags & IEEE80211_CHAN_DISABLED || |
| src_chan->flags & IEEE80211_CHAN_DISABLED) |
| return; |
| |
| if (src_chan->center_freq == dst_chan->center_freq && |
| dst_chan->dfs_state == NL80211_DFS_USABLE) { |
| dst_chan->dfs_state = src_chan->dfs_state; |
| dst_chan->dfs_state_entered = src_chan->dfs_state_entered; |
| } |
| } |
| |
| static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, |
| struct wiphy *src_wiphy) |
| { |
| struct ieee80211_supported_band *src_sband, *dst_sband; |
| struct ieee80211_channel *src_chan, *dst_chan; |
| int i, j, band; |
| |
| if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) |
| return; |
| |
| for (band = 0; band < NUM_NL80211_BANDS; band++) { |
| dst_sband = dst_wiphy->bands[band]; |
| src_sband = src_wiphy->bands[band]; |
| if (!dst_sband || !src_sband) |
| continue; |
| |
| for (i = 0; i < dst_sband->n_channels; i++) { |
| dst_chan = &dst_sband->channels[i]; |
| for (j = 0; j < src_sband->n_channels; j++) { |
| src_chan = &src_sband->channels[j]; |
| reg_copy_dfs_chan_state(dst_chan, src_chan); |
| } |
| } |
| } |
| } |
| |
| static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) |
| { |
| struct cfg80211_registered_device *rdev; |
| |
| ASSERT_RTNL(); |
| |
| list_for_each_entry(rdev, &cfg80211_rdev_list, list) { |
| if (wiphy == &rdev->wiphy) |
| continue; |
| wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); |
| } |
| } |
| |
| /* This processes *all* regulatory hints */ |
| static void reg_process_hint(struct regulatory_request *reg_request) |
| { |
| struct wiphy *wiphy = NULL; |
| enum reg_request_treatment treatment; |
| |
| if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) |
| wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); |
| |
| switch (reg_request->initiator) { |
| case NL80211_REGDOM_SET_BY_CORE: |
| treatment = reg_process_hint_core(reg_request); |
| break; |
| case NL80211_REGDOM_SET_BY_USER: |
| treatment = reg_process_hint_user(reg_request); |
| break; |
| case NL80211_REGDOM_SET_BY_DRIVER: |
| if (!wiphy) |
| goto out_free; |
| treatment = reg_process_hint_driver(wiphy, reg_request); |
| break; |
| case NL80211_REGDOM_SET_BY_COUNTRY_IE: |
| if (!wiphy) |
| goto out_free; |
| treatment = reg_process_hint_country_ie(wiphy, reg_request); |
| break; |
| default: |
| WARN(1, "invalid initiator %d\n", reg_request->initiator); |
| goto out_free; |
| } |
| |
| if (treatment == REG_REQ_IGNORE) |
| goto out_free; |
| |
| WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, |
| "unexpected treatment value %d\n", treatment); |
| |
| /* This is required so that the orig_* parameters are saved. |
| * NOTE: treatment must be set for any case that reaches here! |
| */ |
| if (treatment == REG_REQ_ALREADY_SET && wiphy && |
| wiphy->regulatory_flags & REGULATORY_STRICT_REG) { |
| wiphy_update_regulatory(wiphy, reg_request->initiator); |
| wiphy_all_share_dfs_chan_state(wiphy); |
| reg_check_channels(); |
| } |
| |
| return; |
| |
| out_free: |
| reg_free_request(reg_request); |
| } |
| |
| static void notify_self_managed_wiphys(struct regulatory_request *request) |
| { |
| struct cfg80211_registered_device *rdev; |
| struct wiphy *wiphy; |
| |
| list_for_each_entry(rdev, &cfg80211_rdev_list, list) { |
| wiphy = &rdev->wiphy; |
| if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && |
| request->initiator == NL80211_REGDOM_SET_BY_USER && |
| request->user_reg_hint_type == |
| NL80211_USER_REG_HINT_CELL_BASE) |
| reg_call_notifier(wiphy, request); |
| } |
| } |
| |
| static bool reg_only_self_managed_wiphys(void) |
| { |
| struct cfg80211_registered_device *rdev; |
| struct wiphy *wiphy; |
| bool self_managed_found = false; |
| |
| ASSERT_RTNL(); |
| |
| list_for_each_entry(rdev, &cfg80211_rdev_list, list) { |
| wiphy = &rdev->wiphy; |
| if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) |
| self_managed_found = true; |
| else |
| return false; |
| } |
| |
| /* make sure at least one self-managed wiphy exists */ |
| return self_managed_found; |
| } |
| |
| /* |
| * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* |
| * Regulatory hints come on a first come first serve basis and we |
| * must process each one atomically. |
| */ |
| static void reg_process_pending_hints(void) |
| { |
| struct regulatory_request *reg_request, *lr; |
| |
| lr = get_last_request(); |
| |
| /* When last_request->processed becomes true this will be rescheduled */ |
