blob: af7216128d93ac4949e574b52d45f91079f6898f [file] [log] [blame]
/*
* Machine specific setup for xen
*
* Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/pm.h>
#include <linux/memblock.h>
#include <linux/cpuidle.h>
#include <linux/cpufreq.h>
#include <asm/elf.h>
#include <asm/vdso.h>
#include <asm/e820.h>
#include <asm/setup.h>
#include <asm/acpi.h>
#include <asm/numa.h>
#include <asm/xen/hypervisor.h>
#include <asm/xen/hypercall.h>
#include <xen/xen.h>
#include <xen/page.h>
#include <xen/interface/callback.h>
#include <xen/interface/memory.h>
#include <xen/interface/physdev.h>
#include <xen/features.h>
#include "xen-ops.h"
#include "vdso.h"
#include "p2m.h"
/* These are code, but not functions. Defined in entry.S */
extern const char xen_hypervisor_callback[];
extern const char xen_failsafe_callback[];
#ifdef CONFIG_X86_64
extern asmlinkage void nmi(void);
#endif
extern void xen_sysenter_target(void);
extern void xen_syscall_target(void);
extern void xen_syscall32_target(void);
/* Amount of extra memory space we add to the e820 ranges */
struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
/* Number of pages released from the initial allocation. */
unsigned long xen_released_pages;
/* Buffer used to remap identity mapped pages */
unsigned long xen_remap_buf[P2M_PER_PAGE] __initdata;
/*
* The maximum amount of extra memory compared to the base size. The
* main scaling factor is the size of struct page. At extreme ratios
* of base:extra, all the base memory can be filled with page
* structures for the extra memory, leaving no space for anything
* else.
*
* 10x seems like a reasonable balance between scaling flexibility and
* leaving a practically usable system.
*/
#define EXTRA_MEM_RATIO (10)
static void __init xen_add_extra_mem(u64 start, u64 size)
{
unsigned long pfn;
int i;
for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
/* Add new region. */
if (xen_extra_mem[i].size == 0) {
xen_extra_mem[i].start = start;
xen_extra_mem[i].size = size;
break;
}
/* Append to existing region. */
if (xen_extra_mem[i].start + xen_extra_mem[i].size == start) {
xen_extra_mem[i].size += size;
break;
}
}
if (i == XEN_EXTRA_MEM_MAX_REGIONS)
printk(KERN_WARNING "Warning: not enough extra memory regions\n");
memblock_reserve(start, size);
xen_max_p2m_pfn = PFN_DOWN(start + size);
for (pfn = PFN_DOWN(start); pfn < xen_max_p2m_pfn; pfn++) {
unsigned long mfn = pfn_to_mfn(pfn);
if (WARN_ONCE(mfn == pfn, "Trying to over-write 1-1 mapping (pfn: %lx)\n", pfn))
continue;
WARN_ONCE(mfn != INVALID_P2M_ENTRY, "Trying to remove %lx which has %lx mfn!\n",
pfn, mfn);
__set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
}
}
static unsigned long __init xen_do_chunk(unsigned long start,
unsigned long end, bool release)
{
struct xen_memory_reservation reservation = {
.address_bits = 0,
.extent_order = 0,
.domid = DOMID_SELF
};
unsigned long len = 0;
unsigned long pfn;
int ret;
for (pfn = start; pfn < end; pfn++) {
unsigned long frame;
unsigned long mfn = pfn_to_mfn(pfn);
if (release) {
/* Make sure pfn exists to start with */
if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
continue;
frame = mfn;
} else {
if (mfn != INVALID_P2M_ENTRY)
continue;
frame = pfn;
}
set_xen_guest_handle(reservation.extent_start, &frame);
reservation.nr_extents = 1;
ret = HYPERVISOR_memory_op(release ? XENMEM_decrease_reservation : XENMEM_populate_physmap,
&reservation);
WARN(ret != 1, "Failed to %s pfn %lx err=%d\n",
release ? "release" : "populate", pfn, ret);
if (ret == 1) {
if (!early_set_phys_to_machine(pfn, release ? INVALID_P2M_ENTRY : frame)) {
if (release)
break;
set_xen_guest_handle(reservation.extent_start, &frame);
reservation.nr_extents = 1;
ret = HYPERVISOR_memory_op(XENMEM_decrease_reservation,
&reservation);
break;
}
len++;
} else
break;
}
if (len)
printk(KERN_INFO "%s %lx-%lx pfn range: %lu pages %s\n",
release ? "Freeing" : "Populating",
start, end, len,
release ? "freed" : "added");
return len;
}
/*
* Finds the next RAM pfn available in the E820 map after min_pfn.
