blob: 5d9637b0742923a47f30c0c181f516f29d021df1 [file] [log] [blame]
/*
* Copyright 2019-2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dc.h"
#include "dcn301_init.h"
#include "resource.h"
#include "include/irq_service_interface.h"
#include "dcn30/dcn30_resource.h"
#include "dcn301_resource.h"
#include "dcn20/dcn20_resource.h"
#include "dcn10/dcn10_ipp.h"
#include "dcn301/dcn301_hubbub.h"
#include "dcn30/dcn30_mpc.h"
#include "dcn30/dcn30_hubp.h"
#include "irq/dcn30/irq_service_dcn30.h"
#include "dcn30/dcn30_dpp.h"
#include "dcn30/dcn30_optc.h"
#include "dcn20/dcn20_hwseq.h"
#include "dcn30/dcn30_hwseq.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dcn30/dcn30_opp.h"
#include "dcn20/dcn20_dsc.h"
#include "dcn30/dcn30_vpg.h"
#include "dcn30/dcn30_afmt.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_audio.h"
#include "dce/dce_hwseq.h"
#include "clk_mgr.h"
#include "virtual/virtual_stream_encoder.h"
#include "dce110/dce110_resource.h"
#include "dml/display_mode_vba.h"
#include "dcn301/dcn301_dccg.h"
#include "dcn10/dcn10_resource.h"
#include "dcn30/dcn30_dio_stream_encoder.h"
#include "dcn301/dcn301_dio_link_encoder.h"
#include "dcn301_panel_cntl.h"
#include "vangogh_ip_offset.h"
#include "dcn30/dcn30_dwb.h"
#include "dcn30/dcn30_mmhubbub.h"
#include "dcn/dcn_3_0_1_offset.h"
#include "dcn/dcn_3_0_1_sh_mask.h"
#include "nbio/nbio_7_2_0_offset.h"
#include "dcn/dpcs_3_0_0_offset.h"
#include "dcn/dpcs_3_0_0_sh_mask.h"
#include "reg_helper.h"
#include "dce/dmub_abm.h"
#include "dce/dce_aux.h"
#include "dce/dce_i2c.h"
#include "dml/dcn30/display_mode_vba_30.h"
#include "dml/dcn301/dcn301_fpu.h"
#include "vm_helper.h"
#include "dcn20/dcn20_vmid.h"
#include "amdgpu_socbb.h"
#define TO_DCN301_RES_POOL(pool)\
container_of(pool, struct dcn301_resource_pool, base)
#define DC_LOGGER_INIT(logger)
enum dcn301_clk_src_array_id {
DCN301_CLK_SRC_PLL0,
DCN301_CLK_SRC_PLL1,
DCN301_CLK_SRC_PLL2,
DCN301_CLK_SRC_PLL3,
DCN301_CLK_SRC_TOTAL
};
/* begin *********************
* macros to expend register list macro defined in HW object header file
*/
/* DCN */
/* TODO awful hack. fixup dcn20_dwb.h */
#undef BASE_INNER
#define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
#define BASE(seg) BASE_INNER(seg)
#define SR(reg_name)\
.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
#define SRI(reg_name, block, id)\
.reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define SRI2(reg_name, block, id)\
.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
#define SRIR(var_name, reg_name, block, id)\
.var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define SRII(reg_name, block, id)\
.reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define SRII2(reg_name_pre, reg_name_post, id)\
.reg_name_pre ## _ ## reg_name_post[id] = BASE(mm ## reg_name_pre \
## id ## _ ## reg_name_post ## _BASE_IDX) + \
mm ## reg_name_pre ## id ## _ ## reg_name_post
#define SRII_MPC_RMU(reg_name, block, id)\
.RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define SRII_DWB(reg_name, temp_name, block, id)\
.reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## temp_name
#define DCCG_SRII(reg_name, block, id)\
.block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define VUPDATE_SRII(reg_name, block, id)\
.reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
mm ## reg_name ## _ ## block ## id
/* NBIO */
#define NBIO_BASE_INNER(seg) \
NBIO_BASE__INST0_SEG ## seg
#define NBIO_BASE(seg) \
NBIO_BASE_INNER(seg)
#define NBIO_SR(reg_name)\
.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
regBIF_BX0_ ## reg_name
/* MMHUB */
#define MMHUB_BASE_INNER(seg) \
MMHUB_BASE__INST0_SEG ## seg
#define MMHUB_BASE(seg) \
MMHUB_BASE_INNER(seg)
#define MMHUB_SR(reg_name)\
.reg_name = MMHUB_BASE(regMM ## reg_name ## _BASE_IDX) + \
regMM ## reg_name
/* CLOCK */
#define CLK_BASE_INNER(seg) \
CLK_BASE__INST0_SEG ## seg
#define CLK_BASE(seg) \
CLK_BASE_INNER(seg)
#define CLK_SRI(reg_name, block, inst)\
.reg_name = CLK_BASE(mm ## block ## _ ## inst ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## _ ## inst ## _ ## reg_name
static const struct bios_registers bios_regs = {
NBIO_SR(BIOS_SCRATCH_3),
NBIO_SR(BIOS_SCRATCH_6)
};
#define clk_src_regs(index, pllid)\
[index] = {\
CS_COMMON_REG_LIST_DCN3_01(index, pllid),\
}
static const struct dce110_clk_src_regs clk_src_regs[] = {
clk_src_regs(0, A),
clk_src_regs(1, B),
clk_src_regs(2, C),
clk_src_regs(3, D)
};
static const struct dce110_clk_src_shift cs_shift = {
CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
};
static const struct dce110_clk_src_mask cs_mask = {
CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
};
#define abm_regs(id)\
[id] = {\
ABM_DCN301_REG_LIST(id)\
}
static const struct dce_abm_registers abm_regs[] = {
abm_regs(0),
abm_regs(1),
abm_regs(2),
