blob: a82f37d4425826b72f9bb036fad293c51408574f [file] [log] [blame]
/*
* Copyright (c) 2006 Luc Verhaegen (quirks list)
* Copyright (c) 2007-2008 Intel Corporation
* Jesse Barnes <jesse.barnes@intel.com>
* Copyright 2010 Red Hat, Inc.
*
* DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
* FB layer.
* Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sub license,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <linux/hdmi.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/vga_switcheroo.h>
#include <drm/drm_displayid.h>
#include <drm/drm_drv.h>
#include <drm/drm_edid.h>
#include <drm/drm_encoder.h>
#include <drm/drm_print.h>
#include <drm/drm_scdc_helper.h>
#include "drm_crtc_internal.h"
#define version_greater(edid, maj, min) \
(((edid)->version > (maj)) || \
((edid)->version == (maj) && (edid)->revision > (min)))
#define EDID_EST_TIMINGS 16
#define EDID_STD_TIMINGS 8
#define EDID_DETAILED_TIMINGS 4
/*
* EDID blocks out in the wild have a variety of bugs, try to collect
* them here (note that userspace may work around broken monitors first,
* but fixes should make their way here so that the kernel "just works"
* on as many displays as possible).
*/
/* First detailed mode wrong, use largest 60Hz mode */
#define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
/* Reported 135MHz pixel clock is too high, needs adjustment */
#define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
/* Prefer the largest mode at 75 Hz */
#define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
/* Detail timing is in cm not mm */
#define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
/* Detailed timing descriptors have bogus size values, so just take the
* maximum size and use that.
*/
#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
/* use +hsync +vsync for detailed mode */
#define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
/* Force reduced-blanking timings for detailed modes */
#define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
/* Force 8bpc */
#define EDID_QUIRK_FORCE_8BPC (1 << 8)
/* Force 12bpc */
#define EDID_QUIRK_FORCE_12BPC (1 << 9)
/* Force 6bpc */
#define EDID_QUIRK_FORCE_6BPC (1 << 10)
/* Force 10bpc */
#define EDID_QUIRK_FORCE_10BPC (1 << 11)
/* Non desktop display (i.e. HMD) */
#define EDID_QUIRK_NON_DESKTOP (1 << 12)
struct detailed_mode_closure {
struct drm_connector *connector;
struct edid *edid;
bool preferred;
u32 quirks;
int modes;
};
#define LEVEL_DMT 0
#define LEVEL_GTF 1
#define LEVEL_GTF2 2
#define LEVEL_CVT 3
static const struct edid_quirk {
char vendor[4];
int product_id;
u32 quirks;
} edid_quirk_list[] = {
/* Acer AL1706 */
{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
/* Acer F51 */
{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
{ "AEO", 0, EDID_QUIRK_FORCE_6BPC },
/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
{ "BOE", 0x78b, EDID_QUIRK_FORCE_6BPC },
/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
{ "CPT", 0x17df, EDID_QUIRK_FORCE_6BPC },
/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
{ "SDC", 0x3652, EDID_QUIRK_FORCE_6BPC },
/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
{ "BOE", 0x0771, EDID_QUIRK_FORCE_6BPC },
/* Belinea 10 15 55 */
{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
/* Envision Peripherals, Inc. EN-7100e */
{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
/* Envision EN2028 */
{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
/* Funai Electronics PM36B */
{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
EDID_QUIRK_DETAILED_IN_CM },
/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
{ "LGD", 764, EDID_QUIRK_FORCE_10BPC },
/* LG Philips LCD LP154W01-A5 */
{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
/* Samsung SyncMaster 205BW. Note: irony */
{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
/* Samsung SyncMaster 22[5-6]BW */
{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
{ "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
/* ViewSonic VA2026w */
{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
/* Medion MD 30217 PG */
{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
/* Lenovo G50 */
{ "SDC", 18514, EDID_QUIRK_FORCE_6BPC },
/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
{ "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
{ "ETR", 13896, EDID_QUIRK_FORCE_8BPC },
/* Valve Index Headset */
{ "VLV", 0x91a8, EDID_QUIRK_NON_DESKTOP },
{ "VLV", 0x91b0, EDID_QUIRK_NON_DESKTOP },
{ "VLV", 0x91b1, EDID_QUIRK_NON_DESKTOP },
{ "VLV", 0x91b2, EDID_QUIRK_NON_DESKTOP },
{ "VLV", 0x91b3, EDID_QUIRK_NON_DESKTOP },
{ "VLV", 0x91b4, EDID_QUIRK_NON_DESKTOP },
{ "VLV", 0x91b5, EDID_QUIRK_NON_DESKTOP },
{ "VLV", 0x91b6, EDID_QUIRK_NON_DESKTOP },
{ "VLV", 0x91b7, EDID_QUIRK_NON_DESKTOP },
{ "VLV", 0x91b8, EDID_QUIRK_NON_DESKTOP },
{ "VLV", 0x91b9, EDID_QUIRK_NON_DESKTOP },
{ "VLV", 0x91ba, EDID_QUIRK_NON_DESKTOP },
{ "VLV", 0x91bb, EDID_QUIRK_NON_DESKTOP },
{ "VLV", 0x91bc, EDID_QUIRK_NON_DESKTOP },
{ "VLV", 0x91bd, EDID_QUIRK_NON_DESKTOP },
{ "VLV", 0x91be, EDID_QUIRK_NON_DESKTOP },
{ "VLV", 0x91bf, EDID_QUIRK_NON_DESKTOP },
/* HTC Vive and Vive Pro VR Headsets */
{ "HVR", 0xaa01, EDID_QUIRK_NON_DESKTOP },
{ "HVR", 0xaa02, EDID_QUIRK_NON_DESKTOP },
/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
{ "OVR", 0x0001, EDID_QUIRK_NON_DESKTOP },
{ "OVR", 0x0003, EDID_QUIRK_NON_DESKTOP },
{ "OVR", 0x0004, EDID_QUIRK_NON_DESKTOP },
{ "OVR", 0x0012, EDID_QUIRK_NON_DESKTOP },
/* Windows Mixed Reality Headsets */
{ "ACR", 0x7fce, EDID_QUIRK_NON_DESKTOP },
{ "HPN", 0x3515, EDID_QUIRK_NON_DESKTOP },
{ "LEN", 0x0408, EDID_QUIRK_NON_DESKTOP },
{ "LEN", 0xb800, EDID_QUIRK_NON_DESKTOP },
{ "FUJ", 0x1970, EDID_QUIRK_NON_DESKTOP },
{ "DEL", 0x7fce, EDID_QUIRK_NON_DESKTOP },
{ "SEC", 0x144a, EDID_QUIRK_NON_DESKTOP },
{ "AUS", 0xc102, EDID_QUIRK_NON_DESKTOP },
/* Sony PlayStation VR Headset */
{ "SNY", 0x0704, EDID_QUIRK_NON_DESKTOP },
/* Sensics VR Headsets */
{ "SEN", 0x1019, EDID_QUIRK_NON_DESKTOP },
/* OSVR HDK and HDK2 VR Headsets */
{ "SVR", 0x1019, EDID_QUIRK_NON_DESKTOP },
};
/*
* Autogenerated from the DMT spec.
* This table is copied from xfree86/modes/xf86EdidModes.c.
*/
static const struct drm_display_mode drm_dmt_modes[] = {
/* 0x01 - 640x350@85Hz */
{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
736, 832, 0, 350, 382, 385, 445, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x02 - 640x400@85Hz */
{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
736, 832, 0, 400, 401, 404, 445, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x03 - 720x400@85Hz */
{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
828, 936, 0, 400, 401, 404, 446, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x04 - 640x480@60Hz */
{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
752, 800, 0, 480, 490, 492, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x05 - 640x480@72Hz */
{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
704, 832, 0, 480, 489, 492, 520, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x06 - 640x480@75Hz */
{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
720, 840, 0, 480, 481, 484, 500, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x07 - 640x480@85Hz */
{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
752, 832, 0, 480, 481, 484, 509, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x08 - 800x600@56Hz */
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
896, 1024, 0, 600, 601, 603, 625, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x09 - 800x600@60Hz */
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
968, 1056, 0, 600, 601, 605, 628, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x0a - 800x600@72Hz */
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
976, 1040, 0, 600, 637, 643, 666, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x0b - 800x600@75Hz */
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
896, 1056, 0, 600, 601, 604, 625, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x0c - 800x600@85Hz */
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
896, 1048, 0, 600, 601, 604, 631, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x0d - 800x600@120Hz RB */
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
880, 960, 0, 600, 603, 607, 636, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x0e - 848x480@60Hz */
{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
976, 1088, 0, 480, 486, 494, 517, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x0f - 1024x768@43Hz, interlace */
{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
1208, 1264, 0, 768, 768, 776, 817, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
DRM_MODE_FLAG_INTERLACE) },
/* 0x10 - 1024x768@60Hz */
{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1184, 1344, 0, 768, 771, 777, 806, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x11 - 1024x768@70Hz */
{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
1184, 1328, 0, 768, 771, 777, 806, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x12 - 1024x768@75Hz */
{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
1136, 1312, 0, 768, 769, 772, 800, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x13 - 1024x768@85Hz */
{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
1168, 1376, 0, 768, 769, 772, 808, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x14 - 1024x768@120Hz RB */
{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
1104, 1184, 0, 768, 771, 775, 813, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x15 - 1152x864@75Hz */
{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1344, 1600, 0, 864, 865, 868, 900, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x55 - 1280x720@60Hz */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1430, 1650, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x16 - 1280x768@60Hz RB */
{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
1360, 1440, 0, 768, 771, 778, 790, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x17 - 1280x768@60Hz */
{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
1472, 1664, 0, 768, 771, 778, 798, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x18 - 1280x768@75Hz */
{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
1488, 1696, 0, 768, 771, 778, 805, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x19 - 1280x768@85Hz */
{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
1496, 1712, 0, 768, 771, 778, 809, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x1a - 1280x768@120Hz RB */
{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
1360, 1440, 0, 768, 771, 778, 813, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x1b - 1280x800@60Hz RB */
{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
1360, 1440, 0, 800, 803, 809, 823, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x1c - 1280x800@60Hz */
{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
1480, 1680, 0, 800, 803, 809, 831, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x1d - 1280x800@75Hz */
{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
1488, 1696, 0, 800, 803, 809, 838, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x1e - 1280x800@85Hz */
{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
1496, 1712, 0, 800, 803, 809, 843, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x1f - 1280x800@120Hz RB */
{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
1360, 1440, 0, 800, 803, 809, 847, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x20 - 1280x960@60Hz */
{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
1488, 1800, 0, 960, 961, 964, 1000, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x21 - 1280x960@85Hz */
{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
1504, 1728, 0, 960, 961, 964, 1011, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x22 - 1280x960@120Hz RB */
{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
1360, 1440, 0, 960, 963, 967, 1017, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x23 - 1280x1024@60Hz */
{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x24 - 1280x1024@75Hz */
{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x25 - 1280x1024@85Hz */
{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x26 - 1280x1024@120Hz RB */
{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x27 - 1360x768@60Hz */
{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
1536, 1792, 0, 768, 771, 777, 795, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x28 - 1360x768@120Hz RB */
{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
1440, 1520, 0, 768, 771, 776, 813, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x51 - 1366x768@60Hz */
{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
1579, 1792, 0, 768, 771, 774, 798, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x56 - 1366x768@60Hz */
{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
1436, 1500, 0, 768, 769, 772, 800, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x29 - 1400x1050@60Hz RB */
{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x2a - 1400x1050@60Hz */
{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x2b - 1400x1050@75Hz */
{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x2c - 1400x1050@85Hz */
{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x2d - 1400x1050@120Hz RB */
{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x2e - 1440x900@60Hz RB */
{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
1520, 1600, 0, 900, 903, 909, 926, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x2f - 1440x900@60Hz */
{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
1672, 1904, 0, 900, 903, 909, 934, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x30 - 1440x900@75Hz */
{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
1688, 1936, 0, 900, 903, 909, 942, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x31 - 1440x900@85Hz */
{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
1696, 1952, 0, 900, 903, 909, 948, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x32 - 1440x900@120Hz RB */
{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
1520, 1600, 0, 900, 903, 909, 953, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x53 - 1600x900@60Hz */
{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
1704, 1800, 0, 900, 901, 904, 1000, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x33 - 1600x1200@60Hz */
{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x34 - 1600x1200@65Hz */
{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x35 - 1600x1200@70Hz */
{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x36 - 1600x1200@75Hz */
{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x37 - 1600x1200@85Hz */
{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x38 - 1600x1200@120Hz RB */
{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x39 - 1680x1050@60Hz RB */
{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x3a - 1680x1050@60Hz */
{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x3b - 1680x1050@75Hz */
{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x3c - 1680x1050@85Hz */
{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x3d - 1680x1050@120Hz RB */
{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x3e - 1792x1344@60Hz */
{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x3f - 1792x1344@75Hz */
{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x40 - 1792x1344@120Hz RB */
{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x41 - 1856x1392@60Hz */
{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x42 - 1856x1392@75Hz */
{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x43 - 1856x1392@120Hz RB */
{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x52 - 1920x1080@60Hz */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x44 - 1920x1200@60Hz RB */
{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x45 - 1920x1200@60Hz */
{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x46 - 1920x1200@75Hz */
{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x47 - 1920x1200@85Hz */
{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x48 - 1920x1200@120Hz RB */
{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x49 - 1920x1440@60Hz */
{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x4a - 1920x1440@75Hz */
{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x4b - 1920x1440@120Hz RB */
{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x54 - 2048x1152@60Hz */
{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x4c - 2560x1600@60Hz RB */
{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x4d - 2560x1600@60Hz */
{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x4e - 2560x1600@75Hz */
{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x4f - 2560x1600@85Hz */
{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
/* 0x50 - 2560x1600@120Hz RB */
{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x57 - 4096x2160@60Hz RB */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
/* 0x58 - 4096x2160@59.94Hz RB */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
};
/*
* These more or less come from the DMT spec. The 720x400 modes are
* inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
* modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
* should be 1152x870, again for the Mac, but instead we use the x864 DMT
* mode.
*
* The DMT modes have been fact-checked; the rest are mild guesses.
*/
static const struct drm_display_mode edid_est_modes[] = {
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
968, 1056, 0, 600, 601, 605, 628, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
896, 1024, 0, 600, 601, 603, 625, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
720, 840, 0, 480, 481, 484, 500, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
704, 832, 0, 480, 489, 492, 520, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
768, 864, 0, 480, 483, 486, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
752, 800, 0, 480, 490, 492, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
846, 900, 0, 400, 421, 423, 449, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
846, 900, 0, 400, 412, 414, 449, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
1136, 1312, 0, 768, 769, 772, 800, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
1184, 1328, 0, 768, 771, 777, 806, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1184, 1344, 0, 768, 771, 777, 806, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
1208, 1264, 0, 768, 768, 776, 817, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
928, 1152, 0, 624, 625, 628, 667, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
896, 1056, 0, 600, 601, 604, 625, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
976, 1040, 0, 600, 637, 643, 666, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1344, 1600, 0, 864, 865, 868, 900, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
};
struct minimode {
short w;
short h;
short r;
short rb;
};
static const struct minimode est3_modes[] = {
/* byte 6 */
{ 640, 350, 85, 0 },
{ 640, 400, 85, 0 },
{ 720, 400, 85, 0 },
{ 640, 480, 85, 0 },
{ 848, 480, 60, 0 },
{ 800, 600, 85, 0 },
{ 1024, 768, 85, 0 },
{ 1152, 864, 75, 0 },
/* byte 7 */
{ 1280, 768, 60, 1 },
{ 1280, 768, 60, 0 },
{ 1280, 768, 75, 0 },
{ 1280, 768, 85, 0 },
{ 1280, 960, 60, 0 },
{ 1280, 960, 85, 0 },
{ 1280, 1024, 60, 0 },
{ 1280, 1024, 85, 0 },
/* byte 8 */
{ 1360, 768, 60, 0 },
{ 1440, 900, 60, 1 },
{ 1440, 900, 60, 0 },
{ 1440, 900, 75, 0 },
{ 1440, 900, 85, 0 },
{ 1400, 1050, 60, 1 },
{ 1400, 1050, 60, 0 },
{ 1400, 1050, 75, 0 },
/* byte 9 */
{ 1400, 1050, 85, 0 },
{ 1680, 1050, 60, 1 },
{ 1680, 1050, 60, 0 },
{ 1680, 1050, 75, 0 },
{ 1680, 1050, 85, 0 },
{ 1600, 1200, 60, 0 },
{ 1600, 1200, 65, 0 },
{ 1600, 1200, 70, 0 },
/* byte 10 */
{ 1600, 1200, 75, 0 },
{ 1600, 1200, 85, 0 },
{ 1792, 1344, 60, 0 },
{ 1792, 1344, 75, 0 },
{ 1856, 1392, 60, 0 },
{ 1856, 1392, 75, 0 },
{ 1920, 1200, 60, 1 },
{ 1920, 1200, 60, 0 },
/* byte 11 */
{ 1920, 1200, 75, 0 },
{ 1920, 1200, 85, 0 },
{ 1920, 1440, 60, 0 },
{ 1920, 1440, 75, 0 },
};
static const struct minimode extra_modes[] = {
{ 1024, 576, 60, 0 },
{ 1366, 768, 60, 0 },
{ 1600, 900, 60, 0 },
{ 1680, 945, 60, 0 },
{ 1920, 1080, 60, 0 },
{ 2048, 1152, 60, 0 },
{ 2048, 1536, 60, 0 },
};
/*
* From CEA/CTA-861 spec.
