| /* |
| * Performance events x86 architecture code |
| * |
| * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> |
| * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar |
| * Copyright (C) 2009 Jaswinder Singh Rajput |
| * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter |
| * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> |
| * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> |
| * |
| * For licencing details see kernel-base/COPYING |
| */ |
| |
| #include <linux/perf_event.h> |
| #include <linux/capability.h> |
| #include <linux/notifier.h> |
| #include <linux/hardirq.h> |
| #include <linux/kprobes.h> |
| #include <linux/module.h> |
| #include <linux/kdebug.h> |
| #include <linux/sched.h> |
| #include <linux/uaccess.h> |
| #include <linux/highmem.h> |
| #include <linux/cpu.h> |
| |
| #include <asm/apic.h> |
| #include <asm/stacktrace.h> |
| #include <asm/nmi.h> |
| |
| static u64 perf_event_mask __read_mostly; |
| |
| /* The maximal number of PEBS events: */ |
| #define MAX_PEBS_EVENTS 4 |
| |
| /* The size of a BTS record in bytes: */ |
| #define BTS_RECORD_SIZE 24 |
| |
| /* The size of a per-cpu BTS buffer in bytes: */ |
| #define BTS_BUFFER_SIZE (BTS_RECORD_SIZE * 2048) |
| |
| /* The BTS overflow threshold in bytes from the end of the buffer: */ |
| #define BTS_OVFL_TH (BTS_RECORD_SIZE * 128) |
| |
| |
| /* |
| * Bits in the debugctlmsr controlling branch tracing. |
| */ |
| #define X86_DEBUGCTL_TR (1 << 6) |
| #define X86_DEBUGCTL_BTS (1 << 7) |
| #define X86_DEBUGCTL_BTINT (1 << 8) |
| #define X86_DEBUGCTL_BTS_OFF_OS (1 << 9) |
| #define X86_DEBUGCTL_BTS_OFF_USR (1 << 10) |
| |
| /* |
| * A debug store configuration. |
| * |
| * We only support architectures that use 64bit fields. |
| */ |
| struct debug_store { |
| u64 bts_buffer_base; |
| u64 bts_index; |
| u64 bts_absolute_maximum; |
| u64 bts_interrupt_threshold; |
| u64 pebs_buffer_base; |
| u64 pebs_index; |
| u64 pebs_absolute_maximum; |
| u64 pebs_interrupt_threshold; |
| u64 pebs_event_reset[MAX_PEBS_EVENTS]; |
| }; |
| |
| struct cpu_hw_events { |
| struct perf_event *events[X86_PMC_IDX_MAX]; |
| unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; |
| unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; |
| unsigned long interrupts; |
| int enabled; |
| struct debug_store *ds; |
| }; |
| |
| struct event_constraint { |
| unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; |
| int code; |
| }; |
| |
| #define EVENT_CONSTRAINT(c, m) { .code = (c), .idxmsk[0] = (m) } |
| #define EVENT_CONSTRAINT_END { .code = 0, .idxmsk[0] = 0 } |
| |
| #define for_each_event_constraint(e, c) \ |
| for ((e) = (c); (e)->idxmsk[0]; (e)++) |
| |
| |
| /* |
| * struct x86_pmu - generic x86 pmu |
| */ |
| struct x86_pmu { |
| const char *name; |
| int version; |
| int (*handle_irq)(struct pt_regs *); |
| void (*disable_all)(void); |
| void (*enable_all)(void); |
| void (*enable)(struct hw_perf_event *, int); |
| void (*disable)(struct hw_perf_event *, int); |
| unsigned eventsel; |
| unsigned perfctr; |
| u64 (*event_map)(int); |
| u64 (*raw_event)(u64); |
| int max_events; |
| int num_events; |
| int num_events_fixed; |
| int event_bits; |
| u64 event_mask; |
| int apic; |
| u64 max_period; |
| u64 intel_ctrl; |
| void (*enable_bts)(u64 config); |
| void (*disable_bts)(void); |
| int (*get_event_idx)(struct cpu_hw_events *cpuc, |
| struct hw_perf_event *hwc); |
| }; |
| |
| static struct x86_pmu x86_pmu __read_mostly; |
| |
| static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { |
| .enabled = 1, |
| }; |
| |
| static const struct event_constraint *event_constraints; |
| |
| /* |
| * Not sure about some of these |
| */ |
| static const u64 p6_perfmon_event_map[] = |
| { |
| [PERF_COUNT_HW_CPU_CYCLES] = 0x0079, |
| [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, |
| [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0f2e, |
| [PERF_COUNT_HW_CACHE_MISSES] = 0x012e, |
| [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, |
| [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, |
| [PERF_COUNT_HW_BUS_CYCLES] = 0x0062, |
| }; |
| |
| static u64 p6_pmu_event_map(int hw_event) |
| { |
| return p6_perfmon_event_map[hw_event]; |
| } |
| |
| /* |
| * Event setting that is specified not to count anything. |
| * We use this to effectively disable a counter. |
| * |
| * L2_RQSTS with 0 MESI unit mask. |
| */ |
| #define P6_NOP_EVENT 0x0000002EULL |
| |
| static u64 p6_pmu_raw_event(u64 hw_event) |
| { |
| #define P6_EVNTSEL_EVENT_MASK 0x000000FFULL |
| #define P6_EVNTSEL_UNIT_MASK 0x0000FF00ULL |
| #define P6_EVNTSEL_EDGE_MASK 0x00040000ULL |
| #define P6_EVNTSEL_INV_MASK 0x00800000ULL |
| #define P6_EVNTSEL_REG_MASK 0xFF000000ULL |
| |
| #define P6_EVNTSEL_MASK \ |
| (P6_EVNTSEL_EVENT_MASK | \ |
| P6_EVNTSEL_UNIT_MASK | \ |
| P6_EVNTSEL_EDGE_MASK | \ |
| P6_EVNTSEL_INV_MASK | \ |
| P6_EVNTSEL_REG_MASK) |
| |
| return hw_event & P6_EVNTSEL_MASK; |
| } |
| |
| static const struct event_constraint intel_p6_event_constraints[] = |
| { |
| EVENT_CONSTRAINT(0xc1, 0x1), /* FLOPS */ |
| EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */ |
| EVENT_CONSTRAINT(0x11, 0x1), /* FP_ASSIST */ |
| EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ |
| EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ |
| EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ |
| EVENT_CONSTRAINT_END |
| }; |
| |
| /* |
| * Intel PerfMon v3. Used on Core2 and later. |
| */ |
| static const u64 intel_perfmon_event_map[] = |
| { |
| [PERF_COUNT_HW_CPU_CYCLES] = 0x003c, |
| [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, |
| [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e, |
| [PERF_COUNT_HW_CACHE_MISSES] = 0x412e, |
| [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, |
| [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, |
| [PERF_COUNT_HW_BUS_CYCLES] = 0x013c, |
| }; |
| |
| static const struct event_constraint intel_core_event_constraints[] = |
| { |
| EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */ |
| EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ |
| EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ |
| EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ |
| EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ |
| EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */ |
| EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ |
| EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */ |
| EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */ |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static const struct event_constraint intel_nehalem_event_constraints[] = |
| { |
| EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */ |
| EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */ |
| EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */ |
| EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */ |
| EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */ |
| EVENT_CONSTRAINT(0x4c, 0x3), /* LOAD_HIT_PRE */ |
| EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ |
| EVENT_CONSTRAINT(0x52, 0x3), /* L1D_CACHE_PREFETCH_LOCK_FB_HIT */ |
| EVENT_CONSTRAINT(0x53, 0x3), /* L1D_CACHE_LOCK_FB_HIT */ |
