| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright 2022 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: AMD |
| * |
| */ |
| |
| #include "clk_mgr.h" |
| #include "resource.h" |
| #include "dcn321_fpu.h" |
| #include "dcn32/dcn32_resource.h" |
| #include "dcn321/dcn321_resource.h" |
| |
| #define DCN3_2_DEFAULT_DET_SIZE 256 |
| |
| struct _vcs_dpi_ip_params_st dcn3_21_ip = { |
| .gpuvm_enable = 0, |
| .gpuvm_max_page_table_levels = 4, |
| .hostvm_enable = 0, |
| .rob_buffer_size_kbytes = 128, |
| .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE, |
| .config_return_buffer_size_in_kbytes = 1280, |
| .compressed_buffer_segment_size_in_kbytes = 64, |
| .meta_fifo_size_in_kentries = 22, |
| .zero_size_buffer_entries = 512, |
| .compbuf_reserved_space_64b = 256, |
| .compbuf_reserved_space_zs = 64, |
| .dpp_output_buffer_pixels = 2560, |
| .opp_output_buffer_lines = 1, |
| .pixel_chunk_size_kbytes = 8, |
| .alpha_pixel_chunk_size_kbytes = 4, |
| .min_pixel_chunk_size_bytes = 1024, |
| .dcc_meta_buffer_size_bytes = 6272, |
| .meta_chunk_size_kbytes = 2, |
| .min_meta_chunk_size_bytes = 256, |
| .writeback_chunk_size_kbytes = 8, |
| .ptoi_supported = false, |
| .num_dsc = 4, |
| .maximum_dsc_bits_per_component = 12, |
| .maximum_pixels_per_line_per_dsc_unit = 6016, |
| .dsc422_native_support = true, |
| .is_line_buffer_bpp_fixed = true, |
| .line_buffer_fixed_bpp = 57, |
| .line_buffer_size_bits = 1171920, |
| .max_line_buffer_lines = 32, |
| .writeback_interface_buffer_size_kbytes = 90, |
| .max_num_dpp = 4, |
| .max_num_otg = 4, |
| .max_num_hdmi_frl_outputs = 1, |
| .max_num_wb = 1, |
| .max_dchub_pscl_bw_pix_per_clk = 4, |
| .max_pscl_lb_bw_pix_per_clk = 2, |
| .max_lb_vscl_bw_pix_per_clk = 4, |
| .max_vscl_hscl_bw_pix_per_clk = 4, |
| .max_hscl_ratio = 6, |
| .max_vscl_ratio = 6, |
| .max_hscl_taps = 8, |
| .max_vscl_taps = 8, |
| .dpte_buffer_size_in_pte_reqs_luma = 64, |
| .dpte_buffer_size_in_pte_reqs_chroma = 34, |
| .dispclk_ramp_margin_percent = 1, |
| .max_inter_dcn_tile_repeaters = 8, |
| .cursor_buffer_size = 16, |
| .cursor_chunk_size = 2, |
| .writeback_line_buffer_buffer_size = 0, |
| .writeback_min_hscl_ratio = 1, |
| .writeback_min_vscl_ratio = 1, |
| .writeback_max_hscl_ratio = 1, |
| .writeback_max_vscl_ratio = 1, |
| .writeback_max_hscl_taps = 1, |
| .writeback_max_vscl_taps = 1, |
| .dppclk_delay_subtotal = 47, |
| .dppclk_delay_scl = 50, |
| .dppclk_delay_scl_lb_only = 16, |
| .dppclk_delay_cnvc_formatter = 28, |
| .dppclk_delay_cnvc_cursor = 6, |
| .dispclk_delay_subtotal = 125, |
| .dynamic_metadata_vm_enabled = false, |
| .odm_combine_4to1_supported = false, |
| .dcc_supported = true, |
| .max_num_dp2p0_outputs = 2, |
| .max_num_dp2p0_streams = 4, |
| }; |
| |
| struct _vcs_dpi_soc_bounding_box_st dcn3_21_soc = { |
| .clock_limits = { |
| { |
| .state = 0, |
| .dcfclk_mhz = 1564.0, |
| .fabricclk_mhz = 400.0, |
| .dispclk_mhz = 2150.0, |
| .dppclk_mhz = 2150.0, |
| .phyclk_mhz = 810.0, |
| .phyclk_d18_mhz = 667.0, |
| .phyclk_d32_mhz = 625.0, |
| .socclk_mhz = 1200.0, |
| .dscclk_mhz = 716.667, |
| .dram_speed_mts = 1600.0, |
| .dtbclk_mhz = 1564.0, |
| }, |
| }, |
| .num_states = 1, |
| .sr_exit_time_us = 12.36, |
| .sr_enter_plus_exit_time_us = 16.72, |
| .sr_exit_z8_time_us = 285.0, |
| .sr_enter_plus_exit_z8_time_us = 320, |
| .writeback_latency_us = 12.0, |
| .round_trip_ping_latency_dcfclk_cycles = 263, |
| .urgent_latency_pixel_data_only_us = 4.0, |
| .urgent_latency_pixel_mixed_with_vm_data_us = 4.0, |
| .urgent_latency_vm_data_only_us = 4.0, |
| .fclk_change_latency_us = 20, |
| .usr_retraining_latency_us = 2, |
| .smn_latency_us = 2, |
| .mall_allocated_for_dcn_mbytes = 64, |
