| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * PCI Endpoint *Function* (EPF) library |
| * |
| * Copyright (C) 2017 Texas Instruments |
| * Author: Kishon Vijay Abraham I <kishon@ti.com> |
| */ |
| |
| #include <linux/device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| |
| #include <linux/pci-epc.h> |
| #include <linux/pci-epf.h> |
| #include <linux/pci-ep-cfs.h> |
| |
| static DEFINE_MUTEX(pci_epf_mutex); |
| |
| static const struct bus_type pci_epf_bus_type; |
| static const struct device_type pci_epf_type; |
| |
| /** |
| * pci_epf_unbind() - Notify the function driver that the binding between the |
| * EPF device and EPC device has been lost |
| * @epf: the EPF device which has lost the binding with the EPC device |
| * |
| * Invoke to notify the function driver that the binding between the EPF device |
| * and EPC device has been lost. |
| */ |
| void pci_epf_unbind(struct pci_epf *epf) |
| { |
| struct pci_epf *epf_vf; |
| |
| if (!epf->driver) { |
| dev_WARN(&epf->dev, "epf device not bound to driver\n"); |
| return; |
| } |
| |
| mutex_lock(&epf->lock); |
| list_for_each_entry(epf_vf, &epf->pci_vepf, list) { |
| if (epf_vf->is_bound) |
| epf_vf->driver->ops->unbind(epf_vf); |
| } |
| if (epf->is_bound) |
| epf->driver->ops->unbind(epf); |
| mutex_unlock(&epf->lock); |
| module_put(epf->driver->owner); |
| } |
| EXPORT_SYMBOL_GPL(pci_epf_unbind); |
| |
| /** |
| * pci_epf_bind() - Notify the function driver that the EPF device has been |
| * bound to a EPC device |
| * @epf: the EPF device which has been bound to the EPC device |
| * |
| * Invoke to notify the function driver that it has been bound to a EPC device |
| */ |
| int pci_epf_bind(struct pci_epf *epf) |
| { |
| struct device *dev = &epf->dev; |
| struct pci_epf *epf_vf; |
| u8 func_no, vfunc_no; |
| struct pci_epc *epc; |
| int ret; |
| |
| if (!epf->driver) { |
| dev_WARN(dev, "epf device not bound to driver\n"); |
| return -EINVAL; |
| } |
| |
| if (!try_module_get(epf->driver->owner)) |
| return -EAGAIN; |
| |
| mutex_lock(&epf->lock); |
| list_for_each_entry(epf_vf, &epf->pci_vepf, list) { |
| vfunc_no = epf_vf->vfunc_no; |
| |
| if (vfunc_no < 1) { |
| dev_err(dev, "Invalid virtual function number\n"); |
| ret = -EINVAL; |
| goto ret; |
| } |
| |
| epc = epf->epc; |
| func_no = epf->func_no; |
| if (!IS_ERR_OR_NULL(epc)) { |
| if (!epc->max_vfs) { |
| dev_err(dev, "No support for virt function\n"); |
| ret = -EINVAL; |
| goto ret; |
| } |
| |
| if (vfunc_no > epc->max_vfs[func_no]) { |
| dev_err(dev, "PF%d: Exceeds max vfunc number\n", |
| func_no); |
| ret = -EINVAL; |
| goto ret; |
| } |
| } |
| |
| epc = epf->sec_epc; |
| func_no = epf->sec_epc_func_no; |
| if (!IS_ERR_OR_NULL(epc)) { |
| if (!epc->max_vfs) { |
| dev_err(dev, "No support for virt function\n"); |
| ret = -EINVAL; |
| goto ret; |
| } |
| |
| if (vfunc_no > epc->max_vfs[func_no]) { |
| dev_err(dev, "PF%d: Exceeds max vfunc number\n", |
| func_no); |
| ret = -EINVAL; |
| goto ret; |
| } |
| } |
| |
| epf_vf->func_no = epf->func_no; |
| epf_vf->sec_epc_func_no = epf->sec_epc_func_no; |
| epf_vf->epc = epf->epc; |
| epf_vf->sec_epc = epf->sec_epc; |
| ret = epf_vf->driver->ops->bind(epf_vf); |
| if (ret) |
| goto ret; |
| epf_vf->is_bound = true; |
| } |
| |
| ret = epf->driver->ops->bind(epf); |
| if (ret) |
| goto ret; |
| epf->is_bound = true; |
| |
| mutex_unlock(&epf->lock); |
| return 0; |
| |
| ret: |
| mutex_unlock(&epf->lock); |
| pci_epf_unbind(epf); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(pci_epf_bind); |
| |
| /** |
| * pci_epf_add_vepf() - associate virtual EP function to physical EP function |
| * @epf_pf: the physical EP function to which the virtual EP function should be |