*
* Do not access directly, instead always use cea_mode_for_vic().
*/
static const struct drm_display_mode edid_cea_modes_1[] = {
/* 1 - 640x480@60Hz 4:3 */
{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
752, 800, 0, 480, 490, 492, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 2 - 720x480@60Hz 4:3 */
{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
798, 858, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 3 - 720x480@60Hz 16:9 */
{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
798, 858, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 4 - 1280x720@60Hz 16:9 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1430, 1650, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 5 - 1920x1080i@60Hz 16:9 */
{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
DRM_MODE_FLAG_INTERLACE),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 6 - 720(1440)x480i@60Hz 4:3 */
{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
801, 858, 0, 480, 488, 494, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 7 - 720(1440)x480i@60Hz 16:9 */
{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
801, 858, 0, 480, 488, 494, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 8 - 720(1440)x240@60Hz 4:3 */
{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
801, 858, 0, 240, 244, 247, 262, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 9 - 720(1440)x240@60Hz 16:9 */
{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
801, 858, 0, 240, 244, 247, 262, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 10 - 2880x480i@60Hz 4:3 */
{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
3204, 3432, 0, 480, 488, 494, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 11 - 2880x480i@60Hz 16:9 */
{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
3204, 3432, 0, 480, 488, 494, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 12 - 2880x240@60Hz 4:3 */
{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
3204, 3432, 0, 240, 244, 247, 262, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 13 - 2880x240@60Hz 16:9 */
{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
3204, 3432, 0, 240, 244, 247, 262, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 14 - 1440x480@60Hz 4:3 */
{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
1596, 1716, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 15 - 1440x480@60Hz 16:9 */
{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
1596, 1716, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 16 - 1920x1080@60Hz 16:9 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 17 - 720x576@50Hz 4:3 */
{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
796, 864, 0, 576, 581, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 18 - 720x576@50Hz 16:9 */
{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
796, 864, 0, 576, 581, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 19 - 1280x720@50Hz 16:9 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1760, 1980, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 20 - 1920x1080i@50Hz 16:9 */
{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
DRM_MODE_FLAG_INTERLACE),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 21 - 720(1440)x576i@50Hz 4:3 */
{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
795, 864, 0, 576, 580, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 22 - 720(1440)x576i@50Hz 16:9 */
{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
795, 864, 0, 576, 580, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 23 - 720(1440)x288@50Hz 4:3 */
{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
795, 864, 0, 288, 290, 293, 312, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 24 - 720(1440)x288@50Hz 16:9 */
{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
795, 864, 0, 288, 290, 293, 312, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 25 - 2880x576i@50Hz 4:3 */
{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
3180, 3456, 0, 576, 580, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 26 - 2880x576i@50Hz 16:9 */
{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
3180, 3456, 0, 576, 580, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 27 - 2880x288@50Hz 4:3 */
{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
3180, 3456, 0, 288, 290, 293, 312, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 28 - 2880x288@50Hz 16:9 */
{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
3180, 3456, 0, 288, 290, 293, 312, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 29 - 1440x576@50Hz 4:3 */
{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
1592, 1728, 0, 576, 581, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 30 - 1440x576@50Hz 16:9 */
{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
1592, 1728, 0, 576, 581, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 31 - 1920x1080@50Hz 16:9 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 32 - 1920x1080@24Hz 16:9 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 33 - 1920x1080@25Hz 16:9 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 34 - 1920x1080@30Hz 16:9 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 35 - 2880x480@60Hz 4:3 */
{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
3192, 3432, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 36 - 2880x480@60Hz 16:9 */
{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
3192, 3432, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 37 - 2880x576@50Hz 4:3 */
{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
3184, 3456, 0, 576, 581, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 38 - 2880x576@50Hz 16:9 */
{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
3184, 3456, 0, 576, 581, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 39 - 1920x1080i@50Hz 16:9 */
{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 40 - 1920x1080i@100Hz 16:9 */
{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
DRM_MODE_FLAG_INTERLACE),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 41 - 1280x720@100Hz 16:9 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1760, 1980, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 42 - 720x576@100Hz 4:3 */
{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
796, 864, 0, 576, 581, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 43 - 720x576@100Hz 16:9 */
{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
796, 864, 0, 576, 581, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 44 - 720(1440)x576i@100Hz 4:3 */
{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
795, 864, 0, 576, 580, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 45 - 720(1440)x576i@100Hz 16:9 */
{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
795, 864, 0, 576, 580, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 46 - 1920x1080i@120Hz 16:9 */
{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
DRM_MODE_FLAG_INTERLACE),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 47 - 1280x720@120Hz 16:9 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1430, 1650, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 48 - 720x480@120Hz 4:3 */
{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
798, 858, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 49 - 720x480@120Hz 16:9 */
{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
798, 858, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 50 - 720(1440)x480i@120Hz 4:3 */
{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
801, 858, 0, 480, 488, 494, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 51 - 720(1440)x480i@120Hz 16:9 */
{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
801, 858, 0, 480, 488, 494, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 52 - 720x576@200Hz 4:3 */
{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
796, 864, 0, 576, 581, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 53 - 720x576@200Hz 16:9 */
{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
796, 864, 0, 576, 581, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 54 - 720(1440)x576i@200Hz 4:3 */
{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
795, 864, 0, 576, 580, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 55 - 720(1440)x576i@200Hz 16:9 */
{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
795, 864, 0, 576, 580, 586, 625, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 56 - 720x480@240Hz 4:3 */
{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
798, 858, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 57 - 720x480@240Hz 16:9 */
{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
798, 858, 0, 480, 489, 495, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 58 - 720(1440)x480i@240Hz 4:3 */
{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
801, 858, 0, 480, 488, 494, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
/* 59 - 720(1440)x480i@240Hz 16:9 */
{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
801, 858, 0, 480, 488, 494, 525, 0,
DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 60 - 1280x720@24Hz 16:9 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
3080, 3300, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 61 - 1280x720@25Hz 16:9 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
3740, 3960, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 62 - 1280x720@30Hz 16:9 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
3080, 3300, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 63 - 1920x1080@120Hz 16:9 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 64 - 1920x1080@100Hz 16:9 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 65 - 1280x720@24Hz 64:27 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
3080, 3300, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 66 - 1280x720@25Hz 64:27 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
3740, 3960, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 67 - 1280x720@30Hz 64:27 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
3080, 3300, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 68 - 1280x720@50Hz 64:27 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1760, 1980, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 69 - 1280x720@60Hz 64:27 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1430, 1650, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 70 - 1280x720@100Hz 64:27 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1760, 1980, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 71 - 1280x720@120Hz 64:27 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1430, 1650, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 72 - 1920x1080@24Hz 64:27 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 73 - 1920x1080@25Hz 64:27 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 74 - 1920x1080@30Hz 64:27 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 75 - 1920x1080@50Hz 64:27 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 76 - 1920x1080@60Hz 64:27 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 77 - 1920x1080@100Hz 64:27 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 78 - 1920x1080@120Hz 64:27 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 79 - 1680x720@24Hz 64:27 */
{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
3080, 3300, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 80 - 1680x720@25Hz 64:27 */
{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
2948, 3168, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 81 - 1680x720@30Hz 64:27 */
{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
2420, 2640, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 82 - 1680x720@50Hz 64:27 */
{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1980, 2200, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 83 - 1680x720@60Hz 64:27 */
{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1980, 2200, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 84 - 1680x720@100Hz 64:27 */
{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1780, 2000, 0, 720, 725, 730, 825, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 85 - 1680x720@120Hz 64:27 */
{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1780, 2000, 0, 720, 725, 730, 825, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 86 - 2560x1080@24Hz 64:27 */
{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 87 - 2560x1080@25Hz 64:27 */
{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 88 - 2560x1080@30Hz 64:27 */
{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 89 - 2560x1080@50Hz 64:27 */
{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 90 - 2560x1080@60Hz 64:27 */
{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 91 - 2560x1080@100Hz 64:27 */
{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 92 - 2560x1080@120Hz 64:27 */
{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 93 - 3840x2160@24Hz 16:9 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 94 - 3840x2160@25Hz 16:9 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 95 - 3840x2160@30Hz 16:9 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 96 - 3840x2160@50Hz 16:9 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 97 - 3840x2160@60Hz 16:9 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 98 - 4096x2160@24Hz 256:135 */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
/* 99 - 4096x2160@25Hz 256:135 */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
/* 100 - 4096x2160@30Hz 256:135 */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
/* 101 - 4096x2160@50Hz 256:135 */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
/* 102 - 4096x2160@60Hz 256:135 */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
/* 103 - 3840x2160@24Hz 64:27 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 104 - 3840x2160@25Hz 64:27 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 105 - 3840x2160@30Hz 64:27 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 106 - 3840x2160@50Hz 64:27 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 107 - 3840x2160@60Hz 64:27 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 108 - 1280x720@48Hz 16:9 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
2280, 2500, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 109 - 1280x720@48Hz 64:27 */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
2280, 2500, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 110 - 1680x720@48Hz 64:27 */
{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
2530, 2750, 0, 720, 725, 730, 750, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 111 - 1920x1080@48Hz 16:9 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 112 - 1920x1080@48Hz 64:27 */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 113 - 2560x1080@48Hz 64:27 */
{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 114 - 3840x2160@48Hz 16:9 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 115 - 4096x2160@48Hz 256:135 */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
/* 116 - 3840x2160@48Hz 64:27 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 117 - 3840x2160@100Hz 16:9 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 118 - 3840x2160@120Hz 16:9 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 119 - 3840x2160@100Hz 64:27 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 120 - 3840x2160@120Hz 64:27 */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 121 - 5120x2160@24Hz 64:27 */
{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 122 - 5120x2160@25Hz 64:27 */
{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 123 - 5120x2160@30Hz 64:27 */
{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 124 - 5120x2160@48Hz 64:27 */
{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 125 - 5120x2160@50Hz 64:27 */
{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 126 - 5120x2160@60Hz 64:27 */
{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 127 - 5120x2160@100Hz 64:27 */
{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
};
/*
* From CEA/CTA-861 spec.
*
* Do not access directly, instead always use cea_mode_for_vic().
*/
static const struct drm_display_mode edid_cea_modes_193[] = {
/* 193 - 5120x2160@120Hz 64:27 */
{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 194 - 7680x4320@24Hz 16:9 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 195 - 7680x4320@25Hz 16:9 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 196 - 7680x4320@30Hz 16:9 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 197 - 7680x4320@48Hz 16:9 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 198 - 7680x4320@50Hz 16:9 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 199 - 7680x4320@60Hz 16:9 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 200 - 7680x4320@100Hz 16:9 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 201 - 7680x4320@120Hz 16:9 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 202 - 7680x4320@24Hz 64:27 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 203 - 7680x4320@25Hz 64:27 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 204 - 7680x4320@30Hz 64:27 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 205 - 7680x4320@48Hz 64:27 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 206 - 7680x4320@50Hz 64:27 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 207 - 7680x4320@60Hz 64:27 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 208 - 7680x4320@100Hz 64:27 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 209 - 7680x4320@120Hz 64:27 */
{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 210 - 10240x4320@24Hz 64:27 */
{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 211 - 10240x4320@25Hz 64:27 */
{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 212 - 10240x4320@30Hz 64:27 */
{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 213 - 10240x4320@48Hz 64:27 */
{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 214 - 10240x4320@50Hz 64:27 */
{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 215 - 10240x4320@60Hz 64:27 */
{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 216 - 10240x4320@100Hz 64:27 */
{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 217 - 10240x4320@120Hz 64:27 */
{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
/* 218 - 4096x2160@100Hz 256:135 */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
/* 219 - 4096x2160@120Hz 256:135 */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
};
/*
* HDMI 1.4 4k modes. Index using the VIC.
*/
static const struct drm_display_mode edid_4k_modes[] = {
/* 0 - dummy, VICs start at 1 */
{ },
/* 1 - 3840x2160@30Hz */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
3840, 4016, 4104, 4400, 0,
2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 2 - 3840x2160@25Hz */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
3840, 4896, 4984, 5280, 0,
2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 3 - 3840x2160@24Hz */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
3840, 5116, 5204, 5500, 0,
2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
/* 4 - 4096x2160@24Hz (SMPTE) */
{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
4096, 5116, 5204, 5500, 0,
2160, 2168, 2178, 2250, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
.picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
};
/*** DDC fetch and block validation ***/
static const u8 edid_header[] = {
0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
};
/**
* drm_edid_header_is_valid - sanity check the header of the base EDID block
* @raw_edid: pointer to raw base EDID block
*
* Sanity check the header of the base EDID block.
*
* Return: 8 if the header is perfect, down to 0 if it's totally wrong.
*/
int drm_edid_header_is_valid(const u8 *raw_edid)
{
int i, score = 0;
for (i = 0; i < sizeof(edid_header); i++)
if (raw_edid[i] == edid_header[i])
score++;
return score;
}
EXPORT_SYMBOL(drm_edid_header_is_valid);
static int edid_fixup __read_mostly = 6;
module_param_named(edid_fixup, edid_fixup, int, 0400);
MODULE_PARM_DESC(edid_fixup,
"Minimum number of valid EDID header bytes (0-8, default 6)");
static int validate_displayid(u8 *displayid, int length, int idx);
static int drm_edid_block_checksum(const u8 *raw_edid)
{
int i;
u8 csum = 0, crc = 0;
for (i = 0; i < EDID_LENGTH - 1; i++)
csum += raw_edid[i];
crc = 0x100 - csum;
return crc;
}
static bool drm_edid_block_checksum_diff(const u8 *raw_edid, u8 real_checksum)
{
if (raw_edid[EDID_LENGTH - 1] != real_checksum)
return true;
else
return false;
}
static bool drm_edid_is_zero(const u8 *in_edid, int length)
{
if (memchr_inv(in_edid, 0, length))
return false;
return true;
}
/**
* drm_edid_are_equal - compare two edid blobs.
* @edid1: pointer to first blob
* @edid2: pointer to second blob
* This helper can be used during probing to determine if
* edid had changed.
*/
bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
{
int edid1_len, edid2_len;
bool edid1_present = edid1 != NULL;
bool edid2_present = edid2 != NULL;
if (edid1_present != edid2_present)
return false;
if (edid1) {
edid1_len = EDID_LENGTH * (1 + edid1->extensions);
edid2_len = EDID_LENGTH * (1 + edid2->extensions);
if (edid1_len != edid2_len)
return false;
if (memcmp(edid1, edid2, edid1_len))
return false;
}
return true;
}
EXPORT_SYMBOL(drm_edid_are_equal);
/**
* drm_edid_block_valid - Sanity check the EDID block (base or extension)
* @raw_edid: pointer to raw EDID block
* @block: type of block to validate (0 for base, extension otherwise)
* @print_bad_edid: if true, dump bad EDID blocks to the console
* @edid_corrupt: if true, the header or checksum is invalid
*
* Validate a base or extension EDID block and optionally dump bad blocks to
* the console.
*
* Return: True if the block is valid, false otherwise.
*/
bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
bool *edid_corrupt)
{
u8 csum;
struct edid *edid = (struct edid *)raw_edid;
if (WARN_ON(!raw_edid))
return false;
if (edid_fixup > 8 || edid_fixup < 0)
edid_fixup = 6;
if (block == 0) {
int score = drm_edid_header_is_valid(raw_edid);
if (score == 8) {
if (edid_corrupt)
*edid_corrupt = false;
} else if (score >= edid_fixup) {
/* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
* The corrupt flag needs to be set here otherwise, the
* fix-up code here will correct the problem, the
* checksum is correct and the test fails
*/
if (edid_corrupt)
*edid_corrupt = true;
DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
memcpy(raw_edid, edid_header, sizeof(edid_header));
} else {
if (edid_corrupt)
*edid_corrupt = true;
goto bad;
}
}
csum = drm_edid_block_checksum(raw_edid);
if (drm_edid_block_checksum_diff(raw_edid, csum)) {
if (edid_corrupt)
*edid_corrupt = true;
/* allow CEA to slide through, switches mangle this */
if (raw_edid[0] == CEA_EXT) {
DRM_DEBUG("EDID checksum is invalid, remainder is %d\n", csum);
DRM_DEBUG("Assuming a KVM switch modified the CEA block but left the original checksum\n");
} else {
if (print_bad_edid)
DRM_NOTE("EDID checksum is invalid, remainder is %d\n", csum);
goto bad;
}
}
/* per-block-type checks */
switch (raw_edid[0]) {
case 0: /* base */
if (edid->version != 1) {
DRM_NOTE("EDID has major version %d, instead of 1\n", edid->version);
goto bad;
}
if (edid->revision > 4)
DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
break;
default:
break;
}
return true;
bad:
if (print_bad_edid) {
if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
pr_notice("EDID block is all zeroes\n");
} else {
pr_notice("Raw EDID:\n");
print_hex_dump(KERN_NOTICE,
" \t", DUMP_PREFIX_NONE, 16, 1,
raw_edid, EDID_LENGTH, false);
}
}
return false;
}
EXPORT_SYMBOL(drm_edid_block_valid);
/**
* drm_edid_is_valid - sanity check EDID data
* @edid: EDID data
*
* Sanity-check an entire EDID record (including extensions)
*
* Return: True if the EDID data is valid, false otherwise.
