| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> |
| */ |
| |
| #include <linux/bug.h> |
| #include <linux/completion.h> |
| #include <linux/crc-itu-t.h> |
| #include <linux/device.h> |
| #include <linux/errno.h> |
| #include <linux/firewire.h> |
| #include <linux/firewire-constants.h> |
| #include <linux/jiffies.h> |
| #include <linux/kernel.h> |
| #include <linux/kref.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/spinlock.h> |
| #include <linux/workqueue.h> |
| |
| #include <linux/atomic.h> |
| #include <asm/byteorder.h> |
| |
| #include "core.h" |
| #include <trace/events/firewire.h> |
| |
| #define define_fw_printk_level(func, kern_level) \ |
| void func(const struct fw_card *card, const char *fmt, ...) \ |
| { \ |
| struct va_format vaf; \ |
| va_list args; \ |
| \ |
| va_start(args, fmt); \ |
| vaf.fmt = fmt; \ |
| vaf.va = &args; \ |
| printk(kern_level KBUILD_MODNAME " %s: %pV", \ |
| dev_name(card->device), &vaf); \ |
| va_end(args); \ |
| } |
| define_fw_printk_level(fw_err, KERN_ERR); |
| define_fw_printk_level(fw_notice, KERN_NOTICE); |
| |
| int fw_compute_block_crc(__be32 *block) |
| { |
| int length; |
| u16 crc; |
| |
| length = (be32_to_cpu(block[0]) >> 16) & 0xff; |
| crc = crc_itu_t(0, (u8 *)&block[1], length * 4); |
| *block |= cpu_to_be32(crc); |
| |
| return length; |
| } |
| |
| static DEFINE_MUTEX(card_mutex); |
| static LIST_HEAD(card_list); |
| |
| static LIST_HEAD(descriptor_list); |
| static int descriptor_count; |
| |
| static __be32 tmp_config_rom[256]; |
| /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */ |
| static size_t config_rom_length = 1 + 4 + 1 + 1; |
| |
| #define BIB_CRC(v) ((v) << 0) |
| #define BIB_CRC_LENGTH(v) ((v) << 16) |
| #define BIB_INFO_LENGTH(v) ((v) << 24) |
| #define BIB_BUS_NAME 0x31333934 /* "1394" */ |
| #define BIB_LINK_SPEED(v) ((v) << 0) |
| #define BIB_GENERATION(v) ((v) << 4) |
| #define BIB_MAX_ROM(v) ((v) << 8) |
| #define BIB_MAX_RECEIVE(v) ((v) << 12) |
| #define BIB_CYC_CLK_ACC(v) ((v) << 16) |
| #define BIB_PMC ((1) << 27) |
| #define BIB_BMC ((1) << 28) |
| #define BIB_ISC ((1) << 29) |
| #define BIB_CMC ((1) << 30) |
| #define BIB_IRMC ((1) << 31) |
| #define NODE_CAPABILITIES 0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */ |
| |
| /* |
| * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms), |
| * but we have to make it longer because there are many devices whose firmware |
| * is just too slow for that. |
| */ |
| #define DEFAULT_SPLIT_TIMEOUT (2 * 8000) |
| |
| #define CANON_OUI 0x000085 |
| |
| static void generate_config_rom(struct fw_card *card, __be32 *config_rom) |
| { |
| struct fw_descriptor *desc; |
| int i, j, k, length; |
| |
| /* |
| * Initialize contents of config rom buffer. On the OHCI |
| * controller, block reads to the config rom accesses the host |
| * memory, but quadlet read access the hardware bus info block |
| * registers. That's just crack, but it means we should make |
| * sure the contents of bus info block in host memory matches |
| * the version stored in the OHCI registers. |
| */ |
| |
| config_rom[0] = cpu_to_be32( |
| BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0)); |
| config_rom[1] = cpu_to_be32(BIB_BUS_NAME); |
| config_rom[2] = cpu_to_be32( |
| BIB_LINK_SPEED(card->link_speed) | |
| BIB_GENERATION(card->config_rom_generation++ % 14 + 2) | |
| BIB_MAX_ROM(2) | |
| BIB_MAX_RECEIVE(card->max_receive) | |
| BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC); |
| config_rom[3] = cpu_to_be32(card->guid >> 32); |
| config_rom[4] = cpu_to_be32(card->guid); |
| |
| /* Generate root directory. */ |
| config_rom[6] = cpu_to_be32(NODE_CAPABILITIES); |
| i = 7; |
| j = 7 + descriptor_count; |
| |
| /* Generate root directory entries for descriptors. */ |
| list_for_each_entry (desc, &descriptor_list, link) { |
| if (desc->immediate > 0) |
| config_rom[i++] = cpu_to_be32(desc->immediate); |
| config_rom[i] = cpu_to_be32(desc->key | (j - i)); |
| i++; |
| j += desc->length; |