| EVENT_CONSTRAINT(0xc5, 0x3), /* CACHE_LOCK_CYCLES */ |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static u64 intel_pmu_event_map(int hw_event) |
| { |
| return intel_perfmon_event_map[hw_event]; |
| } |
| |
| /* |
| * Generalized hw caching related hw_event table, filled |
| * in on a per model basis. A value of 0 means |
| * 'not supported', -1 means 'hw_event makes no sense on |
| * this CPU', any other value means the raw hw_event |
| * ID. |
| */ |
| |
| #define C(x) PERF_COUNT_HW_CACHE_##x |
| |
| static u64 __read_mostly hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX]; |
| |
| static __initconst u64 nehalem_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(L1D) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */ |
| [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */ |
| [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ |
| [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ |
| }, |
| }, |
| [ C(L1I ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ |
| [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */ |
| [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */ |
| [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */ |
| [ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */ |
| }, |
| }, |
| [ C(DTLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ |
| [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ |
| [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(ITLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ |
| [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(BPU ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ |
| [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| }; |
| |
| static __initconst u64 core2_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(L1D) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */ |
| [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */ |
| [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */ |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(L1I ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */ |
| [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ |
| [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ |
| [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(DTLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ |
| [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ |
| [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(ITLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ |
| [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(BPU ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ |
| [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| }; |
| |
| static __initconst u64 atom_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(L1D) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */ |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */ |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(L1I ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ |
| [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ |
| [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ |
| [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(DTLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */ |
| [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */ |
| [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(ITLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ |
| [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(BPU ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ |
| [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| }; |
| |
| static u64 intel_pmu_raw_event(u64 hw_event) |
| { |
| #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL |
| #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL |
| #define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL |
| #define CORE_EVNTSEL_INV_MASK 0x00800000ULL |
| #define CORE_EVNTSEL_REG_MASK 0xFF000000ULL |
| |
| #define CORE_EVNTSEL_MASK \ |
| (CORE_EVNTSEL_EVENT_MASK | \ |
| CORE_EVNTSEL_UNIT_MASK | \ |
| CORE_EVNTSEL_EDGE_MASK | \ |
| CORE_EVNTSEL_INV_MASK | \ |
| CORE_EVNTSEL_REG_MASK) |
| |
| return hw_event & CORE_EVNTSEL_MASK; |
| } |
| |
| static __initconst u64 amd_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(L1D) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */ |
| [ C(RESULT_MISS) ] = 0x0041, /* Data Cache Misses */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */ |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */ |
| [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */ |
| }, |
| }, |
| [ C(L1I ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */ |
| [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */ |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */ |
| [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */ |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(DTLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */ |
| [ C(RESULT_MISS) ] = 0x0046, /* L1 DTLB and L2 DLTB Miss */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(ITLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */ |
| [ C(RESULT_MISS) ] = 0x0085, /* Instr. fetch ITLB misses */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(BPU ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */ |
| [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| }; |
| |
| /* |
| * AMD Performance Monitor K7 and later. |
| */ |
| static const u64 amd_perfmon_event_map[] = |
| { |
| [PERF_COUNT_HW_CPU_CYCLES] = 0x0076, |
| [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, |
| [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080, |
| [PERF_COUNT_HW_CACHE_MISSES] = 0x0081, |
| [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, |
| [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, |
| }; |
| |
| static u64 amd_pmu_event_map(int hw_event) |
| { |
| return amd_perfmon_event_map[hw_event]; |
| } |
| |
| static u64 amd_pmu_raw_event(u64 hw_event) |
| { |
| #define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL |
| #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL |
| #define K7_EVNTSEL_EDGE_MASK 0x000040000ULL |
| #define K7_EVNTSEL_INV_MASK 0x000800000ULL |
| #define K7_EVNTSEL_REG_MASK 0x0FF000000ULL |
| |
| #define K7_EVNTSEL_MASK \ |
| (K7_EVNTSEL_EVENT_MASK | \ |
| K7_EVNTSEL_UNIT_MASK | \ |
| K7_EVNTSEL_EDGE_MASK | \ |
| K7_EVNTSEL_INV_MASK | \ |
| K7_EVNTSEL_REG_MASK) |
| |
| return hw_event & K7_EVNTSEL_MASK; |
| } |
| |
| /* |
| * Propagate event elapsed time into the generic event. |
| * Can only be executed on the CPU where the event is active. |
| * Returns the delta events processed. |
| */ |
| static u64 |
| x86_perf_event_update(struct perf_event *event, |
| struct hw_perf_event *hwc, int idx) |
| { |
| int shift = 64 - x86_pmu.event_bits; |
| u64 prev_raw_count, new_raw_count; |
| s64 delta; |
| |
| if (idx == X86_PMC_IDX_FIXED_BTS) |
| return 0; |
| |
| /* |
| * Careful: an NMI might modify the previous event value. |
| * |
| * Our tactic to handle this is to first atomically read and |
| * exchange a new raw count - then add that new-prev delta |
| * count to the generic event atomically: |
| */ |
| again: |
| prev_raw_count = atomic64_read(&hwc->prev_count); |
