blob: 753b7a4ccfddc2886f01f283fb692c3c16b582b7 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* mlx90632.c - Melexis MLX90632 contactless IR temperature sensor
*
* Copyright (c) 2017 Melexis <cmo@melexis.com>
*
* Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/iopoll.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/limits.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/math64.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
/* Memory sections addresses */
#define MLX90632_ADDR_RAM 0x4000 /* Start address of ram */
#define MLX90632_ADDR_EEPROM 0x2480 /* Start address of user eeprom */
/* EEPROM addresses - used at startup */
#define MLX90632_EE_CTRL 0x24d4 /* Control register initial value */
#define MLX90632_EE_I2C_ADDR 0x24d5 /* I2C address register initial value */
#define MLX90632_EE_VERSION 0x240b /* EEPROM version reg address */
#define MLX90632_EE_P_R 0x240c /* P_R calibration register 32bit */
#define MLX90632_EE_P_G 0x240e /* P_G calibration register 32bit */
#define MLX90632_EE_P_T 0x2410 /* P_T calibration register 32bit */
#define MLX90632_EE_P_O 0x2412 /* P_O calibration register 32bit */
#define MLX90632_EE_Aa 0x2414 /* Aa calibration register 32bit */
#define MLX90632_EE_Ab 0x2416 /* Ab calibration register 32bit */
#define MLX90632_EE_Ba 0x2418 /* Ba calibration register 32bit */
#define MLX90632_EE_Bb 0x241a /* Bb calibration register 32bit */
#define MLX90632_EE_Ca 0x241c /* Ca calibration register 32bit */
#define MLX90632_EE_Cb 0x241e /* Cb calibration register 32bit */
#define MLX90632_EE_Da 0x2420 /* Da calibration register 32bit */
#define MLX90632_EE_Db 0x2422 /* Db calibration register 32bit */
#define MLX90632_EE_Ea 0x2424 /* Ea calibration register 32bit */
#define MLX90632_EE_Eb 0x2426 /* Eb calibration register 32bit */
#define MLX90632_EE_Fa 0x2428 /* Fa calibration register 32bit */
#define MLX90632_EE_Fb 0x242a /* Fb calibration register 32bit */
#define MLX90632_EE_Ga 0x242c /* Ga calibration register 32bit */
#define MLX90632_EE_Gb 0x242e /* Gb calibration register 16bit */
#define MLX90632_EE_Ka 0x242f /* Ka calibration register 16bit */
#define MLX90632_EE_Ha 0x2481 /* Ha customer calib value reg 16bit */
#define MLX90632_EE_Hb 0x2482 /* Hb customer calib value reg 16bit */
#define MLX90632_EE_MEDICAL_MEAS1 0x24E1 /* Medical measurement 1 16bit */
#define MLX90632_EE_MEDICAL_MEAS2 0x24E2 /* Medical measurement 2 16bit */
#define MLX90632_EE_EXTENDED_MEAS1 0x24F1 /* Extended measurement 1 16bit */
#define MLX90632_EE_EXTENDED_MEAS2 0x24F2 /* Extended measurement 2 16bit */
#define MLX90632_EE_EXTENDED_MEAS3 0x24F3 /* Extended measurement 3 16bit */
/* Register addresses - volatile */
#define MLX90632_REG_I2C_ADDR 0x3000 /* Chip I2C address register */
/* Control register address - volatile */
#define MLX90632_REG_CONTROL 0x3001 /* Control Register address */
#define MLX90632_CFG_PWR_MASK GENMASK(2, 1) /* PowerMode Mask */
#define MLX90632_CFG_MTYP_MASK GENMASK(8, 4) /* Meas select Mask */
#define MLX90632_CFG_SOB_MASK BIT(11)
/* PowerModes statuses */
#define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1)
#define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */
#define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step */
#define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */
#define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous */
#define MLX90632_EE_RR GENMASK(10, 8) /* Only Refresh Rate bits */
#define MLX90632_REFRESH_RATE(ee_val) FIELD_GET(MLX90632_EE_RR, ee_val)
/* Extract Refresh Rate from ee register */
#define MLX90632_REFRESH_RATE_STATUS(refresh_rate) (refresh_rate << 8)
/* Measurement types */
#define MLX90632_MTYP_MEDICAL 0
#define MLX90632_MTYP_EXTENDED 17
/* Measurement type select*/
#define MLX90632_MTYP_STATUS(ctrl_val) (ctrl_val << 4)
#define MLX90632_MTYP_STATUS_MEDICAL MLX90632_MTYP_STATUS(MLX90632_MTYP_MEDICAL)
#define MLX90632_MTYP_STATUS_EXTENDED MLX90632_MTYP_STATUS(MLX90632_MTYP_EXTENDED)
/* I2C command register - volatile */
#define MLX90632_REG_I2C_CMD 0x3005 /* I2C command Register address */
/* Device status register - volatile */
#define MLX90632_REG_STATUS 0x3fff /* Device status register */
#define MLX90632_STAT_BUSY BIT(10) /* Device busy indicator */
#define MLX90632_STAT_EE_BUSY BIT(9) /* EEPROM busy indicator */
#define MLX90632_STAT_BRST BIT(8) /* Brown out reset indicator */
#define MLX90632_STAT_CYCLE_POS GENMASK(6, 2) /* Data position */
#define MLX90632_STAT_DATA_RDY BIT(0) /* Data ready indicator */
/* RAM_MEAS address-es for each channel */
#define MLX90632_RAM_1(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num)
#define MLX90632_RAM_2(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 1)
#define MLX90632_RAM_3(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 2)
/* Name important RAM_MEAS channels */
#define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1 MLX90632_RAM_3(17)
#define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2 MLX90632_RAM_3(18)
#define MLX90632_RAM_DSP5_EXTENDED_OBJECT_1 MLX90632_RAM_1(17)
#define MLX90632_RAM_DSP5_EXTENDED_OBJECT_2 MLX90632_RAM_2(17)