*/
bool drm_edid_is_valid(struct edid *edid)
{
int i;
u8 *raw = (u8 *)edid;
if (!edid)
return false;
for (i = 0; i <= edid->extensions; i++)
if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
return false;
return true;
}
EXPORT_SYMBOL(drm_edid_is_valid);
#define DDC_SEGMENT_ADDR 0x30
/**
* drm_do_probe_ddc_edid() - get EDID information via I2C
* @data: I2C device adapter
* @buf: EDID data buffer to be filled
* @block: 128 byte EDID block to start fetching from
* @len: EDID data buffer length to fetch
*
* Try to fetch EDID information by calling I2C driver functions.
*
* Return: 0 on success or -1 on failure.
*/
static int
drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
{
struct i2c_adapter *adapter = data;
unsigned char start = block * EDID_LENGTH;
unsigned char segment = block >> 1;
unsigned char xfers = segment ? 3 : 2;
int ret, retries = 5;
/*
* The core I2C driver will automatically retry the transfer if the
* adapter reports EAGAIN. However, we find that bit-banging transfers
* are susceptible to errors under a heavily loaded machine and
* generate spurious NAKs and timeouts. Retrying the transfer
* of the individual block a few times seems to overcome this.
*/
do {
struct i2c_msg msgs[] = {
{
.addr = DDC_SEGMENT_ADDR,
.flags = 0,
.len = 1,
.buf = &segment,
}, {
.addr = DDC_ADDR,
.flags = 0,
.len = 1,
.buf = &start,
}, {
.addr = DDC_ADDR,
.flags = I2C_M_RD,
.len = len,
.buf = buf,
}
};
/*
* Avoid sending the segment addr to not upset non-compliant
* DDC monitors.
*/
ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
if (ret == -ENXIO) {
DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
adapter->name);
break;
}
} while (ret != xfers && --retries);
return ret == xfers ? 0 : -1;
}
static void connector_bad_edid(struct drm_connector *connector,
u8 *edid, int num_blocks)
{
int i;
u8 num_of_ext = edid[0x7e];
/* Calculate real checksum for the last edid extension block data */
connector->real_edid_checksum =
drm_edid_block_checksum(edid + num_of_ext * EDID_LENGTH);
if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
return;
drm_warn(connector->dev, "%s: EDID is invalid:\n", connector->name);
for (i = 0; i < num_blocks; i++) {
u8 *block = edid + i * EDID_LENGTH;
char prefix[20];
if (drm_edid_is_zero(block, EDID_LENGTH))
sprintf(prefix, "\t[%02x] ZERO ", i);
else if (!drm_edid_block_valid(block, i, false, NULL))
sprintf(prefix, "\t[%02x] BAD ", i);
else
sprintf(prefix, "\t[%02x] GOOD ", i);
print_hex_dump(KERN_WARNING,
prefix, DUMP_PREFIX_NONE, 16, 1,
block, EDID_LENGTH, false);
}
}
/* Get override or firmware EDID */
static struct edid *drm_get_override_edid(struct drm_connector *connector)
{
struct edid *override = NULL;
if (connector->override_edid)
override = drm_edid_duplicate(connector->edid_blob_ptr->data);
if (!override)
override = drm_load_edid_firmware(connector);
return IS_ERR(override) ? NULL : override;
}
/**
* drm_add_override_edid_modes - add modes from override/firmware EDID
* @connector: connector we're probing
*
* Add modes from the override/firmware EDID, if available. Only to be used from
* drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
* failed during drm_get_edid() and caused the override/firmware EDID to be
* skipped.
*
* Return: The number of modes added or 0 if we couldn't find any.
*/
int drm_add_override_edid_modes(struct drm_connector *connector)
{
struct edid *override;
int num_modes = 0;
override = drm_get_override_edid(connector);
if (override) {
drm_connector_update_edid_property(connector, override);
num_modes = drm_add_edid_modes(connector, override);
kfree(override);
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
connector->base.id, connector->name, num_modes);
}
return num_modes;
}
EXPORT_SYMBOL(drm_add_override_edid_modes);
/**
* drm_do_get_edid - get EDID data using a custom EDID block read function
* @connector: connector we're probing
* @get_edid_block: EDID block read function
* @data: private data passed to the block read function
*
* When the I2C adapter connected to the DDC bus is hidden behind a device that
* exposes a different interface to read EDID blocks this function can be used
* to get EDID data using a custom block read function.
*
* As in the general case the DDC bus is accessible by the kernel at the I2C
* level, drivers must make all reasonable efforts to expose it as an I2C
* adapter and use drm_get_edid() instead of abusing this function.
*
* The EDID may be overridden using debugfs override_edid or firmare EDID
* (drm_load_edid_firmware() and drm.edid_firmware parameter), in this priority
* order. Having either of them bypasses actual EDID reads.
*
* Return: Pointer to valid EDID or NULL if we couldn't find any.
*/
struct edid *drm_do_get_edid(struct drm_connector *connector,
int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
size_t len),
void *data)
{
int i, j = 0, valid_extensions = 0;
u8 *edid, *new;
struct edid *override;
override = drm_get_override_edid(connector);
if (override)
return override;
if ((edid = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
return NULL;
/* base block fetch */
for (i = 0; i < 4; i++) {
if (get_edid_block(data, edid, 0, EDID_LENGTH))
goto out;
if (drm_edid_block_valid(edid, 0, false,
&connector->edid_corrupt))
break;
if (i == 0 && drm_edid_is_zero(edid, EDID_LENGTH)) {
connector->null_edid_counter++;
goto carp;
}
}
if (i == 4)
goto carp;
/* if there's no extensions, we're done */
valid_extensions = edid[0x7e];
if (valid_extensions == 0)
return (struct edid *)edid;
new = krealloc(edid, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
if (!new)
goto out;
edid = new;
for (j = 1; j <= edid[0x7e]; j++) {
u8 *block = edid + j * EDID_LENGTH;
for (i = 0; i < 4; i++) {
if (get_edid_block(data, block, j, EDID_LENGTH))
goto out;
if (drm_edid_block_valid(block, j, false, NULL))
break;
}
if (i == 4)
valid_extensions--;
}
if (valid_extensions != edid[0x7e]) {
u8 *base;
connector_bad_edid(connector, edid, edid[0x7e] + 1);
edid[EDID_LENGTH-1] += edid[0x7e] - valid_extensions;
edid[0x7e] = valid_extensions;
new = kmalloc_array(valid_extensions + 1, EDID_LENGTH,
GFP_KERNEL);
if (!new)
goto out;
base = new;
for (i = 0; i <= edid[0x7e]; i++) {
u8 *block = edid + i * EDID_LENGTH;
if (!drm_edid_block_valid(block, i, false, NULL))
continue;
memcpy(base, block, EDID_LENGTH);
base += EDID_LENGTH;
}
kfree(edid);
edid = new;
}
return (struct edid *)edid;
carp:
connector_bad_edid(connector, edid, 1);
out:
kfree(edid);
return NULL;
}
EXPORT_SYMBOL_GPL(drm_do_get_edid);
/**
* drm_probe_ddc() - probe DDC presence
* @adapter: I2C adapter to probe
*
* Return: True on success, false on failure.
*/
bool
drm_probe_ddc(struct i2c_adapter *adapter)
{
unsigned char out;
return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
}
EXPORT_SYMBOL(drm_probe_ddc);
/**
* drm_get_edid - get EDID data, if available
* @connector: connector we're probing
* @adapter: I2C adapter to use for DDC
*
* Poke the given I2C channel to grab EDID data if possible. If found,
* attach it to the connector.
*
* Return: Pointer to valid EDID or NULL if we couldn't find any.
*/
struct edid *drm_get_edid(struct drm_connector *connector,
struct i2c_adapter *adapter)
{
struct edid *edid;
if (connector->force == DRM_FORCE_OFF)
return NULL;
if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
return NULL;
edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
drm_connector_update_edid_property(connector, edid);
return edid;
}
EXPORT_SYMBOL(drm_get_edid);
/**
* drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
* @connector: connector we're probing
* @adapter: I2C adapter to use for DDC
*
* Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
* outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
* switch DDC to the GPU which is retrieving EDID.
*
* Return: Pointer to valid EDID or %NULL if we couldn't find any.
*/
struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
struct i2c_adapter *adapter)
{
struct pci_dev *pdev = connector->dev->pdev;
struct edid *edid;
vga_switcheroo_lock_ddc(pdev);
edid = drm_get_edid(connector, adapter);
vga_switcheroo_unlock_ddc(pdev);
return edid;
}
EXPORT_SYMBOL(drm_get_edid_switcheroo);
/**
* drm_edid_duplicate - duplicate an EDID and the extensions
* @edid: EDID to duplicate
*
* Return: Pointer to duplicated EDID or NULL on allocation failure.
*/
struct edid *drm_edid_duplicate(const struct edid *edid)
{
return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
}
EXPORT_SYMBOL(drm_edid_duplicate);
/*** EDID parsing ***/
/**
* edid_vendor - match a string against EDID's obfuscated vendor field
* @edid: EDID to match
* @vendor: vendor string
*
* Returns true if @vendor is in @edid, false otherwise
*/
static bool edid_vendor(const struct edid *edid, const char *vendor)
{
char edid_vendor[3];
edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
return !strncmp(edid_vendor, vendor, 3);
}
/**
* edid_get_quirks - return quirk flags for a given EDID
* @edid: EDID to process
*
* This tells subsequent routines what fixes they need to apply.
*/
static u32 edid_get_quirks(const struct edid *edid)
{
const struct edid_quirk *quirk;
int i;
for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
quirk = &edid_quirk_list[i];
if (edid_vendor(edid, quirk->vendor) &&
(EDID_PRODUCT_ID(edid) == quirk->product_id))
return quirk->quirks;
}
return 0;
}
#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
/**
* edid_fixup_preferred - set preferred modes based on quirk list
* @connector: has mode list to fix up
* @quirks: quirks list
*
* Walk the mode list for @connector, clearing the preferred status
* on existing modes and setting it anew for the right mode ala @quirks.
*/
static void edid_fixup_preferred(struct drm_connector *connector,
u32 quirks)
{
struct drm_display_mode *t, *cur_mode, *preferred_mode;
int target_refresh = 0;
int cur_vrefresh, preferred_vrefresh;
if (list_empty(&connector->probed_modes))
return;
if (quirks & EDID_QUIRK_PREFER_LARGE_60)
target_refresh = 60;
if (quirks & EDID_QUIRK_PREFER_LARGE_75)
target_refresh = 75;
preferred_mode = list_first_entry(&connector->probed_modes,
struct drm_display_mode, head);
list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
if (cur_mode == preferred_mode)
continue;
/* Largest mode is preferred */
if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
preferred_mode = cur_mode;
cur_vrefresh = drm_mode_vrefresh(cur_mode);
preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
/* At a given size, try to get closest to target refresh */
if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
preferred_mode = cur_mode;
}
}
preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
}
static bool
mode_is_rb(const struct drm_display_mode *mode)
{
return (mode->htotal - mode->hdisplay == 160) &&
(mode->hsync_end - mode->hdisplay == 80) &&
(mode->hsync_end - mode->hsync_start == 32) &&
(mode->vsync_start - mode->vdisplay == 3);
}
/*
* drm_mode_find_dmt - Create a copy of a mode if present in DMT
* @dev: Device to duplicate against
* @hsize: Mode width
* @vsize: Mode height
* @fresh: Mode refresh rate
* @rb: Mode reduced-blanking-ness
*
* Walk the DMT mode list looking for a match for the given parameters.
*
* Return: A newly allocated copy of the mode, or NULL if not found.
*/
struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
int hsize, int vsize, int fresh,
bool rb)
{
int i;
for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
const struct drm_display_mode *ptr = &drm_dmt_modes[i];
if (hsize != ptr->hdisplay)
continue;
if (vsize != ptr->vdisplay)
continue;
if (fresh != drm_mode_vrefresh(ptr))
continue;
if (rb != mode_is_rb(ptr))
continue;
return drm_mode_duplicate(dev, ptr);
}
return NULL;
}
EXPORT_SYMBOL(drm_mode_find_dmt);
static bool is_display_descriptor(const u8 d[18], u8 tag)
{
return d[0] == 0x00 && d[1] == 0x00 &&
d[2] == 0x00 && d[3] == tag;
}
static bool is_detailed_timing_descriptor(const u8 d[18])
{
return d[0] != 0x00 || d[1] != 0x00;
}
typedef void detailed_cb(struct detailed_timing *timing, void *closure);
static void
cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
{
int i, n;
u8 d = ext[0x02];
u8 *det_base = ext + d;
if (d < 4 || d > 127)
return;
n = (127 - d) / 18;
for (i = 0; i < n; i++)
cb((struct detailed_timing *)(det_base + 18 * i), closure);
}
static void
vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
{
unsigned int i, n = min((int)ext[0x02], 6);
u8 *det_base = ext + 5;
if (ext[0x01] != 1)
return; /* unknown version */
for (i = 0; i < n; i++)
cb((struct detailed_timing *)(det_base + 18 * i), closure);
}
static void
drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
{
int i;
struct edid *edid = (struct edid *)raw_edid;
if (edid == NULL)
return;
for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
cb(&(edid->detailed_timings[i]), closure);
for (i = 1; i <= raw_edid[0x7e]; i++) {
u8 *ext = raw_edid + (i * EDID_LENGTH);
switch (*ext) {
case CEA_EXT:
cea_for_each_detailed_block(ext, cb, closure);
break;
case VTB_EXT:
vtb_for_each_detailed_block(ext, cb, closure);
break;
default:
break;
}
}
}
static void
is_rb(struct detailed_timing *t, void *data)
{
u8 *r = (u8 *)t;
if (!is_display_descriptor(r, EDID_DETAIL_MONITOR_RANGE))
return;
if (r[15] & 0x10)
*(bool *)data = true;
}
/* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
static bool
drm_monitor_supports_rb(struct edid *edid)
{
if (edid->revision >= 4) {
bool ret = false;
drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
return ret;
}
return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
}
static void
find_gtf2(struct detailed_timing *t, void *data)
{
u8 *r = (u8 *)t;
if (!is_display_descriptor(r, EDID_DETAIL_MONITOR_RANGE))
return;
if (r[10] == 0x02)
*(u8 **)data = r;
}
/* Secondary GTF curve kicks in above some break frequency */
static int
drm_gtf2_hbreak(struct edid *edid)
{
u8 *r = NULL;
drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
return r ? (r[12] * 2) : 0;
}
static int
drm_gtf2_2c(struct edid *edid)
{
u8 *r = NULL;
drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
return r ? r[13] : 0;
}
static int
drm_gtf2_m(struct edid *edid)
{
u8 *r = NULL;
drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
return r ? (r[15] << 8) + r[14] : 0;
}
static int
drm_gtf2_k(struct edid *edid)
{
u8 *r = NULL;
drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
return r ? r[16] : 0;
}
static int
drm_gtf2_2j(struct edid *edid)
{
u8 *r = NULL;
drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
return r ? r[17] : 0;
}
/**
* standard_timing_level - get std. timing level(CVT/GTF/DMT)
* @edid: EDID block to scan
*/
static int standard_timing_level(struct edid *edid)
{
if (edid->revision >= 2) {
if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
return LEVEL_CVT;
if (drm_gtf2_hbreak(edid))
return LEVEL_GTF2;
if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
return LEVEL_GTF;
}
return LEVEL_DMT;
}
/*
* 0 is reserved. The spec says 0x01 fill for unused timings. Some old
* monitors fill with ascii space (0x20) instead.
*/
static int
bad_std_timing(u8 a, u8 b)
{
return (a == 0x00 && b == 0x00) ||
(a == 0x01 && b == 0x01) ||
(a == 0x20 && b == 0x20);
}
static int drm_mode_hsync(const struct drm_display_mode *mode)
{
if (mode->htotal <= 0)
return 0;
return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
}
/**
* drm_mode_std - convert standard mode info (width, height, refresh) into mode
* @connector: connector of for the EDID block
* @edid: EDID block to scan
* @t: standard timing params
*
* Take the standard timing params (in this case width, aspect, and refresh)
* and convert them into a real mode using CVT/GTF/DMT.
*/
static struct drm_display_mode *
drm_mode_std(struct drm_connector *connector, struct edid *edid,
struct std_timing *t)
{
struct drm_device *dev = connector->dev;
struct drm_display_mode *m, *mode = NULL;
int hsize, vsize;
int vrefresh_rate;
unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
>> EDID_TIMING_ASPECT_SHIFT;
unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
>> EDID_TIMING_VFREQ_SHIFT;
int timing_level = standard_timing_level(edid);
if (bad_std_timing(t->hsize, t->vfreq_aspect))
return NULL;
/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
hsize = t->hsize * 8 + 248;
/* vrefresh_rate = vfreq + 60 */
vrefresh_rate = vfreq + 60;
/* the vdisplay is calculated based on the aspect ratio */
if (aspect_ratio == 0) {
if (edid->revision < 3)
vsize = hsize;
else
vsize = (hsize * 10) / 16;
} else if (aspect_ratio == 1)
vsize = (hsize * 3) / 4;
else if (aspect_ratio == 2)
vsize = (hsize * 4) / 5;
else
vsize = (hsize * 9) / 16;
/* HDTV hack, part 1 */
if (vrefresh_rate == 60 &&
((hsize == 1360 && vsize == 765) ||
(hsize == 1368 && vsize == 769))) {
hsize = 1366;
vsize = 768;
}
/*
* If this connector already has a mode for this size and refresh
* rate (because it came from detailed or CVT info), use that
* instead. This way we don't have to guess at interlace or
* reduced blanking.
