| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> |
| <http://rt2x00.serialmonkey.com> |
| |
| */ |
| |
| /* |
| Module: rt2500pci |
| Abstract: rt2500pci device specific routines. |
| Supported chipsets: RT2560. |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/etherdevice.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/eeprom_93cx6.h> |
| #include <linux/slab.h> |
| |
| #include "rt2x00.h" |
| #include "rt2x00mmio.h" |
| #include "rt2x00pci.h" |
| #include "rt2500pci.h" |
| |
| /* |
| * Register access. |
| * All access to the CSR registers will go through the methods |
| * rt2x00mmio_register_read and rt2x00mmio_register_write. |
| * BBP and RF register require indirect register access, |
| * and use the CSR registers BBPCSR and RFCSR to achieve this. |
| * These indirect registers work with busy bits, |
| * and we will try maximal REGISTER_BUSY_COUNT times to access |
| * the register while taking a REGISTER_BUSY_DELAY us delay |
| * between each attampt. When the busy bit is still set at that time, |
| * the access attempt is considered to have failed, |
| * and we will print an error. |
| */ |
| #define WAIT_FOR_BBP(__dev, __reg) \ |
| rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg)) |
| #define WAIT_FOR_RF(__dev, __reg) \ |
| rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg)) |
| |
| static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, const u8 value) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the BBP becomes available, afterwards we |
| * can safely write the new data into the register. |
| */ |
| if (WAIT_FOR_BBP(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field32(®, BBPCSR_VALUE, value); |
| rt2x00_set_field32(®, BBPCSR_REGNUM, word); |
| rt2x00_set_field32(®, BBPCSR_BUSY, 1); |
| rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 1); |
| |
| rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg); |
| } |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| static u8 rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word) |
| { |
| u32 reg; |
| u8 value; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the BBP becomes available, afterwards we |
| * can safely write the read request into the register. |
| * After the data has been written, we wait until hardware |
| * returns the correct value, if at any time the register |
| * doesn't become available in time, reg will be 0xffffffff |
| * which means we return 0xff to the caller. |
| */ |
| if (WAIT_FOR_BBP(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field32(®, BBPCSR_REGNUM, word); |
| rt2x00_set_field32(®, BBPCSR_BUSY, 1); |
| rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 0); |
| |
| rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg); |
| |
| WAIT_FOR_BBP(rt2x00dev, ®); |
| } |
| |
| value = rt2x00_get_field32(reg, BBPCSR_VALUE); |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| |
| return value; |
| } |
| |
| static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, const u32 value) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the RF becomes available, afterwards we |
| * can safely write the new data into the register. |
| */ |
| if (WAIT_FOR_RF(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field32(®, RFCSR_VALUE, value); |
| rt2x00_set_field32(®, RFCSR_NUMBER_OF_BITS, 20); |
| rt2x00_set_field32(®, RFCSR_IF_SELECT, 0); |
| rt2x00_set_field32(®, RFCSR_BUSY, 1); |
| |
| rt2x00mmio_register_write(rt2x00dev, RFCSR, reg); |
| rt2x00_rf_write(rt2x00dev, word, value); |
| } |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom) |
| { |
| struct rt2x00_dev *rt2x00dev = eeprom->data; |
| u32 reg; |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR21); |
| |
| eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN); |
| eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT); |
| eeprom->reg_data_clock = |
| !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK); |
| eeprom->reg_chip_select = |
| !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT); |
| } |
| |
| static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom) |
| { |
| struct rt2x00_dev *rt2x00dev = eeprom->data; |
| u32 reg = 0; |
| |
| rt2x00_set_field32(®, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in); |
| rt2x00_set_field32(®, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out); |
| rt2x00_set_field32(®, CSR21_EEPROM_DATA_CLOCK, |
| !!eeprom->reg_data_clock); |
| rt2x00_set_field32(®, CSR21_EEPROM_CHIP_SELECT, |
| !!eeprom->reg_chip_select); |
| |
| rt2x00mmio_register_write(rt2x00dev, CSR21, reg); |
| } |
| |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS |
| static const struct rt2x00debug rt2500pci_rt2x00debug = { |
| .owner = THIS_MODULE, |
| .csr = { |
| .read = rt2x00mmio_register_read, |
| .write = rt2x00mmio_register_write, |
| .flags = RT2X00DEBUGFS_OFFSET, |
| .word_base = CSR_REG_BASE, |
| .word_size = sizeof(u32), |
| .word_count = CSR_REG_SIZE / sizeof(u32), |
| }, |
| .eeprom = { |
| .read = rt2x00_eeprom_read, |
| .write = rt2x00_eeprom_write, |
| .word_base = EEPROM_BASE, |
| .word_size = sizeof(u16), |
| .word_count = EEPROM_SIZE / sizeof(u16), |
| }, |
| .bbp = { |
| .read = rt2500pci_bbp_read, |
| .write = rt2500pci_bbp_write, |
| .word_base = BBP_BASE, |
| .word_size = sizeof(u8), |
| .word_count = BBP_SIZE / sizeof(u8), |
| }, |
| .rf = { |
| .read = rt2x00_rf_read, |
| .write = rt2500pci_rf_write, |
| .word_base = RF_BASE, |
| .word_size = sizeof(u32), |
| .word_count = RF_SIZE / sizeof(u32), |
| }, |
| }; |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ |
| |
| static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR); |
| return rt2x00_get_field32(reg, GPIOCSR_VAL0); |
| } |
| |
| #ifdef CONFIG_RT2X00_LIB_LEDS |
| static void rt2500pci_brightness_set(struct led_classdev *led_cdev, |
| enum led_brightness brightness) |
| { |
| struct rt2x00_led *led = |
| container_of(led_cdev, struct rt2x00_led, led_dev); |
| unsigned int enabled = brightness != LED_OFF; |
| u32 reg; |
| |
| reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR); |
| |
| if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) |
| rt2x00_set_field32(®, LEDCSR_LINK, enabled); |
| else if (led->type == LED_TYPE_ACTIVITY) |
| rt2x00_set_field32(®, LEDCSR_ACTIVITY, enabled); |
| |
| rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg); |
| } |
| |
| static int rt2500pci_blink_set(struct led_classdev *led_cdev, |
| unsigned long *delay_on, |
| unsigned long *delay_off) |
| { |
| struct rt2x00_led *led = |
| container_of(led_cdev, struct rt2x00_led, led_dev); |
| u32 reg; |
| |
| reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR); |
| rt2x00_set_field32(®, LEDCSR_ON_PERIOD, *delay_on); |
| rt2x00_set_field32(®, LEDCSR_OFF_PERIOD, *delay_off); |
| rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg); |
| |
| return 0; |
| } |
| |
| static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00_led *led, |
| enum led_type type) |
| { |
| led->rt2x00dev = rt2x00dev; |
| led->type = type; |
| led->led_dev.brightness_set = rt2500pci_brightness_set; |
| led->led_dev.blink_set = rt2500pci_blink_set; |
| led->flags = LED_INITIALIZED; |
| } |
| #endif /* CONFIG_RT2X00_LIB_LEDS */ |
| |
| /* |
| * Configuration handlers. |
| */ |
| static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev, |
| const unsigned int filter_flags) |
| { |
| u32 reg; |
| |
| /* |
| * Start configuration steps. |
| * Note that the version error will always be dropped |
| * and broadcast frames will always be accepted since |
| * there is no filter for it at this time. |
| */ |
| reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0); |
| rt2x00_set_field32(®, RXCSR0_DROP_CRC, |
| !(filter_flags & FIF_FCSFAIL)); |
| rt2x00_set_field32(®, RXCSR0_DROP_PHYSICAL, |
| !(filter_flags & FIF_PLCPFAIL)); |
| rt2x00_set_field32(®, RXCSR0_DROP_CONTROL, |
| !(filter_flags & FIF_CONTROL)); |
| rt2x00_set_field32(®, RXCSR0_DROP_NOT_TO_ME, |
| !test_bit(CONFIG_MONITORING, &rt2x00dev->flags)); |
| rt2x00_set_field32(®, RXCSR0_DROP_TODS, |
| !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) && |
| !rt2x00dev->intf_ap_count); |
| rt2x00_set_field32(®, RXCSR0_DROP_VERSION_ERROR, 1); |
| rt2x00_set_field32(®, RXCSR0_DROP_MCAST, |
| !(filter_flags & FIF_ALLMULTI)); |
| rt2x00_set_field32(®, RXCSR0_DROP_BCAST, 0); |
| rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg); |
| } |
| |
| static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00_intf *intf, |
| struct rt2x00intf_conf *conf, |
| const unsigned int flags) |
| { |
| struct data_queue *queue = rt2x00dev->bcn; |
| unsigned int bcn_preload; |
| u32 reg; |
| |
| if (flags & CONFIG_UPDATE_TYPE) { |
| /* |
