|  | /* | 
|  | * Read-Copy Update mechanism for mutual exclusion (tree-based version) | 
|  | * Internal non-public definitions that provide either classic | 
|  | * or preemptible semantics. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|  | * | 
|  | * Copyright Red Hat, 2009 | 
|  | * Copyright IBM Corporation, 2009 | 
|  | * | 
|  | * Author: Ingo Molnar <mingo@elte.hu> | 
|  | *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/delay.h> | 
|  | #include <linux/oom.h> | 
|  | #include <linux/smpboot.h> | 
|  |  | 
|  | #define RCU_KTHREAD_PRIO 1 | 
|  |  | 
|  | #ifdef CONFIG_RCU_BOOST | 
|  | #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO | 
|  | #else | 
|  | #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Check the RCU kernel configuration parameters and print informative | 
|  | * messages about anything out of the ordinary.  If you like #ifdef, you | 
|  | * will love this function. | 
|  | */ | 
|  | static void __init rcu_bootup_announce_oddness(void) | 
|  | { | 
|  | #ifdef CONFIG_RCU_TRACE | 
|  | printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n"); | 
|  | #endif | 
|  | #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32) | 
|  | printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n", | 
|  | CONFIG_RCU_FANOUT); | 
|  | #endif | 
|  | #ifdef CONFIG_RCU_FANOUT_EXACT | 
|  | printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n"); | 
|  | #endif | 
|  | #ifdef CONFIG_RCU_FAST_NO_HZ | 
|  | printk(KERN_INFO | 
|  | "\tRCU dyntick-idle grace-period acceleration is enabled.\n"); | 
|  | #endif | 
|  | #ifdef CONFIG_PROVE_RCU | 
|  | printk(KERN_INFO "\tRCU lockdep checking is enabled.\n"); | 
|  | #endif | 
|  | #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE | 
|  | printk(KERN_INFO "\tRCU torture testing starts during boot.\n"); | 
|  | #endif | 
|  | #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE) | 
|  | printk(KERN_INFO "\tDump stacks of tasks blocking RCU-preempt GP.\n"); | 
|  | #endif | 
|  | #if defined(CONFIG_RCU_CPU_STALL_INFO) | 
|  | printk(KERN_INFO "\tAdditional per-CPU info printed with stalls.\n"); | 
|  | #endif | 
|  | #if NUM_RCU_LVL_4 != 0 | 
|  | printk(KERN_INFO "\tFour-level hierarchy is enabled.\n"); | 
|  | #endif | 
|  | if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF) | 
|  | printk(KERN_INFO "\tExperimental boot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); | 
|  | if (nr_cpu_ids != NR_CPUS) | 
|  | printk(KERN_INFO "\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TREE_PREEMPT_RCU | 
|  |  | 
|  | struct rcu_state rcu_preempt_state = | 
|  | RCU_STATE_INITIALIZER(rcu_preempt, call_rcu); | 
|  | DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data); | 
|  | static struct rcu_state *rcu_state = &rcu_preempt_state; | 
|  |  | 
|  | static int rcu_preempted_readers_exp(struct rcu_node *rnp); | 
|  |  | 
|  | /* | 
|  | * Tell them what RCU they are running. | 
|  | */ | 
|  | static void __init rcu_bootup_announce(void) | 
|  | { | 
|  | printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n"); | 
|  | rcu_bootup_announce_oddness(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the number of RCU-preempt batches processed thus far | 
|  | * for debug and statistics. | 
|  | */ | 
|  | long rcu_batches_completed_preempt(void) | 
|  | { | 
|  | return rcu_preempt_state.completed; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt); | 
|  |  | 
|  | /* | 
|  | * Return the number of RCU batches processed thus far for debug & stats. | 
|  | */ | 
|  | long rcu_batches_completed(void) | 
|  | { | 
|  | return rcu_batches_completed_preempt(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_batches_completed); | 
|  |  | 
|  | /* | 
|  | * Force a quiescent state for preemptible RCU. | 
|  | */ | 
|  | void rcu_force_quiescent_state(void) | 
|  | { | 
|  | force_quiescent_state(&rcu_preempt_state); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); | 
|  |  | 
|  | /* | 
|  | * Record a preemptible-RCU quiescent state for the specified CPU.  Note | 
|  | * that this just means that the task currently running on the CPU is | 
|  | * not in a quiescent state.  There might be any number of tasks blocked | 
|  | * while in an RCU read-side critical section. | 
|  | * | 
|  | * Unlike the other rcu_*_qs() functions, callers to this function | 
|  | * must disable irqs in order to protect the assignment to | 
|  | * ->rcu_read_unlock_special. | 
|  | */ | 
|  | static void rcu_preempt_qs(int cpu) | 
|  | { | 
|  | struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); | 
|  |  | 
|  | if (rdp->passed_quiesce == 0) | 
|  | trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs"); | 
|  | rdp->passed_quiesce = 1; | 
|  | current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have entered the scheduler, and the current task might soon be | 
|  | * context-switched away from.  If this task is in an RCU read-side | 
|  | * critical section, we will no longer be able to rely on the CPU to | 
|  | * record that fact, so we enqueue the task on the blkd_tasks list. | 
|  | * The task will dequeue itself when it exits the outermost enclosing | 
|  | * RCU read-side critical section.  Therefore, the current grace period | 
|  | * cannot be permitted to complete until the blkd_tasks list entries | 
|  | * predating the current grace period drain, in other words, until | 
|  | * rnp->gp_tasks becomes NULL. | 
|  | * | 
|  | * Caller must disable preemption. | 
|  | */ | 
|  | static void rcu_preempt_note_context_switch(int cpu) | 
|  | { | 
|  | struct task_struct *t = current; | 
|  | unsigned long flags; | 
|  | struct rcu_data *rdp; | 
|  | struct rcu_node *rnp; | 
|  |  | 
|  | if (t->rcu_read_lock_nesting > 0 && | 
|  | (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) { | 
|  |  | 
|  | /* Possibly blocking in an RCU read-side critical section. */ | 
|  | rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu); | 
|  | rnp = rdp->mynode; | 
|  | raw_spin_lock_irqsave(&rnp->lock, flags); | 
|  | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; | 
|  | t->rcu_blocked_node = rnp; | 
|  |  | 
|  | /* | 
|  | * If this CPU has already checked in, then this task | 
|  | * will hold up the next grace period rather than the | 
|  | * current grace period.  Queue the task accordingly. | 
|  | * If the task is queued for the current grace period | 
|  | * (i.e., this CPU has not yet passed through a quiescent | 
|  | * state for the current grace period), then as long | 
|  | * as that task remains queued, the current grace period | 
|  | * cannot end.  Note that there is some uncertainty as | 
|  | * to exactly when the current grace period started. | 
|  | * We take a conservative approach, which can result | 
|  | * in unnecessarily waiting on tasks that started very | 
|  | * slightly after the current grace period began.  C'est | 
|  | * la vie!!! | 
|  | * | 
|  | * But first, note that the current CPU must still be | 
|  | * on line! | 
|  | */ | 
|  | WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0); | 
|  | WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); | 
|  | if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) { | 
|  | list_add(&t->rcu_node_entry, rnp->gp_tasks->prev); | 
|  | rnp->gp_tasks = &t->rcu_node_entry; | 
|  | #ifdef CONFIG_RCU_BOOST | 
|  | if (rnp->boost_tasks != NULL) | 
|  | rnp->boost_tasks = rnp->gp_tasks; | 
|  | #endif /* #ifdef CONFIG_RCU_BOOST */ | 
|  | } else { | 
|  | list_add(&t->rcu_node_entry, &rnp->blkd_tasks); | 
|  | if (rnp->qsmask & rdp->grpmask) | 
|  | rnp->gp_tasks = &t->rcu_node_entry; | 
|  | } | 
|  | trace_rcu_preempt_task(rdp->rsp->name, | 
|  | t->pid, | 
|  | (rnp->qsmask & rdp->grpmask) | 
|  | ? rnp->gpnum | 
|  | : rnp->gpnum + 1); | 
|  | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | } else if (t->rcu_read_lock_nesting < 0 && | 
|  | t->rcu_read_unlock_special) { | 
|  |  | 
|  | /* | 
|  | * Complete exit from RCU read-side critical section on | 
|  | * behalf of preempted instance of __rcu_read_unlock(). | 
|  | */ | 
|  | rcu_read_unlock_special(t); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Either we were not in an RCU read-side critical section to | 
|  | * begin with, or we have now recorded that critical section | 
|  | * globally.  Either way, we can now note a quiescent state | 
|  | * for this CPU.  Again, if we were in an RCU read-side critical | 
|  | * section, and if that critical section was blocking the current | 
|  | * grace period, then the fact that the task has been enqueued | 
|  | * means that we continue to block the current grace period. | 
|  | */ | 
|  | local_irq_save(flags); | 
|  | rcu_preempt_qs(cpu); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for preempted RCU readers blocking the current grace period | 
|  | * for the specified rcu_node structure.  If the caller needs a reliable | 
|  | * answer, it must hold the rcu_node's ->lock. | 
|  | */ | 
|  | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) | 
|  | { | 
|  | return rnp->gp_tasks != NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Record a quiescent state for all tasks that were previously queued | 
|  | * on the specified rcu_node structure and that were blocking the current | 
|  | * RCU grace period.  The caller must hold the specified rnp->lock with | 