*/
list_for_each_entry(m, &connector->probed_modes, head)
if (m->hdisplay == hsize && m->vdisplay == vsize &&
drm_mode_vrefresh(m) == vrefresh_rate)
return NULL;
/* HDTV hack, part 2 */
if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
false);
if (!mode)
return NULL;
mode->hdisplay = 1366;
mode->hsync_start = mode->hsync_start - 1;
mode->hsync_end = mode->hsync_end - 1;
return mode;
}
/* check whether it can be found in default mode table */
if (drm_monitor_supports_rb(edid)) {
mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
true);
if (mode)
return mode;
}
mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
if (mode)
return mode;
/* okay, generate it */
switch (timing_level) {
case LEVEL_DMT:
break;
case LEVEL_GTF:
mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
break;
case LEVEL_GTF2:
/*
* This is potentially wrong if there's ever a monitor with
* more than one ranges section, each claiming a different
* secondary GTF curve. Please don't do that.
*/
mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
if (!mode)
return NULL;
if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
drm_mode_destroy(dev, mode);
mode = drm_gtf_mode_complex(dev, hsize, vsize,
vrefresh_rate, 0, 0,
drm_gtf2_m(edid),
drm_gtf2_2c(edid),
drm_gtf2_k(edid),
drm_gtf2_2j(edid));
}
break;
case LEVEL_CVT:
mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
false);
break;
}
return mode;
}
/*
* EDID is delightfully ambiguous about how interlaced modes are to be
* encoded. Our internal representation is of frame height, but some
* HDTV detailed timings are encoded as field height.
*
* The format list here is from CEA, in frame size. Technically we
* should be checking refresh rate too. Whatever.
*/
static void
drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
struct detailed_pixel_timing *pt)
{
int i;
static const struct {
int w, h;
} cea_interlaced[] = {
{ 1920, 1080 },
{ 720, 480 },
{ 1440, 480 },
{ 2880, 480 },
{ 720, 576 },
{ 1440, 576 },
{ 2880, 576 },
};
if (!(pt->misc & DRM_EDID_PT_INTERLACED))
return;
for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
if ((mode->hdisplay == cea_interlaced[i].w) &&
(mode->vdisplay == cea_interlaced[i].h / 2)) {
mode->vdisplay *= 2;
mode->vsync_start *= 2;
mode->vsync_end *= 2;
mode->vtotal *= 2;
mode->vtotal |= 1;
}
}
mode->flags |= DRM_MODE_FLAG_INTERLACE;
}
/**
* drm_mode_detailed - create a new mode from an EDID detailed timing section
* @dev: DRM device (needed to create new mode)
* @edid: EDID block
* @timing: EDID detailed timing info
* @quirks: quirks to apply
*
* An EDID detailed timing block contains enough info for us to create and
* return a new struct drm_display_mode.
*/
static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
struct edid *edid,
struct detailed_timing *timing,
u32 quirks)
{
struct drm_display_mode *mode;
struct detailed_pixel_timing *pt = &timing->data.pixel_data;
unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
/* ignore tiny modes */
if (hactive < 64 || vactive < 64)
return NULL;
if (pt->misc & DRM_EDID_PT_STEREO) {
DRM_DEBUG_KMS("stereo mode not supported\n");
return NULL;
}
if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
DRM_DEBUG_KMS("composite sync not supported\n");
}
/* it is incorrect if hsync/vsync width is zero */
if (!hsync_pulse_width || !vsync_pulse_width) {
DRM_DEBUG_KMS("Incorrect Detailed timing. "
"Wrong Hsync/Vsync pulse width\n");
return NULL;
}
if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
if (!mode)
return NULL;
goto set_size;
}
mode = drm_mode_create(dev);
if (!mode)
return NULL;
if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
timing->pixel_clock = cpu_to_le16(1088);
mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
mode->hdisplay = hactive;
mode->hsync_start = mode->hdisplay + hsync_offset;
mode->hsync_end = mode->hsync_start + hsync_pulse_width;
mode->htotal = mode->hdisplay + hblank;
mode->vdisplay = vactive;
mode->vsync_start = mode->vdisplay + vsync_offset;
mode->vsync_end = mode->vsync_start + vsync_pulse_width;
mode->vtotal = mode->vdisplay + vblank;
/* Some EDIDs have bogus h/vtotal values */
if (mode->hsync_end > mode->htotal)
mode->htotal = mode->hsync_end + 1;
if (mode->vsync_end > mode->vtotal)
mode->vtotal = mode->vsync_end + 1;
drm_mode_do_interlace_quirk(mode, pt);
if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
}
mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
set_size:
mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
mode->width_mm *= 10;
mode->height_mm *= 10;
}
if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
mode->width_mm = edid->width_cm * 10;
mode->height_mm = edid->height_cm * 10;
}
mode->type = DRM_MODE_TYPE_DRIVER;
drm_mode_set_name(mode);
return mode;
}
static bool
mode_in_hsync_range(const struct drm_display_mode *mode,
struct edid *edid, u8 *t)
{
int hsync, hmin, hmax;
hmin = t[7];
if (edid->revision >= 4)
hmin += ((t[4] & 0x04) ? 255 : 0);
hmax = t[8];
if (edid->revision >= 4)
hmax += ((t[4] & 0x08) ? 255 : 0);
hsync = drm_mode_hsync(mode);
return (hsync <= hmax && hsync >= hmin);
}
static bool
mode_in_vsync_range(const struct drm_display_mode *mode,
struct edid *edid, u8 *t)
{
int vsync, vmin, vmax;
vmin = t[5];
if (edid->revision >= 4)
vmin += ((t[4] & 0x01) ? 255 : 0);
vmax = t[6];
if (edid->revision >= 4)
vmax += ((t[4] & 0x02) ? 255 : 0);
vsync = drm_mode_vrefresh(mode);
return (vsync <= vmax && vsync >= vmin);
}
static u32
range_pixel_clock(struct edid *edid, u8 *t)
{
/* unspecified */
if (t[9] == 0 || t[9] == 255)
return 0;
/* 1.4 with CVT support gives us real precision, yay */
if (edid->revision >= 4 && t[10] == 0x04)
return (t[9] * 10000) - ((t[12] >> 2) * 250);
/* 1.3 is pathetic, so fuzz up a bit */
return t[9] * 10000 + 5001;
}
static bool
mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
struct detailed_timing *timing)
{
u32 max_clock;
u8 *t = (u8 *)timing;
if (!mode_in_hsync_range(mode, edid, t))
return false;
if (!mode_in_vsync_range(mode, edid, t))
return false;
if ((max_clock = range_pixel_clock(edid, t)))
if (mode->clock > max_clock)
return false;
/* 1.4 max horizontal check */
if (edid->revision >= 4 && t[10] == 0x04)
if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
return false;
if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
return false;
return true;
}
static bool valid_inferred_mode(const struct drm_connector *connector,
const struct drm_display_mode *mode)
{
const struct drm_display_mode *m;
bool ok = false;
list_for_each_entry(m, &connector->probed_modes, head) {
if (mode->hdisplay == m->hdisplay &&
mode->vdisplay == m->vdisplay &&
drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
return false; /* duplicated */
if (mode->hdisplay <= m->hdisplay &&
mode->vdisplay <= m->vdisplay)
ok = true;
}
return ok;
}
static int
drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
struct detailed_timing *timing)
{
int i, modes = 0;
struct drm_display_mode *newmode;
struct drm_device *dev = connector->dev;
for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
valid_inferred_mode(connector, drm_dmt_modes + i)) {
newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
if (newmode) {
drm_mode_probed_add(connector, newmode);
modes++;
}
}
}
return modes;
}
/* fix up 1366x768 mode from 1368x768;
* GFT/CVT can't express 1366 width which isn't dividable by 8
*/
void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
{
if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
mode->hdisplay = 1366;
mode->hsync_start--;
mode->hsync_end--;
drm_mode_set_name(mode);
}
}
static int
drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
struct detailed_timing *timing)
{
int i, modes = 0;
struct drm_display_mode *newmode;
struct drm_device *dev = connector->dev;
for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
const struct minimode *m = &extra_modes[i];
newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
if (!newmode)
return modes;
drm_mode_fixup_1366x768(newmode);
if (!mode_in_range(newmode, edid, timing) ||
!valid_inferred_mode(connector, newmode)) {
drm_mode_destroy(dev, newmode);
continue;
}
drm_mode_probed_add(connector, newmode);
modes++;
}
return modes;
}
static int
drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
struct detailed_timing *timing)
{
int i, modes = 0;
struct drm_display_mode *newmode;
struct drm_device *dev = connector->dev;
bool rb = drm_monitor_supports_rb(edid);
for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
const struct minimode *m = &extra_modes[i];
newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
if (!newmode)
return modes;
drm_mode_fixup_1366x768(newmode);
if (!mode_in_range(newmode, edid, timing) ||
!valid_inferred_mode(connector, newmode)) {
drm_mode_destroy(dev, newmode);
continue;
}
drm_mode_probed_add(connector, newmode);
modes++;
}
return modes;
}
static void
do_inferred_modes(struct detailed_timing *timing, void *c)
{
struct detailed_mode_closure *closure = c;
struct detailed_non_pixel *data = &timing->data.other_data;
struct detailed_data_monitor_range *range = &data->data.range;
if (!is_display_descriptor((const u8 *)timing, EDID_DETAIL_MONITOR_RANGE))
return;
closure->modes += drm_dmt_modes_for_range(closure->connector,
closure->edid,
timing);
if (!version_greater(closure->edid, 1, 1))
return; /* GTF not defined yet */
switch (range->flags) {
case 0x02: /* secondary gtf, XXX could do more */
case 0x00: /* default gtf */
closure->modes += drm_gtf_modes_for_range(closure->connector,
closure->edid,
timing);
break;
case 0x04: /* cvt, only in 1.4+ */
if (!version_greater(closure->edid, 1, 3))
break;
closure->modes += drm_cvt_modes_for_range(closure->connector,
closure->edid,
timing);
break;
case 0x01: /* just the ranges, no formula */
default:
break;
}
}
static int
add_inferred_modes(struct drm_connector *connector, struct edid *edid)
{
struct detailed_mode_closure closure = {
.connector = connector,
.edid = edid,
};
if (version_greater(edid, 1, 0))
drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
&closure);
return closure.modes;
}
static int
drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
{
int i, j, m, modes = 0;
struct drm_display_mode *mode;
u8 *est = ((u8 *)timing) + 6;
for (i = 0; i < 6; i++) {
for (j = 7; j >= 0; j--) {
m = (i * 8) + (7 - j);
if (m >= ARRAY_SIZE(est3_modes))
break;
if (est[i] & (1 << j)) {
mode = drm_mode_find_dmt(connector->dev,
est3_modes[m].w,
est3_modes[m].h,
est3_modes[m].r,
est3_modes[m].rb);
if (mode) {
drm_mode_probed_add(connector, mode);
modes++;
}
}
}
}
return modes;
}
static void
do_established_modes(struct detailed_timing *timing, void *c)
{
struct detailed_mode_closure *closure = c;
if (!is_display_descriptor((const u8 *)timing, EDID_DETAIL_EST_TIMINGS))
return;
closure->modes += drm_est3_modes(closure->connector, timing);
}
/**
* add_established_modes - get est. modes from EDID and add them
* @connector: connector to add mode(s) to
* @edid: EDID block to scan
*
* Each EDID block contains a bitmap of the supported "established modes" list
* (defined above). Tease them out and add them to the global modes list.
*/
static int
add_established_modes(struct drm_connector *connector, struct edid *edid)
{
struct drm_device *dev = connector->dev;
unsigned long est_bits = edid->established_timings.t1 |
(edid->established_timings.t2 << 8) |
((edid->established_timings.mfg_rsvd & 0x80) << 9);
int i, modes = 0;
struct detailed_mode_closure closure = {
.connector = connector,
.edid = edid,
};
for (i = 0; i <= EDID_EST_TIMINGS; i++) {
if (est_bits & (1<<i)) {
struct drm_display_mode *newmode;
newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
if (newmode) {
drm_mode_probed_add(connector, newmode);
modes++;
}
}
}
if (version_greater(edid, 1, 0))
drm_for_each_detailed_block((u8 *)edid,
do_established_modes, &closure);
return modes + closure.modes;
}
static void
do_standard_modes(struct detailed_timing *timing, void *c)
{
struct detailed_mode_closure *closure = c;
struct detailed_non_pixel *data = &timing->data.other_data;
struct drm_connector *connector = closure->connector;
struct edid *edid = closure->edid;
int i;
if (!is_display_descriptor((const u8 *)timing, EDID_DETAIL_STD_MODES))
return;
for (i = 0; i < 6; i++) {
struct std_timing *std = &data->data.timings[i];
struct drm_display_mode *newmode;
newmode = drm_mode_std(connector, edid, std);
if (newmode) {
drm_mode_probed_add(connector, newmode);
closure->modes++;
}
}
}
/**
* add_standard_modes - get std. modes from EDID and add them
* @connector: connector to add mode(s) to
* @edid: EDID block to scan
*
* Standard modes can be calculated using the appropriate standard (DMT,
* GTF or CVT. Grab them from @edid and add them to the list.
*/
static int
add_standard_modes(struct drm_connector *connector, struct edid *edid)
{
int i, modes = 0;
struct detailed_mode_closure closure = {
.connector = connector,
.edid = edid,
};
for (i = 0; i < EDID_STD_TIMINGS; i++) {
struct drm_display_mode *newmode;
newmode = drm_mode_std(connector, edid,
&edid->standard_timings[i]);
if (newmode) {
drm_mode_probed_add(connector, newmode);
modes++;
}
}
if (version_greater(edid, 1, 0))
drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
&closure);
/* XXX should also look for standard codes in VTB blocks */
return modes + closure.modes;
}
static int drm_cvt_modes(struct drm_connector *connector,
struct detailed_timing *timing)
{
int i, j, modes = 0;
struct drm_display_mode *newmode;
struct drm_device *dev = connector->dev;
struct cvt_timing *cvt;
const int rates[] = { 60, 85, 75, 60, 50 };
const u8 empty[3] = { 0, 0, 0 };
for (i = 0; i < 4; i++) {
int width, height;
cvt = &(timing->data.other_data.data.cvt[i]);
if (!memcmp(cvt->code, empty, 3))
continue;
height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
switch (cvt->code[1] & 0x0c) {
case 0x00:
width = height * 4 / 3;
break;
case 0x04:
width = height * 16 / 9;
break;
case 0x08:
width = height * 16 / 10;
break;
case 0x0c:
width = height * 15 / 9;
break;
}
for (j = 1; j < 5; j++) {
if (cvt->code[2] & (1 << j)) {
newmode = drm_cvt_mode(dev, width, height,
rates[j], j == 0,
false, false);
if (newmode) {
drm_mode_probed_add(connector, newmode);
modes++;
}
}
}
}
return modes;
}
static void
do_cvt_mode(struct detailed_timing *timing, void *c)
{
struct detailed_mode_closure *closure = c;
if (!is_display_descriptor((const u8 *)timing, EDID_DETAIL_CVT_3BYTE))
return;
closure->modes += drm_cvt_modes(closure->connector, timing);
}
static int
add_cvt_modes(struct drm_connector *connector, struct edid *edid)
{
struct detailed_mode_closure closure = {
.connector = connector,
.edid = edid,
};
if (version_greater(edid, 1, 2))
drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
/* XXX should also look for CVT codes in VTB blocks */
return closure.modes;
}
static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
static void
do_detailed_mode(struct detailed_timing *timing, void *c)
{
struct detailed_mode_closure *closure = c;
struct drm_display_mode *newmode;
if (!is_detailed_timing_descriptor((const u8 *)timing))
return;
newmode = drm_mode_detailed(closure->connector->dev,
closure->edid, timing,
closure->quirks);
if (!newmode)
return;
if (closure->preferred)
newmode->type |= DRM_MODE_TYPE_PREFERRED;
/*
* Detailed modes are limited to 10kHz pixel clock resolution,
* so fix up anything that looks like CEA/HDMI mode, but the clock
* is just slightly off.