| .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096, |
| .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096, |
| .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096, |
| .pct_ideal_sdp_bw_after_urgent = 100.0, |
| .pct_ideal_fabric_bw_after_urgent = 67.0, |
| .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0, |
| .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented |
| .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented |
| .pct_ideal_dram_bw_after_urgent_strobe = 67.0, |
| .max_avg_sdp_bw_use_normal_percent = 80.0, |
| .max_avg_fabric_bw_use_normal_percent = 60.0, |
| .max_avg_dram_bw_use_normal_strobe_percent = 50.0, |
| .max_avg_dram_bw_use_normal_percent = 15.0, |
| .num_chans = 8, |
| .dram_channel_width_bytes = 2, |
| .fabric_datapath_to_dcn_data_return_bytes = 64, |
| .return_bus_width_bytes = 64, |
| .downspread_percent = 0.38, |
| .dcn_downspread_percent = 0.5, |
| .dram_clock_change_latency_us = 400, |
| .dispclk_dppclk_vco_speed_mhz = 4300.0, |
| .do_urgent_latency_adjustment = true, |
| .urgent_latency_adjustment_fabric_clock_component_us = 1.0, |
| .urgent_latency_adjustment_fabric_clock_reference_mhz = 1000, |
| }; |
| |
| static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry) |
| { |
| if (entry->dcfclk_mhz > 0) { |
| float bw_on_sdp = entry->dcfclk_mhz * dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_sdp_bw_after_urgent / 100); |
| |
| entry->fabricclk_mhz = bw_on_sdp / (dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_fabric_bw_after_urgent / 100)); |
| entry->dram_speed_mts = bw_on_sdp / (dcn3_21_soc.num_chans * |
| dcn3_21_soc.dram_channel_width_bytes * ((float)dcn3_21_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100)); |
| } else if (entry->fabricclk_mhz > 0) { |
| float bw_on_fabric = entry->fabricclk_mhz * dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_fabric_bw_after_urgent / 100); |
| |
| entry->dcfclk_mhz = bw_on_fabric / (dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_sdp_bw_after_urgent / 100)); |
| entry->dram_speed_mts = bw_on_fabric / (dcn3_21_soc.num_chans * |
| dcn3_21_soc.dram_channel_width_bytes * ((float)dcn3_21_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100)); |
| } else if (entry->dram_speed_mts > 0) { |
| float bw_on_dram = entry->dram_speed_mts * dcn3_21_soc.num_chans * |
| dcn3_21_soc.dram_channel_width_bytes * ((float)dcn3_21_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100); |
| |
| entry->fabricclk_mhz = bw_on_dram / (dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_fabric_bw_after_urgent / 100)); |
| entry->dcfclk_mhz = bw_on_dram / (dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_sdp_bw_after_urgent / 100)); |
| } |
| } |
| |
| static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry) |
| { |
| float memory_bw_kbytes_sec; |
| float fabric_bw_kbytes_sec; |
| float sdp_bw_kbytes_sec; |
| float limiting_bw_kbytes_sec; |
| |
| memory_bw_kbytes_sec = entry->dram_speed_mts * dcn3_21_soc.num_chans * |
| dcn3_21_soc.dram_channel_width_bytes * ((float)dcn3_21_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100); |
| |
| fabric_bw_kbytes_sec = entry->fabricclk_mhz * dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_fabric_bw_after_urgent / 100); |
| |
| sdp_bw_kbytes_sec = entry->dcfclk_mhz * dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_sdp_bw_after_urgent / 100); |
| |
| limiting_bw_kbytes_sec = memory_bw_kbytes_sec; |
| |
| if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec) |
| limiting_bw_kbytes_sec = fabric_bw_kbytes_sec; |
| |
| if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec) |
| limiting_bw_kbytes_sec = sdp_bw_kbytes_sec; |