|  | * irqs disabled, and this lock is released upon return, but irqs remain | 
|  | * disabled. | 
|  | */ | 
|  | static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) | 
|  | __releases(rnp->lock) | 
|  | { | 
|  | unsigned long mask; | 
|  | struct rcu_node *rnp_p; | 
|  |  | 
|  | if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { | 
|  | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | return;  /* Still need more quiescent states! */ | 
|  | } | 
|  |  | 
|  | rnp_p = rnp->parent; | 
|  | if (rnp_p == NULL) { | 
|  | /* | 
|  | * Either there is only one rcu_node in the tree, | 
|  | * or tasks were kicked up to root rcu_node due to | 
|  | * CPUs going offline. | 
|  | */ | 
|  | rcu_report_qs_rsp(&rcu_preempt_state, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Report up the rest of the hierarchy. */ | 
|  | mask = rnp->grpmask; | 
|  | raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */ | 
|  | raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */ | 
|  | rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Advance a ->blkd_tasks-list pointer to the next entry, instead | 
|  | * returning NULL if at the end of the list. | 
|  | */ | 
|  | static struct list_head *rcu_next_node_entry(struct task_struct *t, | 
|  | struct rcu_node *rnp) | 
|  | { | 
|  | struct list_head *np; | 
|  |  | 
|  | np = t->rcu_node_entry.next; | 
|  | if (np == &rnp->blkd_tasks) | 
|  | np = NULL; | 
|  | return np; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle special cases during rcu_read_unlock(), such as needing to | 
|  | * notify RCU core processing or task having blocked during the RCU | 
|  | * read-side critical section. | 
|  | */ | 
|  | void rcu_read_unlock_special(struct task_struct *t) | 
|  | { | 
|  | int empty; | 
|  | int empty_exp; | 
|  | int empty_exp_now; | 
|  | unsigned long flags; | 
|  | struct list_head *np; | 
|  | #ifdef CONFIG_RCU_BOOST | 
|  | struct rt_mutex *rbmp = NULL; | 
|  | #endif /* #ifdef CONFIG_RCU_BOOST */ | 
|  | struct rcu_node *rnp; | 
|  | int special; | 
|  |  | 
|  | /* NMI handlers cannot block and cannot safely manipulate state. */ | 
|  | if (in_nmi()) | 
|  | return; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | /* | 
|  | * If RCU core is waiting for this CPU to exit critical section, | 
|  | * let it know that we have done so. | 
|  | */ | 
|  | special = t->rcu_read_unlock_special; | 
|  | if (special & RCU_READ_UNLOCK_NEED_QS) { | 
|  | rcu_preempt_qs(smp_processor_id()); | 
|  | } | 
|  |  | 
|  | /* Hardware IRQ handlers cannot block. */ | 
|  | if (in_irq() || in_serving_softirq()) { | 
|  | local_irq_restore(flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Clean up if blocked during RCU read-side critical section. */ | 
|  | if (special & RCU_READ_UNLOCK_BLOCKED) { | 
|  | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED; | 
|  |  | 
|  | /* | 
|  | * Remove this task from the list it blocked on.  The | 
|  | * task can migrate while we acquire the lock, but at | 
|  | * most one time.  So at most two passes through loop. | 
|  | */ | 
|  | for (;;) { | 
|  | rnp = t->rcu_blocked_node; | 
|  | raw_spin_lock(&rnp->lock);  /* irqs already disabled. */ | 
|  | if (rnp == t->rcu_blocked_node) | 
|  | break; | 
|  | raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ | 
|  | } | 
|  | empty = !rcu_preempt_blocked_readers_cgp(rnp); | 
|  | empty_exp = !rcu_preempted_readers_exp(rnp); | 
|  | smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ | 
|  | np = rcu_next_node_entry(t, rnp); | 
|  | list_del_init(&t->rcu_node_entry); | 
|  | t->rcu_blocked_node = NULL; | 
|  | trace_rcu_unlock_preempted_task("rcu_preempt", | 
|  | rnp->gpnum, t->pid); | 
|  | if (&t->rcu_node_entry == rnp->gp_tasks) | 
|  | rnp->gp_tasks = np; | 
|  | if (&t->rcu_node_entry == rnp->exp_tasks) | 
|  | rnp->exp_tasks = np; | 
|  | #ifdef CONFIG_RCU_BOOST | 
|  | if (&t->rcu_node_entry == rnp->boost_tasks) | 
|  | rnp->boost_tasks = np; | 
|  | /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */ | 
|  | if (t->rcu_boost_mutex) { | 
|  | rbmp = t->rcu_boost_mutex; | 
|  | t->rcu_boost_mutex = NULL; | 
|  | } | 
|  | #endif /* #ifdef CONFIG_RCU_BOOST */ | 
|  |  | 
|  | /* | 
|  | * If this was the last task on the current list, and if | 
|  | * we aren't waiting on any CPUs, report the quiescent state. | 
|  | * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, | 
|  | * so we must take a snapshot of the expedited state. | 
|  | */ | 
|  | empty_exp_now = !rcu_preempted_readers_exp(rnp); | 
|  | if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) { | 
|  | trace_rcu_quiescent_state_report("preempt_rcu", | 
|  | rnp->gpnum, | 
|  | 0, rnp->qsmask, | 
|  | rnp->level, | 
|  | rnp->grplo, | 
|  | rnp->grphi, | 
|  | !!rnp->gp_tasks); | 
|  | rcu_report_unblock_qs_rnp(rnp, flags); | 
|  | } else { | 
|  | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RCU_BOOST | 
|  | /* Unboost if we were boosted. */ | 
|  | if (rbmp) | 
|  | rt_mutex_unlock(rbmp); | 
|  | #endif /* #ifdef CONFIG_RCU_BOOST */ | 
|  |  | 
|  | /* | 
|  | * If this was the last task on the expedited lists, | 
|  | * then we need to report up the rcu_node hierarchy. | 
|  | */ | 
|  | if (!empty_exp && empty_exp_now) | 
|  | rcu_report_exp_rnp(&rcu_preempt_state, rnp, true); | 
|  | } else { | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RCU_CPU_STALL_VERBOSE | 
|  |  | 
|  | /* | 
|  | * Dump detailed information for all tasks blocking the current RCU | 
|  | * grace period on the specified rcu_node structure. | 
|  | */ | 
|  | static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct task_struct *t; | 
|  |  | 
|  | raw_spin_lock_irqsave(&rnp->lock, flags); | 
|  | if (!rcu_preempt_blocked_readers_cgp(rnp)) { | 
|  | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | return; | 
|  | } | 
|  | t = list_entry(rnp->gp_tasks, | 
|  | struct task_struct, rcu_node_entry); | 
|  | list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) | 
|  | sched_show_task(t); | 
|  | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dump detailed information for all tasks blocking the current RCU | 
|  | * grace period. | 
|  | */ | 
|  | static void rcu_print_detail_task_stall(struct rcu_state *rsp) | 
|  | { | 
|  | struct rcu_node *rnp = rcu_get_root(rsp); | 
|  |  | 
|  | rcu_print_detail_task_stall_rnp(rnp); | 
|  | rcu_for_each_leaf_node(rsp, rnp) | 
|  | rcu_print_detail_task_stall_rnp(rnp); | 
|  | } | 
|  |  | 
|  | #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */ | 
|  |  | 
|  | static void rcu_print_detail_task_stall(struct rcu_state *rsp) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */ | 
|  |  | 
|  | #ifdef CONFIG_RCU_CPU_STALL_INFO | 
|  |  | 
|  | static void rcu_print_task_stall_begin(struct rcu_node *rnp) | 
|  | { | 
|  | printk(KERN_ERR "\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", | 
|  | rnp->level, rnp->grplo, rnp->grphi); | 
|  | } | 
|  |  | 
|  | static void rcu_print_task_stall_end(void) | 
|  | { | 
|  | printk(KERN_CONT "\n"); | 
|  | } | 
|  |  | 
|  | #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */ | 
|  |  | 
|  | static void rcu_print_task_stall_begin(struct rcu_node *rnp) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void rcu_print_task_stall_end(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */ | 
|  |  | 
|  | /* | 
|  | * Scan the current list of tasks blocked within RCU read-side critical | 
|  | * sections, printing out the tid of each. | 
|  | */ | 
|  | static int rcu_print_task_stall(struct rcu_node *rnp) | 
|  | { | 
|  | struct task_struct *t; | 
|  | int ndetected = 0; | 
|  |  | 
|  | if (!rcu_preempt_blocked_readers_cgp(rnp)) | 
|  | return 0; | 
|  | rcu_print_task_stall_begin(rnp); | 
|  | t = list_entry(rnp->gp_tasks, | 
|  | struct task_struct, rcu_node_entry); | 
|  | list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { | 
|  | printk(KERN_CONT " P%d", t->pid); | 
|  | ndetected++; | 
|  | } | 
|  | rcu_print_task_stall_end(); | 
|  | return ndetected; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that the list of blocked tasks for the newly completed grace | 
|  | * period is in fact empty.  It is a serious bug to complete a grace | 
|  | * period that still has RCU readers blocked!  This function must be | 
|  | * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock | 
|  | * must be held by the caller. | 
|  | * | 
|  | * Also, if there are blocked tasks on the list, they automatically | 
|  | * block the newly created grace period, so set up ->gp_tasks accordingly. | 
|  | */ | 
|  | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | 
|  | { | 
|  | WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); | 
|  | if (!list_empty(&rnp->blkd_tasks)) | 
|  | rnp->gp_tasks = rnp->blkd_tasks.next; | 
|  | WARN_ON_ONCE(rnp->qsmask); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  |  | 
|  | /* | 
|  | * Handle tasklist migration for case in which all CPUs covered by the | 
|  | * specified rcu_node have gone offline.  Move them up to the root | 
|  | * rcu_node.  The reason for not just moving them to the immediate | 
|  | * parent is to remove the need for rcu_read_unlock_special() to | 
|  | * make more than two attempts to acquire the target rcu_node's lock. | 
|  | * Returns true if there were tasks blocking the current RCU grace | 