abm_regs(3),
};
static const struct dce_abm_shift abm_shift = {
ABM_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dce_abm_mask abm_mask = {
ABM_MASK_SH_LIST_DCN30(_MASK)
};
#define audio_regs(id)\
[id] = {\
AUD_COMMON_REG_LIST(id)\
}
static const struct dce_audio_registers audio_regs[] = {
audio_regs(0),
audio_regs(1),
audio_regs(2),
audio_regs(3),
audio_regs(4),
audio_regs(5),
audio_regs(6)
};
#define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
static const struct dce_audio_shift audio_shift = {
DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
};
static const struct dce_audio_mask audio_mask = {
DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
};
#define vpg_regs(id)\
[id] = {\
VPG_DCN3_REG_LIST(id)\
}
static const struct dcn30_vpg_registers vpg_regs[] = {
vpg_regs(0),
vpg_regs(1),
vpg_regs(2),
vpg_regs(3),
};
static const struct dcn30_vpg_shift vpg_shift = {
DCN3_VPG_MASK_SH_LIST(__SHIFT)
};
static const struct dcn30_vpg_mask vpg_mask = {
DCN3_VPG_MASK_SH_LIST(_MASK)
};
#define afmt_regs(id)\
[id] = {\
AFMT_DCN3_REG_LIST(id)\
}
static const struct dcn30_afmt_registers afmt_regs[] = {
afmt_regs(0),
afmt_regs(1),
afmt_regs(2),
afmt_regs(3),
};
static const struct dcn30_afmt_shift afmt_shift = {
DCN3_AFMT_MASK_SH_LIST(__SHIFT)
};
static const struct dcn30_afmt_mask afmt_mask = {
DCN3_AFMT_MASK_SH_LIST(_MASK)
};
#define stream_enc_regs(id)\
[id] = {\
SE_DCN3_REG_LIST(id)\
}
static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
stream_enc_regs(0),
stream_enc_regs(1),
stream_enc_regs(2),
stream_enc_regs(3),
};
static const struct dcn10_stream_encoder_shift se_shift = {
SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn10_stream_encoder_mask se_mask = {
SE_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
#define aux_regs(id)\
[id] = {\
DCN2_AUX_REG_LIST(id)\
}
static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
aux_regs(0),
aux_regs(1),
aux_regs(2),
aux_regs(3),
};
#define hpd_regs(id)\
[id] = {\
HPD_REG_LIST(id)\
}
static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
hpd_regs(0),
hpd_regs(1),
hpd_regs(2),
hpd_regs(3),
};
#define link_regs(id, phyid)\
[id] = {\
LE_DCN301_REG_LIST(id), \
UNIPHY_DCN2_REG_LIST(phyid), \
DPCS_DCN2_REG_LIST(id), \
SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
}
static const struct dce110_aux_registers_shift aux_shift = {
DCN_AUX_MASK_SH_LIST(__SHIFT)
};
static const struct dce110_aux_registers_mask aux_mask = {
DCN_AUX_MASK_SH_LIST(_MASK)
};
static const struct dcn10_link_enc_registers link_enc_regs[] = {
link_regs(0, A),
link_regs(1, B),
link_regs(2, C),
link_regs(3, D),
};
static const struct dcn10_link_enc_shift le_shift = {
LINK_ENCODER_MASK_SH_LIST_DCN301(__SHIFT),\
DPCS_DCN2_MASK_SH_LIST(__SHIFT)
};
static const struct dcn10_link_enc_mask le_mask = {
LINK_ENCODER_MASK_SH_LIST_DCN301(_MASK),\
DPCS_DCN2_MASK_SH_LIST(_MASK)
};
#define panel_cntl_regs(id)\
[id] = {\
DCN301_PANEL_CNTL_REG_LIST(id),\
}
static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
panel_cntl_regs(0),
panel_cntl_regs(1),
};
static const struct dcn301_panel_cntl_shift panel_cntl_shift = {
DCN301_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
};
static const struct dcn301_panel_cntl_mask panel_cntl_mask = {
DCN301_PANEL_CNTL_MASK_SH_LIST(_MASK)
};
#define dpp_regs(id)\
[id] = {\
DPP_REG_LIST_DCN30(id),\
}
static const struct dcn3_dpp_registers dpp_regs[] = {
dpp_regs(0),
dpp_regs(1),
dpp_regs(2),
dpp_regs(3),
};
static const struct dcn3_dpp_shift tf_shift = {
DPP_REG_LIST_SH_MASK_DCN30(__SHIFT)
};
static const struct dcn3_dpp_mask tf_mask = {
DPP_REG_LIST_SH_MASK_DCN30(_MASK)
};
#define opp_regs(id)\
[id] = {\
OPP_REG_LIST_DCN30(id),\
}
static const struct dcn20_opp_registers opp_regs[] = {
opp_regs(0),
opp_regs(1),
opp_regs(2),
opp_regs(3),
};
static const struct dcn20_opp_shift opp_shift = {
OPP_MASK_SH_LIST_DCN20(__SHIFT)
};
static const struct dcn20_opp_mask opp_mask = {
OPP_MASK_SH_LIST_DCN20(_MASK)
};
#define aux_engine_regs(id)\
[id] = {\
AUX_COMMON_REG_LIST0(id), \
.AUXN_IMPCAL = 0, \
.AUXP_IMPCAL = 0, \
.AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
}
static const struct dce110_aux_registers aux_engine_regs[] = {
aux_engine_regs(0),
aux_engine_regs(1),
aux_engine_regs(2),
aux_engine_regs(3),
};
#define dwbc_regs_dcn3(id)\
[id] = {\
DWBC_COMMON_REG_LIST_DCN30(id),\
}
static const struct dcn30_dwbc_registers dwbc30_regs[] = {
dwbc_regs_dcn3(0),
};
static const struct dcn30_dwbc_shift dwbc30_shift = {
DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn30_dwbc_mask dwbc30_mask = {
DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
#define mcif_wb_regs_dcn3(id)\
[id] = {\
MCIF_WB_COMMON_REG_LIST_DCN30(id),\
}
static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = {
mcif_wb_regs_dcn3(0)
};