| } |
| |
| /* Update root directory length. */ |
| config_rom[5] = cpu_to_be32((i - 5 - 1) << 16); |
| |
| /* End of root directory, now copy in descriptors. */ |
| list_for_each_entry (desc, &descriptor_list, link) { |
| for (k = 0; k < desc->length; k++) |
| config_rom[i + k] = cpu_to_be32(desc->data[k]); |
| i += desc->length; |
| } |
| |
| /* Calculate CRCs for all blocks in the config rom. This |
| * assumes that CRC length and info length are identical for |
| * the bus info block, which is always the case for this |
| * implementation. */ |
| for (i = 0; i < j; i += length + 1) |
| length = fw_compute_block_crc(config_rom + i); |
| |
| WARN_ON(j != config_rom_length); |
| } |
| |
| static void update_config_roms(void) |
| { |
| struct fw_card *card; |
| |
| list_for_each_entry (card, &card_list, link) { |
| generate_config_rom(card, tmp_config_rom); |
| card->driver->set_config_rom(card, tmp_config_rom, |
| config_rom_length); |
| } |
| } |
| |
| static size_t required_space(struct fw_descriptor *desc) |
| { |
| /* descriptor + entry into root dir + optional immediate entry */ |
| return desc->length + 1 + (desc->immediate > 0 ? 1 : 0); |
| } |
| |
| int fw_core_add_descriptor(struct fw_descriptor *desc) |
| { |
| size_t i; |
| int ret; |
| |
| /* |
| * Check descriptor is valid; the length of all blocks in the |
| * descriptor has to add up to exactly the length of the |
| * block. |
| */ |
| i = 0; |
| while (i < desc->length) |
| i += (desc->data[i] >> 16) + 1; |
| |
| if (i != desc->length) |
| return -EINVAL; |
| |
| mutex_lock(&card_mutex); |
| |
| if (config_rom_length + required_space(desc) > 256) { |
| ret = -EBUSY; |
| } else { |
| list_add_tail(&desc->link, &descriptor_list); |
| config_rom_length += required_space(desc); |
| descriptor_count++; |
| if (desc->immediate > 0) |
| descriptor_count++; |
| update_config_roms(); |
| ret = 0; |
| } |
| |
| mutex_unlock(&card_mutex); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(fw_core_add_descriptor); |
| |
| void fw_core_remove_descriptor(struct fw_descriptor *desc) |
| { |
| mutex_lock(&card_mutex); |
| |
| list_del(&desc->link); |
| config_rom_length -= required_space(desc); |
| descriptor_count--; |
| if (desc->immediate > 0) |
| descriptor_count--; |
| update_config_roms(); |
| |
| mutex_unlock(&card_mutex); |
| } |
| EXPORT_SYMBOL(fw_core_remove_descriptor); |
| |
| static int reset_bus(struct fw_card *card, bool short_reset) |
| { |
| int reg = short_reset ? 5 : 1; |
| int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET; |
| |
| trace_bus_reset_initiate(card->generation, short_reset); |
| |
| return card->driver->update_phy_reg(card, reg, 0, bit); |
| } |
| |
| void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset) |
| { |
| trace_bus_reset_schedule(card->generation, short_reset); |
| |
| /* We don't try hard to sort out requests of long vs. short resets. */ |
| card->br_short = short_reset; |
| |
| /* Use an arbitrary short delay to combine multiple reset requests. */ |
| fw_card_get(card); |
| if (!queue_delayed_work(fw_workqueue, &card->br_work, |
| delayed ? DIV_ROUND_UP(HZ, 100) : 0)) |
| fw_card_put(card); |
| } |
| EXPORT_SYMBOL(fw_schedule_bus_reset); |
| |
| static void br_work(struct work_struct *work) |
| { |
| struct fw_card *card = container_of(work, struct fw_card, br_work.work); |
| |
| /* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */ |
| if (card->reset_jiffies != 0 && |
| time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) { |
| trace_bus_reset_postpone(card->generation, card->br_short); |
| |
| if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ)) |
| fw_card_put(card); |
| return; |
| } |
| |
| fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation, |
| FW_PHY_CONFIG_CURRENT_GAP_COUNT); |
| reset_bus(card, card->br_short); |
| fw_card_put(card); |
| } |
| |
| static void allocate_broadcast_channel(struct fw_card *card, int generation) |
| { |
| int channel, bandwidth = 0; |