|  | * period. | 
|  | * | 
|  | * Returns 1 if there was previously a task blocking the current grace | 
|  | * period on the specified rcu_node structure. | 
|  | * | 
|  | * The caller must hold rnp->lock with irqs disabled. | 
|  | */ | 
|  | static int rcu_preempt_offline_tasks(struct rcu_state *rsp, | 
|  | struct rcu_node *rnp, | 
|  | struct rcu_data *rdp) | 
|  | { | 
|  | struct list_head *lp; | 
|  | struct list_head *lp_root; | 
|  | int retval = 0; | 
|  | struct rcu_node *rnp_root = rcu_get_root(rsp); | 
|  | struct task_struct *t; | 
|  |  | 
|  | if (rnp == rnp_root) { | 
|  | WARN_ONCE(1, "Last CPU thought to be offlined?"); | 
|  | return 0;  /* Shouldn't happen: at least one CPU online. */ | 
|  | } | 
|  |  | 
|  | /* If we are on an internal node, complain bitterly. */ | 
|  | WARN_ON_ONCE(rnp != rdp->mynode); | 
|  |  | 
|  | /* | 
|  | * Move tasks up to root rcu_node.  Don't try to get fancy for | 
|  | * this corner-case operation -- just put this node's tasks | 
|  | * at the head of the root node's list, and update the root node's | 
|  | * ->gp_tasks and ->exp_tasks pointers to those of this node's, | 
|  | * if non-NULL.  This might result in waiting for more tasks than | 
|  | * absolutely necessary, but this is a good performance/complexity | 
|  | * tradeoff. | 
|  | */ | 
|  | if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0) | 
|  | retval |= RCU_OFL_TASKS_NORM_GP; | 
|  | if (rcu_preempted_readers_exp(rnp)) | 
|  | retval |= RCU_OFL_TASKS_EXP_GP; | 
|  | lp = &rnp->blkd_tasks; | 
|  | lp_root = &rnp_root->blkd_tasks; | 
|  | while (!list_empty(lp)) { | 
|  | t = list_entry(lp->next, typeof(*t), rcu_node_entry); | 
|  | raw_spin_lock(&rnp_root->lock); /* irqs already disabled */ | 
|  | list_del(&t->rcu_node_entry); | 
|  | t->rcu_blocked_node = rnp_root; | 
|  | list_add(&t->rcu_node_entry, lp_root); | 
|  | if (&t->rcu_node_entry == rnp->gp_tasks) | 
|  | rnp_root->gp_tasks = rnp->gp_tasks; | 
|  | if (&t->rcu_node_entry == rnp->exp_tasks) | 
|  | rnp_root->exp_tasks = rnp->exp_tasks; | 
|  | #ifdef CONFIG_RCU_BOOST | 
|  | if (&t->rcu_node_entry == rnp->boost_tasks) | 
|  | rnp_root->boost_tasks = rnp->boost_tasks; | 
|  | #endif /* #ifdef CONFIG_RCU_BOOST */ | 
|  | raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */ | 
|  | } | 
|  |  | 
|  | rnp->gp_tasks = NULL; | 
|  | rnp->exp_tasks = NULL; | 
|  | #ifdef CONFIG_RCU_BOOST | 
|  | rnp->boost_tasks = NULL; | 
|  | /* | 
|  | * In case root is being boosted and leaf was not.  Make sure | 
|  | * that we boost the tasks blocking the current grace period | 
|  | * in this case. | 
|  | */ | 
|  | raw_spin_lock(&rnp_root->lock); /* irqs already disabled */ | 
|  | if (rnp_root->boost_tasks != NULL && | 
|  | rnp_root->boost_tasks != rnp_root->gp_tasks && | 
|  | rnp_root->boost_tasks != rnp_root->exp_tasks) | 
|  | rnp_root->boost_tasks = rnp_root->gp_tasks; | 
|  | raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */ | 
|  | #endif /* #ifdef CONFIG_RCU_BOOST */ | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | /* | 
|  | * Check for a quiescent state from the current CPU.  When a task blocks, | 
|  | * the task is recorded in the corresponding CPU's rcu_node structure, | 
|  | * which is checked elsewhere. | 
|  | * | 
|  | * Caller must disable hard irqs. | 
|  | */ | 
|  | static void rcu_preempt_check_callbacks(int cpu) | 
|  | { | 
|  | struct task_struct *t = current; | 
|  |  | 
|  | if (t->rcu_read_lock_nesting == 0) { | 
|  | rcu_preempt_qs(cpu); | 
|  | return; | 
|  | } | 
|  | if (t->rcu_read_lock_nesting > 0 && | 
|  | per_cpu(rcu_preempt_data, cpu).qs_pending) | 
|  | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RCU_BOOST | 
|  |  | 
|  | static void rcu_preempt_do_callbacks(void) | 
|  | { | 
|  | rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data)); | 
|  | } | 
|  |  | 
|  | #endif /* #ifdef CONFIG_RCU_BOOST */ | 
|  |  | 
|  | /* | 
|  | * Queue a preemptible-RCU callback for invocation after a grace period. | 
|  | */ | 
|  | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | 
|  | { | 
|  | __call_rcu(head, func, &rcu_preempt_state, 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(call_rcu); | 
|  |  | 
|  | /* | 
|  | * Queue an RCU callback for lazy invocation after a grace period. | 
|  | * This will likely be later named something like "call_rcu_lazy()", | 
|  | * but this change will require some way of tagging the lazy RCU | 
|  | * callbacks in the list of pending callbacks.  Until then, this | 
|  | * function may only be called from __kfree_rcu(). | 
|  | */ | 
|  | void kfree_call_rcu(struct rcu_head *head, | 
|  | void (*func)(struct rcu_head *rcu)) | 
|  | { | 
|  | __call_rcu(head, func, &rcu_preempt_state, 1); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kfree_call_rcu); | 
|  |  | 
|  | /** | 
|  | * synchronize_rcu - wait until a grace period has elapsed. | 
|  | * | 
|  | * Control will return to the caller some time after a full grace | 
|  | * period has elapsed, in other words after all currently executing RCU | 
|  | * read-side critical sections have completed.  Note, however, that | 
|  | * upon return from synchronize_rcu(), the caller might well be executing | 
|  | * concurrently with new RCU read-side critical sections that began while | 
|  | * synchronize_rcu() was waiting.  RCU read-side critical sections are | 
|  | * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. | 
|  | */ | 
|  | void synchronize_rcu(void) | 
|  | { | 
|  | rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && | 
|  | !lock_is_held(&rcu_lock_map) && | 
|  | !lock_is_held(&rcu_sched_lock_map), | 
|  | "Illegal synchronize_rcu() in RCU read-side critical section"); | 
|  | if (!rcu_scheduler_active) | 
|  | return; | 
|  | wait_rcu_gp(call_rcu); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(synchronize_rcu); | 
|  |  | 
|  | static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq); | 
|  | static unsigned long sync_rcu_preempt_exp_count; | 
|  | static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex); | 
|  |  | 
|  | /* | 
|  | * Return non-zero if there are any tasks in RCU read-side critical | 
|  | * sections blocking the current preemptible-RCU expedited grace period. | 
|  | * If there is no preemptible-RCU expedited grace period currently in | 
|  | * progress, returns zero unconditionally. | 
|  | */ | 
|  | static int rcu_preempted_readers_exp(struct rcu_node *rnp) | 
|  | { | 
|  | return rnp->exp_tasks != NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return non-zero if there is no RCU expedited grace period in progress | 
|  | * for the specified rcu_node structure, in other words, if all CPUs and | 
|  | * tasks covered by the specified rcu_node structure have done their bit | 
|  | * for the current expedited grace period.  Works only for preemptible | 
|  | * RCU -- other RCU implementation use other means. | 
|  | * | 
|  | * Caller must hold sync_rcu_preempt_exp_mutex. | 
|  | */ | 
|  | static int sync_rcu_preempt_exp_done(struct rcu_node *rnp) | 
|  | { | 
|  | return !rcu_preempted_readers_exp(rnp) && | 
|  | ACCESS_ONCE(rnp->expmask) == 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Report the exit from RCU read-side critical section for the last task | 
|  | * that queued itself during or before the current expedited preemptible-RCU | 
|  | * grace period.  This event is reported either to the rcu_node structure on | 
|  | * which the task was queued or to one of that rcu_node structure's ancestors, | 
|  | * recursively up the tree.  (Calm down, calm down, we do the recursion | 
|  | * iteratively!) | 
|  | * | 
|  | * Most callers will set the "wake" flag, but the task initiating the | 
|  | * expedited grace period need not wake itself. | 
|  | * | 
|  | * Caller must hold sync_rcu_preempt_exp_mutex. | 
|  | */ | 
|  | static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, | 
|  | bool wake) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned long mask; | 
|  |  | 
|  | raw_spin_lock_irqsave(&rnp->lock, flags); | 
|  | for (;;) { | 
|  | if (!sync_rcu_preempt_exp_done(rnp)) { | 
|  | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | break; | 
|  | } | 
|  | if (rnp->parent == NULL) { | 
|  | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | if (wake) | 
|  | wake_up(&sync_rcu_preempt_exp_wq); | 
|  | break; | 
|  | } | 
|  | mask = rnp->grpmask; | 
|  | raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ | 
|  | rnp = rnp->parent; | 
|  | raw_spin_lock(&rnp->lock); /* irqs already disabled */ | 
|  | rnp->expmask &= ~mask; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Snapshot the tasks blocking the newly started preemptible-RCU expedited | 
|  | * grace period for the specified rcu_node structure.  If there are no such | 
|  | * tasks, report it up the rcu_node hierarchy. | 
|  | * | 
|  | * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock. | 
|  | */ | 
|  | static void | 
|  | sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp) | 
|  | { | 
|  | unsigned long flags; | 
|  | int must_wait = 0; | 
|  |  | 
|  | raw_spin_lock_irqsave(&rnp->lock, flags); | 
|  | if (list_empty(&rnp->blkd_tasks)) { | 
|  | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | } else { | 
|  | rnp->exp_tasks = rnp->blkd_tasks.next; | 