#define MLX90632_RAM_DSP5_EXTENDED_OBJECT_3 MLX90632_RAM_1(18)
#define MLX90632_RAM_DSP5_EXTENDED_OBJECT_4 MLX90632_RAM_2(18)
#define MLX90632_RAM_DSP5_EXTENDED_OBJECT_5 MLX90632_RAM_1(19)
#define MLX90632_RAM_DSP5_EXTENDED_OBJECT_6 MLX90632_RAM_2(19)
/* Magic constants */
#define MLX90632_ID_MEDICAL 0x0105 /* EEPROM DSPv5 Medical device id */
#define MLX90632_ID_CONSUMER 0x0205 /* EEPROM DSPv5 Consumer device id */
#define MLX90632_ID_EXTENDED 0x0505 /* EEPROM DSPv5 Extended range device id */
#define MLX90632_ID_MASK GENMASK(14, 0) /* DSP version and device ID in EE_VERSION */
#define MLX90632_DSP_VERSION 5 /* DSP version */
#define MLX90632_DSP_MASK GENMASK(7, 0) /* DSP version in EE_VERSION */
#define MLX90632_RESET_CMD 0x0006 /* Reset sensor (address or global) */
#define MLX90632_REF_12 12LL /* ResCtrlRef value of Ch 1 or Ch 2 */
#define MLX90632_REF_3 12LL /* ResCtrlRef value of Channel 3 */
#define MLX90632_MAX_MEAS_NUM 31 /* Maximum measurements in list */
#define MLX90632_SLEEP_DELAY_MS 6000 /* Autosleep delay */
#define MLX90632_EXTENDED_LIMIT 27000 /* Extended mode raw value limit */
#define MLX90632_MEAS_MAX_TIME 2000 /* Max measurement time in ms for the lowest refresh rate */
/**
* struct mlx90632_data - private data for the MLX90632 device
* @client: I2C client of the device
* @lock: Internal mutex for multiple reads for single measurement
* @regmap: Regmap of the device
* @emissivity: Object emissivity from 0 to 1000 where 1000 = 1.
* @mtyp: Measurement type physical sensor configuration for extended range
* calculations
* @object_ambient_temperature: Ambient temperature at object (might differ of
* the ambient temperature of sensor.
* @regulator: Regulator of the device
* @powerstatus: Current POWER status of the device
* @interaction_ts: Timestamp of the last temperature read that is used
* for power management in jiffies
*/
struct mlx90632_data {
struct i2c_client *client;
struct mutex lock;
struct regmap *regmap;
u16 emissivity;
u8 mtyp;
u32 object_ambient_temperature;
struct regulator *regulator;
int powerstatus;
unsigned long interaction_ts;
};
static const struct regmap_range mlx90632_volatile_reg_range[] = {
regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD),
regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
regmap_reg_range(MLX90632_RAM_1(0),
MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
};
static const struct regmap_access_table mlx90632_volatile_regs_tbl = {
.yes_ranges = mlx90632_volatile_reg_range,
.n_yes_ranges = ARRAY_SIZE(mlx90632_volatile_reg_range),
};
static const struct regmap_range mlx90632_read_reg_range[] = {
regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
regmap_reg_range(MLX90632_EE_CTRL, MLX90632_EE_I2C_ADDR),
regmap_reg_range(MLX90632_EE_Ha, MLX90632_EE_Hb),
regmap_reg_range(MLX90632_EE_MEDICAL_MEAS1, MLX90632_EE_MEDICAL_MEAS2),
regmap_reg_range(MLX90632_EE_EXTENDED_MEAS1, MLX90632_EE_EXTENDED_MEAS3),
regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD),
regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
regmap_reg_range(MLX90632_RAM_1(0),
MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
};
static const struct regmap_access_table mlx90632_readable_regs_tbl = {
.yes_ranges = mlx90632_read_reg_range,
.n_yes_ranges = ARRAY_SIZE(mlx90632_read_reg_range),
};
static const struct regmap_range mlx90632_no_write_reg_range[] = {
regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
regmap_reg_range(MLX90632_RAM_1(0),
MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
};
static const struct regmap_access_table mlx90632_writeable_regs_tbl = {
.no_ranges = mlx90632_no_write_reg_range,
.n_no_ranges = ARRAY_SIZE(mlx90632_no_write_reg_range),
};
static const struct regmap_config mlx90632_regmap = {
.reg_bits = 16,
.val_bits = 16,
.volatile_table = &mlx90632_volatile_regs_tbl,
.rd_table = &mlx90632_readable_regs_tbl,
.wr_table = &mlx90632_writeable_regs_tbl,
.use_single_read = true,
.use_single_write = true,
.reg_format_endian = REGMAP_ENDIAN_BIG,
.val_format_endian = REGMAP_ENDIAN_BIG,
.cache_type = REGCACHE_RBTREE,
};
static int mlx90632_pwr_set_sleep_step(struct regmap *regmap)
{
struct mlx90632_data *data =
iio_priv(dev_get_drvdata(regmap_get_device(regmap)));
int ret;
if (data->powerstatus == MLX90632_PWR_STATUS_SLEEP_STEP)
return 0;
ret = regmap_write_bits(regmap, MLX90632_REG_CONTROL, MLX90632_CFG_PWR_MASK,
MLX90632_PWR_STATUS_SLEEP_STEP);
if (ret < 0)
return ret;
data->powerstatus = MLX90632_PWR_STATUS_SLEEP_STEP;
return 0;
}
static int mlx90632_pwr_continuous(struct regmap *regmap)
{
struct mlx90632_data *data =
iio_priv(dev_get_drvdata(regmap_get_device(regmap)));
int ret;
if (data->powerstatus == MLX90632_PWR_STATUS_CONTINUOUS)
return 0;
ret = regmap_write_bits(regmap, MLX90632_REG_CONTROL, MLX90632_CFG_PWR_MASK,
MLX90632_PWR_STATUS_CONTINUOUS);
if (ret < 0)
return ret;
data->powerstatus = MLX90632_PWR_STATUS_CONTINUOUS;
return 0;
}
/**
* mlx90632_reset_delay() - Give the mlx90632 some time to reset properly
* If this is not done, the following I2C command(s) will not be accepted.