*/
fixup_detailed_cea_mode_clock(newmode);
drm_mode_probed_add(closure->connector, newmode);
closure->modes++;
closure->preferred = false;
}
/*
* add_detailed_modes - Add modes from detailed timings
* @connector: attached connector
* @edid: EDID block to scan
* @quirks: quirks to apply
*/
static int
add_detailed_modes(struct drm_connector *connector, struct edid *edid,
u32 quirks)
{
struct detailed_mode_closure closure = {
.connector = connector,
.edid = edid,
.preferred = true,
.quirks = quirks,
};
if (closure.preferred && !version_greater(edid, 1, 3))
closure.preferred =
(edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
return closure.modes;
}
#define AUDIO_BLOCK 0x01
#define VIDEO_BLOCK 0x02
#define VENDOR_BLOCK 0x03
#define SPEAKER_BLOCK 0x04
#define HDR_STATIC_METADATA_BLOCK 0x6
#define USE_EXTENDED_TAG 0x07
#define EXT_VIDEO_CAPABILITY_BLOCK 0x00
#define EXT_VIDEO_DATA_BLOCK_420 0x0E
#define EXT_VIDEO_CAP_BLOCK_Y420CMDB 0x0F
#define EDID_BASIC_AUDIO (1 << 6)
#define EDID_CEA_YCRCB444 (1 << 5)
#define EDID_CEA_YCRCB422 (1 << 4)
#define EDID_CEA_VCDB_QS (1 << 6)
/*
* Search EDID for CEA extension block.
*/
static u8 *drm_find_edid_extension(const struct edid *edid,
int ext_id, int *ext_index)
{
u8 *edid_ext = NULL;
int i;
/* No EDID or EDID extensions */
if (edid == NULL || edid->extensions == 0)
return NULL;
/* Find CEA extension */
for (i = *ext_index; i < edid->extensions; i++) {
edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
if (edid_ext[0] == ext_id)
break;
}
if (i >= edid->extensions)
return NULL;
*ext_index = i + 1;
return edid_ext;
}
static u8 *drm_find_displayid_extension(const struct edid *edid,
int *length, int *idx,
int *ext_index)
{
u8 *displayid = drm_find_edid_extension(edid, DISPLAYID_EXT, ext_index);
struct displayid_hdr *base;
int ret;
if (!displayid)
return NULL;
/* EDID extensions block checksum isn't for us */
*length = EDID_LENGTH - 1;
*idx = 1;
ret = validate_displayid(displayid, *length, *idx);
if (ret)
return NULL;
base = (struct displayid_hdr *)&displayid[*idx];
*length = *idx + sizeof(*base) + base->bytes;
return displayid;
}
static u8 *drm_find_cea_extension(const struct edid *edid)
{
int length, idx;
struct displayid_block *block;
u8 *cea;
u8 *displayid;
int ext_index;
/* Look for a top level CEA extension block */
/* FIXME: make callers iterate through multiple CEA ext blocks? */
ext_index = 0;
cea = drm_find_edid_extension(edid, CEA_EXT, &ext_index);
if (cea)
return cea;
/* CEA blocks can also be found embedded in a DisplayID block */
ext_index = 0;
for (;;) {
displayid = drm_find_displayid_extension(edid, &length, &idx,
&ext_index);
if (!displayid)
return NULL;
idx += sizeof(struct displayid_hdr);
for_each_displayid_db(displayid, block, idx, length) {
if (block->tag == DATA_BLOCK_CTA)
return (u8 *)block;
}
}
return NULL;
}
static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
{
BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
return &edid_cea_modes_1[vic - 1];
if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
return &edid_cea_modes_193[vic - 193];
return NULL;
}
static u8 cea_num_vics(void)
{
return 193 + ARRAY_SIZE(edid_cea_modes_193);
}
static u8 cea_next_vic(u8 vic)
{
if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
vic = 193;
return vic;
}
/*
* Calculate the alternate clock for the CEA mode
* (60Hz vs. 59.94Hz etc.)
*/
static unsigned int
cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
{
unsigned int clock = cea_mode->clock;
if (drm_mode_vrefresh(cea_mode) % 6 != 0)
return clock;
/*
* edid_cea_modes contains the 59.94Hz
* variant for 240 and 480 line modes,
* and the 60Hz variant otherwise.
*/
if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
else
clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
return clock;
}
static bool
cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
{
/*
* For certain VICs the spec allows the vertical
* front porch to vary by one or two lines.
*
* cea_modes[] stores the variant with the shortest
* vertical front porch. We can adjust the mode to
* get the other variants by simply increasing the
* vertical front porch length.
*/
BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
cea_mode_for_vic(9)->vtotal != 262 ||
cea_mode_for_vic(12)->vtotal != 262 ||
cea_mode_for_vic(13)->vtotal != 262 ||
cea_mode_for_vic(23)->vtotal != 312 ||
cea_mode_for_vic(24)->vtotal != 312 ||
cea_mode_for_vic(27)->vtotal != 312 ||
cea_mode_for_vic(28)->vtotal != 312);
if (((vic == 8 || vic == 9 ||
vic == 12 || vic == 13) && mode->vtotal < 263) ||
((vic == 23 || vic == 24 ||
vic == 27 || vic == 28) && mode->vtotal < 314)) {
mode->vsync_start++;
mode->vsync_end++;
mode->vtotal++;
return true;
}
return false;
}
static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
unsigned int clock_tolerance)
{
unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
u8 vic;
if (!to_match->clock)
return 0;
if (to_match->picture_aspect_ratio)
match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
struct drm_display_mode cea_mode = *cea_mode_for_vic(vic);
unsigned int clock1, clock2;
/* Check both 60Hz and 59.94Hz */
clock1 = cea_mode.clock;
clock2 = cea_mode_alternate_clock(&cea_mode);
if (abs(to_match->clock - clock1) > clock_tolerance &&
abs(to_match->clock - clock2) > clock_tolerance)
continue;
do {
if (drm_mode_match(to_match, &cea_mode, match_flags))
return vic;
} while (cea_mode_alternate_timings(vic, &cea_mode));
}
return 0;
}
/**
* drm_match_cea_mode - look for a CEA mode matching given mode
* @to_match: display mode
*
* Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
* mode.
*/
u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
{
unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
u8 vic;
if (!to_match->clock)
return 0;
if (to_match->picture_aspect_ratio)
match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
struct drm_display_mode cea_mode = *cea_mode_for_vic(vic);
unsigned int clock1, clock2;
/* Check both 60Hz and 59.94Hz */
clock1 = cea_mode.clock;
clock2 = cea_mode_alternate_clock(&cea_mode);
if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
continue;
do {
if (drm_mode_match(to_match, &cea_mode, match_flags))
return vic;
} while (cea_mode_alternate_timings(vic, &cea_mode));
}
return 0;
}
EXPORT_SYMBOL(drm_match_cea_mode);
static bool drm_valid_cea_vic(u8 vic)
{
return cea_mode_for_vic(vic) != NULL;
}
static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
{
const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
if (mode)
return mode->picture_aspect_ratio;
return HDMI_PICTURE_ASPECT_NONE;
}
static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
{
return edid_4k_modes[video_code].picture_aspect_ratio;
}
/*
* Calculate the alternate clock for HDMI modes (those from the HDMI vendor
* specific block).
*/
static unsigned int
hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
{
return cea_mode_alternate_clock(hdmi_mode);
}
static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
unsigned int clock_tolerance)
{
unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
u8 vic;
if (!to_match->clock)
return 0;
if (to_match->picture_aspect_ratio)
match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
unsigned int clock1, clock2;
/* Make sure to also match alternate clocks */
clock1 = hdmi_mode->clock;
clock2 = hdmi_mode_alternate_clock(hdmi_mode);
if (abs(to_match->clock - clock1) > clock_tolerance &&
abs(to_match->clock - clock2) > clock_tolerance)
continue;
if (drm_mode_match(to_match, hdmi_mode, match_flags))
return vic;
}
return 0;
}
/*
* drm_match_hdmi_mode - look for a HDMI mode matching given mode
* @to_match: display mode
*
* An HDMI mode is one defined in the HDMI vendor specific block.
*
* Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
*/
static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
{
unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
u8 vic;
if (!to_match->clock)
return 0;
if (to_match->picture_aspect_ratio)
match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
unsigned int clock1, clock2;
/* Make sure to also match alternate clocks */
clock1 = hdmi_mode->clock;
clock2 = hdmi_mode_alternate_clock(hdmi_mode);
if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
drm_mode_match(to_match, hdmi_mode, match_flags))
return vic;
}
return 0;
}
static bool drm_valid_hdmi_vic(u8 vic)
{
return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
}
static int
add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
{
struct drm_device *dev = connector->dev;
struct drm_display_mode *mode, *tmp;
LIST_HEAD(list);
int modes = 0;
/* Don't add CEA modes if the CEA extension block is missing */
if (!drm_find_cea_extension(edid))
return 0;
/*
* Go through all probed modes and create a new mode
* with the alternate clock for certain CEA modes.
*/
list_for_each_entry(mode, &connector->probed_modes, head) {
const struct drm_display_mode *cea_mode = NULL;
struct drm_display_mode *newmode;
u8 vic = drm_match_cea_mode(mode);
unsigned int clock1, clock2;
if (drm_valid_cea_vic(vic)) {
cea_mode = cea_mode_for_vic(vic);
clock2 = cea_mode_alternate_clock(cea_mode);
} else {
vic = drm_match_hdmi_mode(mode);
if (drm_valid_hdmi_vic(vic)) {
cea_mode = &edid_4k_modes[vic];
clock2 = hdmi_mode_alternate_clock(cea_mode);
}
}
if (!cea_mode)
continue;
clock1 = cea_mode->clock;
if (clock1 == clock2)
continue;
if (mode->clock != clock1 && mode->clock != clock2)
continue;
newmode = drm_mode_duplicate(dev, cea_mode);
if (!newmode)
continue;
/* Carry over the stereo flags */
newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
/*
* The current mode could be either variant. Make
* sure to pick the "other" clock for the new mode.
*/
if (mode->clock != clock1)
newmode->clock = clock1;
else
newmode->clock = clock2;
list_add_tail(&newmode->head, &list);
}
list_for_each_entry_safe(mode, tmp, &list, head) {
list_del(&mode->head);
drm_mode_probed_add(connector, mode);
modes++;
}
return modes;
}
static u8 svd_to_vic(u8 svd)
{
/* 0-6 bit vic, 7th bit native mode indicator */
if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192))
return svd & 127;
return svd;
}
static struct drm_display_mode *
drm_display_mode_from_vic_index(struct drm_connector *connector,
const u8 *video_db, u8 video_len,
u8 video_index)
{
struct drm_device *dev = connector->dev;
struct drm_display_mode *newmode;
u8 vic;
if (video_db == NULL || video_index >= video_len)
return NULL;
/* CEA modes are numbered 1..127 */
vic = svd_to_vic(video_db[video_index]);
if (!drm_valid_cea_vic(vic))
return NULL;
newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
if (!newmode)
return NULL;
return newmode;
}
/*
* do_y420vdb_modes - Parse YCBCR 420 only modes
* @connector: connector corresponding to the HDMI sink
* @svds: start of the data block of CEA YCBCR 420 VDB
* @len: length of the CEA YCBCR 420 VDB
*
* Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
* which contains modes which can be supported in YCBCR 420
* output format only.
*/
static int do_y420vdb_modes(struct drm_connector *connector,
const u8 *svds, u8 svds_len)
{
int modes = 0, i;
struct drm_device *dev = connector->dev;
struct drm_display_info *info = &connector->display_info;
struct drm_hdmi_info *hdmi = &info->hdmi;
for (i = 0; i < svds_len; i++) {
u8 vic = svd_to_vic(svds[i]);
struct drm_display_mode *newmode;
if (!drm_valid_cea_vic(vic))
continue;
newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
if (!newmode)
break;
bitmap_set(hdmi->y420_vdb_modes, vic, 1);
drm_mode_probed_add(connector, newmode);
modes++;
}
if (modes > 0)
info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
return modes;
}
/*
* drm_add_cmdb_modes - Add a YCBCR 420 mode into bitmap
* @connector: connector corresponding to the HDMI sink
* @vic: CEA vic for the video mode to be added in the map
*
* Makes an entry for a videomode in the YCBCR 420 bitmap
*/
static void
drm_add_cmdb_modes(struct drm_connector *connector, u8 svd)
{
u8 vic = svd_to_vic(svd);
struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
if (!drm_valid_cea_vic(vic))
return;
bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
}
/**
* drm_display_mode_from_cea_vic() - return a mode for CEA VIC
* @dev: DRM device
* @vic: CEA VIC of the mode
*
* Creates a new mode matching the specified CEA VIC.
*
* Returns: A new drm_display_mode on success or NULL on failure
*/
struct drm_display_mode *
drm_display_mode_from_cea_vic(struct drm_device *dev,
u8 video_code)
{
const struct drm_display_mode *cea_mode;
struct drm_display_mode *newmode;
cea_mode = cea_mode_for_vic(video_code);
if (!cea_mode)
return NULL;
newmode = drm_mode_duplicate(dev, cea_mode);
if (!newmode)
return NULL;
return newmode;
}
EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
static int
do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
{
int i, modes = 0;
struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
for (i = 0; i < len; i++) {
struct drm_display_mode *mode;
mode = drm_display_mode_from_vic_index(connector, db, len, i);
if (mode) {
/*
* YCBCR420 capability block contains a bitmap which
* gives the index of CEA modes from CEA VDB, which
* can support YCBCR 420 sampling output also (apart
* from RGB/YCBCR444 etc).
* For example, if the bit 0 in bitmap is set,
* first mode in VDB can support YCBCR420 output too.
* Add YCBCR420 modes only if sink is HDMI 2.0 capable.
*/
if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
drm_add_cmdb_modes(connector, db[i]);
drm_mode_probed_add(connector, mode);
modes++;
}
}
return modes;
}
struct stereo_mandatory_mode {
int width, height, vrefresh;
unsigned int flags;
};
static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
{ 1920, 1080, 50,
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
{ 1920, 1080, 60,
DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
{ 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
{ 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
{ 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
{ 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
};
static bool
stereo_match_mandatory(const struct drm_display_mode *mode,
const struct stereo_mandatory_mode *stereo_mode)
{
unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
return mode->hdisplay == stereo_mode->width &&
mode->vdisplay == stereo_mode->height &&
interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
}
static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
{
struct drm_device *dev = connector->dev;
const struct drm_display_mode *mode;
struct list_head stereo_modes;
int modes = 0, i;
INIT_LIST_HEAD(&stereo_modes);
list_for_each_entry(mode, &connector->probed_modes, head) {
for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
const struct stereo_mandatory_mode *mandatory;
struct drm_display_mode *new_mode;
if (!stereo_match_mandatory(mode,
&stereo_mandatory_modes[i]))
continue;
mandatory = &stereo_mandatory_modes[i];
new_mode = drm_mode_duplicate(dev, mode);
if (!new_mode)
continue;
new_mode->flags |= mandatory->flags;
list_add_tail(&new_mode->head, &stereo_modes);
modes++;
}
}
list_splice_tail(&stereo_modes, &connector->probed_modes);
return modes;
}
static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
{
struct drm_device *dev = connector->dev;
struct drm_display_mode *newmode;
if (!drm_valid_hdmi_vic(vic)) {
DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
return 0;
}
newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
if (!newmode)
return 0;
drm_mode_probed_add(connector, newmode);
return 1;
}
static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
const u8 *video_db, u8 video_len, u8 video_index)
{
struct drm_display_mode *newmode;
int modes = 0;
if (structure & (1 << 0)) {
newmode = drm_display_mode_from_vic_index(connector, video_db,
video_len,
video_index);
if (newmode) {
newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
drm_mode_probed_add(connector, newmode);
modes++;
}
}
if (structure & (1 << 6)) {
newmode = drm_display_mode_from_vic_index(connector, video_db,
video_len,
video_index);
if (newmode) {
newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
drm_mode_probed_add(connector, newmode);
modes++;
}
}
if (structure & (1 << 8)) {
newmode = drm_display_mode_from_vic_index(connector, video_db,
video_len,
video_index);
if (newmode) {
newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
drm_mode_probed_add(connector, newmode);
modes++;
}
}
return modes;
}
/*
* do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
* @connector: connector corresponding to the HDMI sink
* @db: start of the CEA vendor specific block
* @len: length of the CEA block payload, ie. one can access up to db[len]
*
* Parses the HDMI VSDB looking for modes to add to @connector. This function
* also adds the stereo 3d modes when applicable.