|  | rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */ | 
|  | must_wait = 1; | 
|  | } | 
|  | if (!must_wait) | 
|  | rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * synchronize_rcu_expedited - Brute-force RCU grace period | 
|  | * | 
|  | * Wait for an RCU-preempt grace period, but expedite it.  The basic | 
|  | * idea is to invoke synchronize_sched_expedited() to push all the tasks to | 
|  | * the ->blkd_tasks lists and wait for this list to drain.  This consumes | 
|  | * significant time on all CPUs and is unfriendly to real-time workloads, | 
|  | * so is thus not recommended for any sort of common-case code. | 
|  | * In fact, if you are using synchronize_rcu_expedited() in a loop, | 
|  | * please restructure your code to batch your updates, and then Use a | 
|  | * single synchronize_rcu() instead. | 
|  | * | 
|  | * Note that it is illegal to call this function while holding any lock | 
|  | * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal | 
|  | * to call this function from a CPU-hotplug notifier.  Failing to observe | 
|  | * these restriction will result in deadlock. | 
|  | */ | 
|  | void synchronize_rcu_expedited(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rcu_node *rnp; | 
|  | struct rcu_state *rsp = &rcu_preempt_state; | 
|  | unsigned long snap; | 
|  | int trycount = 0; | 
|  |  | 
|  | smp_mb(); /* Caller's modifications seen first by other CPUs. */ | 
|  | snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1; | 
|  | smp_mb(); /* Above access cannot bleed into critical section. */ | 
|  |  | 
|  | /* | 
|  | * Block CPU-hotplug operations.  This means that any CPU-hotplug | 
|  | * operation that finds an rcu_node structure with tasks in the | 
|  | * process of being boosted will know that all tasks blocking | 
|  | * this expedited grace period will already be in the process of | 
|  | * being boosted.  This simplifies the process of moving tasks | 
|  | * from leaf to root rcu_node structures. | 
|  | */ | 
|  | get_online_cpus(); | 
|  |  | 
|  | /* | 
|  | * Acquire lock, falling back to synchronize_rcu() if too many | 
|  | * lock-acquisition failures.  Of course, if someone does the | 
|  | * expedited grace period for us, just leave. | 
|  | */ | 
|  | while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) { | 
|  | if (ULONG_CMP_LT(snap, | 
|  | ACCESS_ONCE(sync_rcu_preempt_exp_count))) { | 
|  | put_online_cpus(); | 
|  | goto mb_ret; /* Others did our work for us. */ | 
|  | } | 
|  | if (trycount++ < 10) { | 
|  | udelay(trycount * num_online_cpus()); | 
|  | } else { | 
|  | put_online_cpus(); | 
|  | synchronize_rcu(); | 
|  | return; | 
|  | } | 
|  | } | 
|  | if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) { | 
|  | put_online_cpus(); | 
|  | goto unlock_mb_ret; /* Others did our work for us. */ | 
|  | } | 
|  |  | 
|  | /* force all RCU readers onto ->blkd_tasks lists. */ | 
|  | synchronize_sched_expedited(); | 
|  |  | 
|  | /* Initialize ->expmask for all non-leaf rcu_node structures. */ | 
|  | rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) { | 
|  | raw_spin_lock_irqsave(&rnp->lock, flags); | 
|  | rnp->expmask = rnp->qsmaskinit; | 
|  | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | } | 
|  |  | 
|  | /* Snapshot current state of ->blkd_tasks lists. */ | 
|  | rcu_for_each_leaf_node(rsp, rnp) | 
|  | sync_rcu_preempt_exp_init(rsp, rnp); | 
|  | if (NUM_RCU_NODES > 1) | 
|  | sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp)); | 
|  |  | 
|  | put_online_cpus(); | 
|  |  | 
|  | /* Wait for snapshotted ->blkd_tasks lists to drain. */ | 
|  | rnp = rcu_get_root(rsp); | 
|  | wait_event(sync_rcu_preempt_exp_wq, | 
|  | sync_rcu_preempt_exp_done(rnp)); | 
|  |  | 
|  | /* Clean up and exit. */ | 
|  | smp_mb(); /* ensure expedited GP seen before counter increment. */ | 
|  | ACCESS_ONCE(sync_rcu_preempt_exp_count)++; | 
|  | unlock_mb_ret: | 
|  | mutex_unlock(&sync_rcu_preempt_exp_mutex); | 
|  | mb_ret: | 
|  | smp_mb(); /* ensure subsequent action seen after grace period. */ | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); | 
|  |  | 
|  | /** | 
|  | * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. | 
|  | */ | 
|  | void rcu_barrier(void) | 
|  | { | 
|  | _rcu_barrier(&rcu_preempt_state); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_barrier); | 
|  |  | 
|  | /* | 
|  | * Initialize preemptible RCU's state structures. | 
|  | */ | 
|  | static void __init __rcu_init_preempt(void) | 
|  | { | 
|  | rcu_init_one(&rcu_preempt_state, &rcu_preempt_data); | 
|  | } | 
|  |  | 
|  | #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | 
|  |  | 
|  | static struct rcu_state *rcu_state = &rcu_sched_state; | 
|  |  | 
|  | /* | 
|  | * Tell them what RCU they are running. | 
|  | */ | 
|  | static void __init rcu_bootup_announce(void) | 
|  | { | 
|  | printk(KERN_INFO "Hierarchical RCU implementation.\n"); | 
|  | rcu_bootup_announce_oddness(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the number of RCU batches processed thus far for debug & stats. | 
|  | */ | 
|  | long rcu_batches_completed(void) | 
|  | { | 
|  | return rcu_batches_completed_sched(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_batches_completed); | 
|  |  | 
|  | /* | 
|  | * Force a quiescent state for RCU, which, because there is no preemptible | 
|  | * RCU, becomes the same as rcu-sched. | 
|  | */ | 
|  | void rcu_force_quiescent_state(void) | 
|  | { | 
|  | rcu_sched_force_quiescent_state(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); | 
|  |  | 
|  | /* | 
|  | * Because preemptible RCU does not exist, we never have to check for | 
|  | * CPUs being in quiescent states. | 
|  | */ | 
|  | static void rcu_preempt_note_context_switch(int cpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because preemptible RCU does not exist, there are never any preempted | 
|  | * RCU readers. | 
|  | */ | 
|  | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  |  | 
|  | /* Because preemptible RCU does not exist, no quieting of tasks. */ | 
|  | static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) | 
|  | { | 
|  | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | } | 
|  |  | 
|  | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | /* | 
|  | * Because preemptible RCU does not exist, we never have to check for | 
|  | * tasks blocked within RCU read-side critical sections. | 
|  | */ | 
|  | static void rcu_print_detail_task_stall(struct rcu_state *rsp) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because preemptible RCU does not exist, we never have to check for | 
|  | * tasks blocked within RCU read-side critical sections. | 
|  | */ | 
|  | static int rcu_print_task_stall(struct rcu_node *rnp) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because there is no preemptible RCU, there can be no readers blocked, | 
|  | * so there is no need to check for blocked tasks.  So check only for | 
|  | * bogus qsmask values. | 
|  | */ | 
|  | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | 
|  | { | 
|  | WARN_ON_ONCE(rnp->qsmask); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  |  | 
|  | /* | 
|  | * Because preemptible RCU does not exist, it never needs to migrate | 
|  | * tasks that were blocked within RCU read-side critical sections, and | 
|  | * such non-existent tasks cannot possibly have been blocking the current | 
|  | * grace period. | 
|  | */ | 
|  | static int rcu_preempt_offline_tasks(struct rcu_state *rsp, | 
|  | struct rcu_node *rnp, | 
|  | struct rcu_data *rdp) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | /* | 
|  | * Because preemptible RCU does not exist, it never has any callbacks | 
|  | * to check. | 
|  | */ | 
|  | static void rcu_preempt_check_callbacks(int cpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue an RCU callback for lazy invocation after a grace period. | 
|  | * This will likely be later named something like "call_rcu_lazy()", | 
|  | * but this change will require some way of tagging the lazy RCU | 
|  | * callbacks in the list of pending callbacks.  Until then, this | 
|  | * function may only be called from __kfree_rcu(). | 
|  | * | 
|  | * Because there is no preemptible RCU, we use RCU-sched instead. | 
|  | */ | 
|  | void kfree_call_rcu(struct rcu_head *head, | 
|  | void (*func)(struct rcu_head *rcu)) | 
|  | { | 
|  | __call_rcu(head, func, &rcu_sched_state, 1); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kfree_call_rcu); | 
|  |  | 
|  | /* | 
|  | * Wait for an rcu-preempt grace period, but make it happen quickly. | 
|  | * But because preemptible RCU does not exist, map to rcu-sched. | 
|  | */ | 
|  | void synchronize_rcu_expedited(void) | 
|  | { | 
|  | synchronize_sched_expedited(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  |  | 
|  | /* | 
|  | * Because preemptible RCU does not exist, there is never any need to | 
|  | * report on tasks preempted in RCU read-side critical sections during | 
|  | * expedited RCU grace periods. | 
|  | */ | 
|  | static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, | 
|  | bool wake) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | /* | 
|  | * Because preemptible RCU does not exist, rcu_barrier() is just | 
|  | * another name for rcu_barrier_sched(). | 
|  | */ | 