| |
| if (!card->broadcast_channel_allocated) { |
| fw_iso_resource_manage(card, generation, 1ULL << 31, |
| &channel, &bandwidth, true); |
| if (channel != 31) { |
| fw_notice(card, "failed to allocate broadcast channel\n"); |
| return; |
| } |
| card->broadcast_channel_allocated = true; |
| } |
| |
| device_for_each_child(card->device, (void *)(long)generation, |
| fw_device_set_broadcast_channel); |
| } |
| |
| static const char gap_count_table[] = { |
| 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40 |
| }; |
| |
| void fw_schedule_bm_work(struct fw_card *card, unsigned long delay) |
| { |
| fw_card_get(card); |
| if (!schedule_delayed_work(&card->bm_work, delay)) |
| fw_card_put(card); |
| } |
| |
| static void bm_work(struct work_struct *work) |
| { |
| struct fw_card *card = container_of(work, struct fw_card, bm_work.work); |
| struct fw_device *root_device, *irm_device; |
| struct fw_node *root_node; |
| int root_id, new_root_id, irm_id, bm_id, local_id; |
| int gap_count, generation, grace, rcode; |
| bool do_reset = false; |
| bool root_device_is_running; |
| bool root_device_is_cmc; |
| bool irm_is_1394_1995_only; |
| bool keep_this_irm; |
| __be32 transaction_data[2]; |
| |
| spin_lock_irq(&card->lock); |
| |
| if (card->local_node == NULL) { |
| spin_unlock_irq(&card->lock); |
| goto out_put_card; |
| } |
| |
| generation = card->generation; |
| |
| root_node = card->root_node; |
| fw_node_get(root_node); |
| root_device = root_node->data; |
| root_device_is_running = root_device && |
| atomic_read(&root_device->state) == FW_DEVICE_RUNNING; |
| root_device_is_cmc = root_device && root_device->cmc; |
| |
| irm_device = card->irm_node->data; |
| irm_is_1394_1995_only = irm_device && irm_device->config_rom && |
| (irm_device->config_rom[2] & 0x000000f0) == 0; |
| |
| /* Canon MV5i works unreliably if it is not root node. */ |
| keep_this_irm = irm_device && irm_device->config_rom && |
| irm_device->config_rom[3] >> 8 == CANON_OUI; |
| |
| root_id = root_node->node_id; |
| irm_id = card->irm_node->node_id; |
| local_id = card->local_node->node_id; |
| |
| grace = time_after64(get_jiffies_64(), |
| card->reset_jiffies + DIV_ROUND_UP(HZ, 8)); |
| |
| if ((is_next_generation(generation, card->bm_generation) && |
| !card->bm_abdicate) || |
| (card->bm_generation != generation && grace)) { |
| /* |
| * This first step is to figure out who is IRM and |
| * then try to become bus manager. If the IRM is not |
| * well defined (e.g. does not have an active link |
| * layer or does not responds to our lock request, we |
| * will have to do a little vigilante bus management. |
| * In that case, we do a goto into the gap count logic |
| * so that when we do the reset, we still optimize the |
| * gap count. That could well save a reset in the |
| * next generation. |
| */ |
| |
| if (!card->irm_node->link_on) { |
| new_root_id = local_id; |
| fw_notice(card, "%s, making local node (%02x) root\n", |
| "IRM has link off", new_root_id); |
| goto pick_me; |
| } |
| |
| if (irm_is_1394_1995_only && !keep_this_irm) { |
| new_root_id = local_id; |
| fw_notice(card, "%s, making local node (%02x) root\n", |
| "IRM is not 1394a compliant", new_root_id); |
| goto pick_me; |
| } |
| |
| transaction_data[0] = cpu_to_be32(0x3f); |
| transaction_data[1] = cpu_to_be32(local_id); |
| |
| spin_unlock_irq(&card->lock); |
| |
| rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, |
| irm_id, generation, SCODE_100, |
| CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID, |
| transaction_data, 8); |
| |
| if (rcode == RCODE_GENERATION) |
| /* Another bus reset, BM work has been rescheduled. */ |
| goto out; |
| |
| bm_id = be32_to_cpu(transaction_data[0]); |
| |
| spin_lock_irq(&card->lock); |
| if (rcode == RCODE_COMPLETE && generation == card->generation) |
| card->bm_node_id = |
| bm_id == 0x3f ? local_id : 0xffc0 | bm_id; |
| spin_unlock_irq(&card->lock); |
| |
| if (rcode == RCODE_COMPLETE && bm_id != 0x3f) { |
