| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright 2013, Michael (Ellerman|Neuling), IBM Corporation. |
| */ |
| |
| #define pr_fmt(fmt) "powernv: " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/cpu.h> |
| #include <linux/cpumask.h> |
| #include <linux/device.h> |
| #include <linux/gfp.h> |
| #include <linux/smp.h> |
| #include <linux/stop_machine.h> |
| |
| #include <asm/cputhreads.h> |
| #include <asm/cpuidle.h> |
| #include <asm/kvm_ppc.h> |
| #include <asm/machdep.h> |
| #include <asm/opal.h> |
| #include <asm/smp.h> |
| |
| #include "subcore.h" |
| #include "powernv.h" |
| |
| |
| /* |
| * Split/unsplit procedure: |
| * |
| * A core can be in one of three states, unsplit, 2-way split, and 4-way split. |
| * |
| * The mapping to subcores_per_core is simple: |
| * |
| * State | subcores_per_core |
| * ------------|------------------ |
| * Unsplit | 1 |
| * 2-way split | 2 |
| * 4-way split | 4 |
| * |
| * The core is split along thread boundaries, the mapping between subcores and |
| * threads is as follows: |
| * |
| * Unsplit: |
| * ---------------------------- |
| * Subcore | 0 | |
| * ---------------------------- |
| * Thread | 0 1 2 3 4 5 6 7 | |
| * ---------------------------- |
| * |
| * 2-way split: |
| * ------------------------------------- |
| * Subcore | 0 | 1 | |
| * ------------------------------------- |
| * Thread | 0 1 2 3 | 4 5 6 7 | |
| * ------------------------------------- |
| * |
| * 4-way split: |
| * ----------------------------------------- |
| * Subcore | 0 | 1 | 2 | 3 | |
| * ----------------------------------------- |
| * Thread | 0 1 | 2 3 | 4 5 | 6 7 | |
| * ----------------------------------------- |
| * |
| * |
| * Transitions |
| * ----------- |
| * |
| * It is not possible to transition between either of the split states, the |
| * core must first be unsplit. The legal transitions are: |
| * |
| * ----------- --------------- |
| * | | <----> | 2-way split | |
| * | | --------------- |
| * | Unsplit | |
| * | | --------------- |
| * | | <----> | 4-way split | |
| * ----------- --------------- |
| * |
| * Unsplitting |
| * ----------- |
| * |
| * Unsplitting is the simpler procedure. It requires thread 0 to request the |
| * unsplit while all other threads NAP. |
| * |
| * Thread 0 clears HID0_POWER8_DYNLPARDIS (Dynamic LPAR Disable). This tells |
| * the hardware that if all threads except 0 are napping, the hardware should |
| * unsplit the core. |
| * |
| * Non-zero threads are sent to a NAP loop, they don't exit the loop until they |
| * see the core unsplit. |
| * |
| * Core 0 spins waiting for the hardware to see all the other threads napping |
| * and perform the unsplit. |
| * |
| * Once thread 0 sees the unsplit, it IPIs the secondary threads to wake them |
| * out of NAP. They will then see the core unsplit and exit the NAP loop. |
| * |
| * Splitting |
| * --------- |
| * |
| * The basic splitting procedure is fairly straight forward. However it is |
| * complicated by the fact that after the split occurs, the newly created |
| * subcores are not in a fully initialised state. |
| * |
| * Most notably the subcores do not have the correct value for SDR1, which |
| * means they must not be running in virtual mode when the split occurs. The |
| * subcores have separate timebases SPRs but these are pre-synchronised by |
| * opal. |
| * |
| * To begin with secondary threads are sent to an assembly routine. There they |
| * switch to real mode, so they are immune to the uninitialised SDR1 value. |
| * Once in real mode they indicate that they are in real mode, and spin waiting |
| * to see the core split. |
| * |
| * Thread 0 waits to see that all secondaries are in real mode, and then begins |
| * the splitting procedure. It firstly sets HID0_POWER8_DYNLPARDIS, which |
| * prevents the hardware from unsplitting. Then it sets the appropriate HID bit |
| * to request the split, and spins waiting to see that the split has happened. |
| * |