| if (lr && !lr->processed) { |
| reg_process_hint(lr); |
| return; |
| } |
| |
| spin_lock(®_requests_lock); |
| |
| if (list_empty(®_requests_list)) { |
| spin_unlock(®_requests_lock); |
| return; |
| } |
| |
| reg_request = list_first_entry(®_requests_list, |
| struct regulatory_request, |
| list); |
| list_del_init(®_request->list); |
| |
| spin_unlock(®_requests_lock); |
| |
| notify_self_managed_wiphys(reg_request); |
| if (reg_only_self_managed_wiphys()) { |
| reg_free_request(reg_request); |
| return; |
| } |
| |
| reg_process_hint(reg_request); |
| |
| lr = get_last_request(); |
| |
| spin_lock(®_requests_lock); |
| if (!list_empty(®_requests_list) && lr && lr->processed) |
| schedule_work(®_work); |
| spin_unlock(®_requests_lock); |
| } |
| |
| /* Processes beacon hints -- this has nothing to do with country IEs */ |
| static void reg_process_pending_beacon_hints(void) |
| { |
| struct cfg80211_registered_device *rdev; |
| struct reg_beacon *pending_beacon, *tmp; |
| |
| /* This goes through the _pending_ beacon list */ |
| spin_lock_bh(®_pending_beacons_lock); |
| |
| list_for_each_entry_safe(pending_beacon, tmp, |
| ®_pending_beacons, list) { |
| list_del_init(&pending_beacon->list); |
| |
| /* Applies the beacon hint to current wiphys */ |
| list_for_each_entry(rdev, &cfg80211_rdev_list, list) |
| wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); |
| |
| /* Remembers the beacon hint for new wiphys or reg changes */ |
| list_add_tail(&pending_beacon->list, ®_beacon_list); |
| } |
| |
| spin_unlock_bh(®_pending_beacons_lock); |
| } |
| |
| static void reg_process_self_managed_hints(void) |
| { |
| struct cfg80211_registered_device *rdev; |
| struct wiphy *wiphy; |
| const struct ieee80211_regdomain *tmp; |
| const struct ieee80211_regdomain *regd; |
| enum nl80211_band band; |
| struct regulatory_request request = {}; |
| |
| list_for_each_entry(rdev, &cfg80211_rdev_list, list) { |
| wiphy = &rdev->wiphy; |
| |
| spin_lock(®_requests_lock); |
| regd = rdev->requested_regd; |
| rdev->requested_regd = NULL; |
| spin_unlock(®_requests_lock); |
| |
| if (regd == NULL) |
| continue; |
| |
| tmp = get_wiphy_regdom(wiphy); |
| rcu_assign_pointer(wiphy->regd, regd); |
| rcu_free_regdom(tmp); |
| |
| for (band = 0; band < NUM_NL80211_BANDS; band++) |
| handle_band_custom(wiphy, wiphy->bands[band], regd); |
| |
| reg_process_ht_flags(wiphy); |
| |
| request.wiphy_idx = get_wiphy_idx(wiphy); |
| request.alpha2[0] = regd->alpha2[0]; |
| request.alpha2[1] = regd->alpha2[1]; |
| request.initiator = NL80211_REGDOM_SET_BY_DRIVER; |
| |
| nl80211_send_wiphy_reg_change_event(&request); |
| } |
| |
| reg_check_channels(); |
| } |
| |
| static void reg_todo(struct work_struct *work) |
| { |
| rtnl_lock(); |
| reg_process_pending_hints(); |
| reg_process_pending_beacon_hints(); |
| reg_process_self_managed_hints(); |
| rtnl_unlock(); |
| } |
| |
| static void queue_regulatory_request(struct regulatory_request *request) |
| { |
| request->alpha2[0] = toupper(request->alpha2[0]); |
| request->alpha2[1] = toupper(request->alpha2[1]); |
| |
| spin_lock(®_requests_lock); |
| list_add_tail(&request->list, ®_requests_list); |
| spin_unlock(®_requests_lock); |
| |
| schedule_work(®_work); |
| } |
| |
| /* |
| * Core regulatory hint -- happens during cfg80211_init() |
| * and when we restore regulatory settings. |
| */ |
| static int regulatory_hint_core(const char *alpha2) |
| { |
| struct regulatory_request *request; |
| |
| request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); |
| if (!request) |
| return -ENOMEM; |
| |
| request->alpha2[0] = alpha2[0]; |
| request->alpha2[1] = alpha2[1]; |
| request->initiator = NL80211_REGDOM_SET_BY_CORE; |
| |
| queue_regulatory_request(request); |
| |
| return 0; |
| } |
| |
| /* User hints */ |
| int regulatory_hint_user(const char *alpha2, |
| enum nl80211_user_reg_hint_type user_reg_hint_type) |
| { |
| struct regulatory_request *request; |
| |
| if (WARN_ON(!alpha2)) |
| return -EINVAL; |
| |
| request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); |
| if (!request) |
| return -ENOMEM; |
| |
| request->wiphy_idx = WIPHY_IDX_INVALID; |
| request->alpha2[0] = alpha2[0]; |
| request->alpha2[1] = alpha2[1]; |
| request->initiator = NL80211_REGDOM_SET_BY_USER; |
| request->user_reg_hint_type = user_reg_hint_type; |
| |
| /* Allow calling CRDA again */ |
| reset_crda_timeouts(); |