*/
static void mlx90632_reset_delay(void)
{
usleep_range(150, 200);
}
static int mlx90632_get_measurement_time(struct regmap *regmap, u16 meas)
{
unsigned int reg;
int ret;
ret = regmap_read(regmap, meas, &reg);
if (ret < 0)
return ret;
return MLX90632_MEAS_MAX_TIME >> FIELD_GET(MLX90632_EE_RR, reg);
}
static int mlx90632_calculate_dataset_ready_time(struct mlx90632_data *data)
{
unsigned int refresh_time;
int ret;
if (data->mtyp == MLX90632_MTYP_MEDICAL) {
ret = mlx90632_get_measurement_time(data->regmap,
MLX90632_EE_MEDICAL_MEAS1);
if (ret < 0)
return ret;
refresh_time = ret;
ret = mlx90632_get_measurement_time(data->regmap,
MLX90632_EE_MEDICAL_MEAS2);
if (ret < 0)
return ret;
refresh_time += ret;
} else {
ret = mlx90632_get_measurement_time(data->regmap,
MLX90632_EE_EXTENDED_MEAS1);
if (ret < 0)
return ret;
refresh_time = ret;
ret = mlx90632_get_measurement_time(data->regmap,
MLX90632_EE_EXTENDED_MEAS2);
if (ret < 0)
return ret;
refresh_time += ret;
ret = mlx90632_get_measurement_time(data->regmap,
MLX90632_EE_EXTENDED_MEAS3);
if (ret < 0)
return ret;
refresh_time += ret;
}
return refresh_time;
}
/**
* mlx90632_perform_measurement() - Trigger and retrieve current measurement cycle
* @data: pointer to mlx90632_data object containing regmap information
*
* Perform a measurement and return latest measurement cycle position reported
* by sensor. This is a blocking function for 500ms, as that is default sensor
* refresh rate.
*/
static int mlx90632_perform_measurement(struct mlx90632_data *data)
{
unsigned int reg_status;
int ret;
ret = regmap_update_bits(data->regmap, MLX90632_REG_STATUS,
MLX90632_STAT_DATA_RDY, 0);
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(data->regmap, MLX90632_REG_STATUS, reg_status,
!(reg_status & MLX90632_STAT_DATA_RDY), 10000,
100 * 10000);
if (ret < 0) {
dev_err(&data->client->dev, "data not ready");
return -ETIMEDOUT;
}
return (reg_status & MLX90632_STAT_CYCLE_POS) >> 2;
}
/**
* mlx90632_perform_measurement_burst() - Trigger and retrieve current measurement
* cycle in step sleep mode
* @data: pointer to mlx90632_data object containing regmap information
*
* Perform a measurement and return 2 as measurement cycle position reported
* by sensor. This is a blocking function for amount dependent on the sensor
* refresh rate.
*/
static int mlx90632_perform_measurement_burst(struct mlx90632_data *data)
{
unsigned int reg_status;
int ret;
ret = regmap_write_bits(data->regmap, MLX90632_REG_CONTROL,
MLX90632_CFG_SOB_MASK, MLX90632_CFG_SOB_MASK);
if (ret < 0)
return ret;
ret = mlx90632_calculate_dataset_ready_time(data);
if (ret < 0)
return ret;
msleep(ret); /* Wait minimum time for dataset to be ready */
ret = regmap_read_poll_timeout(data->regmap, MLX90632_REG_STATUS,
reg_status,
(reg_status & MLX90632_STAT_BUSY) == 0,
10000, 100 * 10000);
if (ret < 0) {
dev_err(&data->client->dev, "data not ready");
return -ETIMEDOUT;
}
return 2;
}
static int mlx90632_set_meas_type(struct mlx90632_data *data, u8 type)
{
int current_powerstatus;
int ret;
if (data->mtyp == type)
return 0;
current_powerstatus = data->powerstatus;
ret = mlx90632_pwr_continuous(data->regmap);
if (ret < 0)
return ret;
ret = regmap_write(data->regmap, MLX90632_REG_I2C_CMD, MLX90632_RESET_CMD);
if (ret < 0)
return ret;
mlx90632_reset_delay();
ret = regmap_update_bits(data->regmap, MLX90632_REG_CONTROL,
(MLX90632_CFG_MTYP_MASK | MLX90632_CFG_PWR_MASK),
(MLX90632_MTYP_STATUS(type) | MLX90632_PWR_STATUS_HALT));
if (ret < 0)
return ret;
data->mtyp = type;
data->powerstatus = MLX90632_PWR_STATUS_HALT;
if (current_powerstatus == MLX90632_PWR_STATUS_SLEEP_STEP)
return mlx90632_pwr_set_sleep_step(data->regmap);
return mlx90632_pwr_continuous(data->regmap);
}
static int mlx90632_channel_new_select(int perform_ret, uint8_t *channel_new,
uint8_t *channel_old)
{
switch (perform_ret) {
case 1:
*channel_new = 1;
*channel_old = 2;
break;
case 2:
*channel_new = 2;
*channel_old = 1;
break;
default:
return -ECHRNG;
}
return 0;
}
static int mlx90632_read_ambient_raw(struct regmap *regmap,
s16 *ambient_new_raw, s16 *ambient_old_raw)
{
unsigned int read_tmp;
int ret;
ret = regmap_read(regmap, MLX90632_RAM_3(1), &read_tmp);