| |
| return limiting_bw_kbytes_sec; |
| } |
| |
| void dcn321_insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table, |
| unsigned int *num_entries, |
| struct _vcs_dpi_voltage_scaling_st *entry) |
| { |
| int i = 0; |
| int index = 0; |
| float net_bw_of_new_state = 0; |
| |
| dc_assert_fp_enabled(); |
| |
| get_optimal_ntuple(entry); |
| |
| if (*num_entries == 0) { |
| table[0] = *entry; |
| (*num_entries)++; |
| } else { |
| net_bw_of_new_state = calculate_net_bw_in_kbytes_sec(entry); |
| while (net_bw_of_new_state > calculate_net_bw_in_kbytes_sec(&table[index])) { |
| index++; |
| if (index >= *num_entries) |
| break; |
| } |
| |
| for (i = *num_entries; i > index; i--) |
| table[i] = table[i - 1]; |
| |
| table[index] = *entry; |
| (*num_entries)++; |
| } |
| } |
| |
| static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries, |
| unsigned int index) |
| { |
| int i; |
| |
| if (*num_entries == 0) |
| return; |
| |
| for (i = index; i < *num_entries - 1; i++) { |
| table[i] = table[i + 1]; |
| } |
| memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st)); |
| } |
| |
| static int build_synthetic_soc_states(struct clk_bw_params *bw_params, |
| struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries) |
| { |
| int i, j; |
| struct _vcs_dpi_voltage_scaling_st entry = {0}; |
| |
| unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, |
| max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0; |
| |
| unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299; |
| |
| static const unsigned int num_dcfclk_stas = 5; |
| unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564}; |
| |
| unsigned int num_uclk_dpms = 0; |
| unsigned int num_fclk_dpms = 0; |
| unsigned int num_dcfclk_dpms = 0; |
| |
| for (i = 0; i < MAX_NUM_DPM_LVL; i++) { |
| if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) |
| max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; |
| if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz) |
| max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; |
| if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz) |
| max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz; |
| if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) |
| max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; |
| if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) |
| max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; |
| if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) |
| max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; |
| if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz) |
| max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; |
| |
| if (bw_params->clk_table.entries[i].memclk_mhz > 0) |
| num_uclk_dpms++; |
| if (bw_params->clk_table.entries[i].fclk_mhz > 0) |
| num_fclk_dpms++; |
| if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) |
| num_dcfclk_dpms++; |
| } |
| |
| if (!max_dcfclk_mhz || !max_dispclk_mhz || !max_dtbclk_mhz) |
| return -1; |
| |
| if (max_dppclk_mhz == 0) |
| max_dppclk_mhz = max_dispclk_mhz; |
| |
| if (max_fclk_mhz == 0) |
| max_fclk_mhz = max_dcfclk_mhz * dcn3_21_soc.pct_ideal_sdp_bw_after_urgent / dcn3_21_soc.pct_ideal_fabric_bw_after_urgent; |
| |
| if (max_phyclk_mhz == 0) |
| max_phyclk_mhz = dcn3_21_soc.clock_limits[0].phyclk_mhz; |
| |
| *num_entries = 0; |
| entry.dispclk_mhz = max_dispclk_mhz; |
| entry.dscclk_mhz = max_dispclk_mhz / 3; |
| entry.dppclk_mhz = max_dppclk_mhz; |
| entry.dtbclk_mhz = max_dtbclk_mhz; |
| entry.phyclk_mhz = max_phyclk_mhz; |
| entry.phyclk_d18_mhz = dcn3_21_soc.clock_limits[0].phyclk_d18_mhz; |
| entry.phyclk_d32_mhz = dcn3_21_soc.clock_limits[0].phyclk_d32_mhz; |