| |
| queue_regulatory_request(request); |
| |
| return 0; |
| } |
| |
| int regulatory_hint_indoor(bool is_indoor, u32 portid) |
| { |
| spin_lock(®_indoor_lock); |
| |
| /* It is possible that more than one user space process is trying to |
| * configure the indoor setting. To handle such cases, clear the indoor |
| * setting in case that some process does not think that the device |
| * is operating in an indoor environment. In addition, if a user space |
| * process indicates that it is controlling the indoor setting, save its |
| * portid, i.e., make it the owner. |
| */ |
| reg_is_indoor = is_indoor; |
| if (reg_is_indoor) { |
| if (!reg_is_indoor_portid) |
| reg_is_indoor_portid = portid; |
| } else { |
| reg_is_indoor_portid = 0; |
| } |
| |
| spin_unlock(®_indoor_lock); |
| |
| if (!is_indoor) |
| reg_check_channels(); |
| |
| return 0; |
| } |
| |
| void regulatory_netlink_notify(u32 portid) |
| { |
| spin_lock(®_indoor_lock); |
| |
| if (reg_is_indoor_portid != portid) { |
| spin_unlock(®_indoor_lock); |
| return; |
| } |
| |
| reg_is_indoor = false; |
| reg_is_indoor_portid = 0; |
| |
| spin_unlock(®_indoor_lock); |
| |
| reg_check_channels(); |
| } |
| |
| /* Driver hints */ |
| int regulatory_hint(struct wiphy *wiphy, const char *alpha2) |
| { |
| struct regulatory_request *request; |
| |
| if (WARN_ON(!alpha2 || !wiphy)) |
| return -EINVAL; |
| |
| wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; |
| |
| request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); |
| if (!request) |
| return -ENOMEM; |
| |
| request->wiphy_idx = get_wiphy_idx(wiphy); |
| |
| request->alpha2[0] = alpha2[0]; |
| request->alpha2[1] = alpha2[1]; |
| request->initiator = NL80211_REGDOM_SET_BY_DRIVER; |
| |
| /* Allow calling CRDA again */ |
| reset_crda_timeouts(); |
| |
| queue_regulatory_request(request); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(regulatory_hint); |
| |
| void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, |
| const u8 *country_ie, u8 country_ie_len) |
| { |
| char alpha2[2]; |
| enum environment_cap env = ENVIRON_ANY; |
| struct regulatory_request *request = NULL, *lr; |
| |
| /* IE len must be evenly divisible by 2 */ |
| if (country_ie_len & 0x01) |
| return; |
| |
| if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) |
| return; |
| |
| request = kzalloc(sizeof(*request), GFP_KERNEL); |
| if (!request) |
| return; |
| |
| alpha2[0] = country_ie[0]; |
| alpha2[1] = country_ie[1]; |
| |
| if (country_ie[2] == 'I') |
| env = ENVIRON_INDOOR; |
| else if (country_ie[2] == 'O') |
| env = ENVIRON_OUTDOOR; |
| |
| rcu_read_lock(); |
| lr = get_last_request(); |
| |
| if (unlikely(!lr)) |
| goto out; |
| |
| /* |
| * We will run this only upon a successful connection on cfg80211. |
| * We leave conflict resolution to the workqueue, where can hold |
| * the RTNL. |
| */ |
| if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && |
| lr->wiphy_idx != WIPHY_IDX_INVALID) |
| goto out; |
| |
| request->wiphy_idx = get_wiphy_idx(wiphy); |
| request->alpha2[0] = alpha2[0]; |
| request->alpha2[1] = alpha2[1]; |
| request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; |
| request->country_ie_env = env; |
| |
| /* Allow calling CRDA again */ |
| reset_crda_timeouts(); |
| |
| queue_regulatory_request(request); |
| request = NULL; |
| out: |
| kfree(request); |
| rcu_read_unlock(); |
| } |
| |
| static void restore_alpha2(char *alpha2, bool reset_user) |
| { |
| /* indicates there is no alpha2 to consider for restoration */ |
| alpha2[0] = '9'; |
| alpha2[1] = '7'; |
| |
| /* The user setting has precedence over the module parameter */ |
| if (is_user_regdom_saved()) { |
| /* Unless we're asked to ignore it and reset it */ |
| if (reset_user) { |
| pr_debug("Restoring regulatory settings including user preference\n"); |
| user_alpha2[0] = '9'; |
| user_alpha2[1] = '7'; |
| |
| /* |
| * If we're ignoring user settings, we still need to |
| * check the module parameter to ensure we put things |
| * back as they were for a full restore. |
| */ |
| if (!is_world_regdom(ieee80211_regdom)) { |
| pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", |
| ieee80211_regdom[0], ieee80211_regdom[1]); |
| alpha2[0] = ieee80211_regdom[0]; |
| alpha2[1] = ieee80211_regdom[1]; |
| } |
| } else { |
| pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", |
| user_alpha2[0], user_alpha2[1]); |