| /* Somebody else is BM. Only act as IRM. */ |
| if (local_id == irm_id) |
| allocate_broadcast_channel(card, generation); |
| |
| goto out; |
| } |
| |
| if (rcode == RCODE_SEND_ERROR) { |
| /* |
| * We have been unable to send the lock request due to |
| * some local problem. Let's try again later and hope |
| * that the problem has gone away by then. |
| */ |
| fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8)); |
| goto out; |
| } |
| |
| spin_lock_irq(&card->lock); |
| |
| if (rcode != RCODE_COMPLETE && !keep_this_irm) { |
| /* |
| * The lock request failed, maybe the IRM |
| * isn't really IRM capable after all. Let's |
| * do a bus reset and pick the local node as |
| * root, and thus, IRM. |
| */ |
| new_root_id = local_id; |
| fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n", |
| fw_rcode_string(rcode), new_root_id); |
| goto pick_me; |
| } |
| } else if (card->bm_generation != generation) { |
| /* |
| * We weren't BM in the last generation, and the last |
| * bus reset is less than 125ms ago. Reschedule this job. |
| */ |
| spin_unlock_irq(&card->lock); |
| fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8)); |
| goto out; |
| } |
| |
| /* |
| * We're bus manager for this generation, so next step is to |
| * make sure we have an active cycle master and do gap count |
| * optimization. |
| */ |
| card->bm_generation = generation; |
| |
| if (card->gap_count == 0) { |
| /* |
| * If self IDs have inconsistent gap counts, do a |
| * bus reset ASAP. The config rom read might never |
| * complete, so don't wait for it. However, still |
| * send a PHY configuration packet prior to the |
| * bus reset. The PHY configuration packet might |
| * fail, but 1394-2008 8.4.5.2 explicitly permits |
| * it in this case, so it should be safe to try. |
| */ |
| new_root_id = local_id; |
| /* |
| * We must always send a bus reset if the gap count |
| * is inconsistent, so bypass the 5-reset limit. |
| */ |
| card->bm_retries = 0; |
| } else if (root_device == NULL) { |
| /* |
| * Either link_on is false, or we failed to read the |
| * config rom. In either case, pick another root. |
| */ |
| new_root_id = local_id; |
| } else if (!root_device_is_running) { |
| /* |
| * If we haven't probed this device yet, bail out now |
| * and let's try again once that's done. |
| */ |
| spin_unlock_irq(&card->lock); |
| goto out; |
| } else if (root_device_is_cmc) { |
| /* |
| * We will send out a force root packet for this |
| * node as part of the gap count optimization. |
| */ |
| new_root_id = root_id; |
| } else { |
| /* |
| * Current root has an active link layer and we |
| * successfully read the config rom, but it's not |
| * cycle master capable. |
| */ |
| new_root_id = local_id; |
| } |
| |
| pick_me: |
| /* |
| * Pick a gap count from 1394a table E-1. The table doesn't cover |
| * the typically much larger 1394b beta repeater delays though. |
| */ |
| if (!card->beta_repeaters_present && |
| root_node->max_hops < ARRAY_SIZE(gap_count_table)) |
| gap_count = gap_count_table[root_node->max_hops]; |
| else |
| gap_count = 63; |
| |
| /* |
| * Finally, figure out if we should do a reset or not. If we have |
| * done less than 5 resets with the same physical topology and we |
| * have either a new root or a new gap count setting, let's do it. |
| */ |
| |
| if (card->bm_retries++ < 5 && |
| (card->gap_count != gap_count || new_root_id != root_id)) |
| do_reset = true; |
| |
| spin_unlock_irq(&card->lock); |
| |
| if (do_reset) { |
| fw_notice(card, "phy config: new root=%x, gap_count=%d\n", |
| new_root_id, gap_count); |
| fw_send_phy_config(card, new_root_id, generation, gap_count); |
| /* |
| * Where possible, use a short bus reset to minimize |
| * disruption to isochronous transfers. But in the event |
| * of a gap count inconsistency, use a long bus reset. |
| * |
| * As noted in 1394a 8.4.6.2, nodes on a mixed 1394/1394a bus |
| * may set different gap counts after a bus reset. On a mixed |