* This function updates min_pfn with the pfn found and returns
* the size of that range or zero if not found.
*/
static unsigned long __init xen_find_pfn_range(
const struct e820entry *list, size_t map_size,
unsigned long *min_pfn)
{
const struct e820entry *entry;
unsigned int i;
unsigned long done = 0;
for (i = 0, entry = list; i < map_size; i++, entry++) {
unsigned long s_pfn;
unsigned long e_pfn;
if (entry->type != E820_RAM)
continue;
e_pfn = PFN_DOWN(entry->addr + entry->size);
/* We only care about E820 after this */
if (e_pfn < *min_pfn)
continue;
s_pfn = PFN_UP(entry->addr);
/* If min_pfn falls within the E820 entry, we want to start
* at the min_pfn PFN.
*/
if (s_pfn <= *min_pfn) {
done = e_pfn - *min_pfn;
} else {
done = e_pfn - s_pfn;
*min_pfn = s_pfn;
}
break;
}
return done;
}
/*
* This releases a chunk of memory and then does the identity map. It's used as
* as a fallback if the remapping fails.
*/
static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn,
unsigned long end_pfn, unsigned long nr_pages, unsigned long *identity,
unsigned long *released)
{
WARN_ON(start_pfn > end_pfn);
/* Need to release pages first */
*released += xen_do_chunk(start_pfn, min(end_pfn, nr_pages), true);
*identity += set_phys_range_identity(start_pfn, end_pfn);
}
/*
* Helper function to update both the p2m and m2p tables.
*/
static unsigned long __init xen_update_mem_tables(unsigned long pfn,
unsigned long mfn)
{
struct mmu_update update = {
.ptr = ((unsigned long long)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE,
.val = pfn
};
/* Update p2m */
if (!early_set_phys_to_machine(pfn, mfn)) {
WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n",
pfn, mfn);
return false;
}
/* Update m2p */
if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) {
WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n",
mfn, pfn);
return false;
}
return true;
}
/*
* This function updates the p2m and m2p tables with an identity map from
* start_pfn to start_pfn+size and remaps the underlying RAM of the original
* allocation at remap_pfn. It must do so carefully in P2M_PER_PAGE sized blocks
* to not exhaust the reserved brk space. Doing it in properly aligned blocks
* ensures we only allocate the minimum required leaf pages in the p2m table. It
* copies the existing mfns from the p2m table under the 1:1 map, overwrites
* them with the identity map and then updates the p2m and m2p tables with the
* remapped memory.
*/
static unsigned long __init xen_do_set_identity_and_remap_chunk(
unsigned long start_pfn, unsigned long size, unsigned long remap_pfn)
{
unsigned long ident_pfn_iter, remap_pfn_iter;
unsigned long ident_start_pfn_align, remap_start_pfn_align;
unsigned long ident_end_pfn_align, remap_end_pfn_align;
unsigned long ident_boundary_pfn, remap_boundary_pfn;
unsigned long ident_cnt = 0;
unsigned long remap_cnt = 0;
unsigned long left = size;
unsigned long mod;
int i;
WARN_ON(size == 0);
BUG_ON(xen_feature(XENFEAT_auto_translated_physmap));
/*
* Determine the proper alignment to remap memory in P2M_PER_PAGE sized
* blocks. We need to keep track of both the existing pfn mapping and
* the new pfn remapping.