if (ret < 0)
return ret;
*ambient_new_raw = (s16)read_tmp;
ret = regmap_read(regmap, MLX90632_RAM_3(2), &read_tmp);
if (ret < 0)
return ret;
*ambient_old_raw = (s16)read_tmp;
return ret;
}
static int mlx90632_read_object_raw(struct regmap *regmap,
int perform_measurement_ret,
s16 *object_new_raw, s16 *object_old_raw)
{
unsigned int read_tmp;
u8 channel_old = 0;
u8 channel = 0;
s16 read;
int ret;
ret = mlx90632_channel_new_select(perform_measurement_ret, &channel,
&channel_old);
if (ret != 0)
return ret;
ret = regmap_read(regmap, MLX90632_RAM_2(channel), &read_tmp);
if (ret < 0)
return ret;
read = (s16)read_tmp;
ret = regmap_read(regmap, MLX90632_RAM_1(channel), &read_tmp);
if (ret < 0)
return ret;
*object_new_raw = (read + (s16)read_tmp) / 2;
ret = regmap_read(regmap, MLX90632_RAM_2(channel_old), &read_tmp);
if (ret < 0)
return ret;
read = (s16)read_tmp;
ret = regmap_read(regmap, MLX90632_RAM_1(channel_old), &read_tmp);
if (ret < 0)
return ret;
*object_old_raw = (read + (s16)read_tmp) / 2;
return ret;
}
static int mlx90632_read_all_channel(struct mlx90632_data *data,
s16 *ambient_new_raw, s16 *ambient_old_raw,
s16 *object_new_raw, s16 *object_old_raw)
{
s32 measurement;
int ret;
mutex_lock(&data->lock);
ret = mlx90632_set_meas_type(data, MLX90632_MTYP_MEDICAL);
if (ret < 0)
goto read_unlock;
switch (data->powerstatus) {
case MLX90632_PWR_STATUS_CONTINUOUS:
ret = mlx90632_perform_measurement(data);
if (ret < 0)
goto read_unlock;
break;
case MLX90632_PWR_STATUS_SLEEP_STEP:
ret = mlx90632_perform_measurement_burst(data);
if (ret < 0)
goto read_unlock;
break;
default:
ret = -EOPNOTSUPP;
goto read_unlock;
}
measurement = ret; /* If we came here ret holds the measurement position */
ret = mlx90632_read_ambient_raw(data->regmap, ambient_new_raw,
ambient_old_raw);
if (ret < 0)
goto read_unlock;
ret = mlx90632_read_object_raw(data->regmap, measurement,
object_new_raw, object_old_raw);
read_unlock:
mutex_unlock(&data->lock);
return ret;
}
static int mlx90632_read_ambient_raw_extended(struct regmap *regmap,
s16 *ambient_new_raw, s16 *ambient_old_raw)
{
unsigned int read_tmp;
int ret;
ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1, &read_tmp);
if (ret < 0)
return ret;
*ambient_new_raw = (s16)read_tmp;
ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2, &read_tmp);
if (ret < 0)
return ret;
*ambient_old_raw = (s16)read_tmp;
return 0;
}
static int mlx90632_read_object_raw_extended(struct regmap *regmap, s16 *object_new_raw)
{
unsigned int read_tmp;
s32 read;
int ret;
ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_1, &read_tmp);
if (ret < 0)
return ret;
read = (s16)read_tmp;
ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_2, &read_tmp);
if (ret < 0)
return ret;
read = read - (s16)read_tmp;
ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_3, &read_tmp);
if (ret < 0)
return ret;
read = read - (s16)read_tmp;
ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_4, &read_tmp);
if (ret < 0)
return ret;
read = (read + (s16)read_tmp) / 2;
ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_5, &read_tmp);
if (ret < 0)
return ret;
read = read + (s16)read_tmp;
ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_6, &read_tmp);
if (ret < 0)
return ret;
read = read + (s16)read_tmp;
if (read > S16_MAX || read < S16_MIN)
return -ERANGE;
*object_new_raw = read;
return 0;
}
static int mlx90632_read_all_channel_extended(struct mlx90632_data *data, s16 *object_new_raw,
s16 *ambient_new_raw, s16 *ambient_old_raw)
{
s32 ret, meas;
mutex_lock(&data->lock);
ret = mlx90632_set_meas_type(data, MLX90632_MTYP_EXTENDED);
if (ret < 0)
goto read_unlock;
switch (data->powerstatus) {
case MLX90632_PWR_STATUS_CONTINUOUS:
ret = read_poll_timeout(mlx90632_perform_measurement, meas, meas == 19,
50000, 800000, false, data);
if (ret)
goto read_unlock;
break;
case MLX90632_PWR_STATUS_SLEEP_STEP:
ret = mlx90632_perform_measurement_burst(data);
if (ret < 0)
goto read_unlock;
break;
default:
ret = -EOPNOTSUPP;
goto read_unlock;
}
ret = mlx90632_read_object_raw_extended(data->regmap, object_new_raw);
if (ret < 0)
goto read_unlock;
ret = mlx90632_read_ambient_raw_extended(data->regmap, ambient_new_raw, ambient_old_raw);