| alpha2[0] = user_alpha2[0]; |
| alpha2[1] = user_alpha2[1]; |
| } |
| } else if (!is_world_regdom(ieee80211_regdom)) { |
| pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", |
| ieee80211_regdom[0], ieee80211_regdom[1]); |
| alpha2[0] = ieee80211_regdom[0]; |
| alpha2[1] = ieee80211_regdom[1]; |
| } else |
| pr_debug("Restoring regulatory settings\n"); |
| } |
| |
| static void restore_custom_reg_settings(struct wiphy *wiphy) |
| { |
| struct ieee80211_supported_band *sband; |
| enum nl80211_band band; |
| struct ieee80211_channel *chan; |
| int i; |
| |
| for (band = 0; band < NUM_NL80211_BANDS; band++) { |
| sband = wiphy->bands[band]; |
| if (!sband) |
| continue; |
| for (i = 0; i < sband->n_channels; i++) { |
| chan = &sband->channels[i]; |
| chan->flags = chan->orig_flags; |
| chan->max_antenna_gain = chan->orig_mag; |
| chan->max_power = chan->orig_mpwr; |
| chan->beacon_found = false; |
| } |
| } |
| } |
| |
| /* |
| * Restoring regulatory settings involves ingoring any |
| * possibly stale country IE information and user regulatory |
| * settings if so desired, this includes any beacon hints |
| * learned as we could have traveled outside to another country |
| * after disconnection. To restore regulatory settings we do |
| * exactly what we did at bootup: |
| * |
| * - send a core regulatory hint |
| * - send a user regulatory hint if applicable |
| * |
| * Device drivers that send a regulatory hint for a specific country |
| * keep their own regulatory domain on wiphy->regd so that does does |
| * not need to be remembered. |
| */ |
| static void restore_regulatory_settings(bool reset_user) |
| { |
| char alpha2[2]; |
| char world_alpha2[2]; |
| struct reg_beacon *reg_beacon, *btmp; |
| LIST_HEAD(tmp_reg_req_list); |
| struct cfg80211_registered_device *rdev; |
| |
| ASSERT_RTNL(); |
| |
| /* |
| * Clear the indoor setting in case that it is not controlled by user |
| * space, as otherwise there is no guarantee that the device is still |
| * operating in an indoor environment. |
| */ |
| spin_lock(®_indoor_lock); |
| if (reg_is_indoor && !reg_is_indoor_portid) { |
| reg_is_indoor = false; |
| reg_check_channels(); |
| } |
| spin_unlock(®_indoor_lock); |
| |
| reset_regdomains(true, &world_regdom); |
| restore_alpha2(alpha2, reset_user); |
| |
| /* |
| * If there's any pending requests we simply |
| * stash them to a temporary pending queue and |
| * add then after we've restored regulatory |
| * settings. |
| */ |
| spin_lock(®_requests_lock); |
| list_splice_tail_init(®_requests_list, &tmp_reg_req_list); |
| spin_unlock(®_requests_lock); |
| |
| /* Clear beacon hints */ |
| spin_lock_bh(®_pending_beacons_lock); |
| list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { |
| list_del(®_beacon->list); |
| kfree(reg_beacon); |
| } |
| spin_unlock_bh(®_pending_beacons_lock); |
| |
| list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { |
| list_del(®_beacon->list); |
| kfree(reg_beacon); |
| } |
| |
| /* First restore to the basic regulatory settings */ |
| world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; |
| world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; |
| |
| list_for_each_entry(rdev, &cfg80211_rdev_list, list) { |
| if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) |
| continue; |
| if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) |
| restore_custom_reg_settings(&rdev->wiphy); |
| } |
| |
| regulatory_hint_core(world_alpha2); |
| |
| /* |
| * This restores the ieee80211_regdom module parameter |
| * preference or the last user requested regulatory |
| * settings, user regulatory settings takes precedence. |
| */ |
| if (is_an_alpha2(alpha2)) |
| regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); |
| |
| spin_lock(®_requests_lock); |
| list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); |
| spin_unlock(®_requests_lock); |
| |
| pr_debug("Kicking the queue\n"); |
| |
| schedule_work(®_work); |
| } |
| |
| void regulatory_hint_disconnect(void) |
| { |
| pr_debug("All devices are disconnected, going to restore regulatory settings\n"); |
| restore_regulatory_settings(false); |
| } |
| |
| static bool freq_is_chan_12_13_14(u16 freq) |
| { |
| if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || |
| freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || |
| freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) |
| return true; |