*/
mod = start_pfn % P2M_PER_PAGE;
ident_start_pfn_align =
mod ? (start_pfn - mod + P2M_PER_PAGE) : start_pfn;
mod = remap_pfn % P2M_PER_PAGE;
remap_start_pfn_align =
mod ? (remap_pfn - mod + P2M_PER_PAGE) : remap_pfn;
mod = (start_pfn + size) % P2M_PER_PAGE;
ident_end_pfn_align = start_pfn + size - mod;
mod = (remap_pfn + size) % P2M_PER_PAGE;
remap_end_pfn_align = remap_pfn + size - mod;
/* Iterate over each p2m leaf node in each range */
for (ident_pfn_iter = ident_start_pfn_align, remap_pfn_iter = remap_start_pfn_align;
ident_pfn_iter < ident_end_pfn_align && remap_pfn_iter < remap_end_pfn_align;
ident_pfn_iter += P2M_PER_PAGE, remap_pfn_iter += P2M_PER_PAGE) {
/* Check we aren't past the end */
BUG_ON(ident_pfn_iter + P2M_PER_PAGE > start_pfn + size);
BUG_ON(remap_pfn_iter + P2M_PER_PAGE > remap_pfn + size);
/* Save p2m mappings */
for (i = 0; i < P2M_PER_PAGE; i++)
xen_remap_buf[i] = pfn_to_mfn(ident_pfn_iter + i);
/* Set identity map which will free a p2m leaf */
ident_cnt += set_phys_range_identity(ident_pfn_iter,
ident_pfn_iter + P2M_PER_PAGE);
#ifdef DEBUG
/* Helps verify a p2m leaf has been freed */
for (i = 0; i < P2M_PER_PAGE; i++) {
unsigned int pfn = ident_pfn_iter + i;
BUG_ON(pfn_to_mfn(pfn) != pfn);
}
#endif
/* Now remap memory */
for (i = 0; i < P2M_PER_PAGE; i++) {
unsigned long mfn = xen_remap_buf[i];
/* This will use the p2m leaf freed above */
if (!xen_update_mem_tables(remap_pfn_iter + i, mfn)) {
WARN(1, "Failed to update mem mapping for pfn=%ld mfn=%ld\n",
remap_pfn_iter + i, mfn);
return 0;
}
remap_cnt++;
}
left -= P2M_PER_PAGE;
}
/* Max boundary space possible */
BUG_ON(left > (P2M_PER_PAGE - 1) * 2);
/* Now handle the boundary conditions */
ident_boundary_pfn = start_pfn;
remap_boundary_pfn = remap_pfn;
for (i = 0; i < left; i++) {
unsigned long mfn;
/* These two checks move from the start to end boundaries */
if (ident_boundary_pfn == ident_start_pfn_align)
ident_boundary_pfn = ident_pfn_iter;
if (remap_boundary_pfn == remap_start_pfn_align)
remap_boundary_pfn = remap_pfn_iter;
/* Check we aren't past the end */
BUG_ON(ident_boundary_pfn >= start_pfn + size);
BUG_ON(remap_boundary_pfn >= remap_pfn + size);
mfn = pfn_to_mfn(ident_boundary_pfn);
if (!xen_update_mem_tables(remap_boundary_pfn, mfn)) {
WARN(1, "Failed to update mem mapping for pfn=%ld mfn=%ld\n",
remap_pfn_iter + i, mfn);
return 0;
}
remap_cnt++;
ident_boundary_pfn++;
remap_boundary_pfn++;
}
/* Finish up the identity map */
if (ident_start_pfn_align >= ident_end_pfn_align) {
/*
* In this case we have an identity range which does not span an
* aligned block so everything needs to be identity mapped here.
* If we didn't check this we might remap too many pages since
* the align boundaries are not meaningful in this case.
*/
ident_cnt += set_phys_range_identity(start_pfn,
start_pfn + size);
} else {
/* Remapped above so check each end of the chunk */
if (start_pfn < ident_start_pfn_align)
ident_cnt += set_phys_range_identity(start_pfn,
ident_start_pfn_align);
if (start_pfn + size > ident_pfn_iter)
ident_cnt += set_phys_range_identity(ident_pfn_iter,
start_pfn + size);
}
BUG_ON(ident_cnt != size);
BUG_ON(remap_cnt != size);
return size;
}
/*
* This function takes a contiguous pfn range that needs to be identity mapped
* and:
*
* 1) Finds a new range of pfns to use to remap based on E820 and remap_pfn.
* 2) Calls the do_ function to actually do the mapping/remapping work.
*
* The goal is to not allocate additional memory but to remap the existing
* pages. In the case of an error the underlying memory is simply released back
* to Xen and not remapped.