| rdmsrl(hwc->event_base + idx, new_raw_count); |
| |
| if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count, |
| new_raw_count) != prev_raw_count) |
| goto again; |
| |
| /* |
| * Now we have the new raw value and have updated the prev |
| * timestamp already. We can now calculate the elapsed delta |
| * (event-)time and add that to the generic event. |
| * |
| * Careful, not all hw sign-extends above the physical width |
| * of the count. |
| */ |
| delta = (new_raw_count << shift) - (prev_raw_count << shift); |
| delta >>= shift; |
| |
| atomic64_add(delta, &event->count); |
| atomic64_sub(delta, &hwc->period_left); |
| |
| return new_raw_count; |
| } |
| |
| static atomic_t active_events; |
| static DEFINE_MUTEX(pmc_reserve_mutex); |
| |
| static bool reserve_pmc_hardware(void) |
| { |
| #ifdef CONFIG_X86_LOCAL_APIC |
| int i; |
| |
| if (nmi_watchdog == NMI_LOCAL_APIC) |
| disable_lapic_nmi_watchdog(); |
| |
| for (i = 0; i < x86_pmu.num_events; i++) { |
| if (!reserve_perfctr_nmi(x86_pmu.perfctr + i)) |
| goto perfctr_fail; |
| } |
| |
| for (i = 0; i < x86_pmu.num_events; i++) { |
| if (!reserve_evntsel_nmi(x86_pmu.eventsel + i)) |
| goto eventsel_fail; |
| } |
| #endif |
| |
| return true; |
| |
| #ifdef CONFIG_X86_LOCAL_APIC |
| eventsel_fail: |
| for (i--; i >= 0; i--) |
| release_evntsel_nmi(x86_pmu.eventsel + i); |
| |
| i = x86_pmu.num_events; |
| |
| perfctr_fail: |
| for (i--; i >= 0; i--) |
| release_perfctr_nmi(x86_pmu.perfctr + i); |
| |
| if (nmi_watchdog == NMI_LOCAL_APIC) |
| enable_lapic_nmi_watchdog(); |
| |
| return false; |
| #endif |
| } |
| |
| static void release_pmc_hardware(void) |
| { |
| #ifdef CONFIG_X86_LOCAL_APIC |
| int i; |
| |
| for (i = 0; i < x86_pmu.num_events; i++) { |
| release_perfctr_nmi(x86_pmu.perfctr + i); |
| release_evntsel_nmi(x86_pmu.eventsel + i); |
| } |
| |
| if (nmi_watchdog == NMI_LOCAL_APIC) |
| enable_lapic_nmi_watchdog(); |
| #endif |
| } |
| |
| static inline bool bts_available(void) |
| { |
| return x86_pmu.enable_bts != NULL; |
| } |
| |
| static inline void init_debug_store_on_cpu(int cpu) |
| { |
| struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; |
| |
| if (!ds) |
| return; |
| |
| wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, |
| (u32)((u64)(unsigned long)ds), |
| (u32)((u64)(unsigned long)ds >> 32)); |
| } |
| |
| static inline void fini_debug_store_on_cpu(int cpu) |
| { |
| if (!per_cpu(cpu_hw_events, cpu).ds) |
| return; |
| |
| wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0); |
| } |
| |
| static void release_bts_hardware(void) |
| { |
| int cpu; |
| |
| if (!bts_available()) |
| return; |
| |
| get_online_cpus(); |
| |
| for_each_online_cpu(cpu) |
| fini_debug_store_on_cpu(cpu); |
| |
| for_each_possible_cpu(cpu) { |
| struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; |
| |
| if (!ds) |
| continue; |
| |
| per_cpu(cpu_hw_events, cpu).ds = NULL; |
| |
| kfree((void *)(unsigned long)ds->bts_buffer_base); |
| kfree(ds); |
| } |
| |
| put_online_cpus(); |
| } |
| |
| static int reserve_bts_hardware(void) |
| { |
| int cpu, err = 0; |
| |
| if (!bts_available()) |
| return 0; |
| |
| get_online_cpus(); |
| |
| for_each_possible_cpu(cpu) { |
| struct debug_store *ds; |
| void *buffer; |
| |
| err = -ENOMEM; |
| buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL); |
| if (unlikely(!buffer)) |
| break; |
| |
| ds = kzalloc(sizeof(*ds), GFP_KERNEL); |
| if (unlikely(!ds)) { |
| kfree(buffer); |
| break; |
| } |
| |
| ds->bts_buffer_base = (u64)(unsigned long)buffer; |
| ds->bts_index = ds->bts_buffer_base; |
| ds->bts_absolute_maximum = |
| ds->bts_buffer_base + BTS_BUFFER_SIZE; |
| ds->bts_interrupt_threshold = |
| ds->bts_absolute_maximum - BTS_OVFL_TH; |
| |
| per_cpu(cpu_hw_events, cpu).ds = ds; |
| err = 0; |
| } |
| |
| if (err) |
| release_bts_hardware(); |
| else { |
| for_each_online_cpu(cpu) |
| init_debug_store_on_cpu(cpu); |
| } |
| |
| put_online_cpus(); |
| |
| return err; |
| } |
| |
| static void hw_perf_event_destroy(struct perf_event *event) |
| { |
| if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) { |
| release_pmc_hardware(); |
| release_bts_hardware(); |
| mutex_unlock(&pmc_reserve_mutex); |
| } |
| } |
| |
| static inline int x86_pmu_initialized(void) |
| { |
| return x86_pmu.handle_irq != NULL; |
| } |
| |
| static inline int |
| set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr) |
| { |
| unsigned int cache_type, cache_op, cache_result; |
| u64 config, val; |
| |
| config = attr->config; |
| |
| cache_type = (config >> 0) & 0xff; |
| if (cache_type >= PERF_COUNT_HW_CACHE_MAX) |
| return -EINVAL; |
| |
| cache_op = (config >> 8) & 0xff; |
| if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) |
| return -EINVAL; |
| |
| cache_result = (config >> 16) & 0xff; |
| if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) |
| return -EINVAL; |
| |
| val = hw_cache_event_ids[cache_type][cache_op][cache_result]; |
| |
| if (val == 0) |
| return -ENOENT; |
| |
| if (val == -1) |
| return -EINVAL; |
| |
| hwc->config |= val; |
| |
| return 0; |
| } |
| |
| static void intel_pmu_enable_bts(u64 config) |
| { |
| unsigned long debugctlmsr; |
| |
| debugctlmsr = get_debugctlmsr(); |
| |
| debugctlmsr |= X86_DEBUGCTL_TR; |
| debugctlmsr |= X86_DEBUGCTL_BTS; |
| debugctlmsr |= X86_DEBUGCTL_BTINT; |
| |
| if (!(config & ARCH_PERFMON_EVENTSEL_OS)) |
| debugctlmsr |= X86_DEBUGCTL_BTS_OFF_OS; |
| |
| if (!(config & ARCH_PERFMON_EVENTSEL_USR)) |
| debugctlmsr |= X86_DEBUGCTL_BTS_OFF_USR; |
| |
| update_debugctlmsr(debugctlmsr); |
| } |
| |
| static void intel_pmu_disable_bts(void) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| unsigned long debugctlmsr; |
| |
| if (!cpuc->ds) |
| return; |
| |
| debugctlmsr = get_debugctlmsr(); |
| |
| debugctlmsr &= |
| ~(X86_DEBUGCTL_TR | X86_DEBUGCTL_BTS | X86_DEBUGCTL_BTINT | |
| X86_DEBUGCTL_BTS_OFF_OS | X86_DEBUGCTL_BTS_OFF_USR); |
| |
| update_debugctlmsr(debugctlmsr); |
| } |
| |
| /* |
| * Setup the hardware configuration for a given attr_type |
| */ |
| static int __hw_perf_event_init(struct perf_event *event) |
| { |
| struct perf_event_attr *attr = &event->attr; |
| struct hw_perf_event *hwc = &event->hw; |
| u64 config; |
| int err; |
| |
| if (!x86_pmu_initialized()) |
| return -ENODEV; |
| |
| err = 0; |
| if (!atomic_inc_not_zero(&active_events)) { |
| mutex_lock(&pmc_reserve_mutex); |
| if (atomic_read(&active_events) == 0) { |
| if (!reserve_pmc_hardware()) |
| err = -EBUSY; |
| else |
| err = reserve_bts_hardware(); |
| } |
| if (!err) |
| atomic_inc(&active_events); |
| mutex_unlock(&pmc_reserve_mutex); |
| } |
| if (err) |
| return err; |
| |
| event->destroy = hw_perf_event_destroy; |
| |
| /* |
| * Generate PMC IRQs: |
| * (keep 'enabled' bit clear for now) |
| */ |
| hwc->config = ARCH_PERFMON_EVENTSEL_INT; |
| |
| hwc->idx = -1; |
| |
| /* |
| * Count user and OS events unless requested not to. |
| */ |
| if (!attr->exclude_user) |
| hwc->config |= ARCH_PERFMON_EVENTSEL_USR; |
| if (!attr->exclude_kernel) |
| hwc->config |= ARCH_PERFMON_EVENTSEL_OS; |
| |
| if (!hwc->sample_period) { |
| hwc->sample_period = x86_pmu.max_period; |
| hwc->last_period = hwc->sample_period; |