| return false; |
| } |
| |
| static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) |
| { |
| struct reg_beacon *pending_beacon; |
| |
| list_for_each_entry(pending_beacon, ®_pending_beacons, list) |
| if (beacon_chan->center_freq == |
| pending_beacon->chan.center_freq) |
| return true; |
| return false; |
| } |
| |
| int regulatory_hint_found_beacon(struct wiphy *wiphy, |
| struct ieee80211_channel *beacon_chan, |
| gfp_t gfp) |
| { |
| struct reg_beacon *reg_beacon; |
| bool processing; |
| |
| if (beacon_chan->beacon_found || |
| beacon_chan->flags & IEEE80211_CHAN_RADAR || |
| (beacon_chan->band == NL80211_BAND_2GHZ && |
| !freq_is_chan_12_13_14(beacon_chan->center_freq))) |
| return 0; |
| |
| spin_lock_bh(®_pending_beacons_lock); |
| processing = pending_reg_beacon(beacon_chan); |
| spin_unlock_bh(®_pending_beacons_lock); |
| |
| if (processing) |
| return 0; |
| |
| reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); |
| if (!reg_beacon) |
| return -ENOMEM; |
| |
| pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", |
| beacon_chan->center_freq, |
| ieee80211_frequency_to_channel(beacon_chan->center_freq), |
| wiphy_name(wiphy)); |
| |
| memcpy(®_beacon->chan, beacon_chan, |
| sizeof(struct ieee80211_channel)); |
| |
| /* |
| * Since we can be called from BH or and non-BH context |
| * we must use spin_lock_bh() |
| */ |
| spin_lock_bh(®_pending_beacons_lock); |
| list_add_tail(®_beacon->list, ®_pending_beacons); |
| spin_unlock_bh(®_pending_beacons_lock); |
| |
| schedule_work(®_work); |
| |
| return 0; |
| } |
| |
| static void print_rd_rules(const struct ieee80211_regdomain *rd) |
| { |
| unsigned int i; |
| const struct ieee80211_reg_rule *reg_rule = NULL; |
| const struct ieee80211_freq_range *freq_range = NULL; |
| const struct ieee80211_power_rule *power_rule = NULL; |
| char bw[32], cac_time[32]; |
| |
| pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); |
| |
| for (i = 0; i < rd->n_reg_rules; i++) { |
| reg_rule = &rd->reg_rules[i]; |
| freq_range = ®_rule->freq_range; |
| power_rule = ®_rule->power_rule; |
| |
| if (reg_rule->flags & NL80211_RRF_AUTO_BW) |
| snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", |
| freq_range->max_bandwidth_khz, |
| reg_get_max_bandwidth(rd, reg_rule)); |
| else |
| snprintf(bw, sizeof(bw), "%d KHz", |
| freq_range->max_bandwidth_khz); |
| |
| if (reg_rule->flags & NL80211_RRF_DFS) |
| scnprintf(cac_time, sizeof(cac_time), "%u s", |
| reg_rule->dfs_cac_ms/1000); |
| else |
| scnprintf(cac_time, sizeof(cac_time), "N/A"); |
| |
| |
| /* |
| * There may not be documentation for max antenna gain |
| * in certain regions |
| */ |
| if (power_rule->max_antenna_gain) |
| pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", |
| freq_range->start_freq_khz, |
| freq_range->end_freq_khz, |
| bw, |
| power_rule->max_antenna_gain, |
| power_rule->max_eirp, |
| cac_time); |
| else |
| pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", |
| freq_range->start_freq_khz, |
| freq_range->end_freq_khz, |
| bw, |
| power_rule->max_eirp, |
| cac_time); |
| } |
| } |
| |
| bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) |
| { |
| switch (dfs_region) { |
| case NL80211_DFS_UNSET: |
| case NL80211_DFS_FCC: |
| case NL80211_DFS_ETSI: |
| case NL80211_DFS_JP: |
| return true; |
| default: |
| pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); |
| return false; |
| } |
| } |
| |
| static void print_regdomain(const struct ieee80211_regdomain *rd) |
| { |
| struct regulatory_request *lr = get_last_request(); |
| |
| if (is_intersected_alpha2(rd->alpha2)) { |
| if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { |
| struct cfg80211_registered_device *rdev; |
| rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); |
| if (rdev) { |
| pr_debug("Current regulatory domain updated by AP to: %c%c\n", |
| rdev->country_ie_alpha2[0], |
| rdev->country_ie_alpha2[1]); |
| } else |
| pr_debug("Current regulatory domain intersected:\n"); |
| } else |
| pr_debug("Current regulatory domain intersected:\n"); |
| } else if (is_world_regdom(rd->alpha2)) { |
| pr_debug("World regulatory domain updated:\n"); |
| } else { |
| if (is_unknown_alpha2(rd->alpha2)) |
| pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); |
| else { |
| if (reg_request_cell_base(lr)) |
| pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", |
| rd->alpha2[0], rd->alpha2[1]); |