static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
#define dsc_regsDCN20(id)\
[id] = {\
DSC_REG_LIST_DCN20(id)\
}
static const struct dcn20_dsc_registers dsc_regs[] = {
dsc_regsDCN20(0),
dsc_regsDCN20(1),
dsc_regsDCN20(2),
};
static const struct dcn20_dsc_shift dsc_shift = {
DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
};
static const struct dcn20_dsc_mask dsc_mask = {
DSC_REG_LIST_SH_MASK_DCN20(_MASK)
};
static const struct dcn30_mpc_registers mpc_regs = {
MPC_REG_LIST_DCN3_0(0),
MPC_REG_LIST_DCN3_0(1),
MPC_REG_LIST_DCN3_0(2),
MPC_REG_LIST_DCN3_0(3),
MPC_OUT_MUX_REG_LIST_DCN3_0(0),
MPC_OUT_MUX_REG_LIST_DCN3_0(1),
MPC_OUT_MUX_REG_LIST_DCN3_0(2),
MPC_OUT_MUX_REG_LIST_DCN3_0(3),
MPC_RMU_GLOBAL_REG_LIST_DCN3AG,
MPC_RMU_REG_LIST_DCN3AG(0),
MPC_RMU_REG_LIST_DCN3AG(1),
MPC_DWB_MUX_REG_LIST_DCN3_0(0),
};
static const struct dcn30_mpc_shift mpc_shift = {
MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn30_mpc_mask mpc_mask = {
MPC_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
#define optc_regs(id)\
[id] = {OPTC_COMMON_REG_LIST_DCN3_0(id)}
static const struct dcn_optc_registers optc_regs[] = {
optc_regs(0),
optc_regs(1),
optc_regs(2),
optc_regs(3),
};
static const struct dcn_optc_shift optc_shift = {
OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn_optc_mask optc_mask = {
OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK)
};
#define hubp_regs(id)\
[id] = {\
HUBP_REG_LIST_DCN30(id)\
}
static const struct dcn_hubp2_registers hubp_regs[] = {
hubp_regs(0),
hubp_regs(1),
hubp_regs(2),
hubp_regs(3),
};
static const struct dcn_hubp2_shift hubp_shift = {
HUBP_MASK_SH_LIST_DCN30(__SHIFT)
};
static const struct dcn_hubp2_mask hubp_mask = {
HUBP_MASK_SH_LIST_DCN30(_MASK)
};
static const struct dcn_hubbub_registers hubbub_reg = {
HUBBUB_REG_LIST_DCN301(0)
};
static const struct dcn_hubbub_shift hubbub_shift = {
HUBBUB_MASK_SH_LIST_DCN301(__SHIFT)
};
static const struct dcn_hubbub_mask hubbub_mask = {
HUBBUB_MASK_SH_LIST_DCN301(_MASK)
};
static const struct dccg_registers dccg_regs = {
DCCG_REG_LIST_DCN301()
};
static const struct dccg_shift dccg_shift = {
DCCG_MASK_SH_LIST_DCN301(__SHIFT)
};
static const struct dccg_mask dccg_mask = {
DCCG_MASK_SH_LIST_DCN301(_MASK)
};
static const struct dce_hwseq_registers hwseq_reg = {
HWSEQ_DCN301_REG_LIST()
};
static const struct dce_hwseq_shift hwseq_shift = {
HWSEQ_DCN301_MASK_SH_LIST(__SHIFT)
};
static const struct dce_hwseq_mask hwseq_mask = {
HWSEQ_DCN301_MASK_SH_LIST(_MASK)
};
#define vmid_regs(id)\
[id] = {\
DCN20_VMID_REG_LIST(id)\
}
static const struct dcn_vmid_registers vmid_regs[] = {
vmid_regs(0),
vmid_regs(1),
vmid_regs(2),
vmid_regs(3),
vmid_regs(4),
vmid_regs(5),
vmid_regs(6),
vmid_regs(7),
vmid_regs(8),
vmid_regs(9),
vmid_regs(10),
vmid_regs(11),
vmid_regs(12),
vmid_regs(13),
vmid_regs(14),
vmid_regs(15)
};
static const struct dcn20_vmid_shift vmid_shifts = {
DCN20_VMID_MASK_SH_LIST(__SHIFT)
};
static const struct dcn20_vmid_mask vmid_masks = {
DCN20_VMID_MASK_SH_LIST(_MASK)
};
static const struct resource_caps res_cap_dcn301 = {
.num_timing_generator = 4,
.num_opp = 4,
.num_video_plane = 4,
.num_audio = 4,
.num_stream_encoder = 4,
.num_pll = 4,
.num_dwb = 1,
.num_ddc = 4,
.num_vmid = 16,
.num_mpc_3dlut = 2,
.num_dsc = 3,
};
static const struct dc_plane_cap plane_cap = {
.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
.blends_with_above = true,
.blends_with_below = true,
.per_pixel_alpha = true,
.pixel_format_support = {
.argb8888 = true,
.nv12 = true,
.fp16 = true,
.p010 = true,
.ayuv = false,
},
.max_upscale_factor = {
.argb8888 = 16000,
.nv12 = 16000,
.fp16 = 16000
},
/* 6:1 downscaling ratio: 1000/6 = 166.666 */
.max_downscale_factor = {
.argb8888 = 167,
.nv12 = 167,
.fp16 = 167
},
64,
64
};
static const struct dc_debug_options debug_defaults_drv = {
.disable_dmcu = true,
.force_abm_enable = false,
.timing_trace = false,
.clock_trace = true,
.disable_dpp_power_gate = false,
.disable_hubp_power_gate = false,
.disable_clock_gate = true,
.disable_pplib_clock_request = true,
.disable_pplib_wm_range = true,
.pipe_split_policy = MPC_SPLIT_AVOID,
.force_single_disp_pipe_split = false,
.disable_dcc = DCC_ENABLE,
.vsr_support = true,
.performance_trace = false,
.max_downscale_src_width = 7680,/*upto 8K*/
.scl_reset_length10 = true,
.sanity_checks = false,
.underflow_assert_delay_us = 0xFFFFFFFF,
.dwb_fi_phase = -1, // -1 = disable
.dmub_command_table = true,
.use_max_lb = false,
};
static const struct dc_debug_options debug_defaults_diags = {
.disable_dmcu = true,
.force_abm_enable = false,
.timing_trace = true,
.clock_trace = true,
.disable_dpp_power_gate = false,
.disable_hubp_power_gate = false,
.disable_clock_gate = true,
.disable_pplib_clock_request = true,
.disable_pplib_wm_range = true,
.disable_stutter = true,
.scl_reset_length10 = true,