| * Enable beacon config |
| */ |
| bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20); |
| reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1); |
| rt2x00_set_field32(®, BCNCSR1_PRELOAD, bcn_preload); |
| rt2x00_set_field32(®, BCNCSR1_BEACON_CWMIN, queue->cw_min); |
| rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg); |
| |
| /* |
| * Enable synchronisation. |
| */ |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR14); |
| rt2x00_set_field32(®, CSR14_TSF_SYNC, conf->sync); |
| rt2x00mmio_register_write(rt2x00dev, CSR14, reg); |
| } |
| |
| if (flags & CONFIG_UPDATE_MAC) |
| rt2x00mmio_register_multiwrite(rt2x00dev, CSR3, |
| conf->mac, sizeof(conf->mac)); |
| |
| if (flags & CONFIG_UPDATE_BSSID) |
| rt2x00mmio_register_multiwrite(rt2x00dev, CSR5, |
| conf->bssid, sizeof(conf->bssid)); |
| } |
| |
| static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_erp *erp, |
| u32 changed) |
| { |
| int preamble_mask; |
| u32 reg; |
| |
| /* |
| * When short preamble is enabled, we should set bit 0x08 |
| */ |
| if (changed & BSS_CHANGED_ERP_PREAMBLE) { |
| preamble_mask = erp->short_preamble << 3; |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1); |
| rt2x00_set_field32(®, TXCSR1_ACK_TIMEOUT, 0x162); |
| rt2x00_set_field32(®, TXCSR1_ACK_CONSUME_TIME, 0xa2); |
| rt2x00_set_field32(®, TXCSR1_TSF_OFFSET, IEEE80211_HEADER); |
| rt2x00_set_field32(®, TXCSR1_AUTORESPONDER, 1); |
| rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2); |
| rt2x00_set_field32(®, ARCSR2_SIGNAL, 0x00); |
| rt2x00_set_field32(®, ARCSR2_SERVICE, 0x04); |
| rt2x00_set_field32(®, ARCSR2_LENGTH, |
| GET_DURATION(ACK_SIZE, 10)); |
| rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3); |
| rt2x00_set_field32(®, ARCSR3_SIGNAL, 0x01 | preamble_mask); |
| rt2x00_set_field32(®, ARCSR3_SERVICE, 0x04); |
| rt2x00_set_field32(®, ARCSR2_LENGTH, |
| GET_DURATION(ACK_SIZE, 20)); |
| rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4); |
| rt2x00_set_field32(®, ARCSR4_SIGNAL, 0x02 | preamble_mask); |
| rt2x00_set_field32(®, ARCSR4_SERVICE, 0x04); |
| rt2x00_set_field32(®, ARCSR2_LENGTH, |
| GET_DURATION(ACK_SIZE, 55)); |
| rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5); |
| rt2x00_set_field32(®, ARCSR5_SIGNAL, 0x03 | preamble_mask); |
| rt2x00_set_field32(®, ARCSR5_SERVICE, 0x84); |
| rt2x00_set_field32(®, ARCSR2_LENGTH, |
| GET_DURATION(ACK_SIZE, 110)); |
| rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg); |
| } |
| |
| if (changed & BSS_CHANGED_BASIC_RATES) |
| rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates); |
| |
| if (changed & BSS_CHANGED_ERP_SLOT) { |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR11); |
| rt2x00_set_field32(®, CSR11_SLOT_TIME, erp->slot_time); |
| rt2x00mmio_register_write(rt2x00dev, CSR11, reg); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR18); |
| rt2x00_set_field32(®, CSR18_SIFS, erp->sifs); |
| rt2x00_set_field32(®, CSR18_PIFS, erp->pifs); |
| rt2x00mmio_register_write(rt2x00dev, CSR18, reg); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR19); |
| rt2x00_set_field32(®, CSR19_DIFS, erp->difs); |
| rt2x00_set_field32(®, CSR19_EIFS, erp->eifs); |
| rt2x00mmio_register_write(rt2x00dev, CSR19, reg); |
| } |
| |
| if (changed & BSS_CHANGED_BEACON_INT) { |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR12); |
| rt2x00_set_field32(®, CSR12_BEACON_INTERVAL, |
| erp->beacon_int * 16); |
| rt2x00_set_field32(®, CSR12_CFP_MAX_DURATION, |
| erp->beacon_int * 16); |
| rt2x00mmio_register_write(rt2x00dev, CSR12, reg); |
| } |
| |
| } |
| |
| static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev, |
| struct antenna_setup *ant) |
| { |
| u32 reg; |
| u8 r14; |
| u8 r2; |
| |
| /* |
| * We should never come here because rt2x00lib is supposed |
| * to catch this and send us the correct antenna explicitely. |
| */ |
| BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || |
| ant->tx == ANTENNA_SW_DIVERSITY); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, BBPCSR1); |
| r14 = rt2500pci_bbp_read(rt2x00dev, 14); |
| r2 = rt2500pci_bbp_read(rt2x00dev, 2); |
| |
| /* |
| * Configure the TX antenna. |
| */ |
| switch (ant->tx) { |
| case ANTENNA_A: |
| rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0); |
| rt2x00_set_field32(®, BBPCSR1_CCK, 0); |
| rt2x00_set_field32(®, BBPCSR1_OFDM, 0); |
| break; |
| case ANTENNA_B: |
| default: |
| rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2); |
| rt2x00_set_field32(®, BBPCSR1_CCK, 2); |
| rt2x00_set_field32(®, BBPCSR1_OFDM, 2); |
| break; |
| } |
| |
| /* |
| * Configure the RX antenna. |
| */ |
| switch (ant->rx) { |
| case ANTENNA_A: |
| rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0); |
| break; |
| case ANTENNA_B: |
| default: |
| rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2); |
| break; |
| } |
| |
| /* |
| * RT2525E and RT5222 need to flip TX I/Q |
| */ |
| if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) { |
| rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1); |
| rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 1); |
| rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 1); |
| |
| /* |
| * RT2525E does not need RX I/Q Flip. |
| */ |
| if (rt2x00_rf(rt2x00dev, RF2525E)) |
| rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0); |
| } else { |
| rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 0); |
| rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 0); |
| } |
| |
| rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg); |
| rt2500pci_bbp_write(rt2x00dev, 14, r14); |
| rt2500pci_bbp_write(rt2x00dev, 2, r2); |
| } |
| |
| static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev, |
| struct rf_channel *rf, const int txpower) |
| { |
| u8 r70; |
| |
| /* |
| * Set TXpower. |
| */ |
| rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); |
| |
| /* |
| * Switch on tuning bits. |
| * For RT2523 devices we do not need to update the R1 register. |
| */ |
| if (!rt2x00_rf(rt2x00dev, RF2523)) |
| rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1); |
| rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1); |
| |
| /* |
| * For RT2525 we should first set the channel to half band higher. |
| */ |
| if (rt2x00_rf(rt2x00dev, RF2525)) { |
| static const u32 vals[] = { |
| 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a, |
| 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a, |
| 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a, |
| 0x00080d2e, 0x00080d3a |
| }; |
| |
| rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); |
| rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]); |
| rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); |
| if (rf->rf4) |
| rt2500pci_rf_write(rt2x00dev, 4, rf->rf4); |
| } |
| |
| rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); |
| rt2500pci_rf_write(rt2x00dev, 2, rf->rf2); |
| rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); |
| if (rf->rf4) |
| rt2500pci_rf_write(rt2x00dev, 4, rf->rf4); |
| |
| /* |
| * Channel 14 requires the Japan filter bit to be set. |
| */ |
| r70 = 0x46; |
| rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14); |
| rt2500pci_bbp_write(rt2x00dev, 70, r70); |
| |
| msleep(1); |
| |
| /* |
| * Switch off tuning bits. |
| * For RT2523 devices we do not need to update the R1 register. |
| */ |
| if (!rt2x00_rf(rt2x00dev, RF2523)) { |
| rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0); |
| rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); |
| } |
| |
| rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0); |
| rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); |
| |
| /* |
| * Clear false CRC during channel switch. |
| */ |
| rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0); |
| } |
| |
| static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev, |
| const int txpower) |
| { |
| u32 rf3; |
| |
| rf3 = rt2x00_rf_read(rt2x00dev, 3); |
| rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); |
| rt2500pci_rf_write(rt2x00dev, 3, rf3); |
| } |
| |
| static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf) |
| { |
| u32 reg; |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR11); |
| rt2x00_set_field32(®, CSR11_LONG_RETRY, |
| libconf->conf->long_frame_max_tx_count); |
| rt2x00_set_field32(®, CSR11_SHORT_RETRY, |
| libconf->conf->short_frame_max_tx_count); |
| rt2x00mmio_register_write(rt2x00dev, CSR11, reg); |
| } |
| |
| static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf) |
| { |
| enum dev_state state = |
| (libconf->conf->flags & IEEE80211_CONF_PS) ? |
| STATE_SLEEP : STATE_AWAKE; |
| u32 reg; |
| |
| if (state == STATE_SLEEP) { |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR20); |