read_unlock:
mutex_unlock(&data->lock);
return ret;
}
static int mlx90632_read_ee_register(struct regmap *regmap, u16 reg_lsb,
s32 *reg_value)
{
unsigned int read;
u32 value;
int ret;
ret = regmap_read(regmap, reg_lsb, &read);
if (ret < 0)
return ret;
value = read;
ret = regmap_read(regmap, reg_lsb + 1, &read);
if (ret < 0)
return ret;
*reg_value = (read << 16) | (value & 0xffff);
return 0;
}
static s64 mlx90632_preprocess_temp_amb(s16 ambient_new_raw,
s16 ambient_old_raw, s16 Gb)
{
s64 VR_Ta, kGb, tmp;
kGb = ((s64)Gb * 1000LL) >> 10ULL;
VR_Ta = (s64)ambient_old_raw * 1000000LL +
kGb * div64_s64(((s64)ambient_new_raw * 1000LL),
(MLX90632_REF_3));
tmp = div64_s64(
div64_s64(((s64)ambient_new_raw * 1000000000000LL),
(MLX90632_REF_3)), VR_Ta);
return div64_s64(tmp << 19ULL, 1000LL);
}
static s64 mlx90632_preprocess_temp_obj(s16 object_new_raw, s16 object_old_raw,
s16 ambient_new_raw,
s16 ambient_old_raw, s16 Ka)
{
s64 VR_IR, kKa, tmp;
kKa = ((s64)Ka * 1000LL) >> 10ULL;
VR_IR = (s64)ambient_old_raw * 1000000LL +
kKa * div64_s64(((s64)ambient_new_raw * 1000LL),
(MLX90632_REF_3));
tmp = div64_s64(
div64_s64(((s64)((object_new_raw + object_old_raw) / 2)
* 1000000000000LL), (MLX90632_REF_12)),
VR_IR);
return div64_s64((tmp << 19ULL), 1000LL);
}
static s64 mlx90632_preprocess_temp_obj_extended(s16 object_new_raw, s16 ambient_new_raw,
s16 ambient_old_raw, s16 Ka)
{
s64 VR_IR, kKa, tmp;
kKa = ((s64)Ka * 1000LL) >> 10ULL;
VR_IR = (s64)ambient_old_raw * 1000000LL +
kKa * div64_s64((s64)ambient_new_raw * 1000LL,
MLX90632_REF_3);
tmp = div64_s64(
div64_s64((s64) object_new_raw * 1000000000000LL, MLX90632_REF_12),
VR_IR);
return div64_s64(tmp << 19ULL, 1000LL);
}
static s32 mlx90632_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
s32 P_T, s32 P_R, s32 P_G, s32 P_O, s16 Gb)
{
s64 Asub, Bsub, Ablock, Bblock, Cblock, AMB, sum;
AMB = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
Gb);
Asub = ((s64)P_T * 10000000000LL) >> 44ULL;
Bsub = AMB - (((s64)P_R * 1000LL) >> 8ULL);
Ablock = Asub * (Bsub * Bsub);
Bblock = (div64_s64(Bsub * 10000000LL, P_G)) << 20ULL;
Cblock = ((s64)P_O * 10000000000LL) >> 8ULL;
sum = div64_s64(Ablock, 1000000LL) + Bblock + Cblock;
return div64_s64(sum, 10000000LL);
}
static s32 mlx90632_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
s64 TAdut, s64 TAdut4, s32 Fa, s32 Fb,
s32 Ga, s16 Ha, s16 Hb,
u16 emissivity)
{
s64 calcedKsTO, calcedKsTA, ir_Alpha, Alpha_corr;
s64 Ha_customer, Hb_customer;
Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
Hb_customer = ((s64)Hb * 100) >> 10ULL;
calcedKsTO = ((s64)((s64)Ga * (prev_object_temp - 25 * 1000LL)
* 1000LL)) >> 36LL;
calcedKsTA = ((s64)(Fb * (TAdut - 25 * 1000000LL))) >> 36LL;
Alpha_corr = div64_s64((((s64)(Fa * 10000000000LL) >> 46LL)
* Ha_customer), 1000LL);
Alpha_corr *= ((s64)(1 * 1000000LL + calcedKsTO + calcedKsTA));
Alpha_corr = emissivity * div64_s64(Alpha_corr, 100000LL);
Alpha_corr = div64_s64(Alpha_corr, 1000LL);
ir_Alpha = div64_s64((s64)object * 10000000LL, Alpha_corr);
return (int_sqrt64(int_sqrt64(ir_Alpha * 1000000000000LL + TAdut4))
- 27315 - Hb_customer) * 10;
}
static s64 mlx90632_calc_ta4(s64 TAdut, s64 scale)
{
return (div64_s64(TAdut, scale) + 27315) *
(div64_s64(TAdut, scale) + 27315) *
(div64_s64(TAdut, scale) + 27315) *
(div64_s64(TAdut, scale) + 27315);
}
static s32 mlx90632_calc_temp_object(s64 object, s64 ambient, s32 Ea, s32 Eb,
s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb,
u16 tmp_emi)
{
s64 kTA, kTA0, TAdut, TAdut4;
s64 temp = 25000;
s8 i;
kTA = (Ea * 1000LL) >> 16LL;
kTA0 = (Eb * 1000LL) >> 8LL;
TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 25 * 1000000LL;
TAdut4 = mlx90632_calc_ta4(TAdut, 10000LL);
/* Iterations of calculation as described in datasheet */
for (i = 0; i < 5; ++i) {
temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, TAdut4,
Fa, Fb, Ga, Ha, Hb,
tmp_emi);
}
return temp;
}
static s32 mlx90632_calc_temp_object_extended(s64 object, s64 ambient, s64 reflected,
s32 Ea, s32 Eb, s32 Fa, s32 Fb, s32 Ga,
s16 Ha, s16 Hb, u16 tmp_emi)
{
s64 kTA, kTA0, TAdut, TAdut4, Tr4, TaTr4;
s64 temp = 25000;
s8 i;
kTA = (Ea * 1000LL) >> 16LL;
kTA0 = (Eb * 1000LL) >> 8LL;