*/
static int
do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
const u8 *video_db, u8 video_len)
{
struct drm_display_info *info = &connector->display_info;
int modes = 0, offset = 0, i, multi_present = 0, multi_len;
u8 vic_len, hdmi_3d_len = 0;
u16 mask;
u16 structure_all;
if (len < 8)
goto out;
/* no HDMI_Video_Present */
if (!(db[8] & (1 << 5)))
goto out;
/* Latency_Fields_Present */
if (db[8] & (1 << 7))
offset += 2;
/* I_Latency_Fields_Present */
if (db[8] & (1 << 6))
offset += 2;
/* the declared length is not long enough for the 2 first bytes
* of additional video format capabilities */
if (len < (8 + offset + 2))
goto out;
/* 3D_Present */
offset++;
if (db[8 + offset] & (1 << 7)) {
modes += add_hdmi_mandatory_stereo_modes(connector);
/* 3D_Multi_present */
multi_present = (db[8 + offset] & 0x60) >> 5;
}
offset++;
vic_len = db[8 + offset] >> 5;
hdmi_3d_len = db[8 + offset] & 0x1f;
for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
u8 vic;
vic = db[9 + offset + i];
modes += add_hdmi_mode(connector, vic);
}
offset += 1 + vic_len;
if (multi_present == 1)
multi_len = 2;
else if (multi_present == 2)
multi_len = 4;
else
multi_len = 0;
if (len < (8 + offset + hdmi_3d_len - 1))
goto out;
if (hdmi_3d_len < multi_len)
goto out;
if (multi_present == 1 || multi_present == 2) {
/* 3D_Structure_ALL */
structure_all = (db[8 + offset] << 8) | db[9 + offset];
/* check if 3D_MASK is present */
if (multi_present == 2)
mask = (db[10 + offset] << 8) | db[11 + offset];
else
mask = 0xffff;
for (i = 0; i < 16; i++) {
if (mask & (1 << i))
modes += add_3d_struct_modes(connector,
structure_all,
video_db,
video_len, i);
}
}
offset += multi_len;
for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
int vic_index;
struct drm_display_mode *newmode = NULL;
unsigned int newflag = 0;
bool detail_present;
detail_present = ((db[8 + offset + i] & 0x0f) > 7);
if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
break;
/* 2D_VIC_order_X */
vic_index = db[8 + offset + i] >> 4;
/* 3D_Structure_X */
switch (db[8 + offset + i] & 0x0f) {
case 0:
newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
break;
case 6:
newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
break;
case 8:
/* 3D_Detail_X */
if ((db[9 + offset + i] >> 4) == 1)
newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
break;
}
if (newflag != 0) {
newmode = drm_display_mode_from_vic_index(connector,
video_db,
video_len,
vic_index);
if (newmode) {
newmode->flags |= newflag;
drm_mode_probed_add(connector, newmode);
modes++;
}
}
if (detail_present)
i++;
}
out:
if (modes > 0)
info->has_hdmi_infoframe = true;
return modes;
}
static int
cea_db_payload_len(const u8 *db)
{
return db[0] & 0x1f;
}
static int
cea_db_extended_tag(const u8 *db)
{
return db[1];
}
static int
cea_db_tag(const u8 *db)
{
return db[0] >> 5;
}
static int
cea_revision(const u8 *cea)
{
/*
* FIXME is this correct for the DispID variant?
* The DispID spec doesn't really specify whether
* this is the revision of the CEA extension or
* the DispID CEA data block. And the only value
* given as an example is 0.
*/
return cea[1];
}
static int
cea_db_offsets(const u8 *cea, int *start, int *end)
{
/* DisplayID CTA extension blocks and top-level CEA EDID
* block header definitions differ in the following bytes:
* 1) Byte 2 of the header specifies length differently,
* 2) Byte 3 is only present in the CEA top level block.
*
* The different definitions for byte 2 follow.
*
* DisplayID CTA extension block defines byte 2 as:
* Number of payload bytes
*
* CEA EDID block defines byte 2 as:
* Byte number (decimal) within this block where the 18-byte
* DTDs begin. If no non-DTD data is present in this extension
* block, the value should be set to 04h (the byte after next).
* If set to 00h, there are no DTDs present in this block and
* no non-DTD data.
*/
if (cea[0] == DATA_BLOCK_CTA) {
/*
* for_each_displayid_db() has already verified
* that these stay within expected bounds.
*/
*start = 3;
*end = *start + cea[2];
} else if (cea[0] == CEA_EXT) {
/* Data block offset in CEA extension block */
*start = 4;
*end = cea[2];
if (*end == 0)
*end = 127;
if (*end < 4 || *end > 127)
return -ERANGE;
} else {
return -EOPNOTSUPP;
}
return 0;
}
static bool cea_db_is_hdmi_vsdb(const u8 *db)
{
int hdmi_id;
if (cea_db_tag(db) != VENDOR_BLOCK)
return false;
if (cea_db_payload_len(db) < 5)
return false;
hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
return hdmi_id == HDMI_IEEE_OUI;
}
static bool cea_db_is_hdmi_forum_vsdb(const u8 *db)
{
unsigned int oui;
if (cea_db_tag(db) != VENDOR_BLOCK)
return false;
if (cea_db_payload_len(db) < 7)
return false;
oui = db[3] << 16 | db[2] << 8 | db[1];
return oui == HDMI_FORUM_IEEE_OUI;
}
static bool cea_db_is_vcdb(const u8 *db)
{
if (cea_db_tag(db) != USE_EXTENDED_TAG)
return false;
if (cea_db_payload_len(db) != 2)
return false;
if (cea_db_extended_tag(db) != EXT_VIDEO_CAPABILITY_BLOCK)
return false;
return true;
}
static bool cea_db_is_y420cmdb(const u8 *db)
{
if (cea_db_tag(db) != USE_EXTENDED_TAG)
return false;
if (!cea_db_payload_len(db))
return false;
if (cea_db_extended_tag(db) != EXT_VIDEO_CAP_BLOCK_Y420CMDB)
return false;
return true;
}
static bool cea_db_is_y420vdb(const u8 *db)
{
if (cea_db_tag(db) != USE_EXTENDED_TAG)
return false;
if (!cea_db_payload_len(db))
return false;
if (cea_db_extended_tag(db) != EXT_VIDEO_DATA_BLOCK_420)
return false;
return true;
}
#define for_each_cea_db(cea, i, start, end) \
for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
static void drm_parse_y420cmdb_bitmap(struct drm_connector *connector,
const u8 *db)
{
struct drm_display_info *info = &connector->display_info;
struct drm_hdmi_info *hdmi = &info->hdmi;
u8 map_len = cea_db_payload_len(db) - 1;
u8 count;
u64 map = 0;
if (map_len == 0) {
/* All CEA modes support ycbcr420 sampling also.*/
hdmi->y420_cmdb_map = U64_MAX;
info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
return;
}
/*
* This map indicates which of the existing CEA block modes
* from VDB can support YCBCR420 output too. So if bit=0 is
* set, first mode from VDB can support YCBCR420 output too.
* We will parse and keep this map, before parsing VDB itself
* to avoid going through the same block again and again.
*
* Spec is not clear about max possible size of this block.
* Clamping max bitmap block size at 8 bytes. Every byte can
* address 8 CEA modes, in this way this map can address
* 8*8 = first 64 SVDs.
*/
if (WARN_ON_ONCE(map_len > 8))
map_len = 8;
for (count = 0; count < map_len; count++)
map |= (u64)db[2 + count] << (8 * count);
if (map)
info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
hdmi->y420_cmdb_map = map;
}
static int
add_cea_modes(struct drm_connector *connector, struct edid *edid)
{
const u8 *cea = drm_find_cea_extension(edid);
const u8 *db, *hdmi = NULL, *video = NULL;
u8 dbl, hdmi_len, video_len = 0;
int modes = 0;
if (cea && cea_revision(cea) >= 3) {
int i, start, end;
if (cea_db_offsets(cea, &start, &end))
return 0;
for_each_cea_db(cea, i, start, end) {
db = &cea[i];
dbl = cea_db_payload_len(db);
if (cea_db_tag(db) == VIDEO_BLOCK) {
video = db + 1;
video_len = dbl;
modes += do_cea_modes(connector, video, dbl);
} else if (cea_db_is_hdmi_vsdb(db)) {
hdmi = db;
hdmi_len = dbl;
} else if (cea_db_is_y420vdb(db)) {
const u8 *vdb420 = &db[2];
/* Add 4:2:0(only) modes present in EDID */
modes += do_y420vdb_modes(connector,
vdb420,
dbl - 1);
}
}
}
/*
* We parse the HDMI VSDB after having added the cea modes as we will
* be patching their flags when the sink supports stereo 3D.
*/
if (hdmi)
modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
video_len);
return modes;
}
static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
{
const struct drm_display_mode *cea_mode;
int clock1, clock2, clock;
u8 vic;
const char *type;
/*
* allow 5kHz clock difference either way to account for
* the 10kHz clock resolution limit of detailed timings.
*/
vic = drm_match_cea_mode_clock_tolerance(mode, 5);
if (drm_valid_cea_vic(vic)) {
type = "CEA";
cea_mode = cea_mode_for_vic(vic);
clock1 = cea_mode->clock;
clock2 = cea_mode_alternate_clock(cea_mode);
} else {
vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
if (drm_valid_hdmi_vic(vic)) {
type = "HDMI";
cea_mode = &edid_4k_modes[vic];
clock1 = cea_mode->clock;
clock2 = hdmi_mode_alternate_clock(cea_mode);
} else {
return;
}
}
/* pick whichever is closest */
if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
clock = clock1;
else
clock = clock2;
if (mode->clock == clock)
return;
DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
type, vic, mode->clock, clock);
mode->clock = clock;
}
static bool cea_db_is_hdmi_hdr_metadata_block(const u8 *db)
{
if (cea_db_tag(db) != USE_EXTENDED_TAG)
return false;
if (db[1] != HDR_STATIC_METADATA_BLOCK)
return false;
if (cea_db_payload_len(db) < 3)
return false;
return true;
}
static uint8_t eotf_supported(const u8 *edid_ext)
{
return edid_ext[2] &
(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
BIT(HDMI_EOTF_SMPTE_ST2084) |
BIT(HDMI_EOTF_BT_2100_HLG));
}
static uint8_t hdr_metadata_type(const u8 *edid_ext)
{
return edid_ext[3] &
BIT(HDMI_STATIC_METADATA_TYPE1);
}
static void
drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
{
u16 len;
len = cea_db_payload_len(db);
connector->hdr_sink_metadata.hdmi_type1.eotf =
eotf_supported(db);
connector->hdr_sink_metadata.hdmi_type1.metadata_type =
hdr_metadata_type(db);
if (len >= 4)
connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
if (len >= 5)
connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
if (len >= 6)
connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
}
static void
drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
{
u8 len = cea_db_payload_len(db);
if (len >= 6 && (db[6] & (1 << 7)))
connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
if (len >= 8) {
connector->latency_present[0] = db[8] >> 7;
connector->latency_present[1] = (db[8] >> 6) & 1;
}
if (len >= 9)
connector->video_latency[0] = db[9];
if (len >= 10)
connector->audio_latency[0] = db[10];
if (len >= 11)
connector->video_latency[1] = db[11];
if (len >= 12)
connector->audio_latency[1] = db[12];
DRM_DEBUG_KMS("HDMI: latency present %d %d, "
"video latency %d %d, "
"audio latency %d %d\n",
connector->latency_present[0],
connector->latency_present[1],
connector->video_latency[0],
connector->video_latency[1],
connector->audio_latency[0],
connector->audio_latency[1]);
}
static void
monitor_name(struct detailed_timing *t, void *data)
{
if (!is_display_descriptor((const u8 *)t, EDID_DETAIL_MONITOR_NAME))
return;
*(u8 **)data = t->data.other_data.data.str.str;
}
static int get_monitor_name(struct edid *edid, char name[13])
{
char *edid_name = NULL;
int mnl;
if (!edid || !name)
return 0;
drm_for_each_detailed_block((u8 *)edid, monitor_name, &edid_name);
for (mnl = 0; edid_name && mnl < 13; mnl++) {
if (edid_name[mnl] == 0x0a)
break;
name[mnl] = edid_name[mnl];
}
return mnl;
}
/**
* drm_edid_get_monitor_name - fetch the monitor name from the edid
* @edid: monitor EDID information
* @name: pointer to a character array to hold the name of the monitor
* @bufsize: The size of the name buffer (should be at least 14 chars.)
*
*/
void drm_edid_get_monitor_name(struct edid *edid, char *name, int bufsize)
{
int name_length;
char buf[13];
if (bufsize <= 0)
return;
name_length = min(get_monitor_name(edid, buf), bufsize - 1);
memcpy(name, buf, name_length);
name[name_length] = '\0';
}
EXPORT_SYMBOL(drm_edid_get_monitor_name);
static void clear_eld(struct drm_connector *connector)
{
memset(connector->eld, 0, sizeof(connector->eld));
connector->latency_present[0] = false;
connector->latency_present[1] = false;
connector->video_latency[0] = 0;
connector->audio_latency[0] = 0;
connector->video_latency[1] = 0;
connector->audio_latency[1] = 0;
}
/*
* drm_edid_to_eld - build ELD from EDID
* @connector: connector corresponding to the HDMI/DP sink
* @edid: EDID to parse
*
* Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
* HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
*/
static void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
{
uint8_t *eld = connector->eld;
u8 *cea;
u8 *db;
int total_sad_count = 0;
int mnl;
int dbl;
clear_eld(connector);
if (!edid)
return;
cea = drm_find_cea_extension(edid);
if (!cea) {
DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
return;
}
mnl = get_monitor_name(edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
DRM_DEBUG_KMS("ELD monitor %s\n", &eld[DRM_ELD_MONITOR_NAME_STRING]);
eld[DRM_ELD_CEA_EDID_VER_MNL] = cea[1] << DRM_ELD_CEA_EDID_VER_SHIFT;
eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
eld[DRM_ELD_MANUFACTURER_NAME0] = edid->mfg_id[0];
eld[DRM_ELD_MANUFACTURER_NAME1] = edid->mfg_id[1];
eld[DRM_ELD_PRODUCT_CODE0] = edid->prod_code[0];
eld[DRM_ELD_PRODUCT_CODE1] = edid->prod_code[1];
if (cea_revision(cea) >= 3) {
int i, start, end;
int sad_count;
if (cea_db_offsets(cea, &start, &end)) {
start = 0;
end = 0;
}
for_each_cea_db(cea, i, start, end) {
db = &cea[i];
dbl = cea_db_payload_len(db);
switch (cea_db_tag(db)) {
case AUDIO_BLOCK:
/* Audio Data Block, contains SADs */
sad_count = min(dbl / 3, 15 - total_sad_count);
if (sad_count >= 1)
memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
&db[1], sad_count * 3);
total_sad_count += sad_count;
break;
case SPEAKER_BLOCK:
/* Speaker Allocation Data Block */
if (dbl >= 1)
eld[DRM_ELD_SPEAKER] = db[1];
break;
case VENDOR_BLOCK:
/* HDMI Vendor-Specific Data Block */
if (cea_db_is_hdmi_vsdb(db))
drm_parse_hdmi_vsdb_audio(connector, db);
break;
default:
break;
}
}
}
eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
connector->connector_type == DRM_MODE_CONNECTOR_eDP)
eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
else
eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
eld[DRM_ELD_BASELINE_ELD_LEN] =
DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
drm_eld_size(eld), total_sad_count);
}
/**
* drm_edid_to_sad - extracts SADs from EDID
* @edid: EDID to parse
* @sads: pointer that will be set to the extracted SADs
*
* Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
*
* Note: The returned pointer needs to be freed using kfree().
*
* Return: The number of found SADs or negative number on error.
*/
int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
{
int count = 0;
int i, start, end, dbl;
u8 *cea;
cea = drm_find_cea_extension(edid);
if (!cea) {
DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
return 0;
}
if (cea_revision(cea) < 3) {
DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
return 0;
}
if (cea_db_offsets(cea, &start, &end)) {
DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
return -EPROTO;
}
for_each_cea_db(cea, i, start, end) {
u8 *db = &cea[i];
if (cea_db_tag(db) == AUDIO_BLOCK) {
int j;
dbl = cea_db_payload_len(db);
count = dbl / 3; /* SAD is 3B */
*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
if (!*sads)
return -ENOMEM;
for (j = 0; j < count; j++) {
u8 *sad = &db[1 + j * 3];
(*sads)[j].format = (sad[0] & 0x78) >> 3;
(*sads)[j].channels = sad[0] & 0x7;
(*sads)[j].freq = sad[1] & 0x7F;
(*sads)[j].byte2 = sad[2];
}
break;
}
}
return count;
}
EXPORT_SYMBOL(drm_edid_to_sad);
/**
* drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
* @edid: EDID to parse
* @sadb: pointer to the speaker block
*
* Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
*
* Note: The returned pointer needs to be freed using kfree().
*
* Return: The number of found Speaker Allocation Blocks or negative number on
* error.
*/
int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
{
int count = 0;
int i, start, end, dbl;
const u8 *cea;
cea = drm_find_cea_extension(edid);
if (!cea) {
DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
return 0;
}
if (cea_revision(cea) < 3) {
DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
return 0;
}
if (cea_db_offsets(cea, &start, &end)) {
DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
return -EPROTO;
}
for_each_cea_db(cea, i, start, end) {
const u8 *db = &cea[i];
if (cea_db_tag(db) == SPEAKER_BLOCK) {
dbl = cea_db_payload_len(db);
/* Speaker Allocation Data Block */
if (dbl == 3) {
*sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
if (!*sadb)
return -ENOMEM;
count = dbl;
break;
}
}
}
return count;
}
EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
/**
* drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
* @connector: connector associated with the HDMI/DP sink
* @mode: the display mode
*
* Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
* the sink doesn't support audio or video.
*/
int drm_av_sync_delay(struct drm_connector *connector,
const struct drm_display_mode *mode)
{
int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
int a, v;
if (!connector->latency_present[0])
return 0;
if (!connector->latency_present[1])
i = 0;
a = connector->audio_latency[i];
v = connector->video_latency[i];
/*
* HDMI/DP sink doesn't support audio or video?
*/
if (a == 255 || v == 255)
return 0;
/*
* Convert raw EDID values to millisecond.
* Treat unknown latency as 0ms.
*/
if (a)
a = min(2 * (a - 1), 500);
if (v)
v = min(2 * (v - 1), 500);
return max(v - a, 0);
}
EXPORT_SYMBOL(drm_av_sync_delay);
/**
* drm_detect_hdmi_monitor - detect whether monitor is HDMI
* @edid: monitor EDID information
*
* Parse the CEA extension according to CEA-861-B.