| rt2x00_set_field32(®, CSR20_DELAY_AFTER_TBCN, |
| (rt2x00dev->beacon_int - 20) * 16); |
| rt2x00_set_field32(®, CSR20_TBCN_BEFORE_WAKEUP, |
| libconf->conf->listen_interval - 1); |
| |
| /* We must first disable autowake before it can be enabled */ |
| rt2x00_set_field32(®, CSR20_AUTOWAKE, 0); |
| rt2x00mmio_register_write(rt2x00dev, CSR20, reg); |
| |
| rt2x00_set_field32(®, CSR20_AUTOWAKE, 1); |
| rt2x00mmio_register_write(rt2x00dev, CSR20, reg); |
| } else { |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR20); |
| rt2x00_set_field32(®, CSR20_AUTOWAKE, 0); |
| rt2x00mmio_register_write(rt2x00dev, CSR20, reg); |
| } |
| |
| rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); |
| } |
| |
| static void rt2500pci_config(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf, |
| const unsigned int flags) |
| { |
| if (flags & IEEE80211_CONF_CHANGE_CHANNEL) |
| rt2500pci_config_channel(rt2x00dev, &libconf->rf, |
| libconf->conf->power_level); |
| if ((flags & IEEE80211_CONF_CHANGE_POWER) && |
| !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) |
| rt2500pci_config_txpower(rt2x00dev, |
| libconf->conf->power_level); |
| if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) |
| rt2500pci_config_retry_limit(rt2x00dev, libconf); |
| if (flags & IEEE80211_CONF_CHANGE_PS) |
| rt2500pci_config_ps(rt2x00dev, libconf); |
| } |
| |
| /* |
| * Link tuning |
| */ |
| static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev, |
| struct link_qual *qual) |
| { |
| u32 reg; |
| |
| /* |
| * Update FCS error count from register. |
| */ |
| reg = rt2x00mmio_register_read(rt2x00dev, CNT0); |
| qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR); |
| |
| /* |
| * Update False CCA count from register. |
| */ |
| reg = rt2x00mmio_register_read(rt2x00dev, CNT3); |
| qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA); |
| } |
| |
| static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev, |
| struct link_qual *qual, u8 vgc_level) |
| { |
| if (qual->vgc_level_reg != vgc_level) { |
| rt2500pci_bbp_write(rt2x00dev, 17, vgc_level); |
| qual->vgc_level = vgc_level; |
| qual->vgc_level_reg = vgc_level; |
| } |
| } |
| |
| static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev, |
| struct link_qual *qual) |
| { |
| rt2500pci_set_vgc(rt2x00dev, qual, 0x48); |
| } |
| |
| static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev, |
| struct link_qual *qual, const u32 count) |
| { |
| /* |
| * To prevent collisions with MAC ASIC on chipsets |
| * up to version C the link tuning should halt after 20 |
| * seconds while being associated. |
| */ |
| if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D && |
| rt2x00dev->intf_associated && count > 20) |
| return; |
| |
| /* |
| * Chipset versions C and lower should directly continue |
| * to the dynamic CCA tuning. Chipset version D and higher |
| * should go straight to dynamic CCA tuning when they |
| * are not associated. |
| */ |
| if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D || |
| !rt2x00dev->intf_associated) |
| goto dynamic_cca_tune; |
| |
| /* |
| * A too low RSSI will cause too much false CCA which will |
| * then corrupt the R17 tuning. To remidy this the tuning should |
| * be stopped (While making sure the R17 value will not exceed limits) |
| */ |
| if (qual->rssi < -80 && count > 20) { |
| if (qual->vgc_level_reg >= 0x41) |
| rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level); |
| return; |
| } |
| |
| /* |
| * Special big-R17 for short distance |
| */ |
| if (qual->rssi >= -58) { |
| rt2500pci_set_vgc(rt2x00dev, qual, 0x50); |
| return; |
| } |
| |
| /* |
| * Special mid-R17 for middle distance |
| */ |
| if (qual->rssi >= -74) { |
| rt2500pci_set_vgc(rt2x00dev, qual, 0x41); |
| return; |
| } |
| |
| /* |
| * Leave short or middle distance condition, restore r17 |
| * to the dynamic tuning range. |
| */ |
| if (qual->vgc_level_reg >= 0x41) { |
| rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level); |
| return; |
| } |
| |
| dynamic_cca_tune: |
| |
| /* |
| * R17 is inside the dynamic tuning range, |
| * start tuning the link based on the false cca counter. |
| */ |
| if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40) |
| rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg); |
| else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32) |
| rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg); |
| } |
| |
| /* |
| * Queue handlers. |
| */ |
| static void rt2500pci_start_queue(struct data_queue *queue) |
| { |
| struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; |
| u32 reg; |
| |
| switch (queue->qid) { |
| case QID_RX: |
| reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0); |
| rt2x00_set_field32(®, RXCSR0_DISABLE_RX, 0); |
| rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg); |
| break; |
| case QID_BEACON: |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR14); |
| rt2x00_set_field32(®, CSR14_TSF_COUNT, 1); |
| rt2x00_set_field32(®, CSR14_TBCN, 1); |
| rt2x00_set_field32(®, CSR14_BEACON_GEN, 1); |
| rt2x00mmio_register_write(rt2x00dev, CSR14, reg); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void rt2500pci_kick_queue(struct data_queue *queue) |
| { |
| struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; |
| u32 reg; |
| |
| switch (queue->qid) { |
| case QID_AC_VO: |
| reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0); |
| rt2x00_set_field32(®, TXCSR0_KICK_PRIO, 1); |
| rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); |
| break; |
| case QID_AC_VI: |
| reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0); |
| rt2x00_set_field32(®, TXCSR0_KICK_TX, 1); |
| rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); |
| break; |
| case QID_ATIM: |
| reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0); |
| rt2x00_set_field32(®, TXCSR0_KICK_ATIM, 1); |
| rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void rt2500pci_stop_queue(struct data_queue *queue) |
| { |
| struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; |
| u32 reg; |
| |
| switch (queue->qid) { |
| case QID_AC_VO: |
| case QID_AC_VI: |
| case QID_ATIM: |
| reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0); |
| rt2x00_set_field32(®, TXCSR0_ABORT, 1); |
| rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); |
| break; |
| case QID_RX: |
| reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0); |
| rt2x00_set_field32(®, RXCSR0_DISABLE_RX, 1); |
| rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg); |
| break; |
| case QID_BEACON: |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR14); |
| rt2x00_set_field32(®, CSR14_TSF_COUNT, 0); |
| rt2x00_set_field32(®, CSR14_TBCN, 0); |
| rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); |
| rt2x00mmio_register_write(rt2x00dev, CSR14, reg); |
| |
| /* |
| * Wait for possibly running tbtt tasklets. |
| */ |
| tasklet_kill(&rt2x00dev->tbtt_tasklet); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* |
| * Initialization functions. |
| */ |
| static bool rt2500pci_get_entry_state(struct queue_entry *entry) |
| { |
| struct queue_entry_priv_mmio *entry_priv = entry->priv_data; |
| u32 word; |
| |
| if (entry->queue->qid == QID_RX) { |
| word = rt2x00_desc_read(entry_priv->desc, 0); |
| |
| return rt2x00_get_field32(word, RXD_W0_OWNER_NIC); |
| } else { |
| word = rt2x00_desc_read(entry_priv->desc, 0); |
| |
| return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || |
| rt2x00_get_field32(word, TXD_W0_VALID)); |
| } |
| } |
| |
| static void rt2500pci_clear_entry(struct queue_entry *entry) |
| { |
| struct queue_entry_priv_mmio *entry_priv = entry->priv_data; |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| u32 word; |
| |
| if (entry->queue->qid == QID_RX) { |
| word = rt2x00_desc_read(entry_priv->desc, 1); |
| rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma); |
| rt2x00_desc_write(entry_priv->desc, 1, word); |
| |
| word = rt2x00_desc_read(entry_priv->desc, 0); |
| rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1); |
| rt2x00_desc_write(entry_priv->desc, 0, word); |
| } else { |
| word = rt2x00_desc_read(entry_priv->desc, 0); |
| rt2x00_set_field32(&word, TXD_W0_VALID, 0); |
| rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0); |
| rt2x00_desc_write(entry_priv->desc, 0, word); |
| } |
| } |
| |
| static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev) |
| { |
| struct queue_entry_priv_mmio *entry_priv; |
| u32 reg; |
| |
| /* |
| * Initialize registers. |
| */ |
| reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2); |
| rt2x00_set_field32(®, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size); |
| rt2x00_set_field32(®, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit); |