| * 1394/1394a bus, a short bus reset can get doubled. Some |
| * nodes may treat the double reset as one bus reset and others |
| * may treat it as two, causing a gap count inconsistency |
| * again. Using a long bus reset prevents this. |
| */ |
| reset_bus(card, card->gap_count != 0); |
| /* Will allocate broadcast channel after the reset. */ |
| goto out; |
| } |
| |
| if (root_device_is_cmc) { |
| /* |
| * Make sure that the cycle master sends cycle start packets. |
| */ |
| transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR); |
| rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, |
| root_id, generation, SCODE_100, |
| CSR_REGISTER_BASE + CSR_STATE_SET, |
| transaction_data, 4); |
| if (rcode == RCODE_GENERATION) |
| goto out; |
| } |
| |
| if (local_id == irm_id) |
| allocate_broadcast_channel(card, generation); |
| |
| out: |
| fw_node_put(root_node); |
| out_put_card: |
| fw_card_put(card); |
| } |
| |
| void fw_card_initialize(struct fw_card *card, |
| const struct fw_card_driver *driver, |
| struct device *device) |
| { |
| static atomic_t index = ATOMIC_INIT(-1); |
| |
| card->index = atomic_inc_return(&index); |
| card->driver = driver; |
| card->device = device; |
| card->current_tlabel = 0; |
| card->tlabel_mask = 0; |
| card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000; |
| card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19; |
| card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT; |
| card->split_timeout_jiffies = |
| DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000); |
| card->color = 0; |
| card->broadcast_channel = BROADCAST_CHANNEL_INITIAL; |
| |
| kref_init(&card->kref); |
| init_completion(&card->done); |
| INIT_LIST_HEAD(&card->transaction_list); |
| INIT_LIST_HEAD(&card->phy_receiver_list); |
| spin_lock_init(&card->lock); |
| |
| card->local_node = NULL; |
| |
| INIT_DELAYED_WORK(&card->br_work, br_work); |
| INIT_DELAYED_WORK(&card->bm_work, bm_work); |
| } |
| EXPORT_SYMBOL(fw_card_initialize); |
| |
| int fw_card_add(struct fw_card *card, |
| u32 max_receive, u32 link_speed, u64 guid) |
| { |
| int ret; |
| |
| card->max_receive = max_receive; |
| card->link_speed = link_speed; |
| card->guid = guid; |
| |
| mutex_lock(&card_mutex); |
| |
| generate_config_rom(card, tmp_config_rom); |
| ret = card->driver->enable(card, tmp_config_rom, config_rom_length); |
| if (ret == 0) |
| list_add_tail(&card->link, &card_list); |
| |
| mutex_unlock(&card_mutex); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(fw_card_add); |
| |
| /* |
| * The next few functions implement a dummy driver that is used once a card |
| * driver shuts down an fw_card. This allows the driver to cleanly unload, |
| * as all IO to the card will be handled (and failed) by the dummy driver |
| * instead of calling into the module. Only functions for iso context |
| * shutdown still need to be provided by the card driver. |
| * |
| * .read/write_csr() should never be called anymore after the dummy driver |
| * was bound since they are only used within request handler context. |
| * .set_config_rom() is never called since the card is taken out of card_list |
| * before switching to the dummy driver. |
| */ |
| |
| static int dummy_read_phy_reg(struct fw_card *card, int address) |
| { |
| return -ENODEV; |
| } |
| |
| static int dummy_update_phy_reg(struct fw_card *card, int address, |
| int clear_bits, int set_bits) |
| { |
| return -ENODEV; |
| } |
| |
| static void dummy_send_request(struct fw_card *card, struct fw_packet *packet) |
| { |
| packet->callback(packet, card, RCODE_CANCELLED); |
| } |
| |
| static void dummy_send_response(struct fw_card *card, struct fw_packet *packet) |
| { |
| packet->callback(packet, card, RCODE_CANCELLED); |
| } |
| |
| static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet) |
| { |
| return -ENOENT; |
| } |
| |
| static int dummy_enable_phys_dma(struct fw_card *card, |
| int node_id, int generation) |
| { |
| return -ENODEV; |
| } |
| |