| * associated |
| * @epf_vf: the virtual EP function to be added |
| * |
| * A physical endpoint function can be associated with multiple virtual |
| * endpoint functions. Invoke pci_epf_add_epf() to add a virtual PCI endpoint |
| * function to a physical PCI endpoint function. |
| */ |
| int pci_epf_add_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf) |
| { |
| u32 vfunc_no; |
| |
| if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf)) |
| return -EINVAL; |
| |
| if (epf_pf->epc || epf_vf->epc || epf_vf->epf_pf) |
| return -EBUSY; |
| |
| if (epf_pf->sec_epc || epf_vf->sec_epc) |
| return -EBUSY; |
| |
| mutex_lock(&epf_pf->lock); |
| vfunc_no = find_first_zero_bit(&epf_pf->vfunction_num_map, |
| BITS_PER_LONG); |
| if (vfunc_no >= BITS_PER_LONG) { |
| mutex_unlock(&epf_pf->lock); |
| return -EINVAL; |
| } |
| |
| set_bit(vfunc_no, &epf_pf->vfunction_num_map); |
| epf_vf->vfunc_no = vfunc_no; |
| |
| epf_vf->epf_pf = epf_pf; |
| epf_vf->is_vf = true; |
| |
| list_add_tail(&epf_vf->list, &epf_pf->pci_vepf); |
| mutex_unlock(&epf_pf->lock); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(pci_epf_add_vepf); |
| |
| /** |
| * pci_epf_remove_vepf() - remove virtual EP function from physical EP function |
| * @epf_pf: the physical EP function from which the virtual EP function should |
| * be removed |
| * @epf_vf: the virtual EP function to be removed |
| * |
| * Invoke to remove a virtual endpoint function from the physical endpoint |
| * function. |
| */ |
| void pci_epf_remove_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf) |
| { |
| if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf)) |
| return; |
| |
| mutex_lock(&epf_pf->lock); |
| clear_bit(epf_vf->vfunc_no, &epf_pf->vfunction_num_map); |
| list_del(&epf_vf->list); |
| mutex_unlock(&epf_pf->lock); |
| } |
| EXPORT_SYMBOL_GPL(pci_epf_remove_vepf); |
| |
| /** |
| * pci_epf_free_space() - free the allocated PCI EPF register space |
| * @epf: the EPF device from whom to free the memory |
| * @addr: the virtual address of the PCI EPF register space |
| * @bar: the BAR number corresponding to the register space |
| * @type: Identifies if the allocated space is for primary EPC or secondary EPC |
| * |
| * Invoke to free the allocated PCI EPF register space. |
| */ |
| void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar, |
| enum pci_epc_interface_type type) |
| { |
| struct device *dev; |
| struct pci_epf_bar *epf_bar; |
| struct pci_epc *epc; |
| |
| if (!addr) |
| return; |
| |
| if (type == PRIMARY_INTERFACE) { |
| epc = epf->epc; |
| epf_bar = epf->bar; |
| } else { |
| epc = epf->sec_epc; |
| epf_bar = epf->sec_epc_bar; |
| } |
| |
| dev = epc->dev.parent; |
| dma_free_coherent(dev, epf_bar[bar].size, addr, |
| epf_bar[bar].phys_addr); |
| |
| epf_bar[bar].phys_addr = 0; |
| epf_bar[bar].addr = NULL; |
| epf_bar[bar].size = 0; |
| epf_bar[bar].barno = 0; |
| epf_bar[bar].flags = 0; |
| } |
| EXPORT_SYMBOL_GPL(pci_epf_free_space); |
| |
| /** |
| * pci_epf_alloc_space() - allocate memory for the PCI EPF register space |
| * @epf: the EPF device to whom allocate the memory |
| * @size: the size of the memory that has to be allocated |
| * @bar: the BAR number corresponding to the allocated register space |
| * @epc_features: the features provided by the EPC specific to this EPF |
| * @type: Identifies if the allocation is for primary EPC or secondary EPC |
| * |
| * Invoke to allocate memory for the PCI EPF register space. |
| * Flag PCI_BASE_ADDRESS_MEM_TYPE_64 will automatically get set if the BAR |
| * can only be a 64-bit BAR, or if the requested size is larger than 2 GB. |
| */ |
| void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar, |