| * Concurrently the secondaries will notice the split. When they do they set up |
| * their SPRs, notably SDR1, and then they can return to virtual mode and exit |
| * the procedure. |
| */ |
| |
| /* Initialised at boot by subcore_init() */ |
| static int subcores_per_core; |
| |
| /* |
| * Used to communicate to offline cpus that we want them to pop out of the |
| * offline loop and do a split or unsplit. |
| * |
| * 0 - no split happening |
| * 1 - unsplit in progress |
| * 2 - split to 2 in progress |
| * 4 - split to 4 in progress |
| */ |
| static int new_split_mode; |
| |
| static cpumask_var_t cpu_offline_mask; |
| |
| struct split_state { |
| u8 step; |
| u8 master; |
| }; |
| |
| static DEFINE_PER_CPU(struct split_state, split_state); |
| |
| static void wait_for_sync_step(int step) |
| { |
| int i, cpu = smp_processor_id(); |
| |
| for (i = cpu + 1; i < cpu + threads_per_core; i++) |
| while(per_cpu(split_state, i).step < step) |
| barrier(); |
| |
| /* Order the wait loop vs any subsequent loads/stores. */ |
| mb(); |
| } |
| |
| static void update_hid_in_slw(u64 hid0) |
| { |
| u64 idle_states = pnv_get_supported_cpuidle_states(); |
| |
| if (idle_states & OPAL_PM_WINKLE_ENABLED) { |
| /* OPAL call to patch slw with the new HID0 value */ |
| u64 cpu_pir = hard_smp_processor_id(); |
| |
| opal_slw_set_reg(cpu_pir, SPRN_HID0, hid0); |
| } |
| } |
| |
| static inline void update_power8_hid0(unsigned long hid0) |
| { |
| /* |
| * The HID0 update on Power8 should at the very least be |
| * preceded by a SYNC instruction followed by an ISYNC |
| * instruction |
| */ |
| asm volatile("sync; mtspr %0,%1; isync":: "i"(SPRN_HID0), "r"(hid0)); |
| } |
| |
| static void unsplit_core(void) |
| { |
| u64 hid0, mask; |
| int i, cpu; |
| |
| mask = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; |
| |
| cpu = smp_processor_id(); |
| if (cpu_thread_in_core(cpu) != 0) { |
| while (mfspr(SPRN_HID0) & mask) |
| power7_idle_type(PNV_THREAD_NAP); |
| |
| per_cpu(split_state, cpu).step = SYNC_STEP_UNSPLIT; |
| return; |
| } |
| |
| hid0 = mfspr(SPRN_HID0); |
| hid0 &= ~HID0_POWER8_DYNLPARDIS; |
| update_power8_hid0(hid0); |
| update_hid_in_slw(hid0); |
| |
| while (mfspr(SPRN_HID0) & mask) |
| cpu_relax(); |
| |
| /* Wake secondaries out of NAP */ |
| for (i = cpu + 1; i < cpu + threads_per_core; i++) |
| smp_send_reschedule(i); |
| |
| wait_for_sync_step(SYNC_STEP_UNSPLIT); |
| } |
| |
| static void split_core(int new_mode) |
| { |
| struct { u64 value; u64 mask; } split_parms[2] = { |
| { HID0_POWER8_1TO2LPAR, HID0_POWER8_2LPARMODE }, |
| { HID0_POWER8_1TO4LPAR, HID0_POWER8_4LPARMODE } |
| }; |
| int i, cpu; |
| u64 hid0; |
| |
| /* Convert new_mode (2 or 4) into an index into our parms array */ |
| i = (new_mode >> 1) - 1; |
| BUG_ON(i < 0 || i > 1); |
| |
| cpu = smp_processor_id(); |
| if (cpu_thread_in_core(cpu) != 0) { |
| split_core_secondary_loop(&per_cpu(split_state, cpu).step); |
| return; |
| } |
| |
| wait_for_sync_step(SYNC_STEP_REAL_MODE); |
| |
| /* Write new mode */ |
| hid0 = mfspr(SPRN_HID0); |
| hid0 |= HID0_POWER8_DYNLPARDIS | split_parms[i].value; |
| update_power8_hid0(hid0); |
| update_hid_in_slw(hid0); |
| |
| /* Wait for it to happen */ |
| while (!(mfspr(SPRN_HID0) & split_parms[i].mask)) |
| cpu_relax(); |
| } |
| |
| static void cpu_do_split(int new_mode) |
| { |
| /* |
| * At boot subcores_per_core will be 0, so we will always unsplit at |
| * boot. In the usual case where the core is already unsplit it's a |
| * nop, and this just ensures the kernel's notion of the mode is |
| * consistent with the hardware. |
| */ |
| if (subcores_per_core != 1) |
| unsplit_core(); |
| |
| if (new_mode != 1) |
| split_core(new_mode); |
| |
| mb(); |
| per_cpu(split_state, smp_processor_id()).step = SYNC_STEP_FINISHED; |
| } |
| |
| bool cpu_core_split_required(void) |
| { |
| smp_rmb(); |
| |
| if (!new_split_mode) |
| return false; |
| |
| cpu_do_split(new_split_mode); |
| |
| return true; |
| } |
| |