| rt2x00_set_field32(®, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit); |
| rt2x00_set_field32(®, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit); |
| rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg); |
| |
| entry_priv = rt2x00dev->tx[1].entries[0].priv_data; |
| reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3); |
| rt2x00_set_field32(®, TXCSR3_TX_RING_REGISTER, |
| entry_priv->desc_dma); |
| rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg); |
| |
| entry_priv = rt2x00dev->tx[0].entries[0].priv_data; |
| reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5); |
| rt2x00_set_field32(®, TXCSR5_PRIO_RING_REGISTER, |
| entry_priv->desc_dma); |
| rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg); |
| |
| entry_priv = rt2x00dev->atim->entries[0].priv_data; |
| reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4); |
| rt2x00_set_field32(®, TXCSR4_ATIM_RING_REGISTER, |
| entry_priv->desc_dma); |
| rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg); |
| |
| entry_priv = rt2x00dev->bcn->entries[0].priv_data; |
| reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6); |
| rt2x00_set_field32(®, TXCSR6_BEACON_RING_REGISTER, |
| entry_priv->desc_dma); |
| rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1); |
| rt2x00_set_field32(®, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size); |
| rt2x00_set_field32(®, RXCSR1_NUM_RXD, rt2x00dev->rx->limit); |
| rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg); |
| |
| entry_priv = rt2x00dev->rx->entries[0].priv_data; |
| reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2); |
| rt2x00_set_field32(®, RXCSR2_RX_RING_REGISTER, |
| entry_priv->desc_dma); |
| rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg); |
| |
| return 0; |
| } |
| |
| static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002); |
| rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002); |
| rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002); |
| rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR); |
| rt2x00_set_field32(®, TIMECSR_US_COUNT, 33); |
| rt2x00_set_field32(®, TIMECSR_US_64_COUNT, 63); |
| rt2x00_set_field32(®, TIMECSR_BEACON_EXPECT, 0); |
| rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR9); |
| rt2x00_set_field32(®, CSR9_MAX_FRAME_UNIT, |
| rt2x00dev->rx->data_size / 128); |
| rt2x00mmio_register_write(rt2x00dev, CSR9, reg); |
| |
| /* |
| * Always use CWmin and CWmax set in descriptor. |
| */ |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR11); |
| rt2x00_set_field32(®, CSR11_CW_SELECT, 0); |
| rt2x00mmio_register_write(rt2x00dev, CSR11, reg); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR14); |
| rt2x00_set_field32(®, CSR14_TSF_COUNT, 0); |
| rt2x00_set_field32(®, CSR14_TSF_SYNC, 0); |
| rt2x00_set_field32(®, CSR14_TBCN, 0); |
| rt2x00_set_field32(®, CSR14_TCFP, 0); |
| rt2x00_set_field32(®, CSR14_TATIMW, 0); |
| rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); |
| rt2x00_set_field32(®, CSR14_CFP_COUNT_PRELOAD, 0); |
| rt2x00_set_field32(®, CSR14_TBCM_PRELOAD, 0); |
| rt2x00mmio_register_write(rt2x00dev, CSR14, reg); |
| |
| rt2x00mmio_register_write(rt2x00dev, CNT3, 0); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, TXCSR8); |
| rt2x00_set_field32(®, TXCSR8_BBP_ID0, 10); |
| rt2x00_set_field32(®, TXCSR8_BBP_ID0_VALID, 1); |
| rt2x00_set_field32(®, TXCSR8_BBP_ID1, 11); |
| rt2x00_set_field32(®, TXCSR8_BBP_ID1_VALID, 1); |
| rt2x00_set_field32(®, TXCSR8_BBP_ID2, 13); |
| rt2x00_set_field32(®, TXCSR8_BBP_ID2_VALID, 1); |
| rt2x00_set_field32(®, TXCSR8_BBP_ID3, 12); |
| rt2x00_set_field32(®, TXCSR8_BBP_ID3_VALID, 1); |
| rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR0); |
| rt2x00_set_field32(®, ARTCSR0_ACK_CTS_1MBS, 112); |
| rt2x00_set_field32(®, ARTCSR0_ACK_CTS_2MBS, 56); |
| rt2x00_set_field32(®, ARTCSR0_ACK_CTS_5_5MBS, 20); |
| rt2x00_set_field32(®, ARTCSR0_ACK_CTS_11MBS, 10); |
| rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR1); |
| rt2x00_set_field32(®, ARTCSR1_ACK_CTS_6MBS, 45); |
| rt2x00_set_field32(®, ARTCSR1_ACK_CTS_9MBS, 37); |
| rt2x00_set_field32(®, ARTCSR1_ACK_CTS_12MBS, 33); |
| rt2x00_set_field32(®, ARTCSR1_ACK_CTS_18MBS, 29); |
| rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR2); |
| rt2x00_set_field32(®, ARTCSR2_ACK_CTS_24MBS, 29); |
| rt2x00_set_field32(®, ARTCSR2_ACK_CTS_36MBS, 25); |
| rt2x00_set_field32(®, ARTCSR2_ACK_CTS_48MBS, 25); |
| rt2x00_set_field32(®, ARTCSR2_ACK_CTS_54MBS, 25); |
| rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3); |
| rt2x00_set_field32(®, RXCSR3_BBP_ID0, 47); /* CCK Signal */ |
| rt2x00_set_field32(®, RXCSR3_BBP_ID0_VALID, 1); |
| rt2x00_set_field32(®, RXCSR3_BBP_ID1, 51); /* Rssi */ |
| rt2x00_set_field32(®, RXCSR3_BBP_ID1_VALID, 1); |
| rt2x00_set_field32(®, RXCSR3_BBP_ID2, 42); /* OFDM Rate */ |
| rt2x00_set_field32(®, RXCSR3_BBP_ID2_VALID, 1); |
| rt2x00_set_field32(®, RXCSR3_BBP_ID3, 51); /* RSSI */ |
| rt2x00_set_field32(®, RXCSR3_BBP_ID3_VALID, 1); |
| rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, PCICSR); |
| rt2x00_set_field32(®, PCICSR_BIG_ENDIAN, 0); |
| rt2x00_set_field32(®, PCICSR_RX_TRESHOLD, 0); |
| rt2x00_set_field32(®, PCICSR_TX_TRESHOLD, 3); |
| rt2x00_set_field32(®, PCICSR_BURST_LENTH, 1); |
| rt2x00_set_field32(®, PCICSR_ENABLE_CLK, 1); |
| rt2x00_set_field32(®, PCICSR_READ_MULTIPLE, 1); |
| rt2x00_set_field32(®, PCICSR_WRITE_INVALID, 1); |
| rt2x00mmio_register_write(rt2x00dev, PCICSR, reg); |
| |
| rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100); |
| |
| rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00); |
| rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0); |
| |
| if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) |
| return -EBUSY; |
| |
| rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223); |
| rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2); |
| rt2x00_set_field32(®, MACCSR2_DELAY, 64); |
| rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR); |
| rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA0, 17); |
| rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID0, 26); |
| rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID0, 1); |
| rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA1, 0); |
| rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID1, 26); |
| rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID1, 1); |
| rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg); |
| |
| rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200); |
| |
| rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR1); |
| rt2x00_set_field32(®, CSR1_SOFT_RESET, 1); |
| rt2x00_set_field32(®, CSR1_BBP_RESET, 0); |
| rt2x00_set_field32(®, CSR1_HOST_READY, 0); |
| rt2x00mmio_register_write(rt2x00dev, CSR1, reg); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR1); |
| rt2x00_set_field32(®, CSR1_SOFT_RESET, 0); |
| rt2x00_set_field32(®, CSR1_HOST_READY, 1); |
| rt2x00mmio_register_write(rt2x00dev, CSR1, reg); |
| |
| /* |
| * We must clear the FCS and FIFO error count. |
| * These registers are cleared on read, |
| * so we may pass a useless variable to store the value. |
| */ |
| reg = rt2x00mmio_register_read(rt2x00dev, CNT0); |
| reg = rt2x00mmio_register_read(rt2x00dev, CNT4); |
| |
| return 0; |
| } |
| |
| static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) |
| { |
| unsigned int i; |
| u8 value; |
| |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| value = rt2500pci_bbp_read(rt2x00dev, 0); |
| if ((value != 0xff) && (value != 0x00)) |
| return 0; |
| udelay(REGISTER_BUSY_DELAY); |
| } |
| |
| rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n"); |
| return -EACCES; |
| } |
| |
| static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev) |
| { |
| unsigned int i; |
| u16 eeprom; |
| u8 reg_id; |
| u8 value; |
| |
| if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev))) |
| return -EACCES; |
| |
| rt2500pci_bbp_write(rt2x00dev, 3, 0x02); |
| rt2500pci_bbp_write(rt2x00dev, 4, 0x19); |
| rt2500pci_bbp_write(rt2x00dev, 14, 0x1c); |
| rt2500pci_bbp_write(rt2x00dev, 15, 0x30); |
| rt2500pci_bbp_write(rt2x00dev, 16, 0xac); |
| rt2500pci_bbp_write(rt2x00dev, 18, 0x18); |
| rt2500pci_bbp_write(rt2x00dev, 19, 0xff); |
| rt2500pci_bbp_write(rt2x00dev, 20, 0x1e); |
| rt2500pci_bbp_write(rt2x00dev, 21, 0x08); |
| rt2500pci_bbp_write(rt2x00dev, 22, 0x08); |
| rt2500pci_bbp_write(rt2x00dev, 23, 0x08); |
| rt2500pci_bbp_write(rt2x00dev, 24, 0x70); |
| rt2500pci_bbp_write(rt2x00dev, 25, 0x40); |
| rt2500pci_bbp_write(rt2x00dev, 26, 0x08); |
| rt2500pci_bbp_write(rt2x00dev, 27, 0x23); |
| rt2500pci_bbp_write(rt2x00dev, 30, 0x10); |