TAdut = div64_s64((ambient - kTA0) * 1000000LL, kTA) + 25 * 1000000LL;
Tr4 = mlx90632_calc_ta4(reflected, 10);
TAdut4 = mlx90632_calc_ta4(TAdut, 10000LL);
TaTr4 = Tr4 - div64_s64(Tr4 - TAdut4, tmp_emi) * 1000;
/* Iterations of calculation as described in datasheet */
for (i = 0; i < 5; ++i) {
temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, TaTr4,
Fa / 2, Fb, Ga, Ha, Hb,
tmp_emi);
}
return temp;
}
static int mlx90632_calc_object_dsp105(struct mlx90632_data *data, int *val)
{
s16 ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw;
s32 Ea, Eb, Fa, Fb, Ga;
unsigned int read_tmp;
s64 object, ambient;
s16 Ha, Hb, Gb, Ka;
int ret;
ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ea, &Ea);
if (ret < 0)
return ret;
ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Eb, &Eb);
if (ret < 0)
return ret;
ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fa, &Fa);
if (ret < 0)
return ret;
ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fb, &Fb);
if (ret < 0)
return ret;
ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ga, &Ga);
if (ret < 0)
return ret;
ret = regmap_read(data->regmap, MLX90632_EE_Ha, &read_tmp);
if (ret < 0)
return ret;
Ha = (s16)read_tmp;
ret = regmap_read(data->regmap, MLX90632_EE_Hb, &read_tmp);
if (ret < 0)
return ret;
Hb = (s16)read_tmp;
ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
if (ret < 0)
return ret;
Gb = (s16)read_tmp;
ret = regmap_read(data->regmap, MLX90632_EE_Ka, &read_tmp);
if (ret < 0)
return ret;
Ka = (s16)read_tmp;
ret = mlx90632_read_all_channel(data,
&ambient_new_raw, &ambient_old_raw,
&object_new_raw, &object_old_raw);
if (ret < 0)
return ret;
if (object_new_raw > MLX90632_EXTENDED_LIMIT &&
data->mtyp == MLX90632_MTYP_EXTENDED) {
ret = mlx90632_read_all_channel_extended(data, &object_new_raw,
&ambient_new_raw, &ambient_old_raw);
if (ret < 0)
return ret;
/* Use extended mode calculations */
ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
ambient_old_raw, Gb);
object = mlx90632_preprocess_temp_obj_extended(object_new_raw,
ambient_new_raw,
ambient_old_raw, Ka);
*val = mlx90632_calc_temp_object_extended(object, ambient,
data->object_ambient_temperature,
Ea, Eb, Fa, Fb, Ga,
Ha, Hb, data->emissivity);
return 0;
}
ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
ambient_old_raw, Gb);
object = mlx90632_preprocess_temp_obj(object_new_raw,
object_old_raw,
ambient_new_raw,
ambient_old_raw, Ka);
*val = mlx90632_calc_temp_object(object, ambient, Ea, Eb, Fa, Fb, Ga,
Ha, Hb, data->emissivity);
return 0;
}
static int mlx90632_calc_ambient_dsp105(struct mlx90632_data *data, int *val)
{
s16 ambient_new_raw, ambient_old_raw;
unsigned int read_tmp;
s32 PT, PR, PG, PO;
int ret;
s16 Gb;
ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_R, &PR);
if (ret < 0)
return ret;
ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_G, &PG);
if (ret < 0)
return ret;
ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_T, &PT);
if (ret < 0)
return ret;
ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_O, &PO);
if (ret < 0)
return ret;
ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
if (ret < 0)
return ret;
Gb = (s16)read_tmp;
ret = mlx90632_read_ambient_raw(data->regmap, &ambient_new_raw,
&ambient_old_raw);
if (ret < 0)
return ret;
*val = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
PT, PR, PG, PO, Gb);
return ret;
}
static int mlx90632_get_refresh_rate(struct mlx90632_data *data,
int *refresh_rate)
{
unsigned int meas1;
int ret;
ret = regmap_read(data->regmap, MLX90632_EE_MEDICAL_MEAS1, &meas1);
if (ret < 0)
return ret;
*refresh_rate = MLX90632_REFRESH_RATE(meas1);
return ret;
}
static const int mlx90632_freqs[][2] = {
{0, 500000},
{1, 0},
{2, 0},
{4, 0},
{8, 0},
{16, 0},
{32, 0},
{64, 0}
};
/**
* mlx90632_pm_interraction_wakeup() - Measure time between user interactions to change powermode
* @data: pointer to mlx90632_data object containing interaction_ts information
*
* Switch to continuous mode when interaction is faster than MLX90632_MEAS_MAX_TIME. Update the
* interaction_ts for each function call with the jiffies to enable measurement between function
* calls. Initial value of the interaction_ts needs to be set before this function call.