|  | void rcu_barrier(void) | 
|  | { | 
|  | rcu_barrier_sched(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rcu_barrier); | 
|  |  | 
|  | /* | 
|  | * Because preemptible RCU does not exist, it need not be initialized. | 
|  | */ | 
|  | static void __init __rcu_init_preempt(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ | 
|  |  | 
|  | #ifdef CONFIG_RCU_BOOST | 
|  |  | 
|  | #include "rtmutex_common.h" | 
|  |  | 
|  | #ifdef CONFIG_RCU_TRACE | 
|  |  | 
|  | static void rcu_initiate_boost_trace(struct rcu_node *rnp) | 
|  | { | 
|  | if (list_empty(&rnp->blkd_tasks)) | 
|  | rnp->n_balk_blkd_tasks++; | 
|  | else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL) | 
|  | rnp->n_balk_exp_gp_tasks++; | 
|  | else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL) | 
|  | rnp->n_balk_boost_tasks++; | 
|  | else if (rnp->gp_tasks != NULL && rnp->qsmask != 0) | 
|  | rnp->n_balk_notblocked++; | 
|  | else if (rnp->gp_tasks != NULL && | 
|  | ULONG_CMP_LT(jiffies, rnp->boost_time)) | 
|  | rnp->n_balk_notyet++; | 
|  | else | 
|  | rnp->n_balk_nos++; | 
|  | } | 
|  |  | 
|  | #else /* #ifdef CONFIG_RCU_TRACE */ | 
|  |  | 
|  | static void rcu_initiate_boost_trace(struct rcu_node *rnp) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* #else #ifdef CONFIG_RCU_TRACE */ | 
|  |  | 
|  | static void rcu_wake_cond(struct task_struct *t, int status) | 
|  | { | 
|  | /* | 
|  | * If the thread is yielding, only wake it when this | 
|  | * is invoked from idle | 
|  | */ | 
|  | if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) | 
|  | wake_up_process(t); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Carry out RCU priority boosting on the task indicated by ->exp_tasks | 
|  | * or ->boost_tasks, advancing the pointer to the next task in the | 
|  | * ->blkd_tasks list. | 
|  | * | 
|  | * Note that irqs must be enabled: boosting the task can block. | 
|  | * Returns 1 if there are more tasks needing to be boosted. | 
|  | */ | 
|  | static int rcu_boost(struct rcu_node *rnp) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rt_mutex mtx; | 
|  | struct task_struct *t; | 
|  | struct list_head *tb; | 
|  |  | 
|  | if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) | 
|  | return 0;  /* Nothing left to boost. */ | 
|  |  | 
|  | raw_spin_lock_irqsave(&rnp->lock, flags); | 
|  |  | 
|  | /* | 
|  | * Recheck under the lock: all tasks in need of boosting | 
|  | * might exit their RCU read-side critical sections on their own. | 
|  | */ | 
|  | if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { | 
|  | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Preferentially boost tasks blocking expedited grace periods. | 
|  | * This cannot starve the normal grace periods because a second | 
|  | * expedited grace period must boost all blocked tasks, including | 
|  | * those blocking the pre-existing normal grace period. | 
|  | */ | 
|  | if (rnp->exp_tasks != NULL) { | 
|  | tb = rnp->exp_tasks; | 
|  | rnp->n_exp_boosts++; | 
|  | } else { | 
|  | tb = rnp->boost_tasks; | 
|  | rnp->n_normal_boosts++; | 
|  | } | 
|  | rnp->n_tasks_boosted++; | 
|  |  | 
|  | /* | 
|  | * We boost task t by manufacturing an rt_mutex that appears to | 
|  | * be held by task t.  We leave a pointer to that rt_mutex where | 
|  | * task t can find it, and task t will release the mutex when it | 
|  | * exits its outermost RCU read-side critical section.  Then | 
|  | * simply acquiring this artificial rt_mutex will boost task | 
|  | * t's priority.  (Thanks to tglx for suggesting this approach!) | 
|  | * | 
|  | * Note that task t must acquire rnp->lock to remove itself from | 
|  | * the ->blkd_tasks list, which it will do from exit() if from | 
|  | * nowhere else.  We therefore are guaranteed that task t will | 
|  | * stay around at least until we drop rnp->lock.  Note that | 
|  | * rnp->lock also resolves races between our priority boosting | 
|  | * and task t's exiting its outermost RCU read-side critical | 
|  | * section. | 
|  | */ | 
|  | t = container_of(tb, struct task_struct, rcu_node_entry); | 
|  | rt_mutex_init_proxy_locked(&mtx, t); | 
|  | t->rcu_boost_mutex = &mtx; | 
|  | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */ | 
|  | rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */ | 
|  |  | 
|  | return ACCESS_ONCE(rnp->exp_tasks) != NULL || | 
|  | ACCESS_ONCE(rnp->boost_tasks) != NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Priority-boosting kthread.  One per leaf rcu_node and one for the | 
|  | * root rcu_node. | 
|  | */ | 
|  | static int rcu_boost_kthread(void *arg) | 
|  | { | 
|  | struct rcu_node *rnp = (struct rcu_node *)arg; | 
|  | int spincnt = 0; | 
|  | int more2boost; | 
|  |  | 
|  | trace_rcu_utilization("Start boost kthread@init"); | 
|  | for (;;) { | 
|  | rnp->boost_kthread_status = RCU_KTHREAD_WAITING; | 
|  | trace_rcu_utilization("End boost kthread@rcu_wait"); | 
|  | rcu_wait(rnp->boost_tasks || rnp->exp_tasks); | 
|  | trace_rcu_utilization("Start boost kthread@rcu_wait"); | 
|  | rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; | 
|  | more2boost = rcu_boost(rnp); | 
|  | if (more2boost) | 
|  | spincnt++; | 
|  | else | 
|  | spincnt = 0; | 
|  | if (spincnt > 10) { | 
|  | rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; | 
|  | trace_rcu_utilization("End boost kthread@rcu_yield"); | 
|  | schedule_timeout_interruptible(2); | 
|  | trace_rcu_utilization("Start boost kthread@rcu_yield"); | 
|  | spincnt = 0; | 
|  | } | 
|  | } | 
|  | /* NOTREACHED */ | 
|  | trace_rcu_utilization("End boost kthread@notreached"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to see if it is time to start boosting RCU readers that are | 
|  | * blocking the current grace period, and, if so, tell the per-rcu_node | 
|  | * kthread to start boosting them.  If there is an expedited grace | 
|  | * period in progress, it is always time to boost. | 
|  | * | 
|  | * The caller must hold rnp->lock, which this function releases. | 
|  | * The ->boost_kthread_task is immortal, so we don't need to worry | 
|  | * about it going away. | 
|  | */ | 
|  | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) | 
|  | { | 
|  | struct task_struct *t; | 
|  |  | 
|  | if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { | 
|  | rnp->n_balk_exp_gp_tasks++; | 
|  | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | return; | 
|  | } | 
|  | if (rnp->exp_tasks != NULL || | 
|  | (rnp->gp_tasks != NULL && | 
|  | rnp->boost_tasks == NULL && | 
|  | rnp->qsmask == 0 && | 
|  | ULONG_CMP_GE(jiffies, rnp->boost_time))) { | 
|  | if (rnp->exp_tasks == NULL) | 
|  | rnp->boost_tasks = rnp->gp_tasks; | 
|  | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | t = rnp->boost_kthread_task; | 
|  | if (t) | 
|  | rcu_wake_cond(t, rnp->boost_kthread_status); | 
|  | } else { | 
|  | rcu_initiate_boost_trace(rnp); | 
|  | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wake up the per-CPU kthread to invoke RCU callbacks. | 
|  | */ | 
|  | static void invoke_rcu_callbacks_kthread(void) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | __this_cpu_write(rcu_cpu_has_work, 1); | 
|  | if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && | 
|  | current != __this_cpu_read(rcu_cpu_kthread_task)) { | 
|  | rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), | 
|  | __this_cpu_read(rcu_cpu_kthread_status)); | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Is the current CPU running the RCU-callbacks kthread? | 
|  | * Caller must have preemption disabled. | 
|  | */ | 
|  | static bool rcu_is_callbacks_kthread(void) | 
|  | { | 
|  | return __get_cpu_var(rcu_cpu_kthread_task) == current; | 
|  | } | 
|  |  | 
|  | #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) | 
|  |  | 
|  | /* | 
|  | * Do priority-boost accounting for the start of a new grace period. | 
|  | */ | 
|  | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) | 
|  | { | 
|  | rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create an RCU-boost kthread for the specified node if one does not | 
|  | * already exist.  We only create this kthread for preemptible RCU. | 
|  | * Returns zero if all is well, a negated errno otherwise. | 
|  | */ | 
|  | static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp, | 
|  | struct rcu_node *rnp) | 
|  | { | 
|  | int rnp_index = rnp - &rsp->node[0]; | 
|  | unsigned long flags; | 
|  | struct sched_param sp; | 
|  | struct task_struct *t; | 
|  |  | 
|  | if (&rcu_preempt_state != rsp) | 
|  | return 0; | 
|  |  | 
|  | if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0) | 
|  | return 0; | 
|  |  | 
|  | rsp->boost = 1; | 
|  | if (rnp->boost_kthread_task != NULL) | 
|  | return 0; | 
|  | t = kthread_create(rcu_boost_kthread, (void *)rnp, | 
|  | "rcub/%d", rnp_index); | 
|  | if (IS_ERR(t)) | 
|  | return PTR_ERR(t); | 
|  | raw_spin_lock_irqsave(&rnp->lock, flags); | 
|  | rnp->boost_kthread_task = t; | 
|  | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | sp.sched_priority = RCU_BOOST_PRIO; | 
|  | sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); | 
|  | wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rcu_kthread_do_work(void) | 
|  | { | 
|  | rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data)); | 
|  | rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data)); | 