*
* Drivers that have added the modes parsed from EDID to drm_display_info
* should use &drm_display_info.is_hdmi instead of calling this function.
*
* Return: True if the monitor is HDMI, false if not or unknown.
*/
bool drm_detect_hdmi_monitor(struct edid *edid)
{
u8 *edid_ext;
int i;
int start_offset, end_offset;
edid_ext = drm_find_cea_extension(edid);
if (!edid_ext)
return false;
if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
return false;
/*
* Because HDMI identifier is in Vendor Specific Block,
* search it from all data blocks of CEA extension.
*/
for_each_cea_db(edid_ext, i, start_offset, end_offset) {
if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
return true;
}
return false;
}
EXPORT_SYMBOL(drm_detect_hdmi_monitor);
/**
* drm_detect_monitor_audio - check monitor audio capability
* @edid: EDID block to scan
*
* Monitor should have CEA extension block.
* If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
* audio' only. If there is any audio extension block and supported
* audio format, assume at least 'basic audio' support, even if 'basic
* audio' is not defined in EDID.
*
* Return: True if the monitor supports audio, false otherwise.
*/
bool drm_detect_monitor_audio(struct edid *edid)
{
u8 *edid_ext;
int i, j;
bool has_audio = false;
int start_offset, end_offset;
edid_ext = drm_find_cea_extension(edid);
if (!edid_ext)
goto end;
has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
if (has_audio) {
DRM_DEBUG_KMS("Monitor has basic audio support\n");
goto end;
}
if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
goto end;
for_each_cea_db(edid_ext, i, start_offset, end_offset) {
if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
has_audio = true;
for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
DRM_DEBUG_KMS("CEA audio format %d\n",
(edid_ext[i + j] >> 3) & 0xf);
goto end;
}
}
end:
return has_audio;
}
EXPORT_SYMBOL(drm_detect_monitor_audio);
/**
* drm_default_rgb_quant_range - default RGB quantization range
* @mode: display mode
*
* Determine the default RGB quantization range for the mode,
* as specified in CEA-861.
*
* Return: The default RGB quantization range for the mode
*/
enum hdmi_quantization_range
drm_default_rgb_quant_range(const struct drm_display_mode *mode)
{
/* All CEA modes other than VIC 1 use limited quantization range. */
return drm_match_cea_mode(mode) > 1 ?
HDMI_QUANTIZATION_RANGE_LIMITED :
HDMI_QUANTIZATION_RANGE_FULL;
}
EXPORT_SYMBOL(drm_default_rgb_quant_range);
static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
{
struct drm_display_info *info = &connector->display_info;
DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", db[2]);
if (db[2] & EDID_CEA_VCDB_QS)
info->rgb_quant_range_selectable = true;
}
static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
const u8 *db)
{
u8 dc_mask;
struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
hdmi->y420_dc_modes = dc_mask;
}
static void drm_parse_hdmi_forum_vsdb(struct drm_connector *connector,
const u8 *hf_vsdb)
{
struct drm_display_info *display = &connector->display_info;
struct drm_hdmi_info *hdmi = &display->hdmi;
display->has_hdmi_infoframe = true;
if (hf_vsdb[6] & 0x80) {
hdmi->scdc.supported = true;
if (hf_vsdb[6] & 0x40)
hdmi->scdc.read_request = true;
}
/*
* All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
* And as per the spec, three factors confirm this:
* * Availability of a HF-VSDB block in EDID (check)
* * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
* * SCDC support available (let's check)
* Lets check it out.
*/
if (hf_vsdb[5]) {
/* max clock is 5000 KHz times block value */
u32 max_tmds_clock = hf_vsdb[5] * 5000;
struct drm_scdc *scdc = &hdmi->scdc;
if (max_tmds_clock > 340000) {
display->max_tmds_clock = max_tmds_clock;
DRM_DEBUG_KMS("HF-VSDB: max TMDS clock %d kHz\n",
display->max_tmds_clock);
}
if (scdc->supported) {
scdc->scrambling.supported = true;
/* Few sinks support scrambling for clocks < 340M */
if ((hf_vsdb[6] & 0x8))
scdc->scrambling.low_rates = true;
}
}
drm_parse_ycbcr420_deep_color_info(connector, hf_vsdb);
}
static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
const u8 *hdmi)
{
struct drm_display_info *info = &connector->display_info;
unsigned int dc_bpc = 0;
/* HDMI supports at least 8 bpc */
info->bpc = 8;
if (cea_db_payload_len(hdmi) < 6)
return;
if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
dc_bpc = 10;
info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
connector->name);
}
if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
dc_bpc = 12;
info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
connector->name);
}
if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
dc_bpc = 16;
info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
connector->name);
}
if (dc_bpc == 0) {
DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
connector->name);
return;
}
DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
connector->name, dc_bpc);
info->bpc = dc_bpc;
/*
* Deep color support mandates RGB444 support for all video
* modes and forbids YCRCB422 support for all video modes per
* HDMI 1.3 spec.
*/
info->color_formats = DRM_COLOR_FORMAT_RGB444;
/* YCRCB444 is optional according to spec. */
if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
connector->name);
}
/*
* Spec says that if any deep color mode is supported at all,
* then deep color 36 bit must be supported.
*/
if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
connector->name);
}
}
static void
drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
{
struct drm_display_info *info = &connector->display_info;
u8 len = cea_db_payload_len(db);
info->is_hdmi = true;
if (len >= 6)
info->dvi_dual = db[6] & 1;
if (len >= 7)
info->max_tmds_clock = db[7] * 5000;
DRM_DEBUG_KMS("HDMI: DVI dual %d, "
"max TMDS clock %d kHz\n",
info->dvi_dual,
info->max_tmds_clock);
drm_parse_hdmi_deep_color_info(connector, db);
}
static void drm_parse_cea_ext(struct drm_connector *connector,
const struct edid *edid)
{
struct drm_display_info *info = &connector->display_info;
const u8 *edid_ext;
int i, start, end;
edid_ext = drm_find_cea_extension(edid);
if (!edid_ext)
return;
info->cea_rev = edid_ext[1];
/* The existence of a CEA block should imply RGB support */
info->color_formats = DRM_COLOR_FORMAT_RGB444;
if (edid_ext[3] & EDID_CEA_YCRCB444)
info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
if (edid_ext[3] & EDID_CEA_YCRCB422)
info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
if (cea_db_offsets(edid_ext, &start, &end))
return;
for_each_cea_db(edid_ext, i, start, end) {
const u8 *db = &edid_ext[i];
if (cea_db_is_hdmi_vsdb(db))
drm_parse_hdmi_vsdb_video(connector, db);
if (cea_db_is_hdmi_forum_vsdb(db))
drm_parse_hdmi_forum_vsdb(connector, db);
if (cea_db_is_y420cmdb(db))
drm_parse_y420cmdb_bitmap(connector, db);
if (cea_db_is_vcdb(db))
drm_parse_vcdb(connector, db);
if (cea_db_is_hdmi_hdr_metadata_block(db))
drm_parse_hdr_metadata_block(connector, db);
}
}
static
void get_monitor_range(struct detailed_timing *timing,
void *info_monitor_range)
{
struct drm_monitor_range_info *monitor_range = info_monitor_range;
const struct detailed_non_pixel *data = &timing->data.other_data;
const struct detailed_data_monitor_range *range = &data->data.range;
if (!is_display_descriptor((const u8 *)timing, EDID_DETAIL_MONITOR_RANGE))
return;
/*
* Check for flag range limits only. If flag == 1 then
* no additional timing information provided.
* Default GTF, GTF Secondary curve and CVT are not
* supported
*/
if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
return;
monitor_range->min_vfreq = range->min_vfreq;
monitor_range->max_vfreq = range->max_vfreq;
}
static
void drm_get_monitor_range(struct drm_connector *connector,
const struct edid *edid)
{
struct drm_display_info *info = &connector->display_info;
if (!version_greater(edid, 1, 1))
return;
drm_for_each_detailed_block((u8 *)edid, get_monitor_range,
&info->monitor_range);
DRM_DEBUG_KMS("Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
info->monitor_range.min_vfreq,
info->monitor_range.max_vfreq);
}
/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
* all of the values which would have been set from EDID
*/
void
drm_reset_display_info(struct drm_connector *connector)
{
struct drm_display_info *info = &connector->display_info;
info->width_mm = 0;
info->height_mm = 0;
info->bpc = 0;
info->color_formats = 0;
info->cea_rev = 0;
info->max_tmds_clock = 0;
info->dvi_dual = false;
info->is_hdmi = false;
info->has_hdmi_infoframe = false;
info->rgb_quant_range_selectable = false;
memset(&info->hdmi, 0, sizeof(info->hdmi));
info->non_desktop = 0;
memset(&info->monitor_range, 0, sizeof(info->monitor_range));
}
u32 drm_add_display_info(struct drm_connector *connector, const struct edid *edid)
{
struct drm_display_info *info = &connector->display_info;
u32 quirks = edid_get_quirks(edid);
drm_reset_display_info(connector);
info->width_mm = edid->width_cm * 10;
info->height_mm = edid->height_cm * 10;
info->non_desktop = !!(quirks & EDID_QUIRK_NON_DESKTOP);
drm_get_monitor_range(connector, edid);
DRM_DEBUG_KMS("non_desktop set to %d\n", info->non_desktop);
if (edid->revision < 3)
return quirks;
if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
return quirks;
drm_parse_cea_ext(connector, edid);
/*
* Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
*
* For such displays, the DFP spec 1.0, section 3.10 "EDID support"
* tells us to assume 8 bpc color depth if the EDID doesn't have
* extensions which tell otherwise.
*/
if (info->bpc == 0 && edid->revision == 3 &&
edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
info->bpc = 8;
DRM_DEBUG("%s: Assigning DFP sink color depth as %d bpc.\n",
connector->name, info->bpc);
}
/* Only defined for 1.4 with digital displays */
if (edid->revision < 4)
return quirks;
switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
case DRM_EDID_DIGITAL_DEPTH_6:
info->bpc = 6;
break;
case DRM_EDID_DIGITAL_DEPTH_8:
info->bpc = 8;
break;
case DRM_EDID_DIGITAL_DEPTH_10:
info->bpc = 10;
break;
case DRM_EDID_DIGITAL_DEPTH_12:
info->bpc = 12;
break;
case DRM_EDID_DIGITAL_DEPTH_14:
info->bpc = 14;
break;
case DRM_EDID_DIGITAL_DEPTH_16:
info->bpc = 16;
break;
case DRM_EDID_DIGITAL_DEPTH_UNDEF:
default:
info->bpc = 0;
break;
}
DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
connector->name, info->bpc);
info->color_formats |= DRM_COLOR_FORMAT_RGB444;
if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
return quirks;
}
static int validate_displayid(u8 *displayid, int length, int idx)
{
int i, dispid_length;
u8 csum = 0;
struct displayid_hdr *base;
base = (struct displayid_hdr *)&displayid[idx];
DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n",
base->rev, base->bytes, base->prod_id, base->ext_count);
/* +1 for DispID checksum */
dispid_length = sizeof(*base) + base->bytes + 1;
if (dispid_length > length - idx)
return -EINVAL;
for (i = 0; i < dispid_length; i++)
csum += displayid[idx + i];
if (csum) {
DRM_NOTE("DisplayID checksum invalid, remainder is %d\n", csum);
return -EINVAL;
}
return 0;
}
static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
struct displayid_detailed_timings_1 *timings)
{
struct drm_display_mode *mode;
unsigned pixel_clock = (timings->pixel_clock[0] |
(timings->pixel_clock[1] << 8) |
(timings->pixel_clock[2] << 16)) + 1;
unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
mode = drm_mode_create(dev);
if (!mode)
return NULL;
mode->clock = pixel_clock * 10;
mode->hdisplay = hactive;
mode->hsync_start = mode->hdisplay + hsync;
mode->hsync_end = mode->hsync_start + hsync_width;
mode->htotal = mode->hdisplay + hblank;
mode->vdisplay = vactive;
mode->vsync_start = mode->vdisplay + vsync;
mode->vsync_end = mode->vsync_start + vsync_width;
mode->vtotal = mode->vdisplay + vblank;
mode->flags = 0;
mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
mode->type = DRM_MODE_TYPE_DRIVER;
if (timings->flags & 0x80)
mode->type |= DRM_MODE_TYPE_PREFERRED;
drm_mode_set_name(mode);
return mode;
}
static int add_displayid_detailed_1_modes(struct drm_connector *connector,
struct displayid_block *block)
{
struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
int i;
int num_timings;
struct drm_display_mode *newmode;
int num_modes = 0;
/* blocks must be multiple of 20 bytes length */
if (block->num_bytes % 20)
return 0;
num_timings = block->num_bytes / 20;
for (i = 0; i < num_timings; i++) {
struct displayid_detailed_timings_1 *timings = &det->timings[i];
newmode = drm_mode_displayid_detailed(connector->dev, timings);
if (!newmode)
continue;
drm_mode_probed_add(connector, newmode);
num_modes++;
}
return num_modes;
}
static int add_displayid_detailed_modes(struct drm_connector *connector,
struct edid *edid)
{
u8 *displayid;
int length, idx;
struct displayid_block *block;
int num_modes = 0;
int ext_index = 0;
for (;;) {
displayid = drm_find_displayid_extension(edid, &length, &idx,
&ext_index);
if (!displayid)
break;
idx += sizeof(struct displayid_hdr);
for_each_displayid_db(displayid, block, idx, length) {
switch (block->tag) {
case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
num_modes += add_displayid_detailed_1_modes(connector, block);
break;
}
}
}
return num_modes;
}
/**
* drm_add_edid_modes - add modes from EDID data, if available
* @connector: connector we're probing
* @edid: EDID data
*
* Add the specified modes to the connector's mode list. Also fills out the
* &drm_display_info structure and ELD in @connector with any information which
* can be derived from the edid.
*
* Return: The number of modes added or 0 if we couldn't find any.
*/
int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
{
int num_modes = 0;
u32 quirks;
if (edid == NULL) {
clear_eld(connector);
return 0;
}
if (!drm_edid_is_valid(edid)) {
clear_eld(connector);
drm_warn(connector->dev, "%s: EDID invalid.\n",
connector->name);
return 0;
}
drm_edid_to_eld(connector, edid);
/*
* CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
* To avoid multiple parsing of same block, lets parse that map
* from sink info, before parsing CEA modes.
*/
quirks = drm_add_display_info(connector, edid);
/*
* EDID spec says modes should be preferred in this order:
* - preferred detailed mode
* - other detailed modes from base block
* - detailed modes from extension blocks
* - CVT 3-byte code modes
* - standard timing codes
* - established timing codes
* - modes inferred from GTF or CVT range information
*
* We get this pretty much right.
*
* XXX order for additional mode types in extension blocks?
*/
num_modes += add_detailed_modes(connector, edid, quirks);
num_modes += add_cvt_modes(connector, edid);
num_modes += add_standard_modes(connector, edid);
num_modes += add_established_modes(connector, edid);
num_modes += add_cea_modes(connector, edid);
num_modes += add_alternate_cea_modes(connector, edid);
num_modes += add_displayid_detailed_modes(connector, edid);
if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
num_modes += add_inferred_modes(connector, edid);
if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
edid_fixup_preferred(connector, quirks);
if (quirks & EDID_QUIRK_FORCE_6BPC)
connector->display_info.bpc = 6;
if (quirks & EDID_QUIRK_FORCE_8BPC)
connector->display_info.bpc = 8;
if (quirks & EDID_QUIRK_FORCE_10BPC)
connector->display_info.bpc = 10;
if (quirks & EDID_QUIRK_FORCE_12BPC)
connector->display_info.bpc = 12;
return num_modes;
}
EXPORT_SYMBOL(drm_add_edid_modes);
/**
* drm_add_modes_noedid - add modes for the connectors without EDID
* @connector: connector we're probing
* @hdisplay: the horizontal display limit
* @vdisplay: the vertical display limit
*
* Add the specified modes to the connector's mode list. Only when the
* hdisplay/vdisplay is not beyond the given limit, it will be added.
*
* Return: The number of modes added or 0 if we couldn't find any.
*/
int drm_add_modes_noedid(struct drm_connector *connector,
int hdisplay, int vdisplay)
{
int i, count, num_modes = 0;
struct drm_display_mode *mode;
struct drm_device *dev = connector->dev;
count = ARRAY_SIZE(drm_dmt_modes);
if (hdisplay < 0)
hdisplay = 0;
if (vdisplay < 0)
vdisplay = 0;
for (i = 0; i < count; i++) {
const struct drm_display_mode *ptr = &drm_dmt_modes[i];
if (hdisplay && vdisplay) {
/*
* Only when two are valid, they will be used to check
* whether the mode should be added to the mode list of
* the connector.
*/
if (ptr->hdisplay > hdisplay ||
ptr->vdisplay > vdisplay)
continue;
}
if (drm_mode_vrefresh(ptr) > 61)
continue;
mode = drm_mode_duplicate(dev, ptr);
if (mode) {
drm_mode_probed_add(connector, mode);
num_modes++;
}
}
return num_modes;
}
EXPORT_SYMBOL(drm_add_modes_noedid);
/**
* drm_set_preferred_mode - Sets the preferred mode of a connector
* @connector: connector whose mode list should be processed
* @hpref: horizontal resolution of preferred mode
* @vpref: vertical resolution of preferred mode
*
* Marks a mode as preferred if it matches the resolution specified by @hpref
* and @vpref.