*/
static unsigned long __init xen_set_identity_and_remap_chunk(
const struct e820entry *list, size_t map_size, unsigned long start_pfn,
unsigned long end_pfn, unsigned long nr_pages, unsigned long remap_pfn,
unsigned long *identity, unsigned long *remapped,
unsigned long *released)
{
unsigned long pfn;
unsigned long i = 0;
unsigned long n = end_pfn - start_pfn;
while (i < n) {
unsigned long cur_pfn = start_pfn + i;
unsigned long left = n - i;
unsigned long size = left;
unsigned long remap_range_size;
/* Do not remap pages beyond the current allocation */
if (cur_pfn >= nr_pages) {
/* Identity map remaining pages */
*identity += set_phys_range_identity(cur_pfn,
cur_pfn + size);
break;
}
if (cur_pfn + size > nr_pages)
size = nr_pages - cur_pfn;
remap_range_size = xen_find_pfn_range(list, map_size,
&remap_pfn);
if (!remap_range_size) {
pr_warning("Unable to find available pfn range, not remapping identity pages\n");
xen_set_identity_and_release_chunk(cur_pfn,
cur_pfn + left, nr_pages, identity, released);
break;
}
/* Adjust size to fit in current e820 RAM region */
if (size > remap_range_size)
size = remap_range_size;
if (!xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn)) {
WARN(1, "Failed to remap 1:1 memory cur_pfn=%ld size=%ld remap_pfn=%ld\n",
cur_pfn, size, remap_pfn);
xen_set_identity_and_release_chunk(cur_pfn,
cur_pfn + left, nr_pages, identity, released);
break;
}
/* Update variables to reflect new mappings. */
i += size;
remap_pfn += size;
*identity += size;
*remapped += size;
}
/*
* If the PFNs are currently mapped, the VA mapping also needs
* to be updated to be 1:1.
*/
for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
(void)HYPERVISOR_update_va_mapping(
(unsigned long)__va(pfn << PAGE_SHIFT),
mfn_pte(pfn, PAGE_KERNEL_IO), 0);
return remap_pfn;
}
static unsigned long __init xen_set_identity_and_remap(
const struct e820entry *list, size_t map_size, unsigned long nr_pages,
unsigned long *released)
{
phys_addr_t start = 0;
unsigned long identity = 0;
unsigned long remapped = 0;
unsigned long last_pfn = nr_pages;
const struct e820entry *entry;
unsigned long num_released = 0;
int i;
/*
* Combine non-RAM regions and gaps until a RAM region (or the
* end of the map) is reached, then set the 1:1 map and
* remap the memory in those non-RAM regions.
*
* The combined non-RAM regions are rounded to a whole number
* of pages so any partial pages are accessible via the 1:1
* mapping. This is needed for some BIOSes that put (for
* example) the DMI tables in a reserved region that begins on
* a non-page boundary.
*/
for (i = 0, entry = list; i < map_size; i++, entry++) {
phys_addr_t end = entry->addr + entry->size;
if (entry->type == E820_RAM || i == map_size - 1) {
unsigned long start_pfn = PFN_DOWN(start);
unsigned long end_pfn = PFN_UP(end);
if (entry->type == E820_RAM)
end_pfn = PFN_UP(entry->addr);
if (start_pfn < end_pfn)
last_pfn = xen_set_identity_and_remap_chunk(
list, map_size, start_pfn,
end_pfn, nr_pages, last_pfn,
&identity, &remapped,
&num_released);
start = end;
}
}
*released = num_released;
pr_info("Set %ld page(s) to 1-1 mapping\n", identity);
pr_info("Remapped %ld page(s), last_pfn=%ld\n", remapped,
last_pfn);
pr_info("Released %ld page(s)\n", num_released);
return last_pfn;
}
static unsigned long __init xen_get_max_pages(void)
{
unsigned long max_pages = MAX_DOMAIN_PAGES;
domid_t domid = DOMID_SELF;
int ret;
/*
* For the initial domain we use the maximum reservation as
* the maximum page.
*
* For guest domains the current maximum reservation reflects
* the current maximum rather than the static maximum. In this
* case the e820 map provided to us will cover the static
* maximum region.
*/
if (xen_initial_domain()) {
ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
if (ret > 0)
max_pages = ret;
}
return min(max_pages, MAX_DOMAIN_PAGES);
}
static void xen_align_and_add_e820_region(u64 start, u64 size, int type)
{
u64 end = start + size;
/* Align RAM regions to page boundaries. */
if (type == E820_RAM) {
start = PAGE_ALIGN(start);
end &= ~((u64)PAGE_SIZE - 1);
}
e820_add_region(start, end - start, type);
}
void xen_ignore_unusable(struct e820entry *list, size_t map_size)
{
struct e820entry *entry;
unsigned int i;
for (i = 0, entry = list; i < map_size; i++, entry++) {
if (entry->type == E820_UNUSABLE)
entry->type = E820_RAM;
}
}
/**
* machine_specific_memory_setup - Hook for machine specific memory setup.