.dwb_fi_phase = -1, // -1 = disable
.dmub_command_table = true,
.use_max_lb = false,
};
static void dcn301_dpp_destroy(struct dpp **dpp)
{
kfree(TO_DCN20_DPP(*dpp));
*dpp = NULL;
}
static struct dpp *dcn301_dpp_create(struct dc_context *ctx, uint32_t inst)
{
struct dcn3_dpp *dpp =
kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
if (!dpp)
return NULL;
if (dpp3_construct(dpp, ctx, inst,
&dpp_regs[inst], &tf_shift, &tf_mask))
return &dpp->base;
BREAK_TO_DEBUGGER();
kfree(dpp);
return NULL;
}
static struct output_pixel_processor *dcn301_opp_create(struct dc_context *ctx,
uint32_t inst)
{
struct dcn20_opp *opp =
kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
if (!opp) {
BREAK_TO_DEBUGGER();
return NULL;
}
dcn20_opp_construct(opp, ctx, inst,
&opp_regs[inst], &opp_shift, &opp_mask);
return &opp->base;
}
static struct dce_aux *dcn301_aux_engine_create(struct dc_context *ctx, uint32_t inst)
{
struct aux_engine_dce110 *aux_engine =
kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
if (!aux_engine)
return NULL;
dce110_aux_engine_construct(aux_engine, ctx, inst,
SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
&aux_engine_regs[inst],
&aux_mask,
&aux_shift,
ctx->dc->caps.extended_aux_timeout_support);
return &aux_engine->base;
}
#define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
static const struct dce_i2c_registers i2c_hw_regs[] = {
i2c_inst_regs(1),
i2c_inst_regs(2),
i2c_inst_regs(3),
i2c_inst_regs(4),
};
static const struct dce_i2c_shift i2c_shifts = {
I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT)
};
static const struct dce_i2c_mask i2c_masks = {
I2C_COMMON_MASK_SH_LIST_DCN2(_MASK)
};
static struct dce_i2c_hw *dcn301_i2c_hw_create(struct dc_context *ctx, uint32_t inst)
{
struct dce_i2c_hw *dce_i2c_hw =
kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
if (!dce_i2c_hw)
return NULL;
dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
&i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
return dce_i2c_hw;
}
static struct mpc *dcn301_mpc_create(
struct dc_context *ctx,
int num_mpcc,
int num_rmu)
{
struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
GFP_KERNEL);
if (!mpc30)
return NULL;
dcn30_mpc_construct(mpc30, ctx,
&mpc_regs,
&mpc_shift,
&mpc_mask,
num_mpcc,
num_rmu);
return &mpc30->base;
}
static struct hubbub *dcn301_hubbub_create(struct dc_context *ctx)
{
int i;
struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub),
GFP_KERNEL);
if (!hubbub3)
return NULL;
hubbub301_construct(hubbub3, ctx,
&hubbub_reg,
&hubbub_shift,
&hubbub_mask);
for (i = 0; i < res_cap_dcn301.num_vmid; i++) {
struct dcn20_vmid *vmid = &hubbub3->vmid[i];
vmid->ctx = ctx;
vmid->regs = &vmid_regs[i];
vmid->shifts = &vmid_shifts;
vmid->masks = &vmid_masks;
}
hubbub3->num_vmid = res_cap_dcn301.num_vmid;
return &hubbub3->base;
}
static struct timing_generator *dcn301_timing_generator_create(
struct dc_context *ctx, uint32_t instance)
{
struct optc *tgn10 =
kzalloc(sizeof(struct optc), GFP_KERNEL);
if (!tgn10)
return NULL;
tgn10->base.inst = instance;
tgn10->base.ctx = ctx;
tgn10->tg_regs = &optc_regs[instance];
tgn10->tg_shift = &optc_shift;
tgn10->tg_mask = &optc_mask;
dcn30_timing_generator_init(tgn10);
return &tgn10->base;
}
static const struct encoder_feature_support link_enc_feature = {
.max_hdmi_deep_color = COLOR_DEPTH_121212,
.max_hdmi_pixel_clock = 600000,
.hdmi_ycbcr420_supported = true,
.dp_ycbcr420_supported = true,
.fec_supported = true,
.flags.bits.IS_HBR2_CAPABLE = true,
.flags.bits.IS_HBR3_CAPABLE = true,
.flags.bits.IS_TPS3_CAPABLE = true,
.flags.bits.IS_TPS4_CAPABLE = true
};
static struct link_encoder *dcn301_link_encoder_create(
const struct encoder_init_data *enc_init_data)
{
struct dcn20_link_encoder *enc20 =
kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
if (!enc20)
return NULL;
dcn301_link_encoder_construct(enc20,
enc_init_data,
&link_enc_feature,
&link_enc_regs[enc_init_data->transmitter],
&link_enc_aux_regs[enc_init_data->channel - 1],
&link_enc_hpd_regs[enc_init_data->hpd_source],
&le_shift,
&le_mask);
return &enc20->enc10.base;
}
static struct panel_cntl *dcn301_panel_cntl_create(const struct panel_cntl_init_data *init_data)
{
struct dcn301_panel_cntl *panel_cntl =
kzalloc(sizeof(struct dcn301_panel_cntl), GFP_KERNEL);
if (!panel_cntl)
return NULL;
dcn301_panel_cntl_construct(panel_cntl,
init_data,
&panel_cntl_regs[init_data->inst],
&panel_cntl_shift,
&panel_cntl_mask);
return &panel_cntl->base;
}
#define CTX ctx
#define REG(reg_name) \
(DCN_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
static uint32_t read_pipe_fuses(struct dc_context *ctx)
{
uint32_t value = REG_READ(CC_DC_PIPE_DIS);
/* RV1 support max 4 pipes */
value = value & 0xf;
return value;
}
static void read_dce_straps(
struct dc_context *ctx,
struct resource_straps *straps)
