| /* |
| * linux/arch/arm/lib/copypage-armv4mc.S |
| * |
| * Copyright (C) 1995-2005 Russell King |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This handles the mini data cache, as found on SA11x0 and XScale |
| * processors. When we copy a user page page, we map it in such a way |
| * that accesses to this page will not touch the main data cache, but |
| * will be cached in the mini data cache. This prevents us thrashing |
| * the main data cache on page faults. |
| */ |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/tlbflush.h> |
| #include <asm/cacheflush.h> |
| |
| #include "mm.h" |
| |
| /* |
| * 0xffff8000 to 0xffffffff is reserved for any ARM architecture |
| * specific hacks for copying pages efficiently. |
| */ |
| #define minicache_pgprot __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | \ |
| L_PTE_MT_MINICACHE) |
| |
| static DEFINE_RAW_SPINLOCK(minicache_lock); |
| |
| /* |
| * ARMv4 mini-dcache optimised copy_user_highpage |
| * |
| * We flush the destination cache lines just before we write the data into the |
| * corresponding address. Since the Dcache is read-allocate, this removes the |
| * Dcache aliasing issue. The writes will be forwarded to the write buffer, |
| * and merged as appropriate. |
| * |
| * Note: We rely on all ARMv4 processors implementing the "invalidate D line" |
| * instruction. If your processor does not supply this, you have to write your |
| * own copy_user_highpage that does the right thing. |
| */ |
| static void __naked |
| mc_copy_user_page(void *from, void *to) |
| { |
| asm volatile( |
| "stmfd sp!, {r4, lr} @ 2\n\ |
| mov r4, %2 @ 1\n\ |
| ldmia %0!, {r2, r3, ip, lr} @ 4\n\ |
| 1: mcr p15, 0, %1, c7, c6, 1 @ 1 invalidate D line\n\ |
| stmia %1!, {r2, r3, ip, lr} @ 4\n\ |
| ldmia %0!, {r2, r3, ip, lr} @ 4+1\n\ |
| stmia %1!, {r2, r3, ip, lr} @ 4\n\ |
| ldmia %0!, {r2, r3, ip, lr} @ 4\n\ |
| mcr p15, 0, %1, c7, c6, 1 @ 1 invalidate D line\n\ |
| stmia %1!, {r2, r3, ip, lr} @ 4\n\ |
| ldmia %0!, {r2, r3, ip, lr} @ 4\n\ |
| subs r4, r4, #1 @ 1\n\ |
| stmia %1!, {r2, r3, ip, lr} @ 4\n\ |
| ldmneia %0!, {r2, r3, ip, lr} @ 4\n\ |
| bne 1b @ 1\n\ |
| ldmfd sp!, {r4, pc} @ 3" |
| : |
| : "r" (from), "r" (to), "I" (PAGE_SIZE / 64)); |
| } |
| |
| void v4_mc_copy_user_highpage(struct page *to, struct page *from, |
| unsigned long vaddr, struct vm_area_struct *vma) |
| { |
| void *kto = kmap_atomic(to); |
| |
| if (!test_and_set_bit(PG_dcache_clean, &from->flags)) |
| __flush_dcache_page(page_mapping(from), from); |
| |
| raw_spin_lock(&minicache_lock); |
| |
| set_pte_ext(TOP_PTE(0xffff8000), pfn_pte(page_to_pfn(from), minicache_pgprot), 0); |
| flush_tlb_kernel_page(0xffff8000); |
| |
| mc_copy_user_page((void *)0xffff8000, kto); |
| |
| raw_spin_unlock(&minicache_lock); |
| |
| kunmap_atomic(kto); |
| } |
| |
| /* |
| * ARMv4 optimised clear_user_page |
| */ |
| void v4_mc_clear_user_highpage(struct page *page, unsigned long vaddr) |
| { |
| void *ptr, *kaddr = kmap_atomic(page); |
| asm volatile("\ |
| mov r1, %2 @ 1\n\ |
| mov r2, #0 @ 1\n\ |
| mov r3, #0 @ 1\n\ |
| mov ip, #0 @ 1\n\ |
| mov lr, #0 @ 1\n\ |
| 1: mcr p15, 0, %0, c7, c6, 1 @ 1 invalidate D line\n\ |
| stmia %0!, {r2, r3, ip, lr} @ 4\n\ |
| stmia %0!, {r2, r3, ip, lr} @ 4\n\ |
| mcr p15, 0, %0, c7, c6, 1 @ 1 invalidate D line\n\ |
| stmia %0!, {r2, r3, ip, lr} @ 4\n\ |
| stmia %0!, {r2, r3, ip, lr} @ 4\n\ |
| subs r1, r1, #1 @ 1\n\ |
| bne 1b @ 1" |
| : "=r" (ptr) |
| : "0" (kaddr), "I" (PAGE_SIZE / 64) |
| : "r1", "r2", "r3", "ip", "lr"); |
| kunmap_atomic(kaddr); |
| } |
| |
| struct cpu_user_fns v4_mc_user_fns __initdata = { |
| .cpu_clear_user_highpage = v4_mc_clear_user_highpage, |
| .cpu_copy_user_highpage = v4_mc_copy_user_highpage, |
| }; |