| |
| // Insert all the DCFCLK STAs |
| for (i = 0; i < num_dcfclk_stas; i++) { |
| entry.dcfclk_mhz = dcfclk_sta_targets[i]; |
| entry.fabricclk_mhz = 0; |
| entry.dram_speed_mts = 0; |
| |
| dcn321_insert_entry_into_table_sorted(table, num_entries, &entry); |
| } |
| |
| // Insert the max DCFCLK |
| entry.dcfclk_mhz = max_dcfclk_mhz; |
| entry.fabricclk_mhz = 0; |
| entry.dram_speed_mts = 0; |
| |
| dcn321_insert_entry_into_table_sorted(table, num_entries, &entry); |
| |
| // Insert the UCLK DPMS |
| for (i = 0; i < num_uclk_dpms; i++) { |
| entry.dcfclk_mhz = 0; |
| entry.fabricclk_mhz = 0; |
| entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16; |
| |
| dcn321_insert_entry_into_table_sorted(table, num_entries, &entry); |
| } |
| |
| // If FCLK is coarse grained, insert individual DPMs. |
| if (num_fclk_dpms > 2) { |
| for (i = 0; i < num_fclk_dpms; i++) { |
| entry.dcfclk_mhz = 0; |
| entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; |
| entry.dram_speed_mts = 0; |
| |
| dcn321_insert_entry_into_table_sorted(table, num_entries, &entry); |
| } |
| } |
| // If FCLK fine grained, only insert max |
| else { |
| entry.dcfclk_mhz = 0; |
| entry.fabricclk_mhz = max_fclk_mhz; |
| entry.dram_speed_mts = 0; |
| |
| dcn321_insert_entry_into_table_sorted(table, num_entries, &entry); |
| } |
| |
| // At this point, the table contains all "points of interest" based on |
| // DPMs from PMFW, and STAs. Table is sorted by BW, and all clock |
| // ratios (by derate, are exact). |
| |
| // Remove states that require higher clocks than are supported |
| for (i = *num_entries - 1; i >= 0 ; i--) { |
| if (table[i].dcfclk_mhz > max_dcfclk_mhz || |
| table[i].fabricclk_mhz > max_fclk_mhz || |
| table[i].dram_speed_mts > max_uclk_mhz * 16) |
| remove_entry_from_table_at_index(table, num_entries, i); |
| } |
| |
| // At this point, the table only contains supported points of interest |
| // it could be used as is, but some states may be redundant due to |
| // coarse grained nature of some clocks, so we want to round up to |
| // coarse grained DPMs and remove duplicates. |
| |
| // Round up UCLKs |
| for (i = *num_entries - 1; i >= 0 ; i--) { |
| for (j = 0; j < num_uclk_dpms; j++) { |
| if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) { |
| table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16; |
| break; |
| } |
| } |
| } |
| |
| // If FCLK is coarse grained, round up to next DPMs |
| if (num_fclk_dpms > 2) { |
| for (i = *num_entries - 1; i >= 0 ; i--) { |
| for (j = 0; j < num_fclk_dpms; j++) { |
| if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) { |
| table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz; |
| break; |
| } |
| } |
| } |
| } |
| // Otherwise, round up to minimum. |
| else { |
| for (i = *num_entries - 1; i >= 0 ; i--) { |
| if (table[i].fabricclk_mhz < min_fclk_mhz) { |
| table[i].fabricclk_mhz = min_fclk_mhz; |
| break; |
| } |
| } |
| } |
| |
| // Round DCFCLKs up to minimum |
| for (i = *num_entries - 1; i >= 0 ; i--) { |
| if (table[i].dcfclk_mhz < min_dcfclk_mhz) { |
| table[i].dcfclk_mhz = min_dcfclk_mhz; |
| break; |
| } |
| } |
| |
| // Remove duplicate states, note duplicate states are always neighbouring since table is sorted. |
| i = 0; |
| while (i < *num_entries - 1) { |
| if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz && |
| table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz && |
| table[i].dram_speed_mts == table[i + 1].dram_speed_mts) |
| remove_entry_from_table_at_index(table, num_entries, i + 1); |
| else |
| i++; |
| } |
| |
| // Fix up the state indicies |
| for (i = *num_entries - 1; i >= 0 ; i--) { |
| table[i].state = i; |