| else |
| pr_debug("Regulatory domain changed to country: %c%c\n", |
| rd->alpha2[0], rd->alpha2[1]); |
| } |
| } |
| |
| pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); |
| print_rd_rules(rd); |
| } |
| |
| static void print_regdomain_info(const struct ieee80211_regdomain *rd) |
| { |
| pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); |
| print_rd_rules(rd); |
| } |
| |
| static int reg_set_rd_core(const struct ieee80211_regdomain *rd) |
| { |
| if (!is_world_regdom(rd->alpha2)) |
| return -EINVAL; |
| update_world_regdomain(rd); |
| return 0; |
| } |
| |
| static int reg_set_rd_user(const struct ieee80211_regdomain *rd, |
| struct regulatory_request *user_request) |
| { |
| const struct ieee80211_regdomain *intersected_rd = NULL; |
| |
| if (!regdom_changes(rd->alpha2)) |
| return -EALREADY; |
| |
| if (!is_valid_rd(rd)) { |
| pr_err("Invalid regulatory domain detected: %c%c\n", |
| rd->alpha2[0], rd->alpha2[1]); |
| print_regdomain_info(rd); |
| return -EINVAL; |
| } |
| |
| if (!user_request->intersect) { |
| reset_regdomains(false, rd); |
| return 0; |
| } |
| |
| intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); |
| if (!intersected_rd) |
| return -EINVAL; |
| |
| kfree(rd); |
| rd = NULL; |
| reset_regdomains(false, intersected_rd); |
| |
| return 0; |
| } |
| |
| static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, |
| struct regulatory_request *driver_request) |
| { |
| const struct ieee80211_regdomain *regd; |
| const struct ieee80211_regdomain *intersected_rd = NULL; |
| const struct ieee80211_regdomain *tmp; |
| struct wiphy *request_wiphy; |
| |
| if (is_world_regdom(rd->alpha2)) |
| return -EINVAL; |
| |
| if (!regdom_changes(rd->alpha2)) |
| return -EALREADY; |
| |
| if (!is_valid_rd(rd)) { |
| pr_err("Invalid regulatory domain detected: %c%c\n", |
| rd->alpha2[0], rd->alpha2[1]); |
| print_regdomain_info(rd); |
| return -EINVAL; |
| } |
| |
| request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); |
| if (!request_wiphy) |
| return -ENODEV; |
| |
| if (!driver_request->intersect) { |
| if (request_wiphy->regd) |
| return -EALREADY; |
| |
| regd = reg_copy_regd(rd); |
| if (IS_ERR(regd)) |
| return PTR_ERR(regd); |
| |
| rcu_assign_pointer(request_wiphy->regd, regd); |
| reset_regdomains(false, rd); |
| return 0; |
| } |
| |
| intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); |
| if (!intersected_rd) |
| return -EINVAL; |
| |
| /* |
| * We can trash what CRDA provided now. |
| * However if a driver requested this specific regulatory |
| * domain we keep it for its private use |
| */ |
| tmp = get_wiphy_regdom(request_wiphy); |
| rcu_assign_pointer(request_wiphy->regd, rd); |
| rcu_free_regdom(tmp); |
| |
| rd = NULL; |
| |
| reset_regdomains(false, intersected_rd); |
| |
| return 0; |
| } |
| |
| static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, |
| struct regulatory_request *country_ie_request) |
| { |
| struct wiphy *request_wiphy; |
| |
| if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && |
| !is_unknown_alpha2(rd->alpha2)) |
| return -EINVAL; |
| |
| /* |
| * Lets only bother proceeding on the same alpha2 if the current |
| * rd is non static (it means CRDA was present and was used last) |
| * and the pending request came in from a country IE |
| */ |
| |
| if (!is_valid_rd(rd)) { |
| pr_err("Invalid regulatory domain detected: %c%c\n", |
| rd->alpha2[0], rd->alpha2[1]); |
| print_regdomain_info(rd); |
| return -EINVAL; |
| } |
| |
| request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); |
| if (!request_wiphy) |
| return -ENODEV; |
| |
| if (country_ie_request->intersect) |
| return -EINVAL; |
| |
| reset_regdomains(false, rd); |
| return 0; |
| } |
| |
| /* |
| * Use this call to set the current regulatory domain. Conflicts with |
| * multiple drivers can be ironed out later. Caller must've already |
| * kmalloc'd the rd structure. |
| */ |
| int set_regdom(const struct ieee80211_regdomain *rd, |
| enum ieee80211_regd_source regd_src) |
| { |
| struct regulatory_request *lr; |
| bool user_reset = false; |
| int r; |
| |
| if (!reg_is_valid_request(rd->alpha2)) { |
| kfree(rd); |
| return -EINVAL; |
| } |
| |
| if (regd_src == REGD_SOURCE_CRDA) |
| reset_crda_timeouts(); |
| |
| lr = get_last_request(); |
| |
| /* Note that this doesn't update the wiphys, this is done below */ |
| switch (lr->initiator) { |