*/
static int mlx90632_pm_interraction_wakeup(struct mlx90632_data *data)
{
unsigned long now;
int ret;
now = jiffies;
if (time_in_range(now, data->interaction_ts,
data->interaction_ts +
msecs_to_jiffies(MLX90632_MEAS_MAX_TIME + 100))) {
if (data->powerstatus == MLX90632_PWR_STATUS_SLEEP_STEP) {
ret = mlx90632_pwr_continuous(data->regmap);
if (ret < 0)
return ret;
}
}
data->interaction_ts = now;
return 0;
}
static int mlx90632_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *channel, int *val,
int *val2, long mask)
{
struct mlx90632_data *data = iio_priv(indio_dev);
int ret;
int cr;
pm_runtime_get_sync(&data->client->dev);
ret = mlx90632_pm_interraction_wakeup(data);
if (ret < 0)
goto mlx90632_read_raw_pm;
switch (mask) {
case IIO_CHAN_INFO_PROCESSED:
switch (channel->channel2) {
case IIO_MOD_TEMP_AMBIENT:
ret = mlx90632_calc_ambient_dsp105(data, val);
if (ret < 0)
goto mlx90632_read_raw_pm;
ret = IIO_VAL_INT;
break;
case IIO_MOD_TEMP_OBJECT:
ret = mlx90632_calc_object_dsp105(data, val);
if (ret < 0)
goto mlx90632_read_raw_pm;
ret = IIO_VAL_INT;
break;
default:
ret = -EINVAL;
break;
}
break;
case IIO_CHAN_INFO_CALIBEMISSIVITY:
if (data->emissivity == 1000) {
*val = 1;
*val2 = 0;
} else {
*val = 0;
*val2 = data->emissivity * 1000;
}
ret = IIO_VAL_INT_PLUS_MICRO;
break;
case IIO_CHAN_INFO_CALIBAMBIENT:
*val = data->object_ambient_temperature;
ret = IIO_VAL_INT;
break;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = mlx90632_get_refresh_rate(data, &cr);
if (ret < 0)
goto mlx90632_read_raw_pm;
*val = mlx90632_freqs[cr][0];
*val2 = mlx90632_freqs[cr][1];
ret = IIO_VAL_INT_PLUS_MICRO;
break;
default:
ret = -EINVAL;
break;
}
mlx90632_read_raw_pm:
pm_runtime_mark_last_busy(&data->client->dev);
pm_runtime_put_autosuspend(&data->client->dev);
return ret;
}
static int mlx90632_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *channel, int val,
int val2, long mask)
{
struct mlx90632_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_CALIBEMISSIVITY:
/* Confirm we are within 0 and 1.0 */
if (val < 0 || val2 < 0 || val > 1 ||
(val == 1 && val2 != 0))
return -EINVAL;
data->emissivity = val * 1000 + val2 / 1000;
return 0;
case IIO_CHAN_INFO_CALIBAMBIENT:
data->object_ambient_temperature = val;
return 0;
default:
return -EINVAL;
}
}
static int mlx90632_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
*vals = (int *)mlx90632_freqs;
*type = IIO_VAL_INT_PLUS_MICRO;
*length = 2 * ARRAY_SIZE(mlx90632_freqs);
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static const struct iio_chan_spec mlx90632_channels[] = {
{
.type = IIO_TEMP,
.modified = 1,
.channel2 = IIO_MOD_TEMP_AMBIENT,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
},
{
.type = IIO_TEMP,
.modified = 1,
.channel2 = IIO_MOD_TEMP_OBJECT,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
BIT(IIO_CHAN_INFO_CALIBEMISSIVITY) | BIT(IIO_CHAN_INFO_CALIBAMBIENT),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
},
};
static const struct iio_info mlx90632_info = {
.read_raw = mlx90632_read_raw,
.write_raw = mlx90632_write_raw,
.read_avail = mlx90632_read_avail,
};
static void mlx90632_sleep(void *_data)
{
struct mlx90632_data *data = _data;
mlx90632_pwr_set_sleep_step(data->regmap);
}
static int mlx90632_suspend(struct mlx90632_data *data)
{
regcache_mark_dirty(data->regmap);
dev_dbg(&data->client->dev, "Requesting suspend");
return mlx90632_pwr_set_sleep_step(data->regmap);
}
static int mlx90632_wakeup(struct mlx90632_data *data)
{
int ret;
ret = regcache_sync(data->regmap);
if (ret < 0) {
dev_err(&data->client->dev,
"Failed to sync regmap registers: %d\n", ret);
return ret;
}
dev_dbg(&data->client->dev, "Requesting wake-up\n");
return mlx90632_pwr_continuous(data->regmap);
}
static void mlx90632_disable_regulator(void *_data)
{
struct mlx90632_data *data = _data;
int ret;
ret = regulator_disable(data->regulator);
if (ret < 0)
dev_err(regmap_get_device(data->regmap),
"Failed to disable power regulator: %d\n", ret);
}
static int mlx90632_enable_regulator(struct mlx90632_data *data)
{
int ret;
ret = regulator_enable(data->regulator);
if (ret < 0) {
dev_err(regmap_get_device(data->regmap), "Failed to enable power regulator!\n");
return ret;
}
mlx90632_reset_delay();
return ret;
}
static int mlx90632_probe(struct i2c_client *client)
{
const struct i2c_device_id *id = i2c_client_get_device_id(client);
struct mlx90632_data *mlx90632;
struct iio_dev *indio_dev;