| const struct pci_epc_features *epc_features, |
| enum pci_epc_interface_type type) |
| { |
| u64 bar_fixed_size = epc_features->bar[bar].fixed_size; |
| size_t align = epc_features->align; |
| struct pci_epf_bar *epf_bar; |
| dma_addr_t phys_addr; |
| struct pci_epc *epc; |
| struct device *dev; |
| void *space; |
| |
| if (size < 128) |
| size = 128; |
| |
| if (epc_features->bar[bar].type == BAR_FIXED && bar_fixed_size) { |
| if (size > bar_fixed_size) { |
| dev_err(&epf->dev, |
| "requested BAR size is larger than fixed size\n"); |
| return NULL; |
| } |
| size = bar_fixed_size; |
| } |
| |
| if (align) |
| size = ALIGN(size, align); |
| else |
| size = roundup_pow_of_two(size); |
| |
| if (type == PRIMARY_INTERFACE) { |
| epc = epf->epc; |
| epf_bar = epf->bar; |
| } else { |
| epc = epf->sec_epc; |
| epf_bar = epf->sec_epc_bar; |
| } |
| |
| dev = epc->dev.parent; |
| space = dma_alloc_coherent(dev, size, &phys_addr, GFP_KERNEL); |
| if (!space) { |
| dev_err(dev, "failed to allocate mem space\n"); |
| return NULL; |
| } |
| |
| epf_bar[bar].phys_addr = phys_addr; |
| epf_bar[bar].addr = space; |
| epf_bar[bar].size = size; |
| epf_bar[bar].barno = bar; |
| if (upper_32_bits(size) || epc_features->bar[bar].only_64bit) |
| epf_bar[bar].flags |= PCI_BASE_ADDRESS_MEM_TYPE_64; |
| else |
| epf_bar[bar].flags |= PCI_BASE_ADDRESS_MEM_TYPE_32; |
| |
| return space; |
| } |
| EXPORT_SYMBOL_GPL(pci_epf_alloc_space); |
| |
| static void pci_epf_remove_cfs(struct pci_epf_driver *driver) |
| { |
| struct config_group *group, *tmp; |
| |
| if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS)) |
| return; |
| |
| mutex_lock(&pci_epf_mutex); |
| list_for_each_entry_safe(group, tmp, &driver->epf_group, group_entry) |
| pci_ep_cfs_remove_epf_group(group); |
| list_del(&driver->epf_group); |
| mutex_unlock(&pci_epf_mutex); |
| } |
| |
| /** |
| * pci_epf_unregister_driver() - unregister the PCI EPF driver |
| * @driver: the PCI EPF driver that has to be unregistered |
| * |
| * Invoke to unregister the PCI EPF driver. |
| */ |
| void pci_epf_unregister_driver(struct pci_epf_driver *driver) |
| { |
| pci_epf_remove_cfs(driver); |
| driver_unregister(&driver->driver); |
| } |
| EXPORT_SYMBOL_GPL(pci_epf_unregister_driver); |
| |
| static int pci_epf_add_cfs(struct pci_epf_driver *driver) |
| { |
| struct config_group *group; |
| const struct pci_epf_device_id *id; |
| |
| if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS)) |
| return 0; |
| |
| INIT_LIST_HEAD(&driver->epf_group); |
| |
| id = driver->id_table; |
| while (id->name[0]) { |
| group = pci_ep_cfs_add_epf_group(id->name); |
| if (IS_ERR(group)) { |
| pci_epf_remove_cfs(driver); |
| return PTR_ERR(group); |
| } |
| |
| mutex_lock(&pci_epf_mutex); |
| list_add_tail(&group->group_entry, &driver->epf_group); |
| mutex_unlock(&pci_epf_mutex); |
| id++; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * __pci_epf_register_driver() - register a new PCI EPF driver |
| * @driver: structure representing PCI EPF driver |
| * @owner: the owner of the module that registers the PCI EPF driver |
| * |
| * Invoke to register a new PCI EPF driver. |
| */ |
| int __pci_epf_register_driver(struct pci_epf_driver *driver, |
| struct module *owner) |
| { |
| int ret; |
| |
| if (!driver->ops) |
| return -EINVAL; |
| |
| if (!driver->ops->bind || !driver->ops->unbind) |
| return -EINVAL; |
| |
| driver->driver.bus = &pci_epf_bus_type; |
| driver->driver.owner = owner; |
| |
| ret = driver_register(&driver->driver); |
| if (ret) |
| return ret; |
| |
| pci_epf_add_cfs(driver); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(__pci_epf_register_driver); |
| |
| /** |