| atomic64_set(&hwc->period_left, hwc->sample_period); |
| } else { |
| /* |
| * If we have a PMU initialized but no APIC |
| * interrupts, we cannot sample hardware |
| * events (user-space has to fall back and |
| * sample via a hrtimer based software event): |
| */ |
| if (!x86_pmu.apic) |
| return -EOPNOTSUPP; |
| } |
| |
| /* |
| * Raw hw_event type provide the config in the hw_event structure |
| */ |
| if (attr->type == PERF_TYPE_RAW) { |
| hwc->config |= x86_pmu.raw_event(attr->config); |
| return 0; |
| } |
| |
| if (attr->type == PERF_TYPE_HW_CACHE) |
| return set_ext_hw_attr(hwc, attr); |
| |
| if (attr->config >= x86_pmu.max_events) |
| return -EINVAL; |
| |
| /* |
| * The generic map: |
| */ |
| config = x86_pmu.event_map(attr->config); |
| |
| if (config == 0) |
| return -ENOENT; |
| |
| if (config == -1LL) |
| return -EINVAL; |
| |
| /* |
| * Branch tracing: |
| */ |
| if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) && |
| (hwc->sample_period == 1)) { |
| /* BTS is not supported by this architecture. */ |
| if (!bts_available()) |
| return -EOPNOTSUPP; |
| |
| /* BTS is currently only allowed for user-mode. */ |
| if (hwc->config & ARCH_PERFMON_EVENTSEL_OS) |
| return -EOPNOTSUPP; |
| } |
| |
| hwc->config |= config; |
| |
| return 0; |
| } |
| |
| static void p6_pmu_disable_all(void) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| u64 val; |
| |
| if (!cpuc->enabled) |
| return; |
| |
| cpuc->enabled = 0; |
| barrier(); |
| |
| /* p6 only has one enable register */ |
| rdmsrl(MSR_P6_EVNTSEL0, val); |
| val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE; |
| wrmsrl(MSR_P6_EVNTSEL0, val); |
| } |
| |
| static void intel_pmu_disable_all(void) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| |
| if (!cpuc->enabled) |
| return; |
| |
| cpuc->enabled = 0; |
| barrier(); |
| |
| wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); |
| |
| if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) |
| intel_pmu_disable_bts(); |
| } |
| |
| static void amd_pmu_disable_all(void) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| int idx; |
| |
| if (!cpuc->enabled) |
| return; |
| |
| cpuc->enabled = 0; |
| /* |
| * ensure we write the disable before we start disabling the |
| * events proper, so that amd_pmu_enable_event() does the |
| * right thing. |
| */ |
| barrier(); |
| |
| for (idx = 0; idx < x86_pmu.num_events; idx++) { |
| u64 val; |
| |
| if (!test_bit(idx, cpuc->active_mask)) |
| continue; |
| rdmsrl(MSR_K7_EVNTSEL0 + idx, val); |
| if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE)) |
| continue; |
| val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE; |
| wrmsrl(MSR_K7_EVNTSEL0 + idx, val); |
| } |
| } |
| |
| void hw_perf_disable(void) |
| { |
| if (!x86_pmu_initialized()) |
| return; |
| return x86_pmu.disable_all(); |
| } |
| |
| static void p6_pmu_enable_all(void) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| unsigned long val; |
| |
| if (cpuc->enabled) |
| return; |
| |
| cpuc->enabled = 1; |
| barrier(); |
| |
| /* p6 only has one enable register */ |
| rdmsrl(MSR_P6_EVNTSEL0, val); |
| val |= ARCH_PERFMON_EVENTSEL0_ENABLE; |
| wrmsrl(MSR_P6_EVNTSEL0, val); |
| } |
| |
| static void intel_pmu_enable_all(void) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| |
| if (cpuc->enabled) |
| return; |
| |
| cpuc->enabled = 1; |
| barrier(); |
| |
| wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl); |
| |
| if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { |
| struct perf_event *event = |
| cpuc->events[X86_PMC_IDX_FIXED_BTS]; |
| |
| if (WARN_ON_ONCE(!event)) |
| return; |
| |
| intel_pmu_enable_bts(event->hw.config); |
| } |
| } |
| |
| static void amd_pmu_enable_all(void) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| int idx; |
| |
| if (cpuc->enabled) |
| return; |
| |
| cpuc->enabled = 1; |
| barrier(); |
| |
| for (idx = 0; idx < x86_pmu.num_events; idx++) { |
| struct perf_event *event = cpuc->events[idx]; |
| u64 val; |
| |
| if (!test_bit(idx, cpuc->active_mask)) |
| continue; |
| |
| val = event->hw.config; |
| val |= ARCH_PERFMON_EVENTSEL0_ENABLE; |
| wrmsrl(MSR_K7_EVNTSEL0 + idx, val); |
| } |
| } |
| |
| void hw_perf_enable(void) |
| { |
| if (!x86_pmu_initialized()) |
| return; |
| x86_pmu.enable_all(); |
| } |
| |
| static inline u64 intel_pmu_get_status(void) |
| { |
| u64 status; |
| |
| rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); |
| |
| return status; |
| } |
| |
| static inline void intel_pmu_ack_status(u64 ack) |
| { |
| wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack); |
| } |
| |
| static inline void x86_pmu_enable_event(struct hw_perf_event *hwc, int idx) |
| { |
| (void)checking_wrmsrl(hwc->config_base + idx, |
| hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE); |
| } |
| |
| static inline void x86_pmu_disable_event(struct hw_perf_event *hwc, int idx) |
| { |
| (void)checking_wrmsrl(hwc->config_base + idx, hwc->config); |
| } |
| |
| static inline void |
| intel_pmu_disable_fixed(struct hw_perf_event *hwc, int __idx) |
| { |
| int idx = __idx - X86_PMC_IDX_FIXED; |
| u64 ctrl_val, mask; |
| |
| mask = 0xfULL << (idx * 4); |
| |
| rdmsrl(hwc->config_base, ctrl_val); |
| ctrl_val &= ~mask; |
| (void)checking_wrmsrl(hwc->config_base, ctrl_val); |
| } |
| |
| static inline void |
| p6_pmu_disable_event(struct hw_perf_event *hwc, int idx) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| u64 val = P6_NOP_EVENT; |
| |
| if (cpuc->enabled) |
| val |= ARCH_PERFMON_EVENTSEL0_ENABLE; |
| |
| (void)checking_wrmsrl(hwc->config_base + idx, val); |
| } |
| |
| static inline void |
| intel_pmu_disable_event(struct hw_perf_event *hwc, int idx) |
| { |
| if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) { |
| intel_pmu_disable_bts(); |
| return; |
| } |
| |
| if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { |
| intel_pmu_disable_fixed(hwc, idx); |
| return; |
| } |
| |
| x86_pmu_disable_event(hwc, idx); |
| } |
| |
| static inline void |
| amd_pmu_disable_event(struct hw_perf_event *hwc, int idx) |
| { |
| x86_pmu_disable_event(hwc, idx); |
| } |
| |
| static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left); |
| |
| /* |
| * Set the next IRQ period, based on the hwc->period_left value. |
| * To be called with the event disabled in hw: |
| */ |
| static int |
| x86_perf_event_set_period(struct perf_event *event, |
| struct hw_perf_event *hwc, int idx) |
| { |
| s64 left = atomic64_read(&hwc->period_left); |
| s64 period = hwc->sample_period; |
| int err, ret = 0; |
| |
| if (idx == X86_PMC_IDX_FIXED_BTS) |
| return 0; |
| |
| /* |
| * If we are way outside a reasonable range then just skip forward: |
| */ |
| if (unlikely(left <= -period)) { |
| left = period; |
| atomic64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| ret = 1; |
| } |
| |
| if (unlikely(left <= 0)) { |
| left += period; |
| atomic64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| ret = 1; |
| } |
| /* |
| * Quirk: certain CPUs dont like it if just 1 hw_event is left: |
| */ |
| if (unlikely(left < 2)) |
| left = 2; |
| |
| if (left > x86_pmu.max_period) |
| left = x86_pmu.max_period; |
| |
| per_cpu(pmc_prev_left[idx], smp_processor_id()) = left; |