| case NL80211_REGDOM_SET_BY_CORE: |
| r = reg_set_rd_core(rd); |
| break; |
| case NL80211_REGDOM_SET_BY_USER: |
| r = reg_set_rd_user(rd, lr); |
| user_reset = true; |
| break; |
| case NL80211_REGDOM_SET_BY_DRIVER: |
| r = reg_set_rd_driver(rd, lr); |
| break; |
| case NL80211_REGDOM_SET_BY_COUNTRY_IE: |
| r = reg_set_rd_country_ie(rd, lr); |
| break; |
| default: |
| WARN(1, "invalid initiator %d\n", lr->initiator); |
| kfree(rd); |
| return -EINVAL; |
| } |
| |
| if (r) { |
| switch (r) { |
| case -EALREADY: |
| reg_set_request_processed(); |
| break; |
| default: |
| /* Back to world regulatory in case of errors */ |
| restore_regulatory_settings(user_reset); |
| } |
| |
| kfree(rd); |
| return r; |
| } |
| |
| /* This would make this whole thing pointless */ |
| if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) |
| return -EINVAL; |
| |
| /* update all wiphys now with the new established regulatory domain */ |
| update_all_wiphy_regulatory(lr->initiator); |
| |
| print_regdomain(get_cfg80211_regdom()); |
| |
| nl80211_send_reg_change_event(lr); |
| |
| reg_set_request_processed(); |
| |
| return 0; |
| } |
| |
| static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, |
| struct ieee80211_regdomain *rd) |
| { |
| const struct ieee80211_regdomain *regd; |
| const struct ieee80211_regdomain *prev_regd; |
| struct cfg80211_registered_device *rdev; |
| |
| if (WARN_ON(!wiphy || !rd)) |
| return -EINVAL; |
| |
| if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), |
| "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) |
| return -EPERM; |
| |
| if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { |
| print_regdomain_info(rd); |
| return -EINVAL; |
| } |
| |
| regd = reg_copy_regd(rd); |
| if (IS_ERR(regd)) |
| return PTR_ERR(regd); |
| |
| rdev = wiphy_to_rdev(wiphy); |
| |
| spin_lock(®_requests_lock); |
| prev_regd = rdev->requested_regd; |
| rdev->requested_regd = regd; |
| spin_unlock(®_requests_lock); |
| |
| kfree(prev_regd); |
| return 0; |
| } |
| |
| int regulatory_set_wiphy_regd(struct wiphy *wiphy, |
| struct ieee80211_regdomain *rd) |
| { |
| int ret = __regulatory_set_wiphy_regd(wiphy, rd); |
| |
| if (ret) |
| return ret; |
| |
| schedule_work(®_work); |
| return 0; |
| } |
| EXPORT_SYMBOL(regulatory_set_wiphy_regd); |
| |
| int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, |
| struct ieee80211_regdomain *rd) |
| { |
| int ret; |
| |
| ASSERT_RTNL(); |
| |
| ret = __regulatory_set_wiphy_regd(wiphy, rd); |
| if (ret) |
| return ret; |
| |
| /* process the request immediately */ |
| reg_process_self_managed_hints(); |
| return 0; |
| } |
| EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); |
| |
| void wiphy_regulatory_register(struct wiphy *wiphy) |
| { |
| struct regulatory_request *lr = get_last_request(); |
| |
| /* self-managed devices ignore beacon hints and country IE */ |
| if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { |
| wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | |
| REGULATORY_COUNTRY_IE_IGNORE; |
| |
| /* |
| * The last request may have been received before this |
| * registration call. Call the driver notifier if |
| * initiator is USER and user type is CELL_BASE. |
| */ |
| if (lr->initiator == NL80211_REGDOM_SET_BY_USER && |
| lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE) |
| reg_call_notifier(wiphy, lr); |
| } |
| |
| if (!reg_dev_ignore_cell_hint(wiphy)) |
| reg_num_devs_support_basehint++; |
| |
| wiphy_update_regulatory(wiphy, lr->initiator); |
| wiphy_all_share_dfs_chan_state(wiphy); |
| } |
| |
| void wiphy_regulatory_deregister(struct wiphy *wiphy) |
| { |
| struct wiphy *request_wiphy = NULL; |
| struct regulatory_request *lr; |
| |
| lr = get_last_request(); |
| |
| if (!reg_dev_ignore_cell_hint(wiphy)) |
| reg_num_devs_support_basehint--; |
| |
| rcu_free_regdom(get_wiphy_regdom(wiphy)); |
| RCU_INIT_POINTER(wiphy->regd, NULL); |
| |
| if (lr) |
| request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); |
| |
| if (!request_wiphy || request_wiphy != wiphy) |
| return; |
| |
| lr->wiphy_idx = WIPHY_IDX_INVALID; |
| lr->country_ie_env = ENVIRON_ANY; |
| } |
| |
| /* |
| * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for |
| * UNII band definitions |
| */ |
| int cfg80211_get_unii(int freq) |
| { |
| /* UNII-1 */ |
| if (freq >= 5150 && freq <= 5250) |
| return 0; |
| |
| /* UNII-2A */ |
| if (freq > 5250 && freq <= 5350) |