struct regmap *regmap;
unsigned int read;
int ret;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90632));
if (!indio_dev) {
dev_err(&client->dev, "Failed to allocate device\n");
return -ENOMEM;
}
regmap = devm_regmap_init_i2c(client, &mlx90632_regmap);
if (IS_ERR(regmap)) {
ret = PTR_ERR(regmap);
dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
return ret;
}
mlx90632 = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
mlx90632->client = client;
mlx90632->regmap = regmap;
mlx90632->mtyp = MLX90632_MTYP_MEDICAL;
mlx90632->powerstatus = MLX90632_PWR_STATUS_HALT;
mutex_init(&mlx90632->lock);
indio_dev->name = id->name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &mlx90632_info;
indio_dev->channels = mlx90632_channels;
indio_dev->num_channels = ARRAY_SIZE(mlx90632_channels);
mlx90632->regulator = devm_regulator_get(&client->dev, "vdd");
if (IS_ERR(mlx90632->regulator))
return dev_err_probe(&client->dev, PTR_ERR(mlx90632->regulator),
"failed to get vdd regulator");
ret = mlx90632_enable_regulator(mlx90632);
if (ret < 0)
return ret;
ret = devm_add_action_or_reset(&client->dev, mlx90632_disable_regulator,
mlx90632);
if (ret < 0) {
dev_err(&client->dev, "Failed to setup regulator cleanup action %d\n",
ret);
return ret;
}
ret = mlx90632_wakeup(mlx90632);
if (ret < 0) {
dev_err(&client->dev, "Wakeup failed: %d\n", ret);
return ret;
}
ret = devm_add_action_or_reset(&client->dev, mlx90632_sleep, mlx90632);
if (ret < 0) {
dev_err(&client->dev, "Failed to setup low power cleanup action %d\n",
ret);
return ret;
}
ret = regmap_read(mlx90632->regmap, MLX90632_EE_VERSION, &read);
if (ret < 0) {
dev_err(&client->dev, "read of version failed: %d\n", ret);
return ret;
}
read = read & MLX90632_ID_MASK;
if (read == MLX90632_ID_MEDICAL) {
dev_dbg(&client->dev,
"Detected Medical EEPROM calibration %x\n", read);
} else if (read == MLX90632_ID_CONSUMER) {
dev_dbg(&client->dev,
"Detected Consumer EEPROM calibration %x\n", read);
} else if (read == MLX90632_ID_EXTENDED) {
dev_dbg(&client->dev,
"Detected Extended range EEPROM calibration %x\n", read);
mlx90632->mtyp = MLX90632_MTYP_EXTENDED;
} else if ((read & MLX90632_DSP_MASK) == MLX90632_DSP_VERSION) {
dev_dbg(&client->dev,
"Detected Unknown EEPROM calibration %x\n", read);
} else {
dev_err(&client->dev,
"Wrong DSP version %x (expected %x)\n",
read, MLX90632_DSP_VERSION);
return -EPROTONOSUPPORT;
}
mlx90632->emissivity = 1000;
mlx90632->object_ambient_temperature = 25000; /* 25 degrees milliCelsius */
mlx90632->interaction_ts = jiffies; /* Set initial value */
pm_runtime_get_noresume(&client->dev);
pm_runtime_set_active(&client->dev);
ret = devm_pm_runtime_enable(&client->dev);
if (ret)
return ret;
pm_runtime_set_autosuspend_delay(&client->dev, MLX90632_SLEEP_DELAY_MS);
pm_runtime_use_autosuspend(&client->dev);
pm_runtime_put_autosuspend(&client->dev);
return devm_iio_device_register(&client->dev, indio_dev);
}
static const struct i2c_device_id mlx90632_id[] = {
{ "mlx90632", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, mlx90632_id);
static const struct of_device_id mlx90632_of_match[] = {
{ .compatible = "melexis,mlx90632" },
{ }
};
MODULE_DEVICE_TABLE(of, mlx90632_of_match);
static int mlx90632_pm_suspend(struct device *dev)
{
struct mlx90632_data *data = iio_priv(dev_get_drvdata(dev));
int ret;
ret = mlx90632_suspend(data);
if (ret < 0)
return ret;
ret = regulator_disable(data->regulator);
if (ret < 0)
dev_err(regmap_get_device(data->regmap),
"Failed to disable power regulator: %d\n", ret);
return ret;
}
static int mlx90632_pm_resume(struct device *dev)
{
struct mlx90632_data *data = iio_priv(dev_get_drvdata(dev));
int ret;
ret = mlx90632_enable_regulator(data);
if (ret < 0)
return ret;
return mlx90632_wakeup(data);
}
static int mlx90632_pm_runtime_suspend(struct device *dev)
{
struct mlx90632_data *data = iio_priv(dev_get_drvdata(dev));
return mlx90632_pwr_set_sleep_step(data->regmap);
}
static const struct dev_pm_ops mlx90632_pm_ops = {
SYSTEM_SLEEP_PM_OPS(mlx90632_pm_suspend, mlx90632_pm_resume)
RUNTIME_PM_OPS(mlx90632_pm_runtime_suspend, NULL, NULL)
};
static struct i2c_driver mlx90632_driver = {
.driver = {
.name = "mlx90632",
.of_match_table = mlx90632_of_match,
.pm = pm_ptr(&mlx90632_pm_ops),
},
.probe_new = mlx90632_probe,
.id_table = mlx90632_id,
};
module_i2c_driver(mlx90632_driver);
MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver");
MODULE_LICENSE("GPL v2");