| |
| /* |
| * The hw event starts counting from this event offset, |
| * mark it to be able to extra future deltas: |
| */ |
| atomic64_set(&hwc->prev_count, (u64)-left); |
| |
| err = checking_wrmsrl(hwc->event_base + idx, |
| (u64)(-left) & x86_pmu.event_mask); |
| |
| perf_event_update_userpage(event); |
| |
| return ret; |
| } |
| |
| static inline void |
| intel_pmu_enable_fixed(struct hw_perf_event *hwc, int __idx) |
| { |
| int idx = __idx - X86_PMC_IDX_FIXED; |
| u64 ctrl_val, bits, mask; |
| int err; |
| |
| /* |
| * Enable IRQ generation (0x8), |
| * and enable ring-3 counting (0x2) and ring-0 counting (0x1) |
| * if requested: |
| */ |
| bits = 0x8ULL; |
| if (hwc->config & ARCH_PERFMON_EVENTSEL_USR) |
| bits |= 0x2; |
| if (hwc->config & ARCH_PERFMON_EVENTSEL_OS) |
| bits |= 0x1; |
| bits <<= (idx * 4); |
| mask = 0xfULL << (idx * 4); |
| |
| rdmsrl(hwc->config_base, ctrl_val); |
| ctrl_val &= ~mask; |
| ctrl_val |= bits; |
| err = checking_wrmsrl(hwc->config_base, ctrl_val); |
| } |
| |
| static void p6_pmu_enable_event(struct hw_perf_event *hwc, int idx) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| u64 val; |
| |
| val = hwc->config; |
| if (cpuc->enabled) |
| val |= ARCH_PERFMON_EVENTSEL0_ENABLE; |
| |
| (void)checking_wrmsrl(hwc->config_base + idx, val); |
| } |
| |
| |
| static void intel_pmu_enable_event(struct hw_perf_event *hwc, int idx) |
| { |
| if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) { |
| if (!__get_cpu_var(cpu_hw_events).enabled) |
| return; |
| |
| intel_pmu_enable_bts(hwc->config); |
| return; |
| } |
| |
| if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { |
| intel_pmu_enable_fixed(hwc, idx); |
| return; |
| } |
| |
| x86_pmu_enable_event(hwc, idx); |
| } |
| |
| static void amd_pmu_enable_event(struct hw_perf_event *hwc, int idx) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| |
| if (cpuc->enabled) |
| x86_pmu_enable_event(hwc, idx); |
| } |
| |
| static int fixed_mode_idx(struct hw_perf_event *hwc) |
| { |
| unsigned int hw_event; |
| |
| hw_event = hwc->config & ARCH_PERFMON_EVENT_MASK; |
| |
| if (unlikely((hw_event == |
| x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS)) && |
| (hwc->sample_period == 1))) |
| return X86_PMC_IDX_FIXED_BTS; |
| |
| if (!x86_pmu.num_events_fixed) |
| return -1; |
| |
| /* |
| * fixed counters do not take all possible filters |
| */ |
| if (hwc->config & ARCH_PERFMON_EVENT_FILTER_MASK) |
| return -1; |
| |
| if (unlikely(hw_event == x86_pmu.event_map(PERF_COUNT_HW_INSTRUCTIONS))) |
| return X86_PMC_IDX_FIXED_INSTRUCTIONS; |
| if (unlikely(hw_event == x86_pmu.event_map(PERF_COUNT_HW_CPU_CYCLES))) |
| return X86_PMC_IDX_FIXED_CPU_CYCLES; |
| if (unlikely(hw_event == x86_pmu.event_map(PERF_COUNT_HW_BUS_CYCLES))) |
| return X86_PMC_IDX_FIXED_BUS_CYCLES; |
| |
| return -1; |
| } |
| |
| /* |
| * generic counter allocator: get next free counter |
| */ |
| static int |
| gen_get_event_idx(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc) |
| { |
| int idx; |
| |
| idx = find_first_zero_bit(cpuc->used_mask, x86_pmu.num_events); |
| return idx == x86_pmu.num_events ? -1 : idx; |
| } |
| |
| /* |
| * intel-specific counter allocator: check event constraints |
| */ |
| static int |
| intel_get_event_idx(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc) |
| { |
| const struct event_constraint *event_constraint; |
| int i, code; |
| |
| if (!event_constraints) |
| goto skip; |
| |
| code = hwc->config & CORE_EVNTSEL_EVENT_MASK; |
| |
| for_each_event_constraint(event_constraint, event_constraints) { |
| if (code == event_constraint->code) { |
| for_each_bit(i, event_constraint->idxmsk, X86_PMC_IDX_MAX) { |
| if (!test_and_set_bit(i, cpuc->used_mask)) |
| return i; |
| } |
| return -1; |
| } |
| } |
| skip: |
| return gen_get_event_idx(cpuc, hwc); |
| } |
| |
| static int |
| x86_schedule_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc) |
| { |
| int idx; |
| |
| idx = fixed_mode_idx(hwc); |
| if (idx == X86_PMC_IDX_FIXED_BTS) { |
| /* BTS is already occupied. */ |
| if (test_and_set_bit(idx, cpuc->used_mask)) |
| return -EAGAIN; |
| |
| hwc->config_base = 0; |
| hwc->event_base = 0; |
| hwc->idx = idx; |
| } else if (idx >= 0) { |
| /* |
| * Try to get the fixed event, if that is already taken |
| * then try to get a generic event: |
| */ |
| if (test_and_set_bit(idx, cpuc->used_mask)) |
| goto try_generic; |
| |
| hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; |
| /* |
| * We set it so that event_base + idx in wrmsr/rdmsr maps to |
| * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2: |
| */ |
| hwc->event_base = |
| MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED; |
| hwc->idx = idx; |
| } else { |
| idx = hwc->idx; |
| /* Try to get the previous generic event again */ |
| if (idx == -1 || test_and_set_bit(idx, cpuc->used_mask)) { |
| try_generic: |
| idx = x86_pmu.get_event_idx(cpuc, hwc); |
| if (idx == -1) |
| return -EAGAIN; |
| |
| set_bit(idx, cpuc->used_mask); |
| hwc->idx = idx; |
| } |
| hwc->config_base = x86_pmu.eventsel; |
| hwc->event_base = x86_pmu.perfctr; |
| } |
| |
| return idx; |
| } |
| |
| /* |
| * Find a PMC slot for the freshly enabled / scheduled in event: |
| */ |
| static int x86_pmu_enable(struct perf_event *event) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx; |
| |
| idx = x86_schedule_event(cpuc, hwc); |
| if (idx < 0) |
| return idx; |
| |
| perf_events_lapic_init(); |
| |
| x86_pmu.disable(hwc, idx); |
| |
| cpuc->events[idx] = event; |
| set_bit(idx, cpuc->active_mask); |
| |
| x86_perf_event_set_period(event, hwc, idx); |
| x86_pmu.enable(hwc, idx); |
| |
| perf_event_update_userpage(event); |
| |
| return 0; |
| } |
| |
| static void x86_pmu_unthrottle(struct perf_event *event) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| |
| if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX || |
| cpuc->events[hwc->idx] != event)) |
| return; |
| |
| x86_pmu.enable(hwc, hwc->idx); |
| } |
| |
| void perf_event_print_debug(void) |
| { |
| u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed; |
| struct cpu_hw_events *cpuc; |
| unsigned long flags; |
| int cpu, idx; |
| |
| if (!x86_pmu.num_events) |
| return; |
| |
| local_irq_save(flags); |
| |
| cpu = smp_processor_id(); |
| cpuc = &per_cpu(cpu_hw_events, cpu); |
| |
| if (x86_pmu.version >= 2) { |
| rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); |
| rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); |
| rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow); |
| rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed); |
| |
| pr_info("\n"); |
| pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl); |
| pr_info("CPU#%d: status: %016llx\n", cpu, status); |
| pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow); |
| pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed); |
| } |
| pr_info("CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used_mask); |
| |
| for (idx = 0; idx < x86_pmu.num_events; idx++) { |
| rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl); |
| rdmsrl(x86_pmu.perfctr + idx, pmc_count); |
| |
| prev_left = per_cpu(pmc_prev_left[idx], cpu); |