| return 1; |
| |
| /* UNII-2B */ |
| if (freq > 5350 && freq <= 5470) |
| return 2; |
| |
| /* UNII-2C */ |
| if (freq > 5470 && freq <= 5725) |
| return 3; |
| |
| /* UNII-3 */ |
| if (freq > 5725 && freq <= 5825) |
| return 4; |
| |
| return -EINVAL; |
| } |
| |
| bool regulatory_indoor_allowed(void) |
| { |
| return reg_is_indoor; |
| } |
| |
| bool regulatory_pre_cac_allowed(struct wiphy *wiphy) |
| { |
| const struct ieee80211_regdomain *regd = NULL; |
| const struct ieee80211_regdomain *wiphy_regd = NULL; |
| bool pre_cac_allowed = false; |
| |
| rcu_read_lock(); |
| |
| regd = rcu_dereference(cfg80211_regdomain); |
| wiphy_regd = rcu_dereference(wiphy->regd); |
| if (!wiphy_regd) { |
| if (regd->dfs_region == NL80211_DFS_ETSI) |
| pre_cac_allowed = true; |
| |
| rcu_read_unlock(); |
| |
| return pre_cac_allowed; |
| } |
| |
| if (regd->dfs_region == wiphy_regd->dfs_region && |
| wiphy_regd->dfs_region == NL80211_DFS_ETSI) |
| pre_cac_allowed = true; |
| |
| rcu_read_unlock(); |
| |
| return pre_cac_allowed; |
| } |
| |
| void regulatory_propagate_dfs_state(struct wiphy *wiphy, |
| struct cfg80211_chan_def *chandef, |
| enum nl80211_dfs_state dfs_state, |
| enum nl80211_radar_event event) |
| { |
| struct cfg80211_registered_device *rdev; |
| |
| ASSERT_RTNL(); |
| |
| if (WARN_ON(!cfg80211_chandef_valid(chandef))) |
| return; |
| |
| list_for_each_entry(rdev, &cfg80211_rdev_list, list) { |
| if (wiphy == &rdev->wiphy) |
| continue; |
| |
| if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) |
| continue; |
| |
| if (!ieee80211_get_channel(&rdev->wiphy, |
| chandef->chan->center_freq)) |
| continue; |
| |
| cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); |
| |
| if (event == NL80211_RADAR_DETECTED || |
| event == NL80211_RADAR_CAC_FINISHED) |
| cfg80211_sched_dfs_chan_update(rdev); |
| |
| nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); |
| } |
| } |
| |
| static int __init regulatory_init_db(void) |
| { |
| int err; |
| |
| err = load_builtin_regdb_keys(); |
| if (err) |
| return err; |
| |
| /* We always try to get an update for the static regdomain */ |
| err = regulatory_hint_core(cfg80211_world_regdom->alpha2); |
| if (err) { |
| if (err == -ENOMEM) { |
| platform_device_unregister(reg_pdev); |
| return err; |
| } |
| /* |
| * N.B. kobject_uevent_env() can fail mainly for when we're out |
| * memory which is handled and propagated appropriately above |
| * but it can also fail during a netlink_broadcast() or during |
| * early boot for call_usermodehelper(). For now treat these |
| * errors as non-fatal. |
| */ |
| pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); |
| } |
| |
| /* |
| * Finally, if the user set the module parameter treat it |
| * as a user hint. |
| */ |
| if (!is_world_regdom(ieee80211_regdom)) |
| regulatory_hint_user(ieee80211_regdom, |
| NL80211_USER_REG_HINT_USER); |
| |
| return 0; |
| } |
| #ifndef MODULE |
| late_initcall(regulatory_init_db); |
| #endif |
| |
| int __init regulatory_init(void) |
| { |
| reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); |
| if (IS_ERR(reg_pdev)) |
| return PTR_ERR(reg_pdev); |
| |
| spin_lock_init(®_requests_lock); |
| spin_lock_init(®_pending_beacons_lock); |
| spin_lock_init(®_indoor_lock); |
| |
| rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); |
| |
| user_alpha2[0] = '9'; |
| user_alpha2[1] = '7'; |
| |
| #ifdef MODULE |
| return regulatory_init_db(); |
| #else |
| return 0; |
| #endif |
| } |
| |
| void regulatory_exit(void) |
| { |
| struct regulatory_request *reg_request, *tmp; |
| struct reg_beacon *reg_beacon, *btmp; |
| |
| cancel_work_sync(®_work); |
| cancel_crda_timeout_sync(); |
| cancel_delayed_work_sync(®_check_chans); |
| |
| /* Lock to suppress warnings */ |
| rtnl_lock(); |
| reset_regdomains(true, NULL); |
| rtnl_unlock(); |
| |
| dev_set_uevent_suppress(®_pdev->dev, true); |
| |
| platform_device_unregister(reg_pdev); |
| |
| list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { |
| list_del(®_beacon->list); |
| kfree(reg_beacon); |
| } |
| |
| list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { |
| list_del(®_beacon->list); |
| kfree(reg_beacon); |
| } |
| |
| list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { |
| list_del(®_request->list); |
| kfree(reg_request); |
| } |
| |
| if (!IS_ERR_OR_NULL(regdb)) |
| kfree(regdb); |
| |
| free_regdb_keyring(); |
| } |