blob: 01e0a389e462b027cefb1d5d658029297b5104b4 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright(c) 2023 Intel Corporation */
#include <linux/delay.h>
#include <linux/dev_printk.h>
#include <linux/export.h>
#include <linux/math.h>
#include <linux/minmax.h>
#include <linux/time64.h>
#include <linux/types.h>
#include <linux/units.h>
#include <asm/errno.h>
#include "adf_admin.h"
#include "adf_accel_devices.h"
#include "adf_clock.h"
#include "adf_common_drv.h"
#define MEASURE_CLOCK_RETRIES 10
#define MEASURE_CLOCK_DELAY_US 10000
#define ME_CLK_DIVIDER 16
#define MEASURE_CLOCK_DELTA_THRESHOLD_US 100
static inline u64 timespec_to_us(const struct timespec64 *ts)
{
return (u64)DIV_ROUND_CLOSEST_ULL(timespec64_to_ns(ts), NSEC_PER_USEC);
}
static inline u64 timespec_to_ms(const struct timespec64 *ts)
{
return (u64)DIV_ROUND_CLOSEST_ULL(timespec64_to_ns(ts), NSEC_PER_MSEC);
}
u64 adf_clock_get_current_time(void)
{
struct timespec64 ts;
ktime_get_real_ts64(&ts);
return timespec_to_ms(&ts);
}
static int measure_clock(struct adf_accel_dev *accel_dev, u32 *frequency)
{
struct timespec64 ts1, ts2, ts3, ts4;
u64 timestamp1, timestamp2, temp;
u32 delta_us, tries;
int ret;
tries = MEASURE_CLOCK_RETRIES;
do {
ktime_get_real_ts64(&ts1);
ret = adf_get_fw_timestamp(accel_dev, &timestamp1);
if (ret) {
dev_err(&GET_DEV(accel_dev),
"Failed to get fw timestamp\n");
return ret;
}
ktime_get_real_ts64(&ts2);
delta_us = timespec_to_us(&ts2) - timespec_to_us(&ts1);
} while (delta_us > MEASURE_CLOCK_DELTA_THRESHOLD_US && --tries);
if (!tries) {
dev_err(&GET_DEV(accel_dev), "Excessive clock measure delay\n");
return -ETIMEDOUT;
}
fsleep(MEASURE_CLOCK_DELAY_US);
tries = MEASURE_CLOCK_RETRIES;
do {
ktime_get_real_ts64(&ts3);
if (adf_get_fw_timestamp(accel_dev, &timestamp2)) {
dev_err(&GET_DEV(accel_dev),
"Failed to get fw timestamp\n");
return -EIO;
}
ktime_get_real_ts64(&ts4);
delta_us = timespec_to_us(&ts4) - timespec_to_us(&ts3);
} while (delta_us > MEASURE_CLOCK_DELTA_THRESHOLD_US && --tries);
if (!tries) {
dev_err(&GET_DEV(accel_dev), "Excessive clock measure delay\n");
return -ETIMEDOUT;
}
delta_us = timespec_to_us(&ts3) - timespec_to_us(&ts1);
temp = (timestamp2 - timestamp1) * ME_CLK_DIVIDER * 10;
temp = DIV_ROUND_CLOSEST_ULL(temp, delta_us);
/*
* Enclose the division to allow the preprocessor to precalculate it,
* and avoid promoting r-value to 64-bit before division.
*/
*frequency = temp * (HZ_PER_MHZ / 10);
return 0;
}
/**
* adf_dev_measure_clock() - measures device clock frequency
* @accel_dev: Pointer to acceleration device.
* @frequency: Pointer to variable where result will be stored
* @min: Minimal allowed frequency value
* @max: Maximal allowed frequency value
*
* If the measurement result will go beyond the min/max thresholds the value
* will take the value of the crossed threshold.
*
* This algorithm compares the device firmware timestamp with the kernel
* timestamp. So we can't expect too high accuracy from this measurement.
*
* Return:
* * 0 - measurement succeed
* * -ETIMEDOUT - measurement failed
*/
int adf_dev_measure_clock(struct adf_accel_dev *accel_dev,
u32 *frequency, u32 min, u32 max)
{
int ret;
u32 freq;
ret = measure_clock(accel_dev, &freq);
if (ret)
return ret;
*frequency = clamp(freq, min, max);
if (*frequency != freq)
dev_warn(&GET_DEV(accel_dev),
"Measured clock %d Hz is out of range, assuming %d\n",
freq, *frequency);
return 0;
}
EXPORT_SYMBOL_GPL(adf_dev_measure_clock);