| |
| pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n", |
| cpu, idx, pmc_ctrl); |
| pr_info("CPU#%d: gen-PMC%d count: %016llx\n", |
| cpu, idx, pmc_count); |
| pr_info("CPU#%d: gen-PMC%d left: %016llx\n", |
| cpu, idx, prev_left); |
| } |
| for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) { |
| rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count); |
| |
| pr_info("CPU#%d: fixed-PMC%d count: %016llx\n", |
| cpu, idx, pmc_count); |
| } |
| local_irq_restore(flags); |
| } |
| |
| static void intel_pmu_drain_bts_buffer(struct cpu_hw_events *cpuc) |
| { |
| struct debug_store *ds = cpuc->ds; |
| struct bts_record { |
| u64 from; |
| u64 to; |
| u64 flags; |
| }; |
| struct perf_event *event = cpuc->events[X86_PMC_IDX_FIXED_BTS]; |
| struct bts_record *at, *top; |
| struct perf_output_handle handle; |
| struct perf_event_header header; |
| struct perf_sample_data data; |
| struct pt_regs regs; |
| |
| if (!event) |
| return; |
| |
| if (!ds) |
| return; |
| |
| at = (struct bts_record *)(unsigned long)ds->bts_buffer_base; |
| top = (struct bts_record *)(unsigned long)ds->bts_index; |
| |
| if (top <= at) |
| return; |
| |
| ds->bts_index = ds->bts_buffer_base; |
| |
| |
| data.period = event->hw.last_period; |
| data.addr = 0; |
| regs.ip = 0; |
| |
| /* |
| * Prepare a generic sample, i.e. fill in the invariant fields. |
| * We will overwrite the from and to address before we output |
| * the sample. |
| */ |
| perf_prepare_sample(&header, &data, event, ®s); |
| |
| if (perf_output_begin(&handle, event, |
| header.size * (top - at), 1, 1)) |
| return; |
| |
| for (; at < top; at++) { |
| data.ip = at->from; |
| data.addr = at->to; |
| |
| perf_output_sample(&handle, &header, &data, event); |
| } |
| |
| perf_output_end(&handle); |
| |
| /* There's new data available. */ |
| event->hw.interrupts++; |
| event->pending_kill = POLL_IN; |
| } |
| |
| static void x86_pmu_disable(struct perf_event *event) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx = hwc->idx; |
| |
| /* |
| * Must be done before we disable, otherwise the nmi handler |
| * could reenable again: |
| */ |
| clear_bit(idx, cpuc->active_mask); |
| x86_pmu.disable(hwc, idx); |
| |
| /* |
| * Make sure the cleared pointer becomes visible before we |
| * (potentially) free the event: |
| */ |
| barrier(); |
| |
| /* |
| * Drain the remaining delta count out of a event |
| * that we are disabling: |
| */ |
| x86_perf_event_update(event, hwc, idx); |
| |
| /* Drain the remaining BTS records. */ |
| if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) |
| intel_pmu_drain_bts_buffer(cpuc); |
| |
| cpuc->events[idx] = NULL; |
| clear_bit(idx, cpuc->used_mask); |
| |
| perf_event_update_userpage(event); |
| } |
| |
| /* |
| * Save and restart an expired event. Called by NMI contexts, |
| * so it has to be careful about preempting normal event ops: |
| */ |
| static int intel_pmu_save_and_restart(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| int idx = hwc->idx; |
| int ret; |
| |
| x86_perf_event_update(event, hwc, idx); |
| ret = x86_perf_event_set_period(event, hwc, idx); |
| |
| if (event->state == PERF_EVENT_STATE_ACTIVE) |
| intel_pmu_enable_event(hwc, idx); |
| |
| return ret; |
| } |
| |
| static void intel_pmu_reset(void) |
| { |
| struct debug_store *ds = __get_cpu_var(cpu_hw_events).ds; |
| unsigned long flags; |
| int idx; |
| |
| if (!x86_pmu.num_events) |
| return; |
| |
| local_irq_save(flags); |
| |
| printk("clearing PMU state on CPU#%d\n", smp_processor_id()); |
| |
| for (idx = 0; idx < x86_pmu.num_events; idx++) { |
| checking_wrmsrl(x86_pmu.eventsel + idx, 0ull); |
| checking_wrmsrl(x86_pmu.perfctr + idx, 0ull); |
| } |
| for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) { |
| checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull); |
| } |
| if (ds) |
| ds->bts_index = ds->bts_buffer_base; |
| |
| local_irq_restore(flags); |
| } |
| |
| static int p6_pmu_handle_irq(struct pt_regs *regs) |
| { |
| struct perf_sample_data data; |
| struct cpu_hw_events *cpuc; |
| struct perf_event *event; |
| struct hw_perf_event *hwc; |
| int idx, handled = 0; |
| u64 val; |
| |
| data.addr = 0; |
| |
| cpuc = &__get_cpu_var(cpu_hw_events); |
| |
| for (idx = 0; idx < x86_pmu.num_events; idx++) { |
| if (!test_bit(idx, cpuc->active_mask)) |
| continue; |
| |
| event = cpuc->events[idx]; |
| hwc = &event->hw; |
| |
| val = x86_perf_event_update(event, hwc, idx); |
| if (val & (1ULL << (x86_pmu.event_bits - 1))) |
| continue; |
| |
| /* |
| * event overflow |
| */ |
| handled = 1; |
| data.period = event->hw.last_period; |
| |
| if (!x86_perf_event_set_period(event, hwc, idx)) |
| continue; |
| |
| if (perf_event_overflow(event, 1, &data, regs)) |
| p6_pmu_disable_event(hwc, idx); |
| } |
| |
| if (handled) |
| inc_irq_stat(apic_perf_irqs); |
| |
| return handled; |
| } |
| |
| /* |
| * This handler is triggered by the local APIC, so the APIC IRQ handling |
| * rules apply: |
| */ |
| static int intel_pmu_handle_irq(struct pt_regs *regs) |
| { |
| struct perf_sample_data data; |
| struct cpu_hw_events *cpuc; |
| int bit, loops; |
| u64 ack, status; |
| |
| data.addr = 0; |
| |
| cpuc = &__get_cpu_var(cpu_hw_events); |
| |
| perf_disable(); |
| intel_pmu_drain_bts_buffer(cpuc); |
| status = intel_pmu_get_status(); |
| if (!status) { |
| perf_enable(); |
| return 0; |
| } |
| |
| loops = 0; |
| again: |
| if (++loops > 100) { |
| WARN_ONCE(1, "perfevents: irq loop stuck!\n"); |
| perf_event_print_debug(); |
| intel_pmu_reset(); |
| perf_enable(); |
| return 1; |
| } |
| |
| inc_irq_stat(apic_perf_irqs); |
| ack = status; |
| for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) { |
| struct perf_event *event = cpuc->events[bit]; |
| |
| clear_bit(bit, (unsigned long *) &status); |
| if (!test_bit(bit, cpuc->active_mask)) |
| continue; |
| |
| if (!intel_pmu_save_and_restart(event)) |
| continue; |
| |
| data.period = event->hw.last_period; |
| |
| if (perf_event_overflow(event, 1, &data, regs)) |
| intel_pmu_disable_event(&event->hw, bit); |
| } |
| |
| intel_pmu_ack_status(ack); |
| |
| /* |
| * Repeat if there is more work to be done: |
| */ |
| status = intel_pmu_get_status(); |
| if (status) |
| goto again; |
| |
| perf_enable(); |
| |
| return 1; |
| } |
| |
| static int amd_pmu_handle_irq(struct pt_regs *regs) |
| { |
| struct perf_sample_data data; |
| struct cpu_hw_events *cpuc; |
| struct perf_event *event; |
| struct hw_perf_event *hwc; |
| int idx, handled = 0; |
| u64 val; |
| |
| data.addr = 0; |
| |
| cpuc = &__get_cpu_var(cpu_hw_events); |
| |
| for (idx = 0; idx < x86_pmu.num_events; idx++) { |
| if (!test_bit(idx, cpuc->active_mask)) |
| continue; |
| |
| event = cpuc->events[idx]; |
| hwc = &event->hw; |
| |
| val = x86_perf_event_update(event, hwc, idx); |
| if (val & (1ULL << (x86_pmu.event_bits - 1))) |
| continue; |
| |
| /* |
| * event overflow |
| */ |
| handled = 1; |
| data.period = event->hw.last_period; |
| |
| if (!x86_perf_event_set_period(event, hwc, idx)) |
| continue; |
| |
| if (perf_event_overflow(event, 1, &data, regs)) |
| amd_pmu_disable_event(hwc, idx); |
| } |
| |
| if (handled) |
| inc_irq_stat(apic_perf_irqs); |
| |