| rt2500pci_bbp_write(rt2x00dev, 31, 0x2b); |
| rt2500pci_bbp_write(rt2x00dev, 32, 0xb9); |
| rt2500pci_bbp_write(rt2x00dev, 34, 0x12); |
| rt2500pci_bbp_write(rt2x00dev, 35, 0x50); |
| rt2500pci_bbp_write(rt2x00dev, 39, 0xc4); |
| rt2500pci_bbp_write(rt2x00dev, 40, 0x02); |
| rt2500pci_bbp_write(rt2x00dev, 41, 0x60); |
| rt2500pci_bbp_write(rt2x00dev, 53, 0x10); |
| rt2500pci_bbp_write(rt2x00dev, 54, 0x18); |
| rt2500pci_bbp_write(rt2x00dev, 56, 0x08); |
| rt2500pci_bbp_write(rt2x00dev, 57, 0x10); |
| rt2500pci_bbp_write(rt2x00dev, 58, 0x08); |
| rt2500pci_bbp_write(rt2x00dev, 61, 0x6d); |
| rt2500pci_bbp_write(rt2x00dev, 62, 0x10); |
| |
| for (i = 0; i < EEPROM_BBP_SIZE; i++) { |
| eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i); |
| |
| if (eeprom != 0xffff && eeprom != 0x0000) { |
| reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); |
| value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); |
| rt2500pci_bbp_write(rt2x00dev, reg_id, value); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Device state switch handlers. |
| */ |
| static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| int mask = (state == STATE_RADIO_IRQ_OFF); |
| u32 reg; |
| unsigned long flags; |
| |
| /* |
| * When interrupts are being enabled, the interrupt registers |
| * should clear the register to assure a clean state. |
| */ |
| if (state == STATE_RADIO_IRQ_ON) { |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR7); |
| rt2x00mmio_register_write(rt2x00dev, CSR7, reg); |
| } |
| |
| /* |
| * Only toggle the interrupts bits we are going to use. |
| * Non-checked interrupt bits are disabled by default. |
| */ |
| spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR8); |
| rt2x00_set_field32(®, CSR8_TBCN_EXPIRE, mask); |
| rt2x00_set_field32(®, CSR8_TXDONE_TXRING, mask); |
| rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, mask); |
| rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, mask); |
| rt2x00_set_field32(®, CSR8_RXDONE, mask); |
| rt2x00mmio_register_write(rt2x00dev, CSR8, reg); |
| |
| spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags); |
| |
| if (state == STATE_RADIO_IRQ_OFF) { |
| /* |
| * Ensure that all tasklets are finished. |
| */ |
| tasklet_kill(&rt2x00dev->txstatus_tasklet); |
| tasklet_kill(&rt2x00dev->rxdone_tasklet); |
| tasklet_kill(&rt2x00dev->tbtt_tasklet); |
| } |
| } |
| |
| static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| /* |
| * Initialize all registers. |
| */ |
| if (unlikely(rt2500pci_init_queues(rt2x00dev) || |
| rt2500pci_init_registers(rt2x00dev) || |
| rt2500pci_init_bbp(rt2x00dev))) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| /* |
| * Disable power |
| */ |
| rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0); |
| } |
| |
| static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| u32 reg, reg2; |
| unsigned int i; |
| char put_to_sleep; |
| char bbp_state; |
| char rf_state; |
| |
| put_to_sleep = (state != STATE_AWAKE); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1); |
| rt2x00_set_field32(®, PWRCSR1_SET_STATE, 1); |
| rt2x00_set_field32(®, PWRCSR1_BBP_DESIRE_STATE, state); |
| rt2x00_set_field32(®, PWRCSR1_RF_DESIRE_STATE, state); |
| rt2x00_set_field32(®, PWRCSR1_PUT_TO_SLEEP, put_to_sleep); |
| rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg); |
| |
| /* |
| * Device is not guaranteed to be in the requested state yet. |
| * We must wait until the register indicates that the |
| * device has entered the correct state. |
| */ |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1); |
| bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE); |
| rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE); |
| if (bbp_state == state && rf_state == state) |
| return 0; |
| rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg); |
| msleep(10); |
| } |
| |
| return -EBUSY; |
| } |
| |
| static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| int retval = 0; |
| |
| switch (state) { |
| case STATE_RADIO_ON: |
| retval = rt2500pci_enable_radio(rt2x00dev); |
| break; |
| case STATE_RADIO_OFF: |
| rt2500pci_disable_radio(rt2x00dev); |
| break; |
| case STATE_RADIO_IRQ_ON: |
| case STATE_RADIO_IRQ_OFF: |
| rt2500pci_toggle_irq(rt2x00dev, state); |
| break; |
| case STATE_DEEP_SLEEP: |
| case STATE_SLEEP: |
| case STATE_STANDBY: |
| case STATE_AWAKE: |
| retval = rt2500pci_set_state(rt2x00dev, state); |
| break; |
| default: |
| retval = -ENOTSUPP; |
| break; |
| } |
| |
| if (unlikely(retval)) |
| rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n", |
| state, retval); |
| |
| return retval; |
| } |
| |
| /* |
| * TX descriptor initialization |
| */ |
| static void rt2500pci_write_tx_desc(struct queue_entry *entry, |
| struct txentry_desc *txdesc) |
| { |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| struct queue_entry_priv_mmio *entry_priv = entry->priv_data; |
| __le32 *txd = entry_priv->desc; |
| u32 word; |
| |
| /* |
| * Start writing the descriptor words. |
| */ |
| word = rt2x00_desc_read(txd, 1); |
| rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma); |
| rt2x00_desc_write(txd, 1, word); |
| |
| word = rt2x00_desc_read(txd, 2); |
| rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER); |
| rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs); |
| rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min); |
| rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max); |
| rt2x00_desc_write(txd, 2, word); |
| |
| word = rt2x00_desc_read(txd, 3); |
| rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal); |
| rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service); |
| rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, |
| txdesc->u.plcp.length_low); |
| rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, |
| txdesc->u.plcp.length_high); |
| rt2x00_desc_write(txd, 3, word); |
| |
| word = rt2x00_desc_read(txd, 10); |
| rt2x00_set_field32(&word, TXD_W10_RTS, |
| test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)); |
| rt2x00_desc_write(txd, 10, word); |
| |
| /* |
| * Writing TXD word 0 must the last to prevent a race condition with |
| * the device, whereby the device may take hold of the TXD before we |
| * finished updating it. |
| */ |
| word = rt2x00_desc_read(txd, 0); |
| rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1); |
| rt2x00_set_field32(&word, TXD_W0_VALID, 1); |
| rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, |
| test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_ACK, |
| test_bit(ENTRY_TXD_ACK, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, |
| test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_OFDM, |
| (txdesc->rate_mode == RATE_MODE_OFDM)); |
| rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1); |
| rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); |
| rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, |
| test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); |
| rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE); |
| rt2x00_desc_write(txd, 0, word); |
| |
| /* |
| * Register descriptor details in skb frame descriptor. |
| */ |
| skbdesc->desc = txd; |
| skbdesc->desc_len = TXD_DESC_SIZE; |
| } |
| |
| /* |
| * TX data initialization |
| */ |
| static void rt2500pci_write_beacon(struct queue_entry *entry, |
| struct txentry_desc *txdesc) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| u32 reg; |
| |
| /* |
| * Disable beaconing while we are reloading the beacon data, |
| * otherwise we might be sending out invalid data. |
| */ |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR14); |
| rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); |
| rt2x00mmio_register_write(rt2x00dev, CSR14, reg); |
| |
| if (rt2x00queue_map_txskb(entry)) { |
| rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n"); |
| goto out; |
| } |
| |
| /* |
| * Write the TX descriptor for the beacon. |
| */ |
| rt2500pci_write_tx_desc(entry, txdesc); |
| |
| /* |
| * Dump beacon to userspace through debugfs. |
| */ |
| rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry); |
| out: |
| /* |
| * Enable beaconing again. |
| */ |
| rt2x00_set_field32(®, CSR14_BEACON_GEN, 1); |
| rt2x00mmio_register_write(rt2x00dev, CSR14, reg); |
| } |
| |
| /* |
| * RX control handlers |
| */ |
| static void rt2500pci_fill_rxdone(struct queue_entry *entry, |
| struct rxdone_entry_desc *rxdesc) |
| { |
| struct queue_entry_priv_mmio *entry_priv = entry->priv_data; |
| u32 word0; |
| u32 word2; |
| |
| word0 = rt2x00_desc_read(entry_priv->desc, 0); |
| word2 = rt2x00_desc_read(entry_priv->desc, 2); |
| |
| if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) |
| rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; |
| if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR)) |
| rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC; |
| |
| /* |
| * Obtain the status about this packet. |
| * When frame was received with an OFDM bitrate, |
| * the signal is the PLCP value. If it was received with |
| * a CCK bitrate the signal is the rate in 100kbit/s. |
| */ |
| rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL); |
| rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) - |
| entry->queue->rt2x00dev->rssi_offset; |
| rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); |
| |
| if (rt2x00_get_field32(word0, RXD_W0_OFDM)) |
| rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; |
| else |
| rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; |
| if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) |
| rxdesc->dev_flags |= RXDONE_MY_BSS; |
| } |
| |
| /* |
| * Interrupt functions. |
| */ |
| static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, |
| const enum data_queue_qid queue_idx) |
| { |
| struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); |
| struct queue_entry_priv_mmio *entry_priv; |
| struct queue_entry *entry; |
| struct txdone_entry_desc txdesc; |
| u32 word; |
| |
| while (!rt2x00queue_empty(queue)) { |
| entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE); |
| entry_priv = entry->priv_data; |
| word = rt2x00_desc_read(entry_priv->desc, 0); |
| |
| if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || |
| !rt2x00_get_field32(word, TXD_W0_VALID)) |
| break; |
| |
| /* |
| * Obtain the status about this packet. |
| */ |
| txdesc.flags = 0; |
| switch (rt2x00_get_field32(word, TXD_W0_RESULT)) { |
| case 0: /* Success */ |
| case 1: /* Success with retry */ |
| __set_bit(TXDONE_SUCCESS, &txdesc.flags); |
| break; |
| case 2: /* Failure, excessive retries */ |
| __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags); |
| fallthrough; /* this is a failed frame! */ |
| default: /* Failure */ |
| __set_bit(TXDONE_FAILURE, &txdesc.flags); |
| } |
| txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT); |
| |
| rt2x00lib_txdone(entry, &txdesc); |
| } |
| } |
| |
| static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00_field32 irq_field) |
| { |
| u32 reg; |
| |
| /* |
| * Enable a single interrupt. The interrupt mask register |
| * access needs locking. |
| */ |
| spin_lock_irq(&rt2x00dev->irqmask_lock); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR8); |
| rt2x00_set_field32(®, irq_field, 0); |
| rt2x00mmio_register_write(rt2x00dev, CSR8, reg); |
| |
| spin_unlock_irq(&rt2x00dev->irqmask_lock); |
| } |
| |
| static void rt2500pci_txstatus_tasklet(struct tasklet_struct *t) |
| { |
| struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, |
| txstatus_tasklet); |
| u32 reg; |
| |
| /* |
| * Handle all tx queues. |
| */ |
| rt2500pci_txdone(rt2x00dev, QID_ATIM); |
| rt2500pci_txdone(rt2x00dev, QID_AC_VO); |
| rt2500pci_txdone(rt2x00dev, QID_AC_VI); |
| |
| /* |
| * Enable all TXDONE interrupts again. |
| */ |
| if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) { |
| spin_lock_irq(&rt2x00dev->irqmask_lock); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR8); |
| rt2x00_set_field32(®, CSR8_TXDONE_TXRING, 0); |
| rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, 0); |
| rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, 0); |
| rt2x00mmio_register_write(rt2x00dev, CSR8, reg); |
| |
| spin_unlock_irq(&rt2x00dev->irqmask_lock); |
| } |
| } |
| |
| static void rt2500pci_tbtt_tasklet(struct tasklet_struct *t) |
| { |
| struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet); |
| rt2x00lib_beacondone(rt2x00dev); |
| if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE); |
| } |
| |
| static void rt2500pci_rxdone_tasklet(struct tasklet_struct *t) |
| { |
| struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, |
| rxdone_tasklet); |
| if (rt2x00mmio_rxdone(rt2x00dev)) |
| tasklet_schedule(&rt2x00dev->rxdone_tasklet); |
| else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE); |
| } |
| |
| static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance) |
| { |
| struct rt2x00_dev *rt2x00dev = dev_instance; |
| u32 reg, mask; |
| |
| /* |
| * Get the interrupt sources & saved to local variable. |
| * Write register value back to clear pending interrupts. |
| */ |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR7); |
| rt2x00mmio_register_write(rt2x00dev, CSR7, reg); |
| |
| if (!reg) |
| return IRQ_NONE; |
| |
| if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| return IRQ_HANDLED; |
| |
| mask = reg; |
| |
| /* |
| * Schedule tasklets for interrupt handling. |
| */ |
| if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE)) |
| tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet); |
| |
| if (rt2x00_get_field32(reg, CSR7_RXDONE)) |
| tasklet_schedule(&rt2x00dev->rxdone_tasklet); |
| |
| if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) || |
| rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) || |
| rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) { |
| tasklet_schedule(&rt2x00dev->txstatus_tasklet); |
| /* |
| * Mask out all txdone interrupts. |
| */ |
| rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1); |
| rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1); |
| rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1); |
| } |
| |
| /* |
| * Disable all interrupts for which a tasklet was scheduled right now, |
| * the tasklet will reenable the appropriate interrupts. |
| */ |
| spin_lock(&rt2x00dev->irqmask_lock); |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR8); |
| reg |= mask; |
| rt2x00mmio_register_write(rt2x00dev, CSR8, reg); |
| |
| spin_unlock(&rt2x00dev->irqmask_lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Device probe functions. |
| */ |
| static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) |
| { |
| struct eeprom_93cx6 eeprom; |
| u32 reg; |
| u16 word; |
| u8 *mac; |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR21); |
| |
| eeprom.data = rt2x00dev; |
| eeprom.register_read = rt2500pci_eepromregister_read; |
| eeprom.register_write = rt2500pci_eepromregister_write; |
| eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ? |
| PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66; |
| eeprom.reg_data_in = 0; |
| eeprom.reg_data_out = 0; |
| eeprom.reg_data_clock = 0; |
| eeprom.reg_chip_select = 0; |
| |
| eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, |
| EEPROM_SIZE / sizeof(u16)); |
| |
| /* |
| * Start validation of the data that has been read. |
| */ |
| mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); |
| rt2x00lib_set_mac_address(rt2x00dev, mac); |
| |
| word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, |
| ANTENNA_SW_DIVERSITY); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, |
| ANTENNA_SW_DIVERSITY); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, |
| LED_MODE_DEFAULT); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); |
| rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word); |
| } |
| |
| word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); |
| rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word); |
| } |
| |
| word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI, |
| DEFAULT_RSSI_OFFSET); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word); |
| rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n", |
| word); |
| } |
| |
| return 0; |
| } |
| |
| static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| u16 value; |
| u16 eeprom; |
| |
| /* |
| * Read EEPROM word for configuration. |
| */ |
| eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); |
| |
| /* |
| * Identify RF chipset. |
| */ |
| value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR0); |
| rt2x00_set_chip(rt2x00dev, RT2560, value, |
| rt2x00_get_field32(reg, CSR0_REVISION)); |
| |
| if (!rt2x00_rf(rt2x00dev, RF2522) && |
| !rt2x00_rf(rt2x00dev, RF2523) && |
| !rt2x00_rf(rt2x00dev, RF2524) && |
| !rt2x00_rf(rt2x00dev, RF2525) && |
| !rt2x00_rf(rt2x00dev, RF2525E) && |
| !rt2x00_rf(rt2x00dev, RF5222)) { |
| rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n"); |
| return -ENODEV; |
| } |
| |
| /* |
| * Identify default antenna configuration. |
| */ |
| rt2x00dev->default_ant.tx = |
| rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); |
| rt2x00dev->default_ant.rx = |
| rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); |
| |
| /* |
| * Store led mode, for correct led behaviour. |
| */ |
| #ifdef CONFIG_RT2X00_LIB_LEDS |
| value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE); |
| |
| rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); |
| if (value == LED_MODE_TXRX_ACTIVITY || |
| value == LED_MODE_DEFAULT || |
| value == LED_MODE_ASUS) |
| rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual, |
| LED_TYPE_ACTIVITY); |
| #endif /* CONFIG_RT2X00_LIB_LEDS */ |
| |
| /* |
| * Detect if this device has an hardware controlled radio. |
| */ |
| if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) { |
| __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); |
| /* |
| * On this device RFKILL initialized during probe does not work. |
| */ |
| __set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags); |
| } |
| |
| /* |
| * Check if the BBP tuning should be enabled. |
| */ |
| eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC); |
| if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE)) |
| __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); |
| |
| /* |
| * Read the RSSI <-> dBm offset information. |
| */ |
| eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET); |
| rt2x00dev->rssi_offset = |
| rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI); |
| |
| return 0; |
| } |
| |
| /* |
| * RF value list for RF2522 |
| * Supports: 2.4 GHz |
| */ |
| static const struct rf_channel rf_vals_bg_2522[] = { |
| { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 }, |
| { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 }, |
| { 3, 0x00002050, 0x000c2002, 0x00000101, 0 }, |
| { 4, 0x00002050, 0x000c2016, 0x00000101, 0 }, |
| { 5, 0x00002050, 0x000c202a, 0x00000101, 0 }, |
| { 6, 0x00002050, 0x000c203e, 0x00000101, 0 }, |
| { 7, 0x00002050, 0x000c2052, 0x00000101, 0 }, |
| { 8, 0x00002050, 0x000c2066, 0x00000101, 0 }, |
| { 9, 0x00002050, 0x000c207a, 0x00000101, 0 }, |
| { 10, 0x00002050, 0x000c208e, 0x00000101, 0 }, |
| { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 }, |
| { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 }, |
| { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 }, |
| { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 }, |
| }; |
| |
| /* |
| * RF value list for RF2523 |
| * Supports: 2.4 GHz |
| */ |
| static const struct rf_channel rf_vals_bg_2523[] = { |
| { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b }, |
| { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b }, |
| { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b }, |
| { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b }, |
| { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b }, |
| { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b }, |
| { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b }, |
| { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b }, |
| { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b }, |
| { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b }, |
| { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b }, |
| { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b }, |
| { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b }, |
| { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 }, |
| }; |
| |
| /* |
| * RF value list for RF2524 |
| * Supports: 2.4 GHz |
| */ |
| static const struct rf_channel rf_vals_bg_2524[] = { |
| { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b }, |
| { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b }, |
| { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b }, |
| { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b }, |
| { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b }, |
| { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b }, |
| { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b }, |
| { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b }, |
| { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b }, |
| { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b }, |
| { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b }, |
| { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b }, |
| { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b }, |
| { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 }, |
| }; |
| |
| /* |
| * RF value list for RF2525 |
| * Supports: 2.4 GHz |
| */ |
| static const struct rf_channel rf_vals_bg_2525[] = { |
| { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b }, |
| { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b }, |
| { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b }, |
| { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b }, |
| { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b }, |
| { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b }, |
| { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b }, |
| { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b }, |
| { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b }, |
| { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b }, |
| { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b }, |
| { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b }, |
| { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b }, |
| { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 }, |
| }; |
| |
| /* |
| * RF value list for RF2525e |
| * Supports: 2.4 GHz |
| */ |
| static const struct rf_channel rf_vals_bg_2525e[] = { |
| { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b }, |
| { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b }, |
| { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b }, |
| { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b }, |
| { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b }, |
| { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b }, |
| { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b }, |
| { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b }, |
| { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b }, |
| { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b }, |
| { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b }, |
| { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b }, |
| { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b }, |
| { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b }, |
| }; |
| |
| /* |
| * RF value list for RF5222 |
| * Supports: 2.4 GHz & 5.2 GHz |
| */ |
| static const struct rf_channel rf_vals_5222[] = { |
| { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b }, |
| { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b }, |
| { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b }, |
| { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b }, |
| { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b }, |
| { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b }, |
| { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b }, |
| { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b }, |
| { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b }, |
| { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b }, |
| { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b }, |
| { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b }, |
| { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b }, |
| { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b }, |
| |
| /* 802.11 UNI / HyperLan 2 */ |
| { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f }, |
| { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f }, |
| { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f }, |
| { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f }, |
| { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f }, |
| { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f }, |
| { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f }, |
| { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f }, |
| |
| /* 802.11 HyperLan 2 */ |
| { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f }, |
| { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f }, |
| { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f }, |
| { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f }, |
| { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f }, |
| { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f }, |
| { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f }, |
| { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f }, |
| { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f }, |
| { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f }, |
| |
| /* 802.11 UNII */ |
| { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f }, |
| { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 }, |
| { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 }, |
| { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 }, |
| { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 }, |
| }; |
| |