{
generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
}
static struct audio *dcn301_create_audio(
struct dc_context *ctx, unsigned int inst)
{
return dce_audio_create(ctx, inst,
&audio_regs[inst], &audio_shift, &audio_mask);
}
static struct vpg *dcn301_vpg_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
if (!vpg3)
return NULL;
vpg3_construct(vpg3, ctx, inst,
&vpg_regs[inst],
&vpg_shift,
&vpg_mask);
return &vpg3->base;
}
static struct afmt *dcn301_afmt_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
if (!afmt3)
return NULL;
afmt3_construct(afmt3, ctx, inst,
&afmt_regs[inst],
&afmt_shift,
&afmt_mask);
return &afmt3->base;
}
static struct stream_encoder *dcn301_stream_encoder_create(enum engine_id eng_id,
struct dc_context *ctx)
{
struct dcn10_stream_encoder *enc1;
struct vpg *vpg;
struct afmt *afmt;
int vpg_inst;
int afmt_inst;
/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
if (eng_id <= ENGINE_ID_DIGF) {
vpg_inst = eng_id;
afmt_inst = eng_id;
} else
return NULL;
enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
vpg = dcn301_vpg_create(ctx, vpg_inst);
afmt = dcn301_afmt_create(ctx, afmt_inst);
if (!enc1 || !vpg || !afmt) {
kfree(enc1);
kfree(vpg);
kfree(afmt);
return NULL;
}
dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
eng_id, vpg, afmt,
&stream_enc_regs[eng_id],
&se_shift, &se_mask);
return &enc1->base;
}
static struct dce_hwseq *dcn301_hwseq_create(struct dc_context *ctx)
{
struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
if (hws) {
hws->ctx = ctx;
hws->regs = &hwseq_reg;
hws->shifts = &hwseq_shift;
hws->masks = &hwseq_mask;
}
return hws;
}
static const struct resource_create_funcs res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = dcn301_create_audio,
.create_stream_encoder = dcn301_stream_encoder_create,
.create_hwseq = dcn301_hwseq_create,
};
static const struct resource_create_funcs res_create_maximus_funcs = {
.read_dce_straps = NULL,
.create_audio = NULL,
.create_stream_encoder = NULL,
.create_hwseq = dcn301_hwseq_create,
};
static void dcn301_destruct(struct dcn301_resource_pool *pool)
{
unsigned int i;
for (i = 0; i < pool->base.stream_enc_count; i++) {
if (pool->base.stream_enc[i] != NULL) {
if (pool->base.stream_enc[i]->vpg != NULL) {
kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
pool->base.stream_enc[i]->vpg = NULL;
}
if (pool->base.stream_enc[i]->afmt != NULL) {
kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
pool->base.stream_enc[i]->afmt = NULL;
}
kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
pool->base.stream_enc[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
if (pool->base.dscs[i] != NULL)
dcn20_dsc_destroy(&pool->base.dscs[i]);
}
if (pool->base.mpc != NULL) {
kfree(TO_DCN20_MPC(pool->base.mpc));
pool->base.mpc = NULL;
}
if (pool->base.hubbub != NULL) {
kfree(pool->base.hubbub);
pool->base.hubbub = NULL;
}
for (i = 0; i < pool->base.pipe_count; i++) {
if (pool->base.dpps[i] != NULL)
dcn301_dpp_destroy(&pool->base.dpps[i]);
if (pool->base.ipps[i] != NULL)
pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
if (pool->base.hubps[i] != NULL) {
kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
pool->base.hubps[i] = NULL;
}
if (pool->base.irqs != NULL) {
dal_irq_service_destroy(&pool->base.irqs);
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
if (pool->base.engines[i] != NULL)
dce110_engine_destroy(&pool->base.engines[i]);
if (pool->base.hw_i2cs[i] != NULL) {
kfree(pool->base.hw_i2cs[i]);
pool->base.hw_i2cs[i] = NULL;
}
if (pool->base.sw_i2cs[i] != NULL) {
kfree(pool->base.sw_i2cs[i]);
pool->base.sw_i2cs[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_opp; i++) {
if (pool->base.opps[i] != NULL)
pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
}
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
if (pool->base.timing_generators[i] != NULL) {
kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
pool->base.timing_generators[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
if (pool->base.dwbc[i] != NULL) {
kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
pool->base.dwbc[i] = NULL;
}
if (pool->base.mcif_wb[i] != NULL) {
kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
pool->base.mcif_wb[i] = NULL;
}
}
for (i = 0; i < pool->base.audio_count; i++) {
if (pool->base.audios[i])
dce_aud_destroy(&pool->base.audios[i]);
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] != NULL) {
dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
pool->base.clock_sources[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
if (pool->base.mpc_lut[i] != NULL) {
dc_3dlut_func_release(pool->base.mpc_lut[i]);
pool->base.mpc_lut[i] = NULL;
}
if (pool->base.mpc_shaper[i] != NULL) {
dc_transfer_func_release(pool->base.mpc_shaper[i]);
pool->base.mpc_shaper[i] = NULL;