**/
char * __init xen_memory_setup(void)
{
static struct e820entry map[E820MAX] __initdata;
unsigned long max_pfn = xen_start_info->nr_pages;
unsigned long long mem_end;
int rc;
struct xen_memory_map memmap;
unsigned long max_pages;
unsigned long last_pfn = 0;
unsigned long extra_pages = 0;
int i;
int op;
max_pfn = min(MAX_DOMAIN_PAGES, max_pfn);
mem_end = PFN_PHYS(max_pfn);
memmap.nr_entries = E820MAX;
set_xen_guest_handle(memmap.buffer, map);
op = xen_initial_domain() ?
XENMEM_machine_memory_map :
XENMEM_memory_map;
rc = HYPERVISOR_memory_op(op, &memmap);
if (rc == -ENOSYS) {
BUG_ON(xen_initial_domain());
memmap.nr_entries = 1;
map[0].addr = 0ULL;
map[0].size = mem_end;
/* 8MB slack (to balance backend allocations). */
map[0].size += 8ULL << 20;
map[0].type = E820_RAM;
rc = 0;
}
BUG_ON(rc);
/*
* Xen won't allow a 1:1 mapping to be created to UNUSABLE
* regions, so if we're using the machine memory map leave the
* region as RAM as it is in the pseudo-physical map.
*
* UNUSABLE regions in domUs are not handled and will need
* a patch in the future.
*/
if (xen_initial_domain())
xen_ignore_unusable(map, memmap.nr_entries);
/* Make sure the Xen-supplied memory map is well-ordered. */
sanitize_e820_map(map, memmap.nr_entries, &memmap.nr_entries);
max_pages = xen_get_max_pages();
if (max_pages > max_pfn)
extra_pages += max_pages - max_pfn;
/*
* Set identity map on non-RAM pages and remap the underlying RAM.
*/
last_pfn = xen_set_identity_and_remap(map, memmap.nr_entries, max_pfn,
&xen_released_pages);
extra_pages += xen_released_pages;
if (last_pfn > max_pfn) {
max_pfn = min(MAX_DOMAIN_PAGES, last_pfn);
mem_end = PFN_PHYS(max_pfn);
}
/*
* Clamp the amount of extra memory to a EXTRA_MEM_RATIO
* factor the base size. On non-highmem systems, the base
* size is the full initial memory allocation; on highmem it
* is limited to the max size of lowmem, so that it doesn't
* get completely filled.
*
* In principle there could be a problem in lowmem systems if
* the initial memory is also very large with respect to
* lowmem, but we won't try to deal with that here.
*/
extra_pages = min(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
extra_pages);
i = 0;
while (i < memmap.nr_entries) {
u64 addr = map[i].addr;
u64 size = map[i].size;
u32 type = map[i].type;
if (type == E820_RAM) {
if (addr < mem_end) {
size = min(size, mem_end - addr);
} else if (extra_pages) {
size = min(size, (u64)extra_pages * PAGE_SIZE);
extra_pages -= size / PAGE_SIZE;
xen_add_extra_mem(addr, size);
} else
type = E820_UNUSABLE;
}
xen_align_and_add_e820_region(addr, size, type);
map[i].addr += size;
map[i].size -= size;
if (map[i].size == 0)
i++;
}
/*
* Set the rest as identity mapped, in case PCI BARs are
* located here.
*
* PFNs above MAX_P2M_PFN are considered identity mapped as
* well.
*/
set_phys_range_identity(map[i-1].addr / PAGE_SIZE, ~0ul);
/*
* In domU, the ISA region is normal, usable memory, but we
* reserve ISA memory anyway because too many things poke
* about in there.