| } |
| |
| return 0; |
| } |
| |
| static void dcn321_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts, |
| unsigned int *optimal_dcfclk, |
| unsigned int *optimal_fclk) |
| { |
| double bw_from_dram, bw_from_dram1, bw_from_dram2; |
| |
| bw_from_dram1 = uclk_mts * dcn3_21_soc.num_chans * |
| dcn3_21_soc.dram_channel_width_bytes * (dcn3_21_soc.max_avg_dram_bw_use_normal_percent / 100); |
| bw_from_dram2 = uclk_mts * dcn3_21_soc.num_chans * |
| dcn3_21_soc.dram_channel_width_bytes * (dcn3_21_soc.max_avg_sdp_bw_use_normal_percent / 100); |
| |
| bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2; |
| |
| if (optimal_fclk) |
| *optimal_fclk = bw_from_dram / |
| (dcn3_21_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_21_soc.max_avg_sdp_bw_use_normal_percent / 100)); |
| |
| if (optimal_dcfclk) |
| *optimal_dcfclk = bw_from_dram / |
| (dcn3_21_soc.return_bus_width_bytes * (dcn3_21_soc.max_avg_sdp_bw_use_normal_percent / 100)); |
| } |
| |
| /** dcn321_update_bw_bounding_box |
| * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from spreadsheet |
| * with actual values as per dGPU SKU: |
| * -with passed few options from dc->config |
| * -with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might need to get it from PM FW) |
| * -with passed latency values (passed in ns units) in dc-> bb override for debugging purposes |
| * -with passed latencies from VBIOS (in 100_ns units) if available for certain dGPU SKU |
| * -with number of DRAM channels from VBIOS (which differ for certain dGPU SKU of the same ASIC) |
| * -clocks levels with passed clk_table entries from Clk Mgr as reported by PM FW for different |
| * clocks (which might differ for certain dGPU SKU of the same ASIC) |
| */ |
| void dcn321_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params) |
| { |
| dc_assert_fp_enabled(); |
| if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) { |
| /* Overrides from dc->config options */ |
| dcn3_21_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk; |
| |
| /* Override from passed dc->bb_overrides if available*/ |
| if ((int)(dcn3_21_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns |
| && dc->bb_overrides.sr_exit_time_ns) { |
| dcn3_21_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0; |
| } |
| |
| if ((int)(dcn3_21_soc.sr_enter_plus_exit_time_us * 1000) |
| != dc->bb_overrides.sr_enter_plus_exit_time_ns |
| && dc->bb_overrides.sr_enter_plus_exit_time_ns) { |
| dcn3_21_soc.sr_enter_plus_exit_time_us = |
| dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0; |
| } |
| |
| if ((int)(dcn3_21_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns |
| && dc->bb_overrides.urgent_latency_ns) { |
| dcn3_21_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0; |
| dcn3_21_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0; |
| } |
| |
| if ((int)(dcn3_21_soc.dram_clock_change_latency_us * 1000) |
| != dc->bb_overrides.dram_clock_change_latency_ns |
| && dc->bb_overrides.dram_clock_change_latency_ns) { |
| dcn3_21_soc.dram_clock_change_latency_us = |
| dc->bb_overrides.dram_clock_change_latency_ns / 1000.0; |
| } |
| |
| if ((int)(dcn3_21_soc.fclk_change_latency_us * 1000) |
| != dc->bb_overrides.fclk_clock_change_latency_ns |
| && dc->bb_overrides.fclk_clock_change_latency_ns) { |
| dcn3_21_soc.fclk_change_latency_us = |
| dc->bb_overrides.fclk_clock_change_latency_ns / 1000; |
| } |
| |
| if ((int)(dcn3_21_soc.dummy_pstate_latency_us * 1000) |
| != dc->bb_overrides.dummy_clock_change_latency_ns |
| && dc->bb_overrides.dummy_clock_change_latency_ns) { |
| dcn3_21_soc.dummy_pstate_latency_us = |
| dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0; |
| } |
| |