| static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card, |
| int type, int channel, size_t header_size) |
| { |
| return ERR_PTR(-ENODEV); |
| } |
| |
| static u32 dummy_read_csr(struct fw_card *card, int csr_offset) |
| { |
| return 0; |
| } |
| |
| static void dummy_write_csr(struct fw_card *card, int csr_offset, u32 value) |
| { |
| } |
| |
| static int dummy_start_iso(struct fw_iso_context *ctx, |
| s32 cycle, u32 sync, u32 tags) |
| { |
| return -ENODEV; |
| } |
| |
| static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels) |
| { |
| return -ENODEV; |
| } |
| |
| static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p, |
| struct fw_iso_buffer *buffer, unsigned long payload) |
| { |
| return -ENODEV; |
| } |
| |
| static void dummy_flush_queue_iso(struct fw_iso_context *ctx) |
| { |
| } |
| |
| static int dummy_flush_iso_completions(struct fw_iso_context *ctx) |
| { |
| return -ENODEV; |
| } |
| |
| static const struct fw_card_driver dummy_driver_template = { |
| .read_phy_reg = dummy_read_phy_reg, |
| .update_phy_reg = dummy_update_phy_reg, |
| .send_request = dummy_send_request, |
| .send_response = dummy_send_response, |
| .cancel_packet = dummy_cancel_packet, |
| .enable_phys_dma = dummy_enable_phys_dma, |
| .read_csr = dummy_read_csr, |
| .write_csr = dummy_write_csr, |
| .allocate_iso_context = dummy_allocate_iso_context, |
| .start_iso = dummy_start_iso, |
| .set_iso_channels = dummy_set_iso_channels, |
| .queue_iso = dummy_queue_iso, |
| .flush_queue_iso = dummy_flush_queue_iso, |
| .flush_iso_completions = dummy_flush_iso_completions, |
| }; |
| |
| void fw_card_release(struct kref *kref) |
| { |
| struct fw_card *card = container_of(kref, struct fw_card, kref); |
| |
| complete(&card->done); |
| } |
| EXPORT_SYMBOL_GPL(fw_card_release); |
| |
| void fw_core_remove_card(struct fw_card *card) |
| { |
| struct fw_card_driver dummy_driver = dummy_driver_template; |
| unsigned long flags; |
| |
| card->driver->update_phy_reg(card, 4, |
| PHY_LINK_ACTIVE | PHY_CONTENDER, 0); |
| fw_schedule_bus_reset(card, false, true); |
| |
| mutex_lock(&card_mutex); |
| list_del_init(&card->link); |
| mutex_unlock(&card_mutex); |
| |
| /* Switch off most of the card driver interface. */ |
| dummy_driver.free_iso_context = card->driver->free_iso_context; |
| dummy_driver.stop_iso = card->driver->stop_iso; |
| card->driver = &dummy_driver; |
| |
| spin_lock_irqsave(&card->lock, flags); |
| fw_destroy_nodes(card); |
| spin_unlock_irqrestore(&card->lock, flags); |
| |
| /* Wait for all users, especially device workqueue jobs, to finish. */ |
| fw_card_put(card); |
| wait_for_completion(&card->done); |
| |
| WARN_ON(!list_empty(&card->transaction_list)); |
| } |
| EXPORT_SYMBOL(fw_core_remove_card); |
| |
| /** |
| * fw_card_read_cycle_time: read from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region |
| * for controller card. |
| * @card: The instance of card for 1394 OHCI controller. |
| * @cycle_time: The mutual reference to value of cycle time for the read operation. |
| * |
| * Read value from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region for the given |
| * controller card. This function accesses the region without any lock primitives or IRQ mask. |
| * When returning successfully, the content of @value argument has value aligned to host endianness, |
| * formetted by CYCLE_TIME CSR Register of IEEE 1394 std. |
| * |
| * Context: Any context. |
| * Return: |
| * * 0 - Read successfully. |
| * * -ENODEV - The controller is unavailable due to being removed or unbound. |
| */ |
| int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time) |
| { |
| if (card->driver->read_csr == dummy_read_csr) |
| return -ENODEV; |
| |
| // It's possible to switch to dummy driver between the above and the below. This is the best |
| // effort to return -ENODEV. |
| *cycle_time = card->driver->read_csr(card, CSR_CYCLE_TIME); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(fw_card_read_cycle_time); |