| return handled; |
| } |
| |
| void smp_perf_pending_interrupt(struct pt_regs *regs) |
| { |
| irq_enter(); |
| ack_APIC_irq(); |
| inc_irq_stat(apic_pending_irqs); |
| perf_event_do_pending(); |
| irq_exit(); |
| } |
| |
| void set_perf_event_pending(void) |
| { |
| #ifdef CONFIG_X86_LOCAL_APIC |
| if (!x86_pmu.apic || !x86_pmu_initialized()) |
| return; |
| |
| apic->send_IPI_self(LOCAL_PENDING_VECTOR); |
| #endif |
| } |
| |
| void perf_events_lapic_init(void) |
| { |
| #ifdef CONFIG_X86_LOCAL_APIC |
| if (!x86_pmu.apic || !x86_pmu_initialized()) |
| return; |
| |
| /* |
| * Always use NMI for PMU |
| */ |
| apic_write(APIC_LVTPC, APIC_DM_NMI); |
| #endif |
| } |
| |
| static int __kprobes |
| perf_event_nmi_handler(struct notifier_block *self, |
| unsigned long cmd, void *__args) |
| { |
| struct die_args *args = __args; |
| struct pt_regs *regs; |
| |
| if (!atomic_read(&active_events)) |
| return NOTIFY_DONE; |
| |
| switch (cmd) { |
| case DIE_NMI: |
| case DIE_NMI_IPI: |
| break; |
| |
| default: |
| return NOTIFY_DONE; |
| } |
| |
| regs = args->regs; |
| |
| #ifdef CONFIG_X86_LOCAL_APIC |
| apic_write(APIC_LVTPC, APIC_DM_NMI); |
| #endif |
| /* |
| * Can't rely on the handled return value to say it was our NMI, two |
| * events could trigger 'simultaneously' raising two back-to-back NMIs. |
| * |
| * If the first NMI handles both, the latter will be empty and daze |
| * the CPU. |
| */ |
| x86_pmu.handle_irq(regs); |
| |
| return NOTIFY_STOP; |
| } |
| |
| static __read_mostly struct notifier_block perf_event_nmi_notifier = { |
| .notifier_call = perf_event_nmi_handler, |
| .next = NULL, |
| .priority = 1 |
| }; |
| |
| static __initconst struct x86_pmu p6_pmu = { |
| .name = "p6", |
| .handle_irq = p6_pmu_handle_irq, |
| .disable_all = p6_pmu_disable_all, |
| .enable_all = p6_pmu_enable_all, |
| .enable = p6_pmu_enable_event, |
| .disable = p6_pmu_disable_event, |
| .eventsel = MSR_P6_EVNTSEL0, |
| .perfctr = MSR_P6_PERFCTR0, |
| .event_map = p6_pmu_event_map, |
| .raw_event = p6_pmu_raw_event, |
| .max_events = ARRAY_SIZE(p6_perfmon_event_map), |
| .apic = 1, |
| .max_period = (1ULL << 31) - 1, |
| .version = 0, |
| .num_events = 2, |
| /* |
| * Events have 40 bits implemented. However they are designed such |
| * that bits [32-39] are sign extensions of bit 31. As such the |
| * effective width of a event for P6-like PMU is 32 bits only. |
| * |
| * See IA-32 Intel Architecture Software developer manual Vol 3B |
| */ |
| .event_bits = 32, |
| .event_mask = (1ULL << 32) - 1, |
| .get_event_idx = intel_get_event_idx, |
| }; |
| |
| static __initconst struct x86_pmu intel_pmu = { |
| .name = "Intel", |
| .handle_irq = intel_pmu_handle_irq, |
| .disable_all = intel_pmu_disable_all, |
| .enable_all = intel_pmu_enable_all, |
| .enable = intel_pmu_enable_event, |
| .disable = intel_pmu_disable_event, |
| .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, |
| .perfctr = MSR_ARCH_PERFMON_PERFCTR0, |
| .event_map = intel_pmu_event_map, |
| .raw_event = intel_pmu_raw_event, |
| .max_events = ARRAY_SIZE(intel_perfmon_event_map), |
| .apic = 1, |
| /* |
| * Intel PMCs cannot be accessed sanely above 32 bit width, |
| * so we install an artificial 1<<31 period regardless of |
| * the generic event period: |
| */ |
| .max_period = (1ULL << 31) - 1, |
| .enable_bts = intel_pmu_enable_bts, |
| .disable_bts = intel_pmu_disable_bts, |
| .get_event_idx = intel_get_event_idx, |
| }; |
| |
| static __initconst struct x86_pmu amd_pmu = { |
| .name = "AMD", |
| .handle_irq = amd_pmu_handle_irq, |
| .disable_all = amd_pmu_disable_all, |
| .enable_all = amd_pmu_enable_all, |
| .enable = amd_pmu_enable_event, |
| .disable = amd_pmu_disable_event, |
| .eventsel = MSR_K7_EVNTSEL0, |
| .perfctr = MSR_K7_PERFCTR0, |
| .event_map = amd_pmu_event_map, |
| .raw_event = amd_pmu_raw_event, |
| .max_events = ARRAY_SIZE(amd_perfmon_event_map), |
| .num_events = 4, |
| .event_bits = 48, |
| .event_mask = (1ULL << 48) - 1, |
| .apic = 1, |
| /* use highest bit to detect overflow */ |
| .max_period = (1ULL << 47) - 1, |
| .get_event_idx = gen_get_event_idx, |
| }; |
| |
| static __init int p6_pmu_init(void) |
| { |
| switch (boot_cpu_data.x86_model) { |
| case 1: |
| case 3: /* Pentium Pro */ |
| case 5: |
| case 6: /* Pentium II */ |
| case 7: |
| case 8: |
| case 11: /* Pentium III */ |
| event_constraints = intel_p6_event_constraints; |
| break; |
| case 9: |
| case 13: |
| /* Pentium M */ |
| event_constraints = intel_p6_event_constraints; |
| break; |
| default: |
| pr_cont("unsupported p6 CPU model %d ", |
| boot_cpu_data.x86_model); |
| return -ENODEV; |
| } |
| |
| x86_pmu = p6_pmu; |
| |
| if (!cpu_has_apic) { |
| pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n"); |
| pr_info("no hardware sampling interrupt available.\n"); |
| x86_pmu.apic = 0; |
| } |
| |
| return 0; |
| } |
| |
| static __init int intel_pmu_init(void) |
| { |
| union cpuid10_edx edx; |
| union cpuid10_eax eax; |
| unsigned int unused; |
| unsigned int ebx; |
| int version; |
| |
| if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) { |
| /* check for P6 processor family */ |
| if (boot_cpu_data.x86 == 6) { |
| return p6_pmu_init(); |
| } else { |
| return -ENODEV; |
| } |
| } |
| |
| /* |
| * Check whether the Architectural PerfMon supports |
| * Branch Misses Retired hw_event or not. |
| */ |
| cpuid(10, &eax.full, &ebx, &unused, &edx.full); |
| if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED) |
| return -ENODEV; |
| |
| version = eax.split.version_id; |
| if (version < 2) |
| return -ENODEV; |
| |
| x86_pmu = intel_pmu; |
| x86_pmu.version = version; |
| x86_pmu.num_events = eax.split.num_events; |
| x86_pmu.event_bits = eax.split.bit_width; |
| x86_pmu.event_mask = (1ULL << eax.split.bit_width) - 1; |
| |
| /* |
| * Quirk: v2 perfmon does not report fixed-purpose events, so |
| * assume at least 3 events: |
| */ |
| x86_pmu.num_events_fixed = max((int)edx.split.num_events_fixed, 3); |
| |
| /* |
| * Install the hw-cache-events table: |
| */ |
| switch (boot_cpu_data.x86_model) { |
| case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */ |
| case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */ |
| case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */ |
| case 29: /* six-core 45 nm xeon "Dunnington" */ |
| memcpy(hw_cache_event_ids, core2_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| |
| pr_cont("Core2 events, "); |
| event_constraints = intel_core_event_constraints; |
| break; |
| default: |
| case 26: |
| memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| |
| event_constraints = intel_nehalem_event_constraints; |
| pr_cont("Nehalem/Corei7 events, "); |
| break; |
| case 28: |
| memcpy(hw_cache_event_ids, atom_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| |
| pr_cont("Atom events, "); |
| break; |
| } |
| return 0; |
| } |
| |
| static __init int amd_pmu_init(void) |
| { |
| /* Performance-monitoring supported from K7 and later: */ |
| if (boot_cpu_data.x86 < 6) |
| return -ENODEV; |
| |
| x86_pmu = amd_pmu; |
| |
| /* Events are common for all AMDs */ |
| memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| |
| return 0; |
| } |
| |