|  | rcu_preempt_do_callbacks(); | 
|  | } | 
|  |  | 
|  | static void rcu_cpu_kthread_setup(unsigned int cpu) | 
|  | { | 
|  | struct sched_param sp; | 
|  |  | 
|  | sp.sched_priority = RCU_KTHREAD_PRIO; | 
|  | sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); | 
|  | } | 
|  |  | 
|  | static void rcu_cpu_kthread_park(unsigned int cpu) | 
|  | { | 
|  | per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; | 
|  | } | 
|  |  | 
|  | static int rcu_cpu_kthread_should_run(unsigned int cpu) | 
|  | { | 
|  | return __get_cpu_var(rcu_cpu_has_work); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the | 
|  | * RCU softirq used in flavors and configurations of RCU that do not | 
|  | * support RCU priority boosting. | 
|  | */ | 
|  | static void rcu_cpu_kthread(unsigned int cpu) | 
|  | { | 
|  | unsigned int *statusp = &__get_cpu_var(rcu_cpu_kthread_status); | 
|  | char work, *workp = &__get_cpu_var(rcu_cpu_has_work); | 
|  | int spincnt; | 
|  |  | 
|  | for (spincnt = 0; spincnt < 10; spincnt++) { | 
|  | trace_rcu_utilization("Start CPU kthread@rcu_wait"); | 
|  | local_bh_disable(); | 
|  | *statusp = RCU_KTHREAD_RUNNING; | 
|  | this_cpu_inc(rcu_cpu_kthread_loops); | 
|  | local_irq_disable(); | 
|  | work = *workp; | 
|  | *workp = 0; | 
|  | local_irq_enable(); | 
|  | if (work) | 
|  | rcu_kthread_do_work(); | 
|  | local_bh_enable(); | 
|  | if (*workp == 0) { | 
|  | trace_rcu_utilization("End CPU kthread@rcu_wait"); | 
|  | *statusp = RCU_KTHREAD_WAITING; | 
|  | return; | 
|  | } | 
|  | } | 
|  | *statusp = RCU_KTHREAD_YIELDING; | 
|  | trace_rcu_utilization("Start CPU kthread@rcu_yield"); | 
|  | schedule_timeout_interruptible(2); | 
|  | trace_rcu_utilization("End CPU kthread@rcu_yield"); | 
|  | *statusp = RCU_KTHREAD_WAITING; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the per-rcu_node kthread's affinity to cover all CPUs that are | 
|  | * served by the rcu_node in question.  The CPU hotplug lock is still | 
|  | * held, so the value of rnp->qsmaskinit will be stable. | 
|  | * | 
|  | * We don't include outgoingcpu in the affinity set, use -1 if there is | 
|  | * no outgoing CPU.  If there are no CPUs left in the affinity set, | 
|  | * this function allows the kthread to execute on any CPU. | 
|  | */ | 
|  | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) | 
|  | { | 
|  | struct task_struct *t = rnp->boost_kthread_task; | 
|  | unsigned long mask = rnp->qsmaskinit; | 
|  | cpumask_var_t cm; | 
|  | int cpu; | 
|  |  | 
|  | if (!t) | 
|  | return; | 
|  | if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) | 
|  | return; | 
|  | for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) | 
|  | if ((mask & 0x1) && cpu != outgoingcpu) | 
|  | cpumask_set_cpu(cpu, cm); | 
|  | if (cpumask_weight(cm) == 0) { | 
|  | cpumask_setall(cm); | 
|  | for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) | 
|  | cpumask_clear_cpu(cpu, cm); | 
|  | WARN_ON_ONCE(cpumask_weight(cm) == 0); | 
|  | } | 
|  | set_cpus_allowed_ptr(t, cm); | 
|  | free_cpumask_var(cm); | 
|  | } | 
|  |  | 
|  | static struct smp_hotplug_thread rcu_cpu_thread_spec = { | 
|  | .store			= &rcu_cpu_kthread_task, | 
|  | .thread_should_run	= rcu_cpu_kthread_should_run, | 
|  | .thread_fn		= rcu_cpu_kthread, | 
|  | .thread_comm		= "rcuc/%u", | 
|  | .setup			= rcu_cpu_kthread_setup, | 
|  | .park			= rcu_cpu_kthread_park, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Spawn all kthreads -- called as soon as the scheduler is running. | 
|  | */ | 
|  | static int __init rcu_spawn_kthreads(void) | 
|  | { | 
|  | struct rcu_node *rnp; | 
|  | int cpu; | 
|  |  | 
|  | rcu_scheduler_fully_active = 1; | 
|  | for_each_possible_cpu(cpu) | 
|  | per_cpu(rcu_cpu_has_work, cpu) = 0; | 
|  | BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); | 
|  | rnp = rcu_get_root(rcu_state); | 
|  | (void)rcu_spawn_one_boost_kthread(rcu_state, rnp); | 
|  | if (NUM_RCU_NODES > 1) { | 
|  | rcu_for_each_leaf_node(rcu_state, rnp) | 
|  | (void)rcu_spawn_one_boost_kthread(rcu_state, rnp); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | early_initcall(rcu_spawn_kthreads); | 
|  |  | 
|  | static void __cpuinit rcu_prepare_kthreads(int cpu) | 
|  | { | 
|  | struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu); | 
|  | struct rcu_node *rnp = rdp->mynode; | 
|  |  | 
|  | /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ | 
|  | if (rcu_scheduler_fully_active) | 
|  | (void)rcu_spawn_one_boost_kthread(rcu_state, rnp); | 
|  | } | 
|  |  | 
|  | #else /* #ifdef CONFIG_RCU_BOOST */ | 
|  |  | 
|  | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) | 
|  | { | 
|  | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | } | 
|  |  | 
|  | static void invoke_rcu_callbacks_kthread(void) | 
|  | { | 
|  | WARN_ON_ONCE(1); | 
|  | } | 
|  |  | 
|  | static bool rcu_is_callbacks_kthread(void) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int __init rcu_scheduler_really_started(void) | 
|  | { | 
|  | rcu_scheduler_fully_active = 1; | 
|  | return 0; | 
|  | } | 
|  | early_initcall(rcu_scheduler_really_started); | 
|  |  | 
|  | static void __cpuinit rcu_prepare_kthreads(int cpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* #else #ifdef CONFIG_RCU_BOOST */ | 
|  |  | 
|  | #if !defined(CONFIG_RCU_FAST_NO_HZ) | 
|  |  | 
|  | /* | 
|  | * Check to see if any future RCU-related work will need to be done | 
|  | * by the current CPU, even if none need be done immediately, returning | 
|  | * 1 if so.  This function is part of the RCU implementation; it is -not- | 
|  | * an exported member of the RCU API. | 
|  | * | 
|  | * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs | 
|  | * any flavor of RCU. | 
|  | */ | 
|  | int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies) | 
|  | { | 
|  | *delta_jiffies = ULONG_MAX; | 
|  | return rcu_cpu_has_callbacks(cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it. | 
|  | */ | 
|  | static void rcu_prepare_for_idle_init(int cpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up | 
|  | * after it. | 
|  | */ | 
|  | static void rcu_cleanup_after_idle(int cpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, | 
|  | * is nothing. | 
|  | */ | 
|  | static void rcu_prepare_for_idle(int cpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Don't bother keeping a running count of the number of RCU callbacks | 
|  | * posted because CONFIG_RCU_FAST_NO_HZ=n. | 
|  | */ | 
|  | static void rcu_idle_count_callbacks_posted(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ | 
|  |  | 
|  | /* | 
|  | * This code is invoked when a CPU goes idle, at which point we want | 
|  | * to have the CPU do everything required for RCU so that it can enter | 
|  | * the energy-efficient dyntick-idle mode.  This is handled by a | 
|  | * state machine implemented by rcu_prepare_for_idle() below. | 
|  | * | 
|  | * The following three proprocessor symbols control this state machine: | 
|  | * | 
|  | * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt | 
|  | *	to satisfy RCU.  Beyond this point, it is better to incur a periodic | 
|  | *	scheduling-clock interrupt than to loop through the state machine | 
|  | *	at full power. | 
|  | * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are | 
|  | *	optional if RCU does not need anything immediately from this | 
|  | *	CPU, even if this CPU still has RCU callbacks queued.  The first | 
|  | *	times through the state machine are mandatory: we need to give | 
|  | *	the state machine a chance to communicate a quiescent state | 
|  | *	to the RCU core. | 
|  | * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted | 
|  | *	to sleep in dyntick-idle mode with RCU callbacks pending.  This | 
|  | *	is sized to be roughly one RCU grace period.  Those energy-efficiency | 
|  | *	benchmarkers who might otherwise be tempted to set this to a large | 
|  | *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your | 
|  | *	system.  And if you are -that- concerned about energy efficiency, | 
|  | *	just power the system down and be done with it! | 
|  | * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is | 
|  | *	permitted to sleep in dyntick-idle mode with only lazy RCU | 
|  | *	callbacks pending.  Setting this too high can OOM your system. | 
|  | * | 
|  | * The values below work well in practice.  If future workloads require | 
|  | * adjustment, they can be converted into kernel config parameters, though | 
|  | * making the state machine smarter might be a better option. | 
|  | */ | 
|  | #define RCU_IDLE_FLUSHES 5		/* Number of dyntick-idle tries. */ | 
|  | #define RCU_IDLE_OPT_FLUSHES 3		/* Optional dyntick-idle tries. */ | 
|  | #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */ | 
|  | #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */ | 
|  |  | 
|  | extern int tick_nohz_enabled; | 
|  |  | 
|  | /* | 
|  | * Does the specified flavor of RCU have non-lazy callbacks pending on | 
|  | * the specified CPU?  Both RCU flavor and CPU are specified by the | 
|  | * rcu_data structure. | 
|  | */ | 
|  | static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data *rdp) | 
|  | { | 
|  | return rdp->qlen != rdp->qlen_lazy; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TREE_PREEMPT_RCU | 
|  |  | 
|  | /* | 