}
}
if (pool->base.dp_clock_source != NULL) {
dcn20_clock_source_destroy(&pool->base.dp_clock_source);
pool->base.dp_clock_source = NULL;
}
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
if (pool->base.multiple_abms[i] != NULL)
dce_abm_destroy(&pool->base.multiple_abms[i]);
}
if (pool->base.dccg != NULL)
dcn_dccg_destroy(&pool->base.dccg);
}
static struct hubp *dcn301_hubp_create(struct dc_context *ctx, uint32_t inst)
{
struct dcn20_hubp *hubp2 =
kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
if (!hubp2)
return NULL;
if (hubp3_construct(hubp2, ctx, inst,
&hubp_regs[inst], &hubp_shift, &hubp_mask))
return &hubp2->base;
BREAK_TO_DEBUGGER();
kfree(hubp2);
return NULL;
}
static bool dcn301_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
{
int i;
uint32_t pipe_count = pool->res_cap->num_dwb;
for (i = 0; i < pipe_count; i++) {
struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
GFP_KERNEL);
if (!dwbc30) {
dm_error("DC: failed to create dwbc30!\n");
return false;
}
dcn30_dwbc_construct(dwbc30, ctx,
&dwbc30_regs[i],
&dwbc30_shift,
&dwbc30_mask,
i);
pool->dwbc[i] = &dwbc30->base;
}
return true;
}
static bool dcn301_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
{
int i;
uint32_t pipe_count = pool->res_cap->num_dwb;
for (i = 0; i < pipe_count; i++) {
struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
GFP_KERNEL);
if (!mcif_wb30) {
dm_error("DC: failed to create mcif_wb30!\n");
return false;
}
dcn30_mmhubbub_construct(mcif_wb30, ctx,
&mcif_wb30_regs[i],
&mcif_wb30_shift,
&mcif_wb30_mask,
i);
pool->mcif_wb[i] = &mcif_wb30->base;
}
return true;
}
static struct display_stream_compressor *dcn301_dsc_create(
struct dc_context *ctx, uint32_t inst)
{
struct dcn20_dsc *dsc =
kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
if (!dsc) {
BREAK_TO_DEBUGGER();
return NULL;
}
dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
return &dsc->base;
}
static void dcn301_destroy_resource_pool(struct resource_pool **pool)
{
struct dcn301_resource_pool *dcn301_pool = TO_DCN301_RES_POOL(*pool);
dcn301_destruct(dcn301_pool);
kfree(dcn301_pool);
*pool = NULL;
}
static struct clock_source *dcn301_clock_source_create(
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
bool dp_clk_src)
{
struct dce110_clk_src *clk_src =
kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
if (!clk_src)
return NULL;
if (dcn301_clk_src_construct(clk_src, ctx, bios, id,
regs, &cs_shift, &cs_mask)) {
clk_src->base.dp_clk_src = dp_clk_src;
return &clk_src->base;
}
BREAK_TO_DEBUGGER();
return NULL;
}
static struct dc_cap_funcs cap_funcs = {
.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
};
static bool is_soc_bounding_box_valid(struct dc *dc)
{
uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev;
if (ASICREV_IS_VANGOGH(hw_internal_rev))
return true;
return false;
}
static bool init_soc_bounding_box(struct dc *dc,
struct dcn301_resource_pool *pool)
{
struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_01_soc;
struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_01_ip;
DC_LOGGER_INIT(dc->ctx->logger);
if (!is_soc_bounding_box_valid(dc)) {
DC_LOG_ERROR("%s: not valid soc bounding box\n", __func__);
return false;
}
loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
loaded_ip->max_num_dpp = pool->base.pipe_count;
DC_FP_START();
dcn20_patch_bounding_box(dc, loaded_bb);
DC_FP_END();
if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
struct bp_soc_bb_info bb_info = {0};
if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
DC_FP_START();
dcn301_fpu_init_soc_bounding_box(bb_info);
DC_FP_END();
}
}
return true;
}
static void set_wm_ranges(
struct pp_smu_funcs *pp_smu,
struct _vcs_dpi_soc_bounding_box_st *loaded_bb)
{
struct pp_smu_wm_range_sets ranges = {0};
int i;
ranges.num_reader_wm_sets = 0;
if (loaded_bb->num_states == 1) {
ranges.reader_wm_sets[0].wm_inst = 0;
ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.reader_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.reader_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
ranges.num_reader_wm_sets = 1;
} else if (loaded_bb->num_states > 1) {
for (i = 0; i < 4 && i < loaded_bb->num_states; i++) {
ranges.reader_wm_sets[i].wm_inst = i;
ranges.reader_wm_sets[i].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.reader_wm_sets[i].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
DC_FP_START();
dcn301_fpu_set_wm_ranges(i, &ranges, loaded_bb);
DC_FP_END();
ranges.num_reader_wm_sets = i + 1;
}
ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
}
ranges.num_writer_wm_sets = 1;
ranges.writer_wm_sets[0].wm_inst = 0;
ranges.writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
ranges.writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
pp_smu->nv_funcs.set_wm_ranges(&pp_smu->nv_funcs.pp_smu, &ranges);
}