| void __init init_hw_perf_events(void) |
| { |
| int err; |
| |
| pr_info("Performance Events: "); |
| |
| switch (boot_cpu_data.x86_vendor) { |
| case X86_VENDOR_INTEL: |
| err = intel_pmu_init(); |
| break; |
| case X86_VENDOR_AMD: |
| err = amd_pmu_init(); |
| break; |
| default: |
| return; |
| } |
| if (err != 0) { |
| pr_cont("no PMU driver, software events only.\n"); |
| return; |
| } |
| |
| pr_cont("%s PMU driver.\n", x86_pmu.name); |
| |
| if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) { |
| WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!", |
| x86_pmu.num_events, X86_PMC_MAX_GENERIC); |
| x86_pmu.num_events = X86_PMC_MAX_GENERIC; |
| } |
| perf_event_mask = (1 << x86_pmu.num_events) - 1; |
| perf_max_events = x86_pmu.num_events; |
| |
| if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) { |
| WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!", |
| x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED); |
| x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED; |
| } |
| |
| perf_event_mask |= |
| ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED; |
| x86_pmu.intel_ctrl = perf_event_mask; |
| |
| perf_events_lapic_init(); |
| register_die_notifier(&perf_event_nmi_notifier); |
| |
| pr_info("... version: %d\n", x86_pmu.version); |
| pr_info("... bit width: %d\n", x86_pmu.event_bits); |
| pr_info("... generic registers: %d\n", x86_pmu.num_events); |
| pr_info("... value mask: %016Lx\n", x86_pmu.event_mask); |
| pr_info("... max period: %016Lx\n", x86_pmu.max_period); |
| pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed); |
| pr_info("... event mask: %016Lx\n", perf_event_mask); |
| } |
| |
| static inline void x86_pmu_read(struct perf_event *event) |
| { |
| x86_perf_event_update(event, &event->hw, event->hw.idx); |
| } |
| |
| static const struct pmu pmu = { |
| .enable = x86_pmu_enable, |
| .disable = x86_pmu_disable, |
| .read = x86_pmu_read, |
| .unthrottle = x86_pmu_unthrottle, |
| }; |
| |
| static int |
| validate_event(struct cpu_hw_events *cpuc, struct perf_event *event) |
| { |
| struct hw_perf_event fake_event = event->hw; |
| |
| if (event->pmu && event->pmu != &pmu) |
| return 0; |
| |
| return x86_schedule_event(cpuc, &fake_event) >= 0; |
| } |
| |
| static int validate_group(struct perf_event *event) |
| { |
| struct perf_event *sibling, *leader = event->group_leader; |
| struct cpu_hw_events fake_pmu; |
| |
| memset(&fake_pmu, 0, sizeof(fake_pmu)); |
| |
| if (!validate_event(&fake_pmu, leader)) |
| return -ENOSPC; |
| |
| list_for_each_entry(sibling, &leader->sibling_list, group_entry) { |
| if (!validate_event(&fake_pmu, sibling)) |
| return -ENOSPC; |
| } |
| |
| if (!validate_event(&fake_pmu, event)) |
| return -ENOSPC; |
| |
| return 0; |
| } |
| |
| const struct pmu *hw_perf_event_init(struct perf_event *event) |
| { |
| int err; |
| |
| err = __hw_perf_event_init(event); |
| if (!err) { |
| if (event->group_leader != event) |
| err = validate_group(event); |
| } |
| if (err) { |
| if (event->destroy) |
| event->destroy(event); |
| return ERR_PTR(err); |
| } |
| |
| return &pmu; |
| } |
| |
| /* |
| * callchain support |
| */ |
| |
| static inline |
| void callchain_store(struct perf_callchain_entry *entry, u64 ip) |
| { |
| if (entry->nr < PERF_MAX_STACK_DEPTH) |
| entry->ip[entry->nr++] = ip; |
| } |
| |
| static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry); |
| static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry); |
| static DEFINE_PER_CPU(int, in_nmi_frame); |
| |
| |
| static void |
| backtrace_warning_symbol(void *data, char *msg, unsigned long symbol) |
| { |
| /* Ignore warnings */ |
| } |
| |
| static void backtrace_warning(void *data, char *msg) |
| { |
| /* Ignore warnings */ |
| } |
| |
| static int backtrace_stack(void *data, char *name) |
| { |
| per_cpu(in_nmi_frame, smp_processor_id()) = |
| x86_is_stack_id(NMI_STACK, name); |
| |
| return 0; |
| } |
| |
| static void backtrace_address(void *data, unsigned long addr, int reliable) |
| { |
| struct perf_callchain_entry *entry = data; |
| |
| if (per_cpu(in_nmi_frame, smp_processor_id())) |
| return; |
| |
| if (reliable) |
| callchain_store(entry, addr); |
| } |
| |
| static const struct stacktrace_ops backtrace_ops = { |
| .warning = backtrace_warning, |
| .warning_symbol = backtrace_warning_symbol, |
| .stack = backtrace_stack, |
| .address = backtrace_address, |
| }; |
| |
| #include "../dumpstack.h" |
| |
| static void |
| perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry) |
| { |
| callchain_store(entry, PERF_CONTEXT_KERNEL); |
| callchain_store(entry, regs->ip); |
| |
| dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry); |
| } |
| |
| /* |
| * best effort, GUP based copy_from_user() that assumes IRQ or NMI context |
| */ |
| static unsigned long |
| copy_from_user_nmi(void *to, const void __user *from, unsigned long n) |
| { |
| unsigned long offset, addr = (unsigned long)from; |
| int type = in_nmi() ? KM_NMI : KM_IRQ0; |
| unsigned long size, len = 0; |
| struct page *page; |
| void *map; |
| int ret; |
| |
| do { |
| ret = __get_user_pages_fast(addr, 1, 0, &page); |
| if (!ret) |
| break; |
| |
| offset = addr & (PAGE_SIZE - 1); |
| size = min(PAGE_SIZE - offset, n - len); |
| |
| map = kmap_atomic(page, type); |
| memcpy(to, map+offset, size); |
| kunmap_atomic(map, type); |
| put_page(page); |
| |
| len += size; |
| to += size; |
| addr += size; |
| |
| } while (len < n); |
| |
| return len; |
| } |
| |
| static int copy_stack_frame(const void __user *fp, struct stack_frame *frame) |
| { |
| unsigned long bytes; |
| |
| bytes = copy_from_user_nmi(frame, fp, sizeof(*frame)); |
| |
| return bytes == sizeof(*frame); |
| } |
| |
| static void |
| perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry) |
| { |
| struct stack_frame frame; |
| const void __user *fp; |
| |
| if (!user_mode(regs)) |
| regs = task_pt_regs(current); |
| |
| fp = (void __user *)regs->bp; |
| |
| callchain_store(entry, PERF_CONTEXT_USER); |
| callchain_store(entry, regs->ip); |
| |
| while (entry->nr < PERF_MAX_STACK_DEPTH) { |
| frame.next_frame = NULL; |
| frame.return_address = 0; |
| |
| if (!copy_stack_frame(fp, &frame)) |
| break; |
| |
| if ((unsigned long)fp < regs->sp) |
| break; |
| |
| callchain_store(entry, frame.return_address); |
| fp = frame.next_frame; |
| } |
| } |
| |
| static void |
| perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry) |
| { |
| int is_user; |
| |
| if (!regs) |
| return; |
| |
| is_user = user_mode(regs); |
| |
| if (!current || current->pid == 0) |
| return; |
| |
| if (is_user && current->state != TASK_RUNNING) |
| return; |
| |
| if (!is_user) |
| perf_callchain_kernel(regs, entry); |
| |
| if (current->mm) |
| perf_callchain_user(regs, entry); |
| } |
| |
| struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) |
| { |
| struct perf_callchain_entry *entry; |
| |
| if (in_nmi()) |
| entry = &__get_cpu_var(pmc_nmi_entry); |
| else |
| entry = &__get_cpu_var(pmc_irq_entry); |
| |
| entry->nr = 0; |
| |
| perf_do_callchain(regs, entry); |
| |
| return entry; |
| } |
| |
| void hw_perf_event_setup_online(int cpu) |
| { |
| init_debug_store_on_cpu(cpu); |
| } |