| void update_subcore_sibling_mask(void) |
| { |
| int cpu; |
| /* |
| * sibling mask for the first cpu. Left shift this by required bits |
| * to get sibling mask for the rest of the cpus. |
| */ |
| int sibling_mask_first_cpu = (1 << threads_per_subcore) - 1; |
| |
| for_each_possible_cpu(cpu) { |
| int tid = cpu_thread_in_core(cpu); |
| int offset = (tid / threads_per_subcore) * threads_per_subcore; |
| int mask = sibling_mask_first_cpu << offset; |
| |
| paca_ptrs[cpu]->subcore_sibling_mask = mask; |
| |
| } |
| } |
| |
| static int cpu_update_split_mode(void *data) |
| { |
| int cpu, new_mode = *(int *)data; |
| |
| if (this_cpu_ptr(&split_state)->master) { |
| new_split_mode = new_mode; |
| smp_wmb(); |
| |
| cpumask_andnot(cpu_offline_mask, cpu_present_mask, |
| cpu_online_mask); |
| |
| /* This should work even though the cpu is offline */ |
| for_each_cpu(cpu, cpu_offline_mask) |
| smp_send_reschedule(cpu); |
| } |
| |
| cpu_do_split(new_mode); |
| |
| if (this_cpu_ptr(&split_state)->master) { |
| /* Wait for all cpus to finish before we touch subcores_per_core */ |
| for_each_present_cpu(cpu) { |
| if (cpu >= setup_max_cpus) |
| break; |
| |
| while(per_cpu(split_state, cpu).step < SYNC_STEP_FINISHED) |
| barrier(); |
| } |
| |
| new_split_mode = 0; |
| |
| /* Make the new mode public */ |
| subcores_per_core = new_mode; |
| threads_per_subcore = threads_per_core / subcores_per_core; |
| update_subcore_sibling_mask(); |
| |
| /* Make sure the new mode is written before we exit */ |
| mb(); |
| } |
| |
| return 0; |
| } |
| |
| static int set_subcores_per_core(int new_mode) |
| { |
| struct split_state *state; |
| int cpu; |
| |
| if (kvm_hv_mode_active()) { |
| pr_err("Unable to change split core mode while KVM active.\n"); |
| return -EBUSY; |
| } |
| |
| /* |
| * We are only called at boot, or from the sysfs write. If that ever |
| * changes we'll need a lock here. |
| */ |
| BUG_ON(new_mode < 1 || new_mode > 4 || new_mode == 3); |
| |
| for_each_present_cpu(cpu) { |
| state = &per_cpu(split_state, cpu); |
| state->step = SYNC_STEP_INITIAL; |
| state->master = 0; |
| } |
| |
| cpus_read_lock(); |
| |
| /* This cpu will update the globals before exiting stop machine */ |
| this_cpu_ptr(&split_state)->master = 1; |
| |
| /* Ensure state is consistent before we call the other cpus */ |
| mb(); |
| |
| stop_machine_cpuslocked(cpu_update_split_mode, &new_mode, |
| cpu_online_mask); |
| |
| cpus_read_unlock(); |
| |
| return 0; |
| } |
| |
| static ssize_t __used store_subcores_per_core(struct device *dev, |
| struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| unsigned long val; |
| int rc; |
| |
| /* We are serialised by the attribute lock */ |
| |
| rc = sscanf(buf, "%lx", &val); |
| if (rc != 1) |
| return -EINVAL; |
| |
| switch (val) { |
| case 1: |
| case 2: |
| case 4: |
| if (subcores_per_core == val) |
| /* Nothing to do */ |
| goto out; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| rc = set_subcores_per_core(val); |
| if (rc) |
| return rc; |
| |
| out: |
| return count; |
| } |
| |
| static ssize_t show_subcores_per_core(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| return sprintf(buf, "%x\n", subcores_per_core); |
| } |
| |
| static DEVICE_ATTR(subcores_per_core, 0644, |
| show_subcores_per_core, store_subcores_per_core); |
| |
| static int subcore_init(void) |
| { |
| unsigned pvr_ver; |
| |
| pvr_ver = PVR_VER(mfspr(SPRN_PVR)); |
| |
| if (pvr_ver != PVR_POWER8 && |
| pvr_ver != PVR_POWER8E && |
| pvr_ver != PVR_POWER8NVL) |
| return 0; |
| |
| /* |
| * We need all threads in a core to be present to split/unsplit so |
| * continue only if max_cpus are aligned to threads_per_core. |
| */ |
| if (setup_max_cpus % threads_per_core) |
| return 0; |
| |
| BUG_ON(!alloc_cpumask_var(&cpu_offline_mask, GFP_KERNEL)); |
| |
| set_subcores_per_core(1); |
| |
| return device_create_file(cpu_subsys.dev_root, |
| &dev_attr_subcores_per_core); |
| } |
| machine_device_initcall(powernv, subcore_init); |