static void dcn301_calculate_wm_and_dlg(
struct dc *dc, struct dc_state *context,
display_e2e_pipe_params_st *pipes,
int pipe_cnt,
int vlevel)
{
DC_FP_START();
dcn301_calculate_wm_and_dlg_fp(dc, context, pipes, pipe_cnt, vlevel);
DC_FP_END();
}
static struct resource_funcs dcn301_res_pool_funcs = {
.destroy = dcn301_destroy_resource_pool,
.link_enc_create = dcn301_link_encoder_create,
.panel_cntl_create = dcn301_panel_cntl_create,
.validate_bandwidth = dcn30_validate_bandwidth,
.calculate_wm_and_dlg = dcn301_calculate_wm_and_dlg,
.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
.populate_dml_pipes = dcn30_populate_dml_pipes_from_context,
.acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer,
.add_stream_to_ctx = dcn30_add_stream_to_ctx,
.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
.set_mcif_arb_params = dcn30_set_mcif_arb_params,
.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
.acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut,
.release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut,
.update_bw_bounding_box = dcn301_update_bw_bounding_box
};
static bool dcn301_resource_construct(
uint8_t num_virtual_links,
struct dc *dc,
struct dcn301_resource_pool *pool)
{
int i, j;
struct dc_context *ctx = dc->ctx;
struct irq_service_init_data init_data;
uint32_t pipe_fuses = read_pipe_fuses(ctx);
uint32_t num_pipes = 0;
DC_LOGGER_INIT(dc->ctx->logger);
ctx->dc_bios->regs = &bios_regs;
pool->base.res_cap = &res_cap_dcn301;
pool->base.funcs = &dcn301_res_pool_funcs;
/*************************************************
* Resource + asic cap harcoding *
*************************************************/
pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
pool->base.pipe_count = pool->base.res_cap->num_timing_generator;
pool->base.mpcc_count = pool->base.res_cap->num_timing_generator;
dc->caps.max_downscale_ratio = 600;
dc->caps.i2c_speed_in_khz = 100;
dc->caps.i2c_speed_in_khz_hdcp = 5; /*1.4 w/a enabled by default*/
dc->caps.max_cursor_size = 256;
dc->caps.min_horizontal_blanking_period = 80;
dc->caps.dmdata_alloc_size = 2048;
dc->caps.max_slave_planes = 1;
dc->caps.max_slave_yuv_planes = 1;
dc->caps.max_slave_rgb_planes = 1;
dc->caps.is_apu = true;
dc->caps.post_blend_color_processing = true;
dc->caps.force_dp_tps4_for_cp2520 = true;
dc->caps.extended_aux_timeout_support = true;
dc->caps.dmcub_support = true;
/* Color pipeline capabilities */
dc->caps.color.dpp.dcn_arch = 1;
dc->caps.color.dpp.input_lut_shared = 0;
dc->caps.color.dpp.icsc = 1;
dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
dc->caps.color.dpp.dgam_rom_caps.pq = 1;
dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
dc->caps.color.dpp.post_csc = 1;
dc->caps.color.dpp.gamma_corr = 1;
dc->caps.color.dpp.dgam_rom_for_yuv = 0;
dc->caps.color.dpp.hw_3d_lut = 1;
dc->caps.color.dpp.ogam_ram = 1;
// no OGAM ROM on DCN301
dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
dc->caps.color.dpp.ogam_rom_caps.pq = 0;
dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
dc->caps.color.dpp.ocsc = 0;
dc->caps.color.mpc.gamut_remap = 1;
dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //2
dc->caps.color.mpc.ogam_ram = 1;
dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
dc->caps.color.mpc.ogam_rom_caps.pq = 0;
dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
dc->caps.color.mpc.ocsc = 1;
/* read VBIOS LTTPR caps */
if (ctx->dc_bios->funcs->get_lttpr_caps) {
enum bp_result bp_query_result;
uint8_t is_vbios_lttpr_enable = 0;
bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
}
if (ctx->dc_bios->funcs->get_lttpr_interop) {
enum bp_result bp_query_result;
uint8_t is_vbios_interop_enabled = 0;
bp_query_result = ctx->dc_bios->funcs->get_lttpr_interop(ctx->dc_bios, &is_vbios_interop_enabled);
dc->caps.vbios_lttpr_aware = (bp_query_result == BP_RESULT_OK) && !!is_vbios_interop_enabled;
}
if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
dc->debug = debug_defaults_drv;
else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) {
dc->debug = debug_defaults_diags;
} else
dc->debug = debug_defaults_diags;
// Init the vm_helper
if (dc->vm_helper)
vm_helper_init(dc->vm_helper, 16);
/*************************************************
* Create resources *
*************************************************/
/* Clock Sources for Pixel Clock*/
pool->base.clock_sources[DCN301_CLK_SRC_PLL0] =
dcn301_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL0,
&clk_src_regs[0], false);
pool->base.clock_sources[DCN301_CLK_SRC_PLL1] =
dcn301_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL1,
&clk_src_regs[1], false);
pool->base.clock_sources[DCN301_CLK_SRC_PLL2] =
dcn301_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL2,
&clk_src_regs[2], false);
pool->base.clock_sources[DCN301_CLK_SRC_PLL3] =