| /* Override from VBIOS if VBIOS bb_info available */ |
| if (dc->ctx->dc_bios->funcs->get_soc_bb_info) { |
| struct bp_soc_bb_info bb_info = {0}; |
| |
| if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) { |
| if (bb_info.dram_clock_change_latency_100ns > 0) |
| dcn3_21_soc.dram_clock_change_latency_us = |
| bb_info.dram_clock_change_latency_100ns * 10; |
| |
| if (bb_info.dram_sr_enter_exit_latency_100ns > 0) |
| dcn3_21_soc.sr_enter_plus_exit_time_us = |
| bb_info.dram_sr_enter_exit_latency_100ns * 10; |
| |
| if (bb_info.dram_sr_exit_latency_100ns > 0) |
| dcn3_21_soc.sr_exit_time_us = |
| bb_info.dram_sr_exit_latency_100ns * 10; |
| } |
| } |
| |
| /* Override from VBIOS for num_chan */ |
| if (dc->ctx->dc_bios->vram_info.num_chans) |
| dcn3_21_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans; |
| |
| if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes) |
| dcn3_21_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes; |
| |
| } |
| |
| /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */ |
| dcn3_21_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; |
| dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; |
| |
| /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */ |
| if ((!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) && (bw_params->clk_table.entries[0].memclk_mhz)) { |
| if (dc->debug.use_legacy_soc_bb_mechanism) { |
| unsigned int i = 0, j = 0, num_states = 0; |
| |
| unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0}; |
| unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0}; |
| unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0}; |
| unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0}; |
| |
| unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {615, 906, 1324, 1564}; |
| unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0; |
| unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0; |
| |
| for (i = 0; i < MAX_NUM_DPM_LVL; i++) { |
| if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) |
| max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; |
| if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) |
| max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; |
| if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) |
| max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; |
| if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) |
| max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; |
| } |
| if (!max_dcfclk_mhz) |
| max_dcfclk_mhz = dcn3_21_soc.clock_limits[0].dcfclk_mhz; |
| if (!max_dispclk_mhz) |
| max_dispclk_mhz = dcn3_21_soc.clock_limits[0].dispclk_mhz; |
| if (!max_dppclk_mhz) |
| max_dppclk_mhz = dcn3_21_soc.clock_limits[0].dppclk_mhz; |
| if (!max_phyclk_mhz) |
| max_phyclk_mhz = dcn3_21_soc.clock_limits[0].phyclk_mhz; |
| |
| if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { |
| // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array |
| dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz; |
| num_dcfclk_sta_targets++; |
| } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { |
| // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates |
| for (i = 0; i < num_dcfclk_sta_targets; i++) { |
| if (dcfclk_sta_targets[i] > max_dcfclk_mhz) { |
| dcfclk_sta_targets[i] = max_dcfclk_mhz; |
| break; |
| } |
| } |
| // Update size of array since we "removed" duplicates |
| num_dcfclk_sta_targets = i + 1; |
| } |
| |
| num_uclk_states = bw_params->clk_table.num_entries; |
| |
| // Calculate optimal dcfclk for each uclk |
| for (i = 0; i < num_uclk_states; i++) { |
| dcn321_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16, |
| &optimal_dcfclk_for_uclk[i], NULL); |