*/
e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS,
E820_RESERVED);
/*
* Reserve Xen bits:
* - mfn_list
* - xen_start_info
* See comment above "struct start_info" in <xen/interface/xen.h>
* We tried to make the the memblock_reserve more selective so
* that it would be clear what region is reserved. Sadly we ran
* in the problem wherein on a 64-bit hypervisor with a 32-bit
* initial domain, the pt_base has the cr3 value which is not
* neccessarily where the pagetable starts! As Jan put it: "
* Actually, the adjustment turns out to be correct: The page
* tables for a 32-on-64 dom0 get allocated in the order "first L1",
* "first L2", "first L3", so the offset to the page table base is
* indeed 2. When reading xen/include/public/xen.h's comment
* very strictly, this is not a violation (since there nothing is said
* that the first thing in the page table space is pointed to by
* pt_base; I admit that this seems to be implied though, namely
* do I think that it is implied that the page table space is the
* range [pt_base, pt_base + nt_pt_frames), whereas that
* range here indeed is [pt_base - 2, pt_base - 2 + nt_pt_frames),
* which - without a priori knowledge - the kernel would have
* difficulty to figure out)." - so lets just fall back to the
* easy way and reserve the whole region.
*/
memblock_reserve(__pa(xen_start_info->mfn_list),
xen_start_info->pt_base - xen_start_info->mfn_list);
sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
return "Xen";
}
/*
* Machine specific memory setup for auto-translated guests.
*/
char * __init xen_auto_xlated_memory_setup(void)
{
static struct e820entry map[E820MAX] __initdata;
struct xen_memory_map memmap;
int i;
int rc;
memmap.nr_entries = E820MAX;
set_xen_guest_handle(memmap.buffer, map);
rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
if (rc < 0)
panic("No memory map (%d)\n", rc);
sanitize_e820_map(map, ARRAY_SIZE(map), &memmap.nr_entries);
for (i = 0; i < memmap.nr_entries; i++)
e820_add_region(map[i].addr, map[i].size, map[i].type);
memblock_reserve(__pa(xen_start_info->mfn_list),
xen_start_info->pt_base - xen_start_info->mfn_list);
return "Xen";
}
/*
* Set the bit indicating "nosegneg" library variants should be used.
* We only need to bother in pure 32-bit mode; compat 32-bit processes
* can have un-truncated segments, so wrapping around is allowed.
*/
static void __init fiddle_vdso(void)
{
#ifdef CONFIG_X86_32
/*
* This could be called before selected_vdso32 is initialized, so
* just fiddle with both possible images. vdso_image_32_syscall
* can't be selected, since it only exists on 64-bit systems.
*/
u32 *mask;
mask = vdso_image_32_int80.data +
vdso_image_32_int80.sym_VDSO32_NOTE_MASK;
*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
mask = vdso_image_32_sysenter.data +
vdso_image_32_sysenter.sym_VDSO32_NOTE_MASK;
*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
#endif
}
static int register_callback(unsigned type, const void *func)
{
struct callback_register callback = {
.type = type,
.address = XEN_CALLBACK(__KERNEL_CS, func),
.flags = CALLBACKF_mask_events,
};
return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
}
void xen_enable_sysenter(void)
{
int ret;
unsigned sysenter_feature;
#ifdef CONFIG_X86_32
sysenter_feature = X86_FEATURE_SEP;
#else
sysenter_feature = X86_FEATURE_SYSENTER32;
#endif
if (!boot_cpu_has(sysenter_feature))
return;
ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
if(ret != 0)
setup_clear_cpu_cap(sysenter_feature);
}
void xen_enable_syscall(void)
{
#ifdef CONFIG_X86_64
int ret;
ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
if (ret != 0) {
printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
/* Pretty fatal; 64-bit userspace has no other
mechanism for syscalls. */
}
if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
ret = register_callback(CALLBACKTYPE_syscall32,
xen_syscall32_target);
if (ret != 0)
setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
}
#endif /* CONFIG_X86_64 */
}
void __init xen_pvmmu_arch_setup(void)
{
HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
HYPERVISOR_vm_assist(VMASST_CMD_enable,
VMASST_TYPE_pae_extended_cr3);
if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
BUG();
xen_enable_sysenter();
xen_enable_syscall();
}
/* This function is not called for HVM domains */
void __init xen_arch_setup(void)
{
xen_panic_handler_init();
if (!xen_feature(XENFEAT_auto_translated_physmap))
xen_pvmmu_arch_setup();
#ifdef CONFIG_ACPI
if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
disable_acpi();
}
#endif
memcpy(boot_command_line, xen_start_info->cmd_line,
MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
/* Set up idle, making sure it calls safe_halt() pvop */
disable_cpuidle();
disable_cpufreq();
WARN_ON(xen_set_default_idle());
fiddle_vdso();
#ifdef CONFIG_NUMA
numa_off = 1;
#endif
}