dcn301_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL3,
&clk_src_regs[3], false);
pool->base.clk_src_count = DCN301_CLK_SRC_TOTAL;
/* todo: not reuse phy_pll registers */
pool->base.dp_clock_source =
dcn301_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_ID_DP_DTO,
&clk_src_regs[0], true);
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
}
/* DCCG */
pool->base.dccg = dccg301_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
if (pool->base.dccg == NULL) {
dm_error("DC: failed to create dccg!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
init_soc_bounding_box(dc, pool);
if (!dc->debug.disable_pplib_wm_range && pool->base.pp_smu->nv_funcs.set_wm_ranges)
set_wm_ranges(pool->base.pp_smu, &dcn3_01_soc);
num_pipes = dcn3_01_ip.max_num_dpp;
for (i = 0; i < dcn3_01_ip.max_num_dpp; i++)
if (pipe_fuses & 1 << i)
num_pipes--;
dcn3_01_ip.max_num_dpp = num_pipes;
dcn3_01_ip.max_num_otg = num_pipes;
dml_init_instance(&dc->dml, &dcn3_01_soc, &dcn3_01_ip, DML_PROJECT_DCN30);
/* IRQ */
init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dcn30_create(&init_data);
if (!pool->base.irqs)
goto create_fail;
/* HUBBUB */
pool->base.hubbub = dcn301_hubbub_create(ctx);
if (pool->base.hubbub == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create hubbub!\n");
goto create_fail;
}
j = 0;
/* HUBPs, DPPs, OPPs and TGs */
for (i = 0; i < pool->base.pipe_count; i++) {
/* if pipe is disabled, skip instance of HW pipe,
* i.e, skip ASIC register instance
*/
if ((pipe_fuses & (1 << i)) != 0) {
DC_LOG_DEBUG("%s: fusing pipe %d\n", __func__, i);
continue;
}
pool->base.hubps[j] = dcn301_hubp_create(ctx, i);
if (pool->base.hubps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create hubps!\n");
goto create_fail;
}
pool->base.dpps[j] = dcn301_dpp_create(ctx, i);
if (pool->base.dpps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create dpps!\n");
goto create_fail;
}
pool->base.opps[j] = dcn301_opp_create(ctx, i);
if (pool->base.opps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create output pixel processor!\n");
goto create_fail;
}
pool->base.timing_generators[j] = dcn301_timing_generator_create(ctx, i);
if (pool->base.timing_generators[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto create_fail;
}
j++;
}
pool->base.timing_generator_count = j;
pool->base.pipe_count = j;
pool->base.mpcc_count = j;
/* ABM (or ABMs for NV2x) */
/* TODO: */
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
pool->base.multiple_abms[i] = dmub_abm_create(ctx,
&abm_regs[i],
&abm_shift,
&abm_mask);
if (pool->base.multiple_abms[i] == NULL) {
dm_error("DC: failed to create abm for pipe %d!\n", i);
BREAK_TO_DEBUGGER();
goto create_fail;
}
}
/* MPC and DSC */
pool->base.mpc = dcn301_mpc_create(ctx, pool->base.mpcc_count, pool->base.res_cap->num_mpc_3dlut);
if (pool->base.mpc == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create mpc!\n");
goto create_fail;
}
for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
pool->base.dscs[i] = dcn301_dsc_create(ctx, i);
if (pool->base.dscs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create display stream compressor %d!\n", i);
goto create_fail;
}
}
/* DWB and MMHUBBUB */
if (!dcn301_dwbc_create(ctx, &pool->base)) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create dwbc!\n");
goto create_fail;
}
if (!dcn301_mmhubbub_create(ctx, &pool->base)) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create mcif_wb!\n");
goto create_fail;
}
/* AUX and I2C */
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
pool->base.engines[i] = dcn301_aux_engine_create(ctx, i);
if (pool->base.engines[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create aux engine!!\n");
goto create_fail;
}
pool->base.hw_i2cs[i] = dcn301_i2c_hw_create(ctx, i);
if (pool->base.hw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create hw i2c!!\n");
goto create_fail;
}
pool->base.sw_i2cs[i] = NULL;
}
/* Audio, Stream Encoders including HPO and virtual, MPC 3D LUTs */
if (!resource_construct(num_virtual_links, dc, &pool->base,
(!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
&res_create_funcs : &res_create_maximus_funcs)))
goto create_fail;
/* HW Sequencer and Plane caps */
dcn301_hw_sequencer_construct(dc);
dc->caps.max_planes = pool->base.pipe_count;
for (i = 0; i < dc->caps.max_planes; ++i)
dc->caps.planes[i] = plane_cap;
dc->cap_funcs = cap_funcs;
return true;
create_fail:
dcn301_destruct(pool);
return false;
}
struct resource_pool *dcn301_create_resource_pool(
const struct dc_init_data *init_data,
struct dc *dc)
{
struct dcn301_resource_pool *pool =
kzalloc(sizeof(struct dcn301_resource_pool), GFP_KERNEL);
if (!pool)
return NULL;
if (dcn301_resource_construct(init_data->num_virtual_links, dc, pool))
return &pool->base;
BREAK_TO_DEBUGGER();
kfree(pool);
return NULL;
}