*/
void drm_set_preferred_mode(struct drm_connector *connector,
int hpref, int vpref)
{
struct drm_display_mode *mode;
list_for_each_entry(mode, &connector->probed_modes, head) {
if (mode->hdisplay == hpref &&
mode->vdisplay == vpref)
mode->type |= DRM_MODE_TYPE_PREFERRED;
}
}
EXPORT_SYMBOL(drm_set_preferred_mode);
static bool is_hdmi2_sink(const struct drm_connector *connector)
{
/*
* FIXME: sil-sii8620 doesn't have a connector around when
* we need one, so we have to be prepared for a NULL connector.
*/
if (!connector)
return true;
return connector->display_info.hdmi.scdc.supported ||
connector->display_info.color_formats & DRM_COLOR_FORMAT_YCRCB420;
}
static inline bool is_eotf_supported(u8 output_eotf, u8 sink_eotf)
{
return sink_eotf & BIT(output_eotf);
}
/**
* drm_hdmi_infoframe_set_hdr_metadata() - fill an HDMI DRM infoframe with
* HDR metadata from userspace
* @frame: HDMI DRM infoframe
* @conn_state: Connector state containing HDR metadata
*
* Return: 0 on success or a negative error code on failure.
*/
int
drm_hdmi_infoframe_set_hdr_metadata(struct hdmi_drm_infoframe *frame,
const struct drm_connector_state *conn_state)
{
struct drm_connector *connector;
struct hdr_output_metadata *hdr_metadata;
int err;
if (!frame || !conn_state)
return -EINVAL;
connector = conn_state->connector;
if (!conn_state->hdr_output_metadata)
return -EINVAL;
hdr_metadata = conn_state->hdr_output_metadata->data;
if (!hdr_metadata || !connector)
return -EINVAL;
/* Sink EOTF is Bit map while infoframe is absolute values */
if (!is_eotf_supported(hdr_metadata->hdmi_metadata_type1.eotf,
connector->hdr_sink_metadata.hdmi_type1.eotf)) {
DRM_DEBUG_KMS("EOTF Not Supported\n");
return -EINVAL;
}
err = hdmi_drm_infoframe_init(frame);
if (err < 0)
return err;
frame->eotf = hdr_metadata->hdmi_metadata_type1.eotf;
frame->metadata_type = hdr_metadata->hdmi_metadata_type1.metadata_type;
BUILD_BUG_ON(sizeof(frame->display_primaries) !=
sizeof(hdr_metadata->hdmi_metadata_type1.display_primaries));
BUILD_BUG_ON(sizeof(frame->white_point) !=
sizeof(hdr_metadata->hdmi_metadata_type1.white_point));
memcpy(&frame->display_primaries,
&hdr_metadata->hdmi_metadata_type1.display_primaries,
sizeof(frame->display_primaries));
memcpy(&frame->white_point,
&hdr_metadata->hdmi_metadata_type1.white_point,
sizeof(frame->white_point));
frame->max_display_mastering_luminance =
hdr_metadata->hdmi_metadata_type1.max_display_mastering_luminance;
frame->min_display_mastering_luminance =
hdr_metadata->hdmi_metadata_type1.min_display_mastering_luminance;
frame->max_fall = hdr_metadata->hdmi_metadata_type1.max_fall;
frame->max_cll = hdr_metadata->hdmi_metadata_type1.max_cll;
return 0;
}
EXPORT_SYMBOL(drm_hdmi_infoframe_set_hdr_metadata);
static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
const struct drm_display_mode *mode)
{
bool has_hdmi_infoframe = connector ?
connector->display_info.has_hdmi_infoframe : false;
if (!has_hdmi_infoframe)
return 0;
/* No HDMI VIC when signalling 3D video format */
if (mode->flags & DRM_MODE_FLAG_3D_MASK)
return 0;
return drm_match_hdmi_mode(mode);
}
static u8 drm_mode_cea_vic(const struct drm_connector *connector,
const struct drm_display_mode *mode)
{
u8 vic;
/*
* HDMI spec says if a mode is found in HDMI 1.4b 4K modes
* we should send its VIC in vendor infoframes, else send the
* VIC in AVI infoframes. Lets check if this mode is present in
* HDMI 1.4b 4K modes
*/
if (drm_mode_hdmi_vic(connector, mode))
return 0;
vic = drm_match_cea_mode(mode);
/*
* HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
* HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
* have to make sure we dont break HDMI 1.4 sinks.
*/
if (!is_hdmi2_sink(connector) && vic > 64)
return 0;
return vic;
}
/**
* drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
* data from a DRM display mode
* @frame: HDMI AVI infoframe
* @connector: the connector
* @mode: DRM display mode
*
* Return: 0 on success or a negative error code on failure.
*/
int
drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
const struct drm_connector *connector,
const struct drm_display_mode *mode)
{
enum hdmi_picture_aspect picture_aspect;
u8 vic, hdmi_vic;
if (!frame || !mode)
return -EINVAL;
hdmi_avi_infoframe_init(frame);
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
frame->pixel_repeat = 1;
vic = drm_mode_cea_vic(connector, mode);
hdmi_vic = drm_mode_hdmi_vic(connector, mode);
frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
/*
* As some drivers don't support atomic, we can't use connector state.
* So just initialize the frame with default values, just the same way
* as it's done with other properties here.
*/
frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
frame->itc = 0;
/*
* Populate picture aspect ratio from either
* user input (if specified) or from the CEA/HDMI mode lists.
*/
picture_aspect = mode->picture_aspect_ratio;
if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
if (vic)
picture_aspect = drm_get_cea_aspect_ratio(vic);
else if (hdmi_vic)
picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
}
/*
* The infoframe can't convey anything but none, 4:3
* and 16:9, so if the user has asked for anything else
* we can only satisfy it by specifying the right VIC.
*/
if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
if (vic) {
if (picture_aspect != drm_get_cea_aspect_ratio(vic))
return -EINVAL;
} else if (hdmi_vic) {
if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
return -EINVAL;
} else {
return -EINVAL;
}
picture_aspect = HDMI_PICTURE_ASPECT_NONE;
}
frame->video_code = vic;
frame->picture_aspect = picture_aspect;
frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
return 0;
}
EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
/* HDMI Colorspace Spec Definitions */
#define FULL_COLORIMETRY_MASK 0x1FF
#define NORMAL_COLORIMETRY_MASK 0x3
#define EXTENDED_COLORIMETRY_MASK 0x7
#define EXTENDED_ACE_COLORIMETRY_MASK 0xF
#define C(x) ((x) << 0)
#define EC(x) ((x) << 2)
#define ACE(x) ((x) << 5)
#define HDMI_COLORIMETRY_NO_DATA 0x0
#define HDMI_COLORIMETRY_SMPTE_170M_YCC (C(1) | EC(0) | ACE(0))
#define HDMI_COLORIMETRY_BT709_YCC (C(2) | EC(0) | ACE(0))
#define HDMI_COLORIMETRY_XVYCC_601 (C(3) | EC(0) | ACE(0))
#define HDMI_COLORIMETRY_XVYCC_709 (C(3) | EC(1) | ACE(0))
#define HDMI_COLORIMETRY_SYCC_601 (C(3) | EC(2) | ACE(0))
#define HDMI_COLORIMETRY_OPYCC_601 (C(3) | EC(3) | ACE(0))
#define HDMI_COLORIMETRY_OPRGB (C(3) | EC(4) | ACE(0))
#define HDMI_COLORIMETRY_BT2020_CYCC (C(3) | EC(5) | ACE(0))
#define HDMI_COLORIMETRY_BT2020_RGB (C(3) | EC(6) | ACE(0))
#define HDMI_COLORIMETRY_BT2020_YCC (C(3) | EC(6) | ACE(0))
#define HDMI_COLORIMETRY_DCI_P3_RGB_D65 (C(3) | EC(7) | ACE(0))
#define HDMI_COLORIMETRY_DCI_P3_RGB_THEATER (C(3) | EC(7) | ACE(1))
static const u32 hdmi_colorimetry_val[] = {
[DRM_MODE_COLORIMETRY_NO_DATA] = HDMI_COLORIMETRY_NO_DATA,
[DRM_MODE_COLORIMETRY_SMPTE_170M_YCC] = HDMI_COLORIMETRY_SMPTE_170M_YCC,
[DRM_MODE_COLORIMETRY_BT709_YCC] = HDMI_COLORIMETRY_BT709_YCC,
[DRM_MODE_COLORIMETRY_XVYCC_601] = HDMI_COLORIMETRY_XVYCC_601,
[DRM_MODE_COLORIMETRY_XVYCC_709] = HDMI_COLORIMETRY_XVYCC_709,
[DRM_MODE_COLORIMETRY_SYCC_601] = HDMI_COLORIMETRY_SYCC_601,
[DRM_MODE_COLORIMETRY_OPYCC_601] = HDMI_COLORIMETRY_OPYCC_601,
[DRM_MODE_COLORIMETRY_OPRGB] = HDMI_COLORIMETRY_OPRGB,
[DRM_MODE_COLORIMETRY_BT2020_CYCC] = HDMI_COLORIMETRY_BT2020_CYCC,
[DRM_MODE_COLORIMETRY_BT2020_RGB] = HDMI_COLORIMETRY_BT2020_RGB,
[DRM_MODE_COLORIMETRY_BT2020_YCC] = HDMI_COLORIMETRY_BT2020_YCC,
};
#undef C
#undef EC
#undef ACE
/**
* drm_hdmi_avi_infoframe_colorspace() - fill the HDMI AVI infoframe
* colorspace information
* @frame: HDMI AVI infoframe
* @conn_state: connector state
*/
void
drm_hdmi_avi_infoframe_colorspace(struct hdmi_avi_infoframe *frame,
const struct drm_connector_state *conn_state)
{
u32 colorimetry_val;
u32 colorimetry_index = conn_state->colorspace & FULL_COLORIMETRY_MASK;
if (colorimetry_index >= ARRAY_SIZE(hdmi_colorimetry_val))
colorimetry_val = HDMI_COLORIMETRY_NO_DATA;
else
colorimetry_val = hdmi_colorimetry_val[colorimetry_index];
frame->colorimetry = colorimetry_val & NORMAL_COLORIMETRY_MASK;
/*
* ToDo: Extend it for ACE formats as well. Modify the infoframe
* structure and extend it in drivers/video/hdmi
*/
frame->extended_colorimetry = (colorimetry_val >> 2) &
EXTENDED_COLORIMETRY_MASK;
}
EXPORT_SYMBOL(drm_hdmi_avi_infoframe_colorspace);
/**
* drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
* quantization range information
* @frame: HDMI AVI infoframe
* @connector: the connector
* @mode: DRM display mode
* @rgb_quant_range: RGB quantization range (Q)
*/
void
drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
const struct drm_connector *connector,
const struct drm_display_mode *mode,
enum hdmi_quantization_range rgb_quant_range)
{
const struct drm_display_info *info = &connector->display_info;
/*
* CEA-861:
* "A Source shall not send a non-zero Q value that does not correspond
* to the default RGB Quantization Range for the transmitted Picture
* unless the Sink indicates support for the Q bit in a Video
* Capabilities Data Block."
*
* HDMI 2.0 recommends sending non-zero Q when it does match the
* default RGB quantization range for the mode, even when QS=0.
*/
if (info->rgb_quant_range_selectable ||
rgb_quant_range == drm_default_rgb_quant_range(mode))
frame->quantization_range = rgb_quant_range;
else
frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
/*
* CEA-861-F:
* "When transmitting any RGB colorimetry, the Source should set the
* YQ-field to match the RGB Quantization Range being transmitted
* (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
* set YQ=1) and the Sink shall ignore the YQ-field."
*
* Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
* by non-zero YQ when receiving RGB. There doesn't seem to be any
* good way to tell which version of CEA-861 the sink supports, so
* we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
* on on CEA-861-F.
*/
if (!is_hdmi2_sink(connector) ||
rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
frame->ycc_quantization_range =
HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
else
frame->ycc_quantization_range =
HDMI_YCC_QUANTIZATION_RANGE_FULL;
}
EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
/**
* drm_hdmi_avi_infoframe_bars() - fill the HDMI AVI infoframe
* bar information
* @frame: HDMI AVI infoframe
* @conn_state: connector state
*/
void
drm_hdmi_avi_infoframe_bars(struct hdmi_avi_infoframe *frame,
const struct drm_connector_state *conn_state)
{
frame->right_bar = conn_state->tv.margins.right;
frame->left_bar = conn_state->tv.margins.left;
frame->top_bar = conn_state->tv.margins.top;
frame->bottom_bar = conn_state->tv.margins.bottom;
}
EXPORT_SYMBOL(drm_hdmi_avi_infoframe_bars);
static enum hdmi_3d_structure
s3d_structure_from_display_mode(const struct drm_display_mode *mode)
{
u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
switch (layout) {
case DRM_MODE_FLAG_3D_FRAME_PACKING:
return HDMI_3D_STRUCTURE_FRAME_PACKING;
case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
case DRM_MODE_FLAG_3D_L_DEPTH:
return HDMI_3D_STRUCTURE_L_DEPTH;
case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
default:
return HDMI_3D_STRUCTURE_INVALID;
}
}
/**
* drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
* data from a DRM display mode
* @frame: HDMI vendor infoframe
* @connector: the connector
* @mode: DRM display mode
*
* Note that there's is a need to send HDMI vendor infoframes only when using a
* 4k or stereoscopic 3D mode. So when giving any other mode as input this
* function will return -EINVAL, error that can be safely ignored.
*
* Return: 0 on success or a negative error code on failure.
*/
int
drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
const struct drm_connector *connector,
const struct drm_display_mode *mode)
{
/*
* FIXME: sil-sii8620 doesn't have a connector around when
* we need one, so we have to be prepared for a NULL connector.
*/
bool has_hdmi_infoframe = connector ?
connector->display_info.has_hdmi_infoframe : false;
int err;
if (!frame || !mode)
return -EINVAL;
if (!has_hdmi_infoframe)
return -EINVAL;
err = hdmi_vendor_infoframe_init(frame);
if (err < 0)
return err;
/*
* Even if it's not absolutely necessary to send the infoframe
* (ie.vic==0 and s3d_struct==0) we will still send it if we
* know that the sink can handle it. This is based on a
* suggestion in HDMI 2.0 Appendix F. Apparently some sinks
* have trouble realizing that they shuld switch from 3D to 2D
* mode if the source simply stops sending the infoframe when
* it wants to switch from 3D to 2D.
*/
frame->vic = drm_mode_hdmi_vic(connector, mode);
frame->s3d_struct = s3d_structure_from_display_mode(mode);
return 0;
}
EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
static void drm_parse_tiled_block(struct drm_connector *connector,
const struct displayid_block *block)
{
const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
u16 w, h;
u8 tile_v_loc, tile_h_loc;
u8 num_v_tile, num_h_tile;
struct drm_tile_group *tg;
w = tile->tile_size[0] | tile->tile_size[1] << 8;
h = tile->tile_size[2] | tile->tile_size[3] << 8;
num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
connector->has_tile = true;
if (tile->tile_cap & 0x80)
connector->tile_is_single_monitor = true;
connector->num_h_tile = num_h_tile + 1;
connector->num_v_tile = num_v_tile + 1;
connector->tile_h_loc = tile_h_loc;
connector->tile_v_loc = tile_v_loc;
connector->tile_h_size = w + 1;
connector->tile_v_size = h + 1;
DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
if (!tg)
tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
if (!tg)
return;
if (connector->tile_group != tg) {
/* if we haven't got a pointer,
take the reference, drop ref to old tile group */
if (connector->tile_group)
drm_mode_put_tile_group(connector->dev, connector->tile_group);
connector->tile_group = tg;
} else {
/* if same tile group, then release the ref we just took. */
drm_mode_put_tile_group(connector->dev, tg);
}
}
static void drm_displayid_parse_tiled(struct drm_connector *connector,
const u8 *displayid, int length, int idx)
{
const struct displayid_block *block;
idx += sizeof(struct displayid_hdr);
for_each_displayid_db(displayid, block, idx, length) {
DRM_DEBUG_KMS("block id 0x%x, rev %d, len %d\n",
block->tag, block->rev, block->num_bytes);
switch (block->tag) {
case DATA_BLOCK_TILED_DISPLAY:
drm_parse_tiled_block(connector, block);
break;
default:
DRM_DEBUG_KMS("found DisplayID tag 0x%x, unhandled\n", block->tag);
break;
}
}
}
void drm_update_tile_info(struct drm_connector *connector,
const struct edid *edid)
{
const void *displayid = NULL;
int ext_index = 0;
int length, idx;
connector->has_tile = false;
for (;;) {
displayid = drm_find_displayid_extension(edid, &length, &idx,
&ext_index);
if (!displayid)
break;
drm_displayid_parse_tiled(connector, displayid, length, idx);
}
if (!connector->has_tile && connector->tile_group) {
drm_mode_put_tile_group(connector->dev, connector->tile_group);
connector->tile_group = NULL;
}
}