| if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) { |
| optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz; |
| } |
| } |
| |
| // Calculate optimal uclk for each dcfclk sta target |
| for (i = 0; i < num_dcfclk_sta_targets; i++) { |
| for (j = 0; j < num_uclk_states; j++) { |
| if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) { |
| optimal_uclk_for_dcfclk_sta_targets[i] = |
| bw_params->clk_table.entries[j].memclk_mhz * 16; |
| break; |
| } |
| } |
| } |
| |
| i = 0; |
| j = 0; |
| // create the final dcfclk and uclk table |
| while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) { |
| if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) { |
| dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; |
| dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; |
| } else { |
| if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { |
| dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; |
| dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; |
| } else { |
| j = num_uclk_states; |
| } |
| } |
| } |
| |
| while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) { |
| dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; |
| dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; |
| } |
| |
| while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES && |
| optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { |
| dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; |
| dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; |
| } |
| |
| dcn3_21_soc.num_states = num_states; |
| for (i = 0; i < dcn3_21_soc.num_states; i++) { |
| dcn3_21_soc.clock_limits[i].state = i; |
| dcn3_21_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i]; |
| dcn3_21_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i]; |
| |
| /* Fill all states with max values of all these clocks */ |
| dcn3_21_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz; |
| dcn3_21_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz; |
| dcn3_21_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz; |
| dcn3_21_soc.clock_limits[i].dscclk_mhz = max_dispclk_mhz / 3; |
| |
| /* Populate from bw_params for DTBCLK, SOCCLK */ |
| if (i > 0) { |
| if (!bw_params->clk_table.entries[i].dtbclk_mhz) { |
| dcn3_21_soc.clock_limits[i].dtbclk_mhz = dcn3_21_soc.clock_limits[i-1].dtbclk_mhz; |
| } else { |
| dcn3_21_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; |
| } |
| } else if (bw_params->clk_table.entries[i].dtbclk_mhz) { |
| dcn3_21_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; |
| } |
| |
| if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0) |
| dcn3_21_soc.clock_limits[i].socclk_mhz = dcn3_21_soc.clock_limits[i-1].socclk_mhz; |
| else |
| dcn3_21_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz; |
| |
| if (!dram_speed_mts[i] && i > 0) |
| dcn3_21_soc.clock_limits[i].dram_speed_mts = dcn3_21_soc.clock_limits[i-1].dram_speed_mts; |
| else |
| dcn3_21_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i]; |
| |
| /* These clocks cannot come from bw_params, always fill from dcn3_21_soc[0] */ |
| /* PHYCLK_D18, PHYCLK_D32 */ |
| dcn3_21_soc.clock_limits[i].phyclk_d18_mhz = dcn3_21_soc.clock_limits[0].phyclk_d18_mhz; |
| dcn3_21_soc.clock_limits[i].phyclk_d32_mhz = dcn3_21_soc.clock_limits[0].phyclk_d32_mhz; |
| } |
| } else { |
| build_synthetic_soc_states(bw_params, dcn3_21_soc.clock_limits, &dcn3_21_soc.num_states); |
| } |
| |
| /* Re-init DML with updated bb */ |
| dml_init_instance(&dc->dml, &dcn3_21_soc, &dcn3_21_ip, DML_PROJECT_DCN32); |
| if (dc->current_state) |
| dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_21_soc, &dcn3_21_ip, DML_PROJECT_DCN32); |
| } |
| } |
| |