|  | * Are there non-lazy RCU-preempt callbacks?  (There cannot be if there | 
|  | * is no RCU-preempt in the kernel.) | 
|  | */ | 
|  | static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu) | 
|  | { | 
|  | struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); | 
|  |  | 
|  | return __rcu_cpu_has_nonlazy_callbacks(rdp); | 
|  | } | 
|  |  | 
|  | #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | 
|  |  | 
|  | static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */ | 
|  |  | 
|  | /* | 
|  | * Does any flavor of RCU have non-lazy callbacks on the specified CPU? | 
|  | */ | 
|  | static bool rcu_cpu_has_nonlazy_callbacks(int cpu) | 
|  | { | 
|  | return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data, cpu)) || | 
|  | __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data, cpu)) || | 
|  | rcu_preempt_cpu_has_nonlazy_callbacks(cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allow the CPU to enter dyntick-idle mode if either: (1) There are no | 
|  | * callbacks on this CPU, (2) this CPU has not yet attempted to enter | 
|  | * dyntick-idle mode, or (3) this CPU is in the process of attempting to | 
|  | * enter dyntick-idle mode.  Otherwise, if we have recently tried and failed | 
|  | * to enter dyntick-idle mode, we refuse to try to enter it.  After all, | 
|  | * it is better to incur scheduling-clock interrupts than to spin | 
|  | * continuously for the same time duration! | 
|  | * | 
|  | * The delta_jiffies argument is used to store the time when RCU is | 
|  | * going to need the CPU again if it still has callbacks.  The reason | 
|  | * for this is that rcu_prepare_for_idle() might need to post a timer, | 
|  | * but if so, it will do so after tick_nohz_stop_sched_tick() has set | 
|  | * the wakeup time for this CPU.  This means that RCU's timer can be | 
|  | * delayed until the wakeup time, which defeats the purpose of posting | 
|  | * a timer. | 
|  | */ | 
|  | int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies) | 
|  | { | 
|  | struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); | 
|  |  | 
|  | /* Flag a new idle sojourn to the idle-entry state machine. */ | 
|  | rdtp->idle_first_pass = 1; | 
|  | /* If no callbacks, RCU doesn't need the CPU. */ | 
|  | if (!rcu_cpu_has_callbacks(cpu)) { | 
|  | *delta_jiffies = ULONG_MAX; | 
|  | return 0; | 
|  | } | 
|  | if (rdtp->dyntick_holdoff == jiffies) { | 
|  | /* RCU recently tried and failed, so don't try again. */ | 
|  | *delta_jiffies = 1; | 
|  | return 1; | 
|  | } | 
|  | /* Set up for the possibility that RCU will post a timer. */ | 
|  | if (rcu_cpu_has_nonlazy_callbacks(cpu)) { | 
|  | *delta_jiffies = round_up(RCU_IDLE_GP_DELAY + jiffies, | 
|  | RCU_IDLE_GP_DELAY) - jiffies; | 
|  | } else { | 
|  | *delta_jiffies = jiffies + RCU_IDLE_LAZY_GP_DELAY; | 
|  | *delta_jiffies = round_jiffies(*delta_jiffies) - jiffies; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handler for smp_call_function_single().  The only point of this | 
|  | * handler is to wake the CPU up, so the handler does only tracing. | 
|  | */ | 
|  | void rcu_idle_demigrate(void *unused) | 
|  | { | 
|  | trace_rcu_prep_idle("Demigrate"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Timer handler used to force CPU to start pushing its remaining RCU | 
|  | * callbacks in the case where it entered dyntick-idle mode with callbacks | 
|  | * pending.  The hander doesn't really need to do anything because the | 
|  | * real work is done upon re-entry to idle, or by the next scheduling-clock | 
|  | * interrupt should idle not be re-entered. | 
|  | * | 
|  | * One special case: the timer gets migrated without awakening the CPU | 
|  | * on which the timer was scheduled on.  In this case, we must wake up | 
|  | * that CPU.  We do so with smp_call_function_single(). | 
|  | */ | 
|  | static void rcu_idle_gp_timer_func(unsigned long cpu_in) | 
|  | { | 
|  | int cpu = (int)cpu_in; | 
|  |  | 
|  | trace_rcu_prep_idle("Timer"); | 
|  | if (cpu != smp_processor_id()) | 
|  | smp_call_function_single(cpu, rcu_idle_demigrate, NULL, 0); | 
|  | else | 
|  | WARN_ON_ONCE(1); /* Getting here can hang the system... */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the timer used to pull CPUs out of dyntick-idle mode. | 
|  | */ | 
|  | static void rcu_prepare_for_idle_init(int cpu) | 
|  | { | 
|  | struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); | 
|  |  | 
|  | rdtp->dyntick_holdoff = jiffies - 1; | 
|  | setup_timer(&rdtp->idle_gp_timer, rcu_idle_gp_timer_func, cpu); | 
|  | rdtp->idle_gp_timer_expires = jiffies - 1; | 
|  | rdtp->idle_first_pass = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clean up for exit from idle.  Because we are exiting from idle, there | 
|  | * is no longer any point to ->idle_gp_timer, so cancel it.  This will | 
|  | * do nothing if this timer is not active, so just cancel it unconditionally. | 
|  | */ | 
|  | static void rcu_cleanup_after_idle(int cpu) | 
|  | { | 
|  | struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); | 
|  |  | 
|  | del_timer(&rdtp->idle_gp_timer); | 
|  | trace_rcu_prep_idle("Cleanup after idle"); | 
|  | rdtp->tick_nohz_enabled_snap = ACCESS_ONCE(tick_nohz_enabled); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to see if any RCU-related work can be done by the current CPU, | 
|  | * and if so, schedule a softirq to get it done.  This function is part | 
|  | * of the RCU implementation; it is -not- an exported member of the RCU API. | 
|  | * | 
|  | * The idea is for the current CPU to clear out all work required by the | 
|  | * RCU core for the current grace period, so that this CPU can be permitted | 
|  | * to enter dyntick-idle mode.  In some cases, it will need to be awakened | 
|  | * at the end of the grace period by whatever CPU ends the grace period. | 
|  | * This allows CPUs to go dyntick-idle more quickly, and to reduce the | 
|  | * number of wakeups by a modest integer factor. | 
|  | * | 
|  | * Because it is not legal to invoke rcu_process_callbacks() with irqs | 
|  | * disabled, we do one pass of force_quiescent_state(), then do a | 
|  | * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked | 
|  | * later.  The ->dyntick_drain field controls the sequencing. | 
|  | * | 
|  | * The caller must have disabled interrupts. | 
|  | */ | 
|  | static void rcu_prepare_for_idle(int cpu) | 
|  | { | 
|  | struct timer_list *tp; | 
|  | struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); | 
|  | int tne; | 
|  |  | 
|  | /* Handle nohz enablement switches conservatively. */ | 
|  | tne = ACCESS_ONCE(tick_nohz_enabled); | 
|  | if (tne != rdtp->tick_nohz_enabled_snap) { | 
|  | if (rcu_cpu_has_callbacks(cpu)) | 
|  | invoke_rcu_core(); /* force nohz to see update. */ | 
|  | rdtp->tick_nohz_enabled_snap = tne; | 
|  | return; | 
|  | } | 
|  | if (!tne) | 
|  | return; | 
|  |  | 
|  | /* Adaptive-tick mode, where usermode execution is idle to RCU. */ | 
|  | if (!is_idle_task(current)) { | 
|  | rdtp->dyntick_holdoff = jiffies - 1; | 
|  | if (rcu_cpu_has_nonlazy_callbacks(cpu)) { | 
|  | trace_rcu_prep_idle("User dyntick with callbacks"); | 
|  | rdtp->idle_gp_timer_expires = | 
|  | round_up(jiffies + RCU_IDLE_GP_DELAY, | 
|  | RCU_IDLE_GP_DELAY); | 
|  | } else if (rcu_cpu_has_callbacks(cpu)) { | 
|  | rdtp->idle_gp_timer_expires = | 
|  | round_jiffies(jiffies + RCU_IDLE_LAZY_GP_DELAY); | 
|  | trace_rcu_prep_idle("User dyntick with lazy callbacks"); | 
|  | } else { | 
|  | return; | 
|  | } | 
|  | tp = &rdtp->idle_gp_timer; | 
|  | mod_timer_pinned(tp, rdtp->idle_gp_timer_expires); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this is an idle re-entry, for example, due to use of | 
|  | * RCU_NONIDLE() or the new idle-loop tracing API within the idle | 
|  | * loop, then don't take any state-machine actions, unless the | 
|  | * momentary exit from idle queued additional non-lazy callbacks. | 
|  | * Instead, repost the ->idle_gp_timer if this CPU has callbacks | 
|  | * pending. | 
|  | */ | 
|  | if (!rdtp->idle_first_pass && | 
|  | (rdtp->nonlazy_posted == rdtp->nonlazy_posted_snap)) { | 
|  | if (rcu_cpu_has_callbacks(cpu)) { | 
|  | tp = &rdtp->idle_gp_timer; | 
|  | mod_timer_pinned(tp, rdtp->idle_gp_timer_expires); | 
|  | } | 
|  | return; | 
|  | } | 
|  | rdtp->idle_first_pass = 0; | 
|  | rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted - 1; | 
|  |  | 
|  | /* | 
|  | * If there are no callbacks on this CPU, enter dyntick-idle mode. | 
|  | * Also reset state to avoid prejudicing later attempts. | 
|  | */ | 
|  | if (!rcu_cpu_has_callbacks(cpu)) { | 
|  | rdtp->dyntick_holdoff = jiffies - 1; | 
|  | rdtp->dyntick_drain = 0; | 
|  | trace_rcu_prep_idle("No callbacks"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If in holdoff mode, just return.  We will presumably have | 
|  | * refrained from disabling the scheduling-clock tick. | 
|  | */ | 
|  | if (rdtp->dyntick_holdoff == jiffies) { | 
|  | trace_rcu_prep_idle("In holdoff"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Check and update the ->dyntick_drain sequencing. */ | 
|  | if (rdtp->dyntick_drain <= 0) { | 
|  | /* First time through, initialize the counter. */ | 
|  | rdtp->dyntick_drain = RCU_IDLE_FLUSHES; | 
|  | } else if (rdtp->dyntick_drain <= RCU_IDLE_OPT_FLUSHES && | 