| static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev) |
| { |
| struct hw_mode_spec *spec = &rt2x00dev->spec; |
| struct channel_info *info; |
| char *tx_power; |
| unsigned int i; |
| |
| /* |
| * Initialize all hw fields. |
| */ |
| ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK); |
| ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS); |
| ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING); |
| ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM); |
| |
| SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); |
| SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, |
| rt2x00_eeprom_addr(rt2x00dev, |
| EEPROM_MAC_ADDR_0)); |
| |
| /* |
| * Disable powersaving as default. |
| */ |
| rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; |
| |
| /* |
| * Initialize hw_mode information. |
| */ |
| spec->supported_bands = SUPPORT_BAND_2GHZ; |
| spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; |
| |
| if (rt2x00_rf(rt2x00dev, RF2522)) { |
| spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522); |
| spec->channels = rf_vals_bg_2522; |
| } else if (rt2x00_rf(rt2x00dev, RF2523)) { |
| spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523); |
| spec->channels = rf_vals_bg_2523; |
| } else if (rt2x00_rf(rt2x00dev, RF2524)) { |
| spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524); |
| spec->channels = rf_vals_bg_2524; |
| } else if (rt2x00_rf(rt2x00dev, RF2525)) { |
| spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525); |
| spec->channels = rf_vals_bg_2525; |
| } else if (rt2x00_rf(rt2x00dev, RF2525E)) { |
| spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e); |
| spec->channels = rf_vals_bg_2525e; |
| } else if (rt2x00_rf(rt2x00dev, RF5222)) { |
| spec->supported_bands |= SUPPORT_BAND_5GHZ; |
| spec->num_channels = ARRAY_SIZE(rf_vals_5222); |
| spec->channels = rf_vals_5222; |
| } |
| |
| /* |
| * Create channel information array |
| */ |
| info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| |
| spec->channels_info = info; |
| |
| tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START); |
| for (i = 0; i < 14; i++) { |
| info[i].max_power = MAX_TXPOWER; |
| info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); |
| } |
| |
| if (spec->num_channels > 14) { |
| for (i = 14; i < spec->num_channels; i++) { |
| info[i].max_power = MAX_TXPOWER; |
| info[i].default_power1 = DEFAULT_TXPOWER; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev) |
| { |
| int retval; |
| u32 reg; |
| |
| /* |
| * Allocate eeprom data. |
| */ |
| retval = rt2500pci_validate_eeprom(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| retval = rt2500pci_init_eeprom(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| /* |
| * Enable rfkill polling by setting GPIO direction of the |
| * rfkill switch GPIO pin correctly. |
| */ |
| reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR); |
| rt2x00_set_field32(®, GPIOCSR_DIR0, 1); |
| rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg); |
| |
| /* |
| * Initialize hw specifications. |
| */ |
| retval = rt2500pci_probe_hw_mode(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| /* |
| * This device requires the atim queue and DMA-mapped skbs. |
| */ |
| __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags); |
| __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags); |
| __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags); |
| |
| /* |
| * Set the rssi offset. |
| */ |
| rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; |
| |
| return 0; |
| } |
| |
| /* |
| * IEEE80211 stack callback functions. |
| */ |
| static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif) |
| { |
| struct rt2x00_dev *rt2x00dev = hw->priv; |
| u64 tsf; |
| u32 reg; |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR17); |
| tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32; |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR16); |
| tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER); |
| |
| return tsf; |
| } |
| |
| static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw) |
| { |
| struct rt2x00_dev *rt2x00dev = hw->priv; |
| u32 reg; |
| |
| reg = rt2x00mmio_register_read(rt2x00dev, CSR15); |
| return rt2x00_get_field32(reg, CSR15_BEACON_SENT); |
| } |
| |
| static const struct ieee80211_ops rt2500pci_mac80211_ops = { |
| .tx = rt2x00mac_tx, |
| .wake_tx_queue = ieee80211_handle_wake_tx_queue, |
| .start = rt2x00mac_start, |
| .stop = rt2x00mac_stop, |
| .add_interface = rt2x00mac_add_interface, |
| .remove_interface = rt2x00mac_remove_interface, |
| .config = rt2x00mac_config, |
| .configure_filter = rt2x00mac_configure_filter, |
| .sw_scan_start = rt2x00mac_sw_scan_start, |
| .sw_scan_complete = rt2x00mac_sw_scan_complete, |
| .get_stats = rt2x00mac_get_stats, |
| .bss_info_changed = rt2x00mac_bss_info_changed, |
| .conf_tx = rt2x00mac_conf_tx, |
| .get_tsf = rt2500pci_get_tsf, |
| .tx_last_beacon = rt2500pci_tx_last_beacon, |
| .rfkill_poll = rt2x00mac_rfkill_poll, |
| .flush = rt2x00mac_flush, |
| .set_antenna = rt2x00mac_set_antenna, |
| .get_antenna = rt2x00mac_get_antenna, |
| .get_ringparam = rt2x00mac_get_ringparam, |
| .tx_frames_pending = rt2x00mac_tx_frames_pending, |
| }; |
| |
| static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = { |
| .irq_handler = rt2500pci_interrupt, |
| .txstatus_tasklet = rt2500pci_txstatus_tasklet, |
| .tbtt_tasklet = rt2500pci_tbtt_tasklet, |
| .rxdone_tasklet = rt2500pci_rxdone_tasklet, |
| .probe_hw = rt2500pci_probe_hw, |
| .initialize = rt2x00mmio_initialize, |
| .uninitialize = rt2x00mmio_uninitialize, |
| .get_entry_state = rt2500pci_get_entry_state, |
| .clear_entry = rt2500pci_clear_entry, |
| .set_device_state = rt2500pci_set_device_state, |
| .rfkill_poll = rt2500pci_rfkill_poll, |
| .link_stats = rt2500pci_link_stats, |
| .reset_tuner = rt2500pci_reset_tuner, |
| .link_tuner = rt2500pci_link_tuner, |
| .start_queue = rt2500pci_start_queue, |
| .kick_queue = rt2500pci_kick_queue, |
| .stop_queue = rt2500pci_stop_queue, |
| .flush_queue = rt2x00mmio_flush_queue, |
| .write_tx_desc = rt2500pci_write_tx_desc, |
| .write_beacon = rt2500pci_write_beacon, |
| .fill_rxdone = rt2500pci_fill_rxdone, |
| .config_filter = rt2500pci_config_filter, |
| .config_intf = rt2500pci_config_intf, |
| .config_erp = rt2500pci_config_erp, |
| .config_ant = rt2500pci_config_ant, |
| .config = rt2500pci_config, |
| }; |
| |
| static void rt2500pci_queue_init(struct data_queue *queue) |
| { |
| switch (queue->qid) { |
| case QID_RX: |
| queue->limit = 32; |
| queue->data_size = DATA_FRAME_SIZE; |
| queue->desc_size = RXD_DESC_SIZE; |
| queue->priv_size = sizeof(struct queue_entry_priv_mmio); |
| break; |
| |
| case QID_AC_VO: |
| case QID_AC_VI: |
| case QID_AC_BE: |
| case QID_AC_BK: |
| queue->limit = 32; |
| queue->data_size = DATA_FRAME_SIZE; |
| queue->desc_size = TXD_DESC_SIZE; |
| queue->priv_size = sizeof(struct queue_entry_priv_mmio); |
| break; |
| |
| case QID_BEACON: |
| queue->limit = 1; |
| queue->data_size = MGMT_FRAME_SIZE; |
| queue->desc_size = TXD_DESC_SIZE; |
| queue->priv_size = sizeof(struct queue_entry_priv_mmio); |
| break; |
| |
| case QID_ATIM: |
| queue->limit = 8; |
| queue->data_size = DATA_FRAME_SIZE; |
| queue->desc_size = TXD_DESC_SIZE; |
| queue->priv_size = sizeof(struct queue_entry_priv_mmio); |
| break; |
| |
| default: |
| BUG(); |
| break; |
| } |
| } |
| |
| static const struct rt2x00_ops rt2500pci_ops = { |
| .name = KBUILD_MODNAME, |
| .max_ap_intf = 1, |
| .eeprom_size = EEPROM_SIZE, |
| .rf_size = RF_SIZE, |
| .tx_queues = NUM_TX_QUEUES, |
| .queue_init = rt2500pci_queue_init, |
| .lib = &rt2500pci_rt2x00_ops, |
| .hw = &rt2500pci_mac80211_ops, |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS |
| .debugfs = &rt2500pci_rt2x00debug, |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ |
| }; |
| |
| /* |
| * RT2500pci module information. |
| */ |
| static const struct pci_device_id rt2500pci_device_table[] = { |
| { PCI_DEVICE(0x1814, 0x0201) }, |
| { 0, } |
| }; |
| |
| MODULE_AUTHOR(DRV_PROJECT); |
| MODULE_VERSION(DRV_VERSION); |
| MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver."); |
| MODULE_DEVICE_TABLE(pci, rt2500pci_device_table); |
| MODULE_LICENSE("GPL"); |
| |
| static int rt2500pci_probe(struct pci_dev *pci_dev, |
| const struct pci_device_id *id) |
| { |
| return rt2x00pci_probe(pci_dev, &rt2500pci_ops); |
| } |
| |
| static struct pci_driver rt2500pci_driver = { |
| .name = KBUILD_MODNAME, |
| .id_table = rt2500pci_device_table, |
| .probe = rt2500pci_probe, |
| .remove = rt2x00pci_remove, |
| .driver.pm = &rt2x00pci_pm_ops, |
| }; |
| |
| module_pci_driver(rt2500pci_driver); |