| * pci_epf_destroy() - destroy the created PCI EPF device |
| * @epf: the PCI EPF device that has to be destroyed. |
| * |
| * Invoke to destroy the PCI EPF device created by invoking pci_epf_create(). |
| */ |
| void pci_epf_destroy(struct pci_epf *epf) |
| { |
| device_unregister(&epf->dev); |
| } |
| EXPORT_SYMBOL_GPL(pci_epf_destroy); |
| |
| /** |
| * pci_epf_create() - create a new PCI EPF device |
| * @name: the name of the PCI EPF device. This name will be used to bind the |
| * EPF device to a EPF driver |
| * |
| * Invoke to create a new PCI EPF device by providing the name of the function |
| * device. |
| */ |
| struct pci_epf *pci_epf_create(const char *name) |
| { |
| int ret; |
| struct pci_epf *epf; |
| struct device *dev; |
| int len; |
| |
| epf = kzalloc(sizeof(*epf), GFP_KERNEL); |
| if (!epf) |
| return ERR_PTR(-ENOMEM); |
| |
| len = strchrnul(name, '.') - name; |
| epf->name = kstrndup(name, len, GFP_KERNEL); |
| if (!epf->name) { |
| kfree(epf); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* VFs are numbered starting with 1. So set BIT(0) by default */ |
| epf->vfunction_num_map = 1; |
| INIT_LIST_HEAD(&epf->pci_vepf); |
| |
| dev = &epf->dev; |
| device_initialize(dev); |
| dev->bus = &pci_epf_bus_type; |
| dev->type = &pci_epf_type; |
| mutex_init(&epf->lock); |
| |
| ret = dev_set_name(dev, "%s", name); |
| if (ret) { |
| put_device(dev); |
| return ERR_PTR(ret); |
| } |
| |
| ret = device_add(dev); |
| if (ret) { |
| put_device(dev); |
| return ERR_PTR(ret); |
| } |
| |
| return epf; |
| } |
| EXPORT_SYMBOL_GPL(pci_epf_create); |
| |
| static void pci_epf_dev_release(struct device *dev) |
| { |
| struct pci_epf *epf = to_pci_epf(dev); |
| |
| kfree(epf->name); |
| kfree(epf); |
| } |
| |
| static const struct device_type pci_epf_type = { |
| .release = pci_epf_dev_release, |
| }; |
| |
| static const struct pci_epf_device_id * |
| pci_epf_match_id(const struct pci_epf_device_id *id, const struct pci_epf *epf) |
| { |
| while (id->name[0]) { |
| if (strcmp(epf->name, id->name) == 0) |
| return id; |
| id++; |
| } |
| |
| return NULL; |
| } |
| |
| static int pci_epf_device_match(struct device *dev, struct device_driver *drv) |
| { |
| struct pci_epf *epf = to_pci_epf(dev); |
| struct pci_epf_driver *driver = to_pci_epf_driver(drv); |
| |
| if (driver->id_table) |
| return !!pci_epf_match_id(driver->id_table, epf); |
| |
| return !strcmp(epf->name, drv->name); |
| } |
| |
| static int pci_epf_device_probe(struct device *dev) |
| { |
| struct pci_epf *epf = to_pci_epf(dev); |
| struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver); |
| |
| if (!driver->probe) |
| return -ENODEV; |
| |
| epf->driver = driver; |
| |
| return driver->probe(epf, pci_epf_match_id(driver->id_table, epf)); |
| } |
| |
| static void pci_epf_device_remove(struct device *dev) |
| { |
| struct pci_epf *epf = to_pci_epf(dev); |
| struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver); |
| |
| if (driver->remove) |
| driver->remove(epf); |
| epf->driver = NULL; |
| } |
| |
| static const struct bus_type pci_epf_bus_type = { |
| .name = "pci-epf", |
| .match = pci_epf_device_match, |
| .probe = pci_epf_device_probe, |
| .remove = pci_epf_device_remove, |
| }; |
| |
| static int __init pci_epf_init(void) |
| { |
| int ret; |
| |
| ret = bus_register(&pci_epf_bus_type); |
| if (ret) { |
| pr_err("failed to register pci epf bus --> %d\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| module_init(pci_epf_init); |
| |
| static void __exit pci_epf_exit(void) |
| { |
| bus_unregister(&pci_epf_bus_type); |
| } |
| module_exit(pci_epf_exit); |
| |
| MODULE_DESCRIPTION("PCI EPF Library"); |
| MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); |