|  | !rcu_pending(cpu) && | 
|  | !local_softirq_pending()) { | 
|  | /* Can we go dyntick-idle despite still having callbacks? */ | 
|  | rdtp->dyntick_drain = 0; | 
|  | rdtp->dyntick_holdoff = jiffies; | 
|  | if (rcu_cpu_has_nonlazy_callbacks(cpu)) { | 
|  | trace_rcu_prep_idle("Dyntick with callbacks"); | 
|  | rdtp->idle_gp_timer_expires = | 
|  | round_up(jiffies + RCU_IDLE_GP_DELAY, | 
|  | RCU_IDLE_GP_DELAY); | 
|  | } else { | 
|  | rdtp->idle_gp_timer_expires = | 
|  | round_jiffies(jiffies + RCU_IDLE_LAZY_GP_DELAY); | 
|  | trace_rcu_prep_idle("Dyntick with lazy callbacks"); | 
|  | } | 
|  | tp = &rdtp->idle_gp_timer; | 
|  | mod_timer_pinned(tp, rdtp->idle_gp_timer_expires); | 
|  | rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; | 
|  | return; /* Nothing more to do immediately. */ | 
|  | } else if (--(rdtp->dyntick_drain) <= 0) { | 
|  | /* We have hit the limit, so time to give up. */ | 
|  | rdtp->dyntick_holdoff = jiffies; | 
|  | trace_rcu_prep_idle("Begin holdoff"); | 
|  | invoke_rcu_core();  /* Force the CPU out of dyntick-idle. */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do one step of pushing the remaining RCU callbacks through | 
|  | * the RCU core state machine. | 
|  | */ | 
|  | #ifdef CONFIG_TREE_PREEMPT_RCU | 
|  | if (per_cpu(rcu_preempt_data, cpu).nxtlist) { | 
|  | rcu_preempt_qs(cpu); | 
|  | force_quiescent_state(&rcu_preempt_state); | 
|  | } | 
|  | #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | 
|  | if (per_cpu(rcu_sched_data, cpu).nxtlist) { | 
|  | rcu_sched_qs(cpu); | 
|  | force_quiescent_state(&rcu_sched_state); | 
|  | } | 
|  | if (per_cpu(rcu_bh_data, cpu).nxtlist) { | 
|  | rcu_bh_qs(cpu); | 
|  | force_quiescent_state(&rcu_bh_state); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If RCU callbacks are still pending, RCU still needs this CPU. | 
|  | * So try forcing the callbacks through the grace period. | 
|  | */ | 
|  | if (rcu_cpu_has_callbacks(cpu)) { | 
|  | trace_rcu_prep_idle("More callbacks"); | 
|  | invoke_rcu_core(); | 
|  | } else { | 
|  | trace_rcu_prep_idle("Callbacks drained"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Keep a running count of the number of non-lazy callbacks posted | 
|  | * on this CPU.  This running counter (which is never decremented) allows | 
|  | * rcu_prepare_for_idle() to detect when something out of the idle loop | 
|  | * posts a callback, even if an equal number of callbacks are invoked. | 
|  | * Of course, callbacks should only be posted from within a trace event | 
|  | * designed to be called from idle or from within RCU_NONIDLE(). | 
|  | */ | 
|  | static void rcu_idle_count_callbacks_posted(void) | 
|  | { | 
|  | __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Data for flushing lazy RCU callbacks at OOM time. | 
|  | */ | 
|  | static atomic_t oom_callback_count; | 
|  | static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); | 
|  |  | 
|  | /* | 
|  | * RCU OOM callback -- decrement the outstanding count and deliver the | 
|  | * wake-up if we are the last one. | 
|  | */ | 
|  | static void rcu_oom_callback(struct rcu_head *rhp) | 
|  | { | 
|  | if (atomic_dec_and_test(&oom_callback_count)) | 
|  | wake_up(&oom_callback_wq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Post an rcu_oom_notify callback on the current CPU if it has at | 
|  | * least one lazy callback.  This will unnecessarily post callbacks | 
|  | * to CPUs that already have a non-lazy callback at the end of their | 
|  | * callback list, but this is an infrequent operation, so accept some | 
|  | * extra overhead to keep things simple. | 
|  | */ | 
|  | static void rcu_oom_notify_cpu(void *unused) | 
|  | { | 
|  | struct rcu_state *rsp; | 
|  | struct rcu_data *rdp; | 
|  |  | 
|  | for_each_rcu_flavor(rsp) { | 
|  | rdp = __this_cpu_ptr(rsp->rda); | 
|  | if (rdp->qlen_lazy != 0) { | 
|  | atomic_inc(&oom_callback_count); | 
|  | rsp->call(&rdp->oom_head, rcu_oom_callback); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If low on memory, ensure that each CPU has a non-lazy callback. | 
|  | * This will wake up CPUs that have only lazy callbacks, in turn | 
|  | * ensuring that they free up the corresponding memory in a timely manner. | 
|  | * Because an uncertain amount of memory will be freed in some uncertain | 
|  | * timeframe, we do not claim to have freed anything. | 
|  | */ | 
|  | static int rcu_oom_notify(struct notifier_block *self, | 
|  | unsigned long notused, void *nfreed) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | /* Wait for callbacks from earlier instance to complete. */ | 
|  | wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); | 
|  |  | 
|  | /* | 
|  | * Prevent premature wakeup: ensure that all increments happen | 
|  | * before there is a chance of the counter reaching zero. | 
|  | */ | 
|  | atomic_set(&oom_callback_count, 1); | 
|  |  | 
|  | get_online_cpus(); | 
|  | for_each_online_cpu(cpu) { | 
|  | smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); | 
|  | cond_resched(); | 
|  | } | 
|  | put_online_cpus(); | 
|  |  | 
|  | /* Unconditionally decrement: no need to wake ourselves up. */ | 
|  | atomic_dec(&oom_callback_count); | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block rcu_oom_nb = { | 
|  | .notifier_call = rcu_oom_notify | 
|  | }; | 
|  |  | 
|  | static int __init rcu_register_oom_notifier(void) | 
|  | { | 
|  | register_oom_notifier(&rcu_oom_nb); | 
|  | return 0; | 
|  | } | 
|  | early_initcall(rcu_register_oom_notifier); | 
|  |  | 
|  | #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ | 
|  |  | 
|  | #ifdef CONFIG_RCU_CPU_STALL_INFO | 
|  |  | 
|  | #ifdef CONFIG_RCU_FAST_NO_HZ | 
|  |  | 
|  | static void print_cpu_stall_fast_no_hz(char *cp, int cpu) | 
|  | { | 
|  | struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); | 
|  | struct timer_list *tltp = &rdtp->idle_gp_timer; | 
|  | char c; | 
|  |  | 
|  | c = rdtp->dyntick_holdoff == jiffies ? 'H' : '.'; | 
|  | if (timer_pending(tltp)) | 
|  | sprintf(cp, "drain=%d %c timer=%lu", | 
|  | rdtp->dyntick_drain, c, tltp->expires - jiffies); | 
|  | else | 
|  | sprintf(cp, "drain=%d %c timer not pending", | 
|  | rdtp->dyntick_drain, c); | 
|  | } | 
|  |  | 
|  | #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ | 
|  |  | 
|  | static void print_cpu_stall_fast_no_hz(char *cp, int cpu) | 
|  | { | 
|  | *cp = '\0'; | 
|  | } | 
|  |  | 
|  | #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ | 
|  |  | 
|  | /* Initiate the stall-info list. */ | 
|  | static void print_cpu_stall_info_begin(void) | 
|  | { | 
|  | printk(KERN_CONT "\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Print out diagnostic information for the specified stalled CPU. | 
|  | * | 
|  | * If the specified CPU is aware of the current RCU grace period | 
|  | * (flavor specified by rsp), then print the number of scheduling | 
|  | * clock interrupts the CPU has taken during the time that it has | 
|  | * been aware.  Otherwise, print the number of RCU grace periods | 
|  | * that this CPU is ignorant of, for example, "1" if the CPU was | 
|  | * aware of the previous grace period. | 
|  | * | 
|  | * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. | 
|  | */ | 
|  | static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) | 
|  | { | 
|  | char fast_no_hz[72]; | 
|  | struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); | 
|  | struct rcu_dynticks *rdtp = rdp->dynticks; | 
|  | char *ticks_title; | 
|  | unsigned long ticks_value; | 
|  |  | 
|  | if (rsp->gpnum == rdp->gpnum) { | 
|  | ticks_title = "ticks this GP"; | 
|  | ticks_value = rdp->ticks_this_gp; | 
|  | } else { | 
|  | ticks_title = "GPs behind"; | 
|  | ticks_value = rsp->gpnum - rdp->gpnum; | 
|  | } | 
|  | print_cpu_stall_fast_no_hz(fast_no_hz, cpu); | 
|  | printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d %s\n", | 
|  | cpu, ticks_value, ticks_title, | 
|  | atomic_read(&rdtp->dynticks) & 0xfff, | 
|  | rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, | 
|  | fast_no_hz); | 
|  | } | 
|  |  | 
|  | /* Terminate the stall-info list. */ | 
|  | static void print_cpu_stall_info_end(void) | 
|  | { | 
|  | printk(KERN_ERR "\t"); | 
|  | } | 
|  |  | 
|  | /* Zero ->ticks_this_gp for all flavors of RCU. */ | 
|  | static void zero_cpu_stall_ticks(struct rcu_data *rdp) | 
|  | { | 
|  | rdp->ticks_this_gp = 0; | 
|  | } | 
|  |  | 
|  | /* Increment ->ticks_this_gp for all flavors of RCU. */ | 
|  | static void increment_cpu_stall_ticks(void) | 
|  | { | 
|  | struct rcu_state *rsp; | 
|  |  | 
|  | for_each_rcu_flavor(rsp) | 
|  | __this_cpu_ptr(rsp->rda)->ticks_this_gp++; | 
|  | } | 
|  |  | 
|  | #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */ | 
|  |  | 
|  | static void print_cpu_stall_info_begin(void) | 
|  | { | 
|  | printk(KERN_CONT " {"); | 
|  | } | 
|  |  | 
|  | static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) | 
|  | { | 
|  | printk(KERN_CONT " %d", cpu); | 
|  | } | 
|  |  | 
|  | static void print_cpu_stall_info_end(void) | 
|  | { | 
|  | printk(KERN_CONT "} "); | 
|  | } | 
|  |  | 
|  | static void zero_cpu_stall_ticks(struct rcu_data *rdp) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void increment_cpu_stall_ticks(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */ |