blob: dde8dc720cd3f3b7d513776662a4f05b1241486d [file] [log] [blame]
/*
* Copyright (C) 2015 Cavium, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/if_vlan.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/log2.h>
#include <linux/prefetch.h>
#include <linux/irq.h>
#include "nic_reg.h"
#include "nic.h"
#include "nicvf_queues.h"
#include "thunder_bgx.h"
#define DRV_NAME "thunder-nicvf"
#define DRV_VERSION "1.0"
/* Supported devices */
static const struct pci_device_id nicvf_id_table[] = {
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
PCI_DEVICE_ID_THUNDER_NIC_VF,
PCI_VENDOR_ID_CAVIUM, 0xA134) },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
PCI_DEVICE_ID_THUNDER_PASS1_NIC_VF,
PCI_VENDOR_ID_CAVIUM, 0xA11E) },
{ 0, } /* end of table */
};
MODULE_AUTHOR("Sunil Goutham");
MODULE_DESCRIPTION("Cavium Thunder NIC Virtual Function Driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, nicvf_id_table);
static int debug = 0x00;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Debug message level bitmap");
static int cpi_alg = CPI_ALG_NONE;
module_param(cpi_alg, int, S_IRUGO);
MODULE_PARM_DESC(cpi_alg,
"PFC algorithm (0=none, 1=VLAN, 2=VLAN16, 3=IP Diffserv)");
static inline u8 nicvf_netdev_qidx(struct nicvf *nic, u8 qidx)
{
if (nic->sqs_mode)
return qidx + ((nic->sqs_id + 1) * MAX_CMP_QUEUES_PER_QS);
else
return qidx;
}
static inline void nicvf_set_rx_frame_cnt(struct nicvf *nic,
struct sk_buff *skb)
{
if (skb->len <= 64)
nic->drv_stats.rx_frames_64++;
else if (skb->len <= 127)
nic->drv_stats.rx_frames_127++;
else if (skb->len <= 255)
nic->drv_stats.rx_frames_255++;
else if (skb->len <= 511)
nic->drv_stats.rx_frames_511++;
else if (skb->len <= 1023)
nic->drv_stats.rx_frames_1023++;
else if (skb->len <= 1518)
nic->drv_stats.rx_frames_1518++;
else
nic->drv_stats.rx_frames_jumbo++;
}
/* The Cavium ThunderX network controller can *only* be found in SoCs
* containing the ThunderX ARM64 CPU implementation. All accesses to the device
* registers on this platform are implicitly strongly ordered with respect
* to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use
* with no memory barriers in this driver. The readq()/writeq() functions add
* explicit ordering operation which in this case are redundant, and only
* add overhead.
*/
/* Register read/write APIs */
void nicvf_reg_write(struct nicvf *nic, u64 offset, u64 val)
{
writeq_relaxed(val, nic->reg_base + offset);
}
u64 nicvf_reg_read(struct nicvf *nic, u64 offset)
{
return readq_relaxed(nic->reg_base + offset);
}
void nicvf_queue_reg_write(struct nicvf *nic, u64 offset,
u64 qidx, u64 val)
{
void __iomem *addr = nic->reg_base + offset;
writeq_relaxed(val, addr + (qidx << NIC_Q_NUM_SHIFT));
}
u64 nicvf_queue_reg_read(struct nicvf *nic, u64 offset, u64 qidx)
{
void __iomem *addr = nic->reg_base + offset;
return readq_relaxed(addr + (qidx << NIC_Q_NUM_SHIFT));
}
/* VF -> PF mailbox communication */
static void nicvf_write_to_mbx(struct nicvf *nic, union nic_mbx *mbx)
{
u64 *msg = (u64 *)mbx;
nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 0, msg[0]);
nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 8, msg[1]);
}
int nicvf_send_msg_to_pf(struct nicvf *nic, union nic_mbx *mbx)
{
int timeout = NIC_MBOX_MSG_TIMEOUT;
int sleep = 10;
nic->pf_acked = false;
nic->pf_nacked = false;
nicvf_write_to_mbx(nic, mbx);
/* Wait for previous message to be acked, timeout 2sec */
while (!nic->pf_acked) {
if (nic->pf_nacked)
return -EINVAL;
msleep(sleep);
if (nic->pf_acked)
break;
timeout -= sleep;
if (!timeout) {
netdev_err(nic->netdev,
"PF didn't ack to mbox msg %d from VF%d\n",
(mbx->msg.msg & 0xFF), nic->vf_id);
return -EBUSY;
}
}
return 0;
}
/* Checks if VF is able to comminicate with PF
* and also gets the VNIC number this VF is associated to.
*/
static int nicvf_check_pf_ready(struct nicvf *nic)
{
union nic_mbx mbx = {};
mbx.msg.msg = NIC_MBOX_MSG_READY;
if (nicvf_send_msg_to_pf(nic, &mbx)) {
netdev_err(nic->netdev,
"PF didn't respond to READY msg\n");
return 0;
}
return 1;
}
static void nicvf_read_bgx_stats(struct nicvf *nic, struct bgx_stats_msg *bgx)
{
if (bgx->rx)
nic->bgx_stats.rx_stats[bgx->idx] = bgx->stats;
else
nic->bgx_stats.tx_stats[bgx->idx] = bgx->stats;
}
static void nicvf_handle_mbx_intr(struct nicvf *nic)
{
union nic_mbx mbx = {};
u64 *mbx_data;
u64 mbx_addr;
int i;
mbx_addr = NIC_VF_PF_MAILBOX_0_1;
mbx_data = (u64 *)&mbx;
for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) {
*mbx_data = nicvf_reg_read(nic, mbx_addr);
mbx_data++;
mbx_addr += sizeof(u64);
}
netdev_dbg(nic->netdev, "Mbox message: msg: 0x%x\n", mbx.msg.msg);
switch (mbx.msg.msg) {
case NIC_MBOX_MSG_READY:
nic->pf_acked = true;
nic->vf_id = mbx.nic_cfg.vf_id & 0x7F;
nic->tns_mode = mbx.nic_cfg.tns_mode & 0x7F;
nic->node = mbx.nic_cfg.node_id;
if (!nic->set_mac_pending)
ether_addr_copy(nic->netdev->dev_addr,
mbx.nic_cfg.mac_addr);
nic->sqs_mode = mbx.nic_cfg.sqs_mode;
nic->loopback_supported = mbx.nic_cfg.loopback_supported;
nic->link_up = false;
nic->duplex = 0;
nic->speed = 0;
break;
case NIC_MBOX_MSG_ACK:
nic->pf_acked = true;
break;
case NIC_MBOX_MSG_NACK:
nic->pf_nacked = true;
break;
case NIC_MBOX_MSG_RSS_SIZE:
nic->rss_info.rss_size = mbx.rss_size.ind_tbl_size;
nic->pf_acked = true;
break;
case NIC_MBOX_MSG_BGX_STATS:
nicvf_read_bgx_stats(nic, &mbx.bgx_stats);
nic->pf_acked = true;
break;
case NIC_MBOX_MSG_BGX_LINK_CHANGE:
nic->pf_acked = true;
nic->link_up = mbx.link_status.link_up;
nic->duplex = mbx.link_status.duplex;
nic->speed = mbx.link_status.speed;
if (nic->link_up) {
netdev_info(nic->netdev, "%s: Link is Up %d Mbps %s\n",
nic->netdev->name, nic->speed,
nic->duplex == DUPLEX_FULL ?
"Full duplex" : "Half duplex");
netif_carrier_on(nic->netdev);
netif_tx_start_all_queues(nic->netdev);
} else {
netdev_info(nic->netdev, "%s: Link is Down\n",
nic->netdev->name);
netif_carrier_off(nic->netdev);
netif_tx_stop_all_queues(nic->netdev);
}
break;
case NIC_MBOX_MSG_ALLOC_SQS:
nic->sqs_count = mbx.sqs_alloc.qs_count;
nic->pf_acked = true;
break;
case NIC_MBOX_MSG_SNICVF_PTR:
/* Primary VF: make note of secondary VF's pointer
* to be used while packet transmission.
*/
nic->snicvf[mbx.nicvf.sqs_id] =
(struct nicvf *)mbx.nicvf.nicvf;
nic->pf_acked = true;
break;
case NIC_MBOX_MSG_PNICVF_PTR:
/* Secondary VF/Qset: make note of primary VF's pointer
* to be used while packet reception, to handover packet
* to primary VF's netdev.
*/
nic->pnicvf = (struct nicvf *)mbx.nicvf.nicvf;
nic->pf_acked = true;
break;
default:
netdev_err(nic->netdev,
"Invalid message from PF, msg 0x%x\n", mbx.msg.msg);
break;
}
nicvf_clear_intr(nic, NICVF_INTR_MBOX, 0);
}
static int nicvf_hw_set_mac_addr(struct nicvf *nic, struct net_device *netdev)
{
union nic_mbx mbx = {};
mbx.mac.msg = NIC_MBOX_MSG_SET_MAC;
mbx.mac.vf_id = nic->vf_id;
ether_addr_copy(mbx.mac.mac_addr, netdev->dev_addr);
return nicvf_send_msg_to_pf(nic, &mbx);
}
static void nicvf_config_cpi(struct nicvf *nic)
{
union nic_mbx mbx = {};
mbx.cpi_cfg.msg = NIC_MBOX_MSG_CPI_CFG;
mbx.cpi_cfg.vf_id = nic->vf_id;
mbx.cpi_cfg.cpi_alg = nic->cpi_alg;
mbx.cpi_cfg.rq_cnt = nic->qs->rq_cnt;
nicvf_send_msg_to_pf(nic, &mbx);
}
static void nicvf_get_rss_size(struct nicvf *nic)
{
union nic_mbx mbx = {};
mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE;
mbx.rss_size.vf_id = nic->vf_id;
nicvf_send_msg_to_pf(nic, &mbx);
}
void nicvf_config_rss(struct nicvf *nic)
{
union nic_mbx mbx = {};
struct nicvf_rss_info *rss = &nic->rss_info;
int ind_tbl_len = rss->rss_size;
int i, nextq = 0;
mbx.rss_cfg.vf_id = nic->vf_id;
mbx.rss_cfg.hash_bits = rss->hash_bits;
while (ind_tbl_len) {
mbx.rss_cfg.tbl_offset = nextq;
mbx.rss_cfg.tbl_len = min(ind_tbl_len,
RSS_IND_TBL_LEN_PER_MBX_MSG);
mbx.rss_cfg.msg = mbx.rss_cfg.tbl_offset ?
NIC_MBOX_MSG_RSS_CFG_CONT : NIC_MBOX_MSG_RSS_CFG;
for (i = 0; i < mbx.rss_cfg.tbl_len; i++)
mbx.rss_cfg.ind_tbl[i] = rss->ind_tbl[nextq++];
nicvf_send_msg_to_pf(nic, &mbx);
ind_tbl_len -= mbx.rss_cfg.tbl_len;
}
}
void nicvf_set_rss_key(struct nicvf *nic)
{
struct nicvf_rss_info *rss = &nic->rss_info;
u64 key_addr = NIC_VNIC_RSS_KEY_0_4;
int idx;
for (idx = 0; idx < RSS_HASH_KEY_SIZE; idx++) {
nicvf_reg_write(nic, key_addr, rss->key[idx]);
key_addr += sizeof(u64);
}
}
static int nicvf_rss_init(struct nicvf *nic)
{
struct nicvf_rss_info *rss = &nic->rss_info;
int idx;
nicvf_get_rss_size(nic);
if (cpi_alg != CPI_ALG_NONE) {
rss->enable = false;
rss->hash_bits = 0;
return 0;
}
rss->enable = true;
/* Using the HW reset value for now */
rss->key[0] = 0xFEED0BADFEED0BADULL;
rss->key[1] = 0xFEED0BADFEED0BADULL;
rss->key[2] = 0xFEED0BADFEED0BADULL;
rss->key[3] = 0xFEED0BADFEED0BADULL;
rss->key[4] = 0xFEED0BADFEED0BADULL;
nicvf_set_rss_key(nic);
rss->cfg = RSS_IP_HASH_ENA | RSS_TCP_HASH_ENA | RSS_UDP_HASH_ENA;
nicvf_reg_write(nic, NIC_VNIC_RSS_CFG, rss->cfg);
rss->hash_bits = ilog2(rounddown_pow_of_two(rss->rss_size));
for (idx = 0; idx < rss->rss_size; idx++)
rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx,
nic->rx_queues);
nicvf_config_rss(nic);
return 1;
}
/* Request PF to allocate additional Qsets */
static void nicvf_request_sqs(struct nicvf *nic)
{
union nic_mbx mbx = {};
int sqs;
int sqs_count = nic->sqs_count;
int rx_queues = 0, tx_queues = 0;
/* Only primary VF should request */
if (nic->sqs_mode || !nic->sqs_count)
return;
mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS;
mbx.sqs_alloc.vf_id = nic->vf_id;
mbx.sqs_alloc.qs_count = nic->sqs_count;
if (nicvf_send_msg_to_pf(nic, &mbx)) {
/* No response from PF */
nic->sqs_count = 0;
return;
}
/* Return if no Secondary Qsets available */
if (!nic->sqs_count)
return;
if (nic->rx_queues > MAX_RCV_QUEUES_PER_QS)
rx_queues = nic->rx_queues - MAX_RCV_QUEUES_PER_QS;
if (nic->tx_queues > MAX_SND_QUEUES_PER_QS)
tx_queues = nic->tx_queues - MAX_SND_QUEUES_PER_QS;
/* Set no of Rx/Tx queues in each of the SQsets */
for (sqs = 0; sqs < nic->sqs_count; sqs++) {
mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR;
mbx.nicvf.vf_id = nic->vf_id;
mbx.nicvf.sqs_id = sqs;
nicvf_send_msg_to_pf(nic, &mbx);
nic->snicvf[sqs]->sqs_id = sqs;
if (rx_queues > MAX_RCV_QUEUES_PER_QS) {
nic->snicvf[sqs]->qs->rq_cnt = MAX_RCV_QUEUES_PER_QS;
rx_queues -= MAX_RCV_QUEUES_PER_QS;
} else {
nic->snicvf[sqs]->qs->rq_cnt = rx_queues;
rx_queues = 0;
}
if (tx_queues > MAX_SND_QUEUES_PER_QS) {
nic->snicvf[sqs]->qs->sq_cnt = MAX_SND_QUEUES_PER_QS;
tx_queues -= MAX_SND_QUEUES_PER_QS;
} else {
nic->snicvf[sqs]->qs->sq_cnt = tx_queues;
tx_queues = 0;
}
nic->snicvf[sqs]->qs->cq_cnt =
max(nic->snicvf[sqs]->qs->rq_cnt, nic->snicvf[sqs]->qs->sq_cnt);
/* Initialize secondary Qset's queues and its interrupts */
nicvf_open(nic->snicvf[sqs]->netdev);
}
/* Update stack with actual Rx/Tx queue count allocated */
if (sqs_count != nic->sqs_count)
nicvf_set_real_num_queues(nic->netdev,
nic->tx_queues, nic->rx_queues);
}
/* Send this Qset's nicvf pointer to PF.
* PF inturn sends primary VF's nicvf struct to secondary Qsets/VFs
* so that packets received by these Qsets can use primary VF's netdev
*/
static void nicvf_send_vf_struct(struct nicvf *nic)
{
union nic_mbx mbx = {};
mbx.nicvf.msg = NIC_MBOX_MSG_NICVF_PTR;
mbx.nicvf.sqs_mode = nic->sqs_mode;
mbx.nicvf.nicvf = (u64)nic;
nicvf_send_msg_to_pf(nic, &mbx);
}
static void nicvf_get_primary_vf_struct(struct nicvf *nic)
{
union nic_mbx mbx = {};
mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR;
nicvf_send_msg_to_pf(nic, &mbx);
}
int nicvf_set_real_num_queues(struct net_device *netdev,
int tx_queues, int rx_queues)
{
int err = 0;
err = netif_set_real_num_tx_queues(netdev, tx_queues);
if (err) {
netdev_err(netdev,
"Failed to set no of Tx queues: %d\n", tx_queues);
return err;
}
err = netif_set_real_num_rx_queues(netdev, rx_queues);
if (err)
netdev_err(netdev,
"Failed to set no of Rx queues: %d\n", rx_queues);
return err;
}
static int nicvf_init_resources(struct nicvf *nic)
{
int err;
union nic_mbx mbx = {};
mbx.msg.msg = NIC_MBOX_MSG_CFG_DONE;
/* Enable Qset */
nicvf_qset_config(nic, true);
/* Initialize queues and HW for data transfer */
err = nicvf_config_data_transfer(nic, true);
if (err) {
netdev_err(nic->netdev,
"Failed to alloc/config VF's QSet resources\n");
return err;
}
/* Send VF config done msg to PF */
nicvf_write_to_mbx(nic, &mbx);
return 0;
}
static void nicvf_snd_pkt_handler(struct net_device *netdev,
struct cmp_queue *cq,
struct cqe_send_t *cqe_tx, int cqe_type)
{
struct sk_buff *skb = NULL;
struct nicvf *nic = netdev_priv(netdev);
struct snd_queue *sq;
struct sq_hdr_subdesc *hdr;
sq = &nic->qs->sq[cqe_tx->sq_idx];
hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
return;
netdev_dbg(nic->netdev,
"%s Qset #%d SQ #%d SQ ptr #%d subdesc count %d\n",
__func__, cqe_tx->sq_qs, cqe_tx->sq_idx,
cqe_tx->sqe_ptr, hdr->subdesc_cnt);
nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
nicvf_check_cqe_tx_errs(nic, cq, cqe_tx);
skb = (struct sk_buff *)sq->skbuff[cqe_tx->sqe_ptr];
/* For TSO offloaded packets only one head SKB needs to be freed */
if (skb) {
prefetch(skb);
dev_consume_skb_any(skb);
sq->skbuff[cqe_tx->sqe_ptr] = (u64)NULL;
}
}
static inline void nicvf_set_rxhash(struct net_device *netdev,
struct cqe_rx_t *cqe_rx,
struct sk_buff *skb)
{
u8 hash_type;
u32 hash;
if (!(netdev->features & NETIF_F_RXHASH))
return;
switch (cqe_rx->rss_alg) {
case RSS_ALG_TCP_IP:
case RSS_ALG_UDP_IP:
hash_type = PKT_HASH_TYPE_L4;
hash = cqe_rx->rss_tag;
break;
case RSS_ALG_IP:
hash_type = PKT_HASH_TYPE_L3;
hash = cqe_rx->rss_tag;
break;
default:
hash_type = PKT_HASH_TYPE_NONE;
hash = 0;
}
skb_set_hash(skb, hash, hash_type);
}
static void nicvf_rcv_pkt_handler(struct net_device *netdev,
struct napi_struct *napi,
struct cmp_queue *cq,
struct cqe_rx_t *cqe_rx, int cqe_type)
{
struct sk_buff *skb;
struct nicvf *nic = netdev_priv(netdev);
int err = 0;
int rq_idx;
rq_idx = nicvf_netdev_qidx(nic, cqe_rx->rq_idx);
if (nic->sqs_mode) {
/* Use primary VF's 'nicvf' struct */
nic = nic->pnicvf;
netdev = nic->netdev;
}
/* Check for errors */
err = nicvf_check_cqe_rx_errs(nic, cq, cqe_rx);
if (err && !cqe_rx->rb_cnt)
return;
skb = nicvf_get_rcv_skb(nic, cqe_rx);
if (!skb) {
netdev_dbg(nic->netdev, "Packet not received\n");
return;
}
if (netif_msg_pktdata(nic)) {
netdev_info(nic->netdev, "%s: skb 0x%p, len=%d\n", netdev->name,
skb, skb->len);
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1,
skb->data, skb->len, true);
}
/* If error packet, drop it here */
if (err) {
dev_kfree_skb_any(skb);
return;
}
nicvf_set_rx_frame_cnt(nic, skb);
nicvf_set_rxhash(netdev, cqe_rx, skb);
skb_record_rx_queue(skb, rq_idx);
if (netdev->hw_features & NETIF_F_RXCSUM) {
/* HW by default verifies TCP/UDP/SCTP checksums */
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else {
skb_checksum_none_assert(skb);
}
skb->protocol = eth_type_trans(skb, netdev);
/* Check for stripped VLAN */
if (cqe_rx->vlan_found && cqe_rx->vlan_stripped)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
ntohs((__force __be16)cqe_rx->vlan_tci));
if (napi && (netdev->features & NETIF_F_GRO))
napi_gro_receive(napi, skb);
else
netif_receive_skb(skb);
}
static int nicvf_cq_intr_handler(struct net_device *netdev, u8 cq_idx,
struct napi_struct *napi, int budget)
{
int processed_cqe, work_done = 0, tx_done = 0;
int cqe_count, cqe_head;
struct nicvf *nic = netdev_priv(netdev);
struct queue_set *qs = nic->qs;
struct cmp_queue *cq = &qs->cq[cq_idx];
struct cqe_rx_t *cq_desc;
struct netdev_queue *txq;
spin_lock_bh(&cq->lock);
loop:
processed_cqe = 0;
/* Get no of valid CQ entries to process */
cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
cqe_count &= CQ_CQE_COUNT;
if (!cqe_count)
goto done;
/* Get head of the valid CQ entries */
cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
cqe_head &= 0xFFFF;
netdev_dbg(nic->netdev, "%s CQ%d cqe_count %d cqe_head %d\n",
__func__, cq_idx, cqe_count, cqe_head);
while (processed_cqe < cqe_count) {
/* Get the CQ descriptor */
cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
cqe_head++;
cqe_head &= (cq->dmem.q_len - 1);
/* Initiate prefetch for next descriptor */
prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
if ((work_done >= budget) && napi &&
(cq_desc->cqe_type != CQE_TYPE_SEND)) {
break;
}
netdev_dbg(nic->netdev, "CQ%d cq_desc->cqe_type %d\n",
cq_idx, cq_desc->cqe_type);
switch (cq_desc->cqe_type) {
case CQE_TYPE_RX:
nicvf_rcv_pkt_handler(netdev, napi, cq,
cq_desc, CQE_TYPE_RX);
work_done++;
break;
case CQE_TYPE_SEND:
nicvf_snd_pkt_handler(netdev, cq,
(void *)cq_desc, CQE_TYPE_SEND);
tx_done++;
break;
case CQE_TYPE_INVALID:
case CQE_TYPE_RX_SPLIT:
case CQE_TYPE_RX_TCP:
case CQE_TYPE_SEND_PTP:
/* Ignore for now */
break;
}
processed_cqe++;
}
netdev_dbg(nic->netdev,
"%s CQ%d processed_cqe %d work_done %d budget %d\n",
__func__, cq_idx, processed_cqe, work_done, budget);
/* Ring doorbell to inform H/W to reuse processed CQEs */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR,
cq_idx, processed_cqe);
if ((work_done < budget) && napi)
goto loop;
done:
/* Wakeup TXQ if its stopped earlier due to SQ full */
if (tx_done) {
netdev = nic->pnicvf->netdev;
txq = netdev_get_tx_queue(netdev,
nicvf_netdev_qidx(nic, cq_idx));
nic = nic->pnicvf;
if (netif_tx_queue_stopped(txq) && netif_carrier_ok(netdev)) {
netif_tx_start_queue(txq);
nic->drv_stats.txq_wake++;
if (netif_msg_tx_err(nic))
netdev_warn(netdev,
"%s: Transmit queue wakeup SQ%d\n",
netdev->name, cq_idx);
}
}
spin_unlock_bh(&cq->lock);
return work_done;
}
static int nicvf_poll(struct napi_struct *napi, int budget)
{
u64 cq_head;
int work_done = 0;
struct net_device *netdev = napi->dev;
struct nicvf *nic = netdev_priv(netdev);
struct nicvf_cq_poll *cq;
cq = container_of(napi, struct nicvf_cq_poll, napi);
work_done = nicvf_cq_intr_handler(netdev, cq->cq_idx, napi, budget);
if (work_done < budget) {
/* Slow packet rate, exit polling */
napi_complete(napi);
/* Re-enable interrupts */
cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD,
cq->cq_idx);
nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD,
cq->cq_idx, cq_head);
nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
}
return work_done;
}
/* Qset error interrupt handler
*
* As of now only CQ errors are handled
*/
static void nicvf_handle_qs_err(unsigned long data)
{
struct nicvf *nic = (struct nicvf *)data;
struct queue_set *qs = nic->qs;
int qidx;
u64 status;
netif_tx_disable(nic->netdev);
/* Check if it is CQ err */
for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
qidx);
if (!(status & CQ_ERR_MASK))
continue;
/* Process already queued CQEs and reconfig CQ */
nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
nicvf_sq_disable(nic, qidx);
nicvf_cq_intr_handler(nic->netdev, qidx, NULL, 0);
nicvf_cmp_queue_config(nic, qs, qidx, true);
nicvf_sq_free_used_descs(nic->netdev, &qs->sq[qidx], qidx);
nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
}
netif_tx_start_all_queues(nic->netdev);
/* Re-enable Qset error interrupt */
nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
}
static void nicvf_dump_intr_status(struct nicvf *nic)
{
if (netif_msg_intr(nic))
netdev_info(nic->netdev, "%s: interrupt status 0x%llx\n",
nic->netdev->name, nicvf_reg_read(nic, NIC_VF_INT));
}
static irqreturn_t nicvf_misc_intr_handler(int irq, void *nicvf_irq)
{
struct nicvf *nic = (struct nicvf *)nicvf_irq;
u64 intr;
nicvf_dump_intr_status(nic);
intr = nicvf_reg_read(nic, NIC_VF_INT);
/* Check for spurious interrupt */
if (!(intr & NICVF_INTR_MBOX_MASK))
return IRQ_HANDLED;
nicvf_handle_mbx_intr(nic);
return IRQ_HANDLED;
}
static irqreturn_t nicvf_intr_handler(int irq, void *cq_irq)
{
struct nicvf_cq_poll *cq_poll = (struct nicvf_cq_poll *)cq_irq;
struct nicvf *nic = cq_poll->nicvf;
int qidx = cq_poll->cq_idx;
nicvf_dump_intr_status(nic);
/* Disable interrupts */
nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
/* Schedule NAPI */
napi_schedule(&cq_poll->napi);
/* Clear interrupt */
nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
return IRQ_HANDLED;
}
static irqreturn_t nicvf_rbdr_intr_handler(int irq, void *nicvf_irq)
{
struct nicvf *nic = (struct nicvf *)nicvf_irq;
u8 qidx;
nicvf_dump_intr_status(nic);
/* Disable RBDR interrupt and schedule softirq */
for (qidx = 0; qidx < nic->qs->rbdr_cnt; qidx++) {
if (!nicvf_is_intr_enabled(nic, NICVF_INTR_RBDR, qidx))
continue;
nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
tasklet_hi_schedule(&nic->rbdr_task);
/* Clear interrupt */
nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
}
return IRQ_HANDLED;
}
static irqreturn_t nicvf_qs_err_intr_handler(int irq, void *nicvf_irq)
{
struct nicvf *nic = (struct nicvf *)nicvf_irq;
nicvf_dump_intr_status(nic);
/* Disable Qset err interrupt and schedule softirq */
nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
tasklet_hi_schedule(&nic->qs_err_task);
nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
return IRQ_HANDLED;
}
static int nicvf_enable_msix(struct nicvf *nic)
{
int ret, vec;
nic->num_vec = NIC_VF_MSIX_VECTORS;
for (vec = 0; vec < nic->num_vec; vec++)
nic->msix_entries[vec].entry = vec;
ret = pci_enable_msix(nic->pdev, nic->msix_entries, nic->num_vec);
if (ret) {
netdev_err(nic->netdev,
"Req for #%d msix vectors failed\n", nic->num_vec);
return 0;
}
nic->msix_enabled = 1;
return 1;
}
static void nicvf_disable_msix(struct nicvf *nic)
{
if (nic->msix_enabled) {
pci_disable_msix(nic->pdev);
nic->msix_enabled = 0;
nic->num_vec = 0;
}
}
static int nicvf_register_interrupts(struct nicvf *nic)
{
int irq, ret = 0;
int vector;
for_each_cq_irq(irq)
sprintf(nic->irq_name[irq], "NICVF%d CQ%d",
nic->vf_id, irq);
for_each_sq_irq(irq)
sprintf(nic->irq_name[irq], "NICVF%d SQ%d",
nic->vf_id, irq - NICVF_INTR_ID_SQ);
for_each_rbdr_irq(irq)
sprintf(nic->irq_name[irq], "NICVF%d RBDR%d",
nic->vf_id, irq - NICVF_INTR_ID_RBDR);
/* Register CQ interrupts */
for (irq = 0; irq < nic->qs->cq_cnt; irq++) {
vector = nic->msix_entries[irq].vector;
ret = request_irq(vector, nicvf_intr_handler,
0, nic->irq_name[irq], nic->napi[irq]);
if (ret)
goto err;
nic->irq_allocated[irq] = true;
}
/* Register RBDR interrupt */
for (irq = NICVF_INTR_ID_RBDR;
irq < (NICVF_INTR_ID_RBDR + nic->qs->rbdr_cnt); irq++) {
vector = nic->msix_entries[irq].vector;
ret = request_irq(vector, nicvf_rbdr_intr_handler,
0, nic->irq_name[irq], nic);
if (ret)
goto err;
nic->irq_allocated[irq] = true;
}
/* Register QS error interrupt */
sprintf(nic->irq_name[NICVF_INTR_ID_QS_ERR],
"NICVF%d Qset error", nic->vf_id);
irq = NICVF_INTR_ID_QS_ERR;
ret = request_irq(nic->msix_entries[irq].vector,
nicvf_qs_err_intr_handler,
0, nic->irq_name[irq], nic);
if (!ret)
nic->irq_allocated[irq] = true;
err:
if (ret)
netdev_err(nic->netdev, "request_irq failed, vector %d\n", irq);
return ret;
}
static void nicvf_unregister_interrupts(struct nicvf *nic)
{
int irq;
/* Free registered interrupts */
for (irq = 0; irq < nic->num_vec; irq++) {
if (!nic->irq_allocated[irq])
continue;
if (irq < NICVF_INTR_ID_SQ)
free_irq(nic->msix_entries[irq].vector, nic->napi[irq]);
else
free_irq(nic->msix_entries[irq].vector, nic);
nic->irq_allocated[irq] = false;
}
/* Disable MSI-X */
nicvf_disable_msix(nic);
}
/* Initialize MSIX vectors and register MISC interrupt.
* Send READY message to PF to check if its alive
*/
static int nicvf_register_misc_interrupt(struct nicvf *nic)
{
int ret = 0;
int irq = NICVF_INTR_ID_MISC;
/* Return if mailbox interrupt is already registered */
if (nic->msix_enabled)
return 0;
/* Enable MSI-X */
if (!nicvf_enable_msix(nic))
return 1;
sprintf(nic->irq_name[irq], "%s Mbox", "NICVF");
/* Register Misc interrupt */
ret = request_irq(nic->msix_entries[irq].vector,
nicvf_misc_intr_handler, 0, nic->irq_name[irq], nic);
if (ret)
return ret;
nic->irq_allocated[irq] = true;
/* Enable mailbox interrupt */
nicvf_enable_intr(nic, NICVF_INTR_MBOX, 0);
/* Check if VF is able to communicate with PF */
if (!nicvf_check_pf_ready(nic)) {
nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
nicvf_unregister_interrupts(nic);
return 1;
}
return 0;
}
static netdev_tx_t nicvf_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct nicvf *nic = netdev_priv(netdev);
int qid = skb_get_queue_mapping(skb);
struct netdev_queue *txq = netdev_get_tx_queue(netdev, qid);
/* Check for minimum packet length */
if (skb->len <= ETH_HLEN) {
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
if (!netif_tx_queue_stopped(txq) && !nicvf_sq_append_skb(nic, skb)) {
netif_tx_stop_queue(txq);
nic->drv_stats.txq_stop++;
if (netif_msg_tx_err(nic))
netdev_warn(netdev,
"%s: Transmit ring full, stopping SQ%d\n",
netdev->name, qid);
return NETDEV_TX_BUSY;
}
return NETDEV_TX_OK;
}
static inline void nicvf_free_cq_poll(struct nicvf *nic)
{
struct nicvf_cq_poll *cq_poll;
int qidx;
for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
cq_poll = nic->napi[qidx];
if (!cq_poll)
continue;
nic->napi[qidx] = NULL;
kfree(cq_poll);
}
}
int nicvf_stop(struct net_device *netdev)
{
int irq, qidx;
struct nicvf *nic = netdev_priv(netdev);
struct queue_set *qs = nic->qs;
struct nicvf_cq_poll *cq_poll = NULL;
union nic_mbx mbx = {};
mbx.msg.msg = NIC_MBOX_MSG_SHUTDOWN;
nicvf_send_msg_to_pf(nic, &mbx);
netif_carrier_off(netdev);
netif_tx_stop_all_queues(nic->netdev);
nic->link_up = false;
/* Teardown secondary qsets first */
if (!nic->sqs_mode) {
for (qidx = 0; qidx < nic->sqs_count; qidx++) {
if (!nic->snicvf[qidx])
continue;
nicvf_stop(nic->snicvf[qidx]->netdev);
nic->snicvf[qidx] = NULL;
}
}
/* Disable RBDR & QS error interrupts */
for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
}
nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
/* Wait for pending IRQ handlers to finish */
for (irq = 0; irq < nic->num_vec; irq++)
synchronize_irq(nic->msix_entries[irq].vector);
tasklet_kill(&nic->rbdr_task);
tasklet_kill(&nic->qs_err_task);
if (nic->rb_work_scheduled)
cancel_delayed_work_sync(&nic->rbdr_work);
for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
cq_poll = nic->napi[qidx];
if (!cq_poll)
continue;
napi_synchronize(&cq_poll->napi);
/* CQ intr is enabled while napi_complete,
* so disable it now
*/
nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
napi_disable(&cq_poll->napi);
netif_napi_del(&cq_poll->napi);
}
netif_tx_disable(netdev);
/* Free resources */
nicvf_config_data_transfer(nic, false);
/* Disable HW Qset */
nicvf_qset_config(nic, false);
/* disable mailbox interrupt */
nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
nicvf_unregister_interrupts(nic);
nicvf_free_cq_poll(nic);
/* Clear multiqset info */
nic->pnicvf = nic;
nic->sqs_count = 0;
return 0;
}
int nicvf_open(struct net_device *netdev)
{
int err, qidx;
struct nicvf *nic = netdev_priv(netdev);
struct queue_set *qs = nic->qs;
struct nicvf_cq_poll *cq_poll = NULL;
nic->mtu = netdev->mtu;
netif_carrier_off(netdev);
err = nicvf_register_misc_interrupt(nic);
if (err)
return err;
/* Register NAPI handler for processing CQEs */
for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
cq_poll = kzalloc(sizeof(*cq_poll), GFP_KERNEL);
if (!cq_poll) {
err = -ENOMEM;
goto napi_del;
}
cq_poll->cq_idx = qidx;
cq_poll->nicvf = nic;
netif_napi_add(netdev, &cq_poll->napi, nicvf_poll,
NAPI_POLL_WEIGHT);
napi_enable(&cq_poll->napi);
nic->napi[qidx] = cq_poll;
}
/* Check if we got MAC address from PF or else generate a radom MAC */
if (is_zero_ether_addr(netdev->dev_addr)) {
eth_hw_addr_random(netdev);
nicvf_hw_set_mac_addr(nic, netdev);
}
if (nic->set_mac_pending) {
nic->set_mac_pending = false;
nicvf_hw_set_mac_addr(nic, netdev);
}
/* Init tasklet for handling Qset err interrupt */
tasklet_init(&nic->qs_err_task, nicvf_handle_qs_err,
(unsigned long)nic);
/* Init RBDR tasklet which will refill RBDR */
tasklet_init(&nic->rbdr_task, nicvf_rbdr_task,
(unsigned long)nic);
INIT_DELAYED_WORK(&nic->rbdr_work, nicvf_rbdr_work);
/* Configure CPI alorithm */
nic->cpi_alg = cpi_alg;
if (!nic->sqs_mode)
nicvf_config_cpi(nic);
nicvf_request_sqs(nic);
if (nic->sqs_mode)
nicvf_get_primary_vf_struct(nic);
/* Configure receive side scaling */
if (!nic->sqs_mode)
nicvf_rss_init(nic);
err = nicvf_register_interrupts(nic);
if (err)
goto cleanup;
/* Initialize the queues */
err = nicvf_init_resources(nic);
if (err)
goto cleanup;
/* Make sure queue initialization is written */
wmb();
nicvf_reg_write(nic, NIC_VF_INT, -1);
/* Enable Qset err interrupt */
nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
/* Enable completion queue interrupt */
for (qidx = 0; qidx < qs->cq_cnt; qidx++)
nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
/* Enable RBDR threshold interrupt */
for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
nicvf_enable_intr(nic, NICVF_INTR_RBDR, qidx);
nic->drv_stats.txq_stop = 0;
nic->drv_stats.txq_wake = 0;
return 0;
cleanup:
nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
nicvf_unregister_interrupts(nic);
tasklet_kill(&nic->qs_err_task);
tasklet_kill(&nic->rbdr_task);
napi_del:
for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
cq_poll = nic->napi[qidx];
if (!cq_poll)
continue;
napi_disable(&cq_poll->napi);
netif_napi_del(&cq_poll->napi);
}
nicvf_free_cq_poll(nic);
return err;
}
static int nicvf_update_hw_max_frs(struct nicvf *nic, int mtu)
{
union nic_mbx mbx = {};
mbx.frs.msg = NIC_MBOX_MSG_SET_MAX_FRS;
mbx.frs.max_frs = mtu;
mbx.frs.vf_id = nic->vf_id;
return nicvf_send_msg_to_pf(nic, &mbx);
}
static int nicvf_change_mtu(struct net_device *netdev, int new_mtu)
{
struct nicvf *nic = netdev_priv(netdev);
if (new_mtu > NIC_HW_MAX_FRS)
return -EINVAL;
if (new_mtu < NIC_HW_MIN_FRS)
return -EINVAL;
if (nicvf_update_hw_max_frs(nic, new_mtu))
return -EINVAL;
netdev->mtu = new_mtu;
nic->mtu = new_mtu;
return 0;
}
static int nicvf_set_mac_address(struct net_device *netdev, void *p)
{
struct sockaddr *addr = p;
struct nicvf *nic = netdev_priv(netdev);
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
if (nic->msix_enabled) {
if (nicvf_hw_set_mac_addr(nic, netdev))
return -EBUSY;
} else {
nic->set_mac_pending = true;
}
return 0;
}
void nicvf_update_lmac_stats(struct nicvf *nic)
{
int stat = 0;
union nic_mbx mbx = {};
if (!netif_running(nic->netdev))
return;
mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS;
mbx.bgx_stats.vf_id = nic->vf_id;
/* Rx stats */
mbx.bgx_stats.rx = 1;
while (stat < BGX_RX_STATS_COUNT) {
mbx.bgx_stats.idx = stat;
if (nicvf_send_msg_to_pf(nic, &mbx))
return;
stat++;
}
stat = 0;
/* Tx stats */
mbx.bgx_stats.rx = 0;
while (stat < BGX_TX_STATS_COUNT) {
mbx.bgx_stats.idx = stat;
if (nicvf_send_msg_to_pf(nic, &mbx))
return;
stat++;
}
}
void nicvf_update_stats(struct nicvf *nic)
{
int qidx;
struct nicvf_hw_stats *stats = &nic->hw_stats;
struct nicvf_drv_stats *drv_stats = &nic->drv_stats;
struct queue_set *qs = nic->qs;
#define GET_RX_STATS(reg) \
nicvf_reg_read(nic, NIC_VNIC_RX_STAT_0_13 | (reg << 3))
#define GET_TX_STATS(reg) \
nicvf_reg_read(nic, NIC_VNIC_TX_STAT_0_4 | (reg << 3))
stats->rx_bytes = GET_RX_STATS(RX_OCTS);
stats->rx_ucast_frames = GET_RX_STATS(RX_UCAST);
stats->rx_bcast_frames = GET_RX_STATS(RX_BCAST);
stats->rx_mcast_frames = GET_RX_STATS(RX_MCAST);
stats->rx_fcs_errors = GET_RX_STATS(RX_FCS);
stats->rx_l2_errors = GET_RX_STATS(RX_L2ERR);
stats->rx_drop_red = GET_RX_STATS(RX_RED);
stats->rx_drop_red_bytes = GET_RX_STATS(RX_RED_OCTS);
stats->rx_drop_overrun = GET_RX_STATS(RX_ORUN);
stats->rx_drop_overrun_bytes = GET_RX_STATS(RX_ORUN_OCTS);
stats->rx_drop_bcast = GET_RX_STATS(RX_DRP_BCAST);
stats->rx_drop_mcast = GET_RX_STATS(RX_DRP_MCAST);
stats->rx_drop_l3_bcast = GET_RX_STATS(RX_DRP_L3BCAST);
stats->rx_drop_l3_mcast = GET_RX_STATS(RX_DRP_L3MCAST);
stats->tx_bytes_ok = GET_TX_STATS(TX_OCTS);
stats->tx_ucast_frames_ok = GET_TX_STATS(TX_UCAST);
stats->tx_bcast_frames_ok = GET_TX_STATS(TX_BCAST);
stats->tx_mcast_frames_ok = GET_TX_STATS(TX_MCAST);
stats->tx_drops = GET_TX_STATS(TX_DROP);
drv_stats->tx_frames_ok = stats->tx_ucast_frames_ok +
stats->tx_bcast_frames_ok +
stats->tx_mcast_frames_ok;
drv_stats->rx_drops = stats->rx_drop_red +
stats->rx_drop_overrun;
drv_stats->tx_drops = stats->tx_drops;
/* Update RQ and SQ stats */
for (qidx = 0; qidx < qs->rq_cnt; qidx++)
nicvf_update_rq_stats(nic, qidx);
for (qidx = 0; qidx < qs->sq_cnt; qidx++)
nicvf_update_sq_stats(nic, qidx);
}
static struct rtnl_link_stats64 *nicvf_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct nicvf *nic = netdev_priv(netdev);
struct nicvf_hw_stats *hw_stats = &nic->hw_stats;
struct nicvf_drv_stats *drv_stats = &nic->drv_stats;
nicvf_update_stats(nic);
stats->rx_bytes = hw_stats->rx_bytes;
stats->rx_packets = drv_stats->rx_frames_ok;
stats->rx_dropped = drv_stats->rx_drops;
stats->multicast = hw_stats->rx_mcast_frames;
stats->tx_bytes = hw_stats->tx_bytes_ok;
stats->tx_packets = drv_stats->tx_frames_ok;
stats->tx_dropped = drv_stats->tx_drops;
return stats;
}
static void nicvf_tx_timeout(struct net_device *dev)
{
struct nicvf *nic = netdev_priv(dev);
if (netif_msg_tx_err(nic))
netdev_warn(dev, "%s: Transmit timed out, resetting\n",
dev->name);
schedule_work(&nic->reset_task);
}
static void nicvf_reset_task(struct work_struct *work)
{
struct nicvf *nic;
nic = container_of(work, struct nicvf, reset_task);
if (!netif_running(nic->netdev))
return;
nicvf_stop(nic->netdev);
nicvf_open(nic->netdev);
nic->netdev->trans_start = jiffies;
}
static int nicvf_config_loopback(struct nicvf *nic,
netdev_features_t features)
{
union nic_mbx mbx = {};
mbx.lbk.msg = NIC_MBOX_MSG_LOOPBACK;
mbx.lbk.vf_id = nic->vf_id;
mbx.lbk.enable = (features & NETIF_F_LOOPBACK) != 0;
return nicvf_send_msg_to_pf(nic, &mbx);
}
static netdev_features_t nicvf_fix_features(struct net_device *netdev,
netdev_features_t features)
{
struct nicvf *nic = netdev_priv(netdev);
if ((features & NETIF_F_LOOPBACK) &&
netif_running(netdev) && !nic->loopback_supported)
features &= ~NETIF_F_LOOPBACK;
return features;
}
static int nicvf_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct nicvf *nic = netdev_priv(netdev);
netdev_features_t changed = features ^ netdev->features;
if (changed & NETIF_F_HW_VLAN_CTAG_RX)
nicvf_config_vlan_stripping(nic, features);
if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev))
return nicvf_config_loopback(nic, features);
return 0;
}
static const struct net_device_ops nicvf_netdev_ops = {
.ndo_open = nicvf_open,
.ndo_stop = nicvf_stop,
.ndo_start_xmit = nicvf_xmit,
.ndo_change_mtu = nicvf_change_mtu,
.ndo_set_mac_address = nicvf_set_mac_address,
.ndo_get_stats64 = nicvf_get_stats64,
.ndo_tx_timeout = nicvf_tx_timeout,
.ndo_fix_features = nicvf_fix_features,
.ndo_set_features = nicvf_set_features,
};
static int nicvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct device *dev = &pdev->dev;
struct net_device *netdev;
struct nicvf *nic;
int err, qcount;
err = pci_enable_device(pdev);
if (err) {
dev_err(dev, "Failed to enable PCI device\n");
return err;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(dev, "PCI request regions failed 0x%x\n", err);
goto err_disable_device;
}
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
if (err) {
dev_err(dev, "Unable to get usable DMA configuration\n");
goto err_release_regions;
}
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
if (err) {
dev_err(dev, "unable to get 48-bit DMA for consistent allocations\n");
goto err_release_regions;
}
qcount = MAX_CMP_QUEUES_PER_QS;
/* Restrict multiqset support only for host bound VFs */
if (pdev->is_virtfn) {
/* Set max number of queues per VF */
qcount = roundup(num_online_cpus(), MAX_CMP_QUEUES_PER_QS);
qcount = min(qcount,
(MAX_SQS_PER_VF + 1) * MAX_CMP_QUEUES_PER_QS);
}
netdev = alloc_etherdev_mqs(sizeof(struct nicvf), qcount, qcount);
if (!netdev) {
err = -ENOMEM;
goto err_release_regions;
}
pci_set_drvdata(pdev, netdev);
SET_NETDEV_DEV(netdev, &pdev->dev);
nic = netdev_priv(netdev);
nic->netdev = netdev;
nic->pdev = pdev;
nic->pnicvf = nic;
nic->max_queues = qcount;
/* MAP VF's configuration registers */
nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0);
if (!nic->reg_base) {
dev_err(dev, "Cannot map config register space, aborting\n");
err = -ENOMEM;
goto err_free_netdev;
}
err = nicvf_set_qset_resources(nic);
if (err)
goto err_free_netdev;
/* Check if PF is alive and get MAC address for this VF */
err = nicvf_register_misc_interrupt(nic);
if (err)
goto err_free_netdev;
nicvf_send_vf_struct(nic);
/* Check if this VF is in QS only mode */
if (nic->sqs_mode)
return 0;
err = nicvf_set_real_num_queues(netdev, nic->tx_queues, nic->rx_queues);
if (err)
goto err_unregister_interrupts;
netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_SG |
NETIF_F_TSO | NETIF_F_GRO |
NETIF_F_HW_VLAN_CTAG_RX);
netdev->hw_features |= NETIF_F_RXHASH;
netdev->features |= netdev->hw_features;
netdev->hw_features |= NETIF_F_LOOPBACK;
netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
netdev->netdev_ops = &nicvf_netdev_ops;
netdev->watchdog_timeo = NICVF_TX_TIMEOUT;
INIT_WORK(&nic->reset_task, nicvf_reset_task);
err = register_netdev(netdev);
if (err) {
dev_err(dev, "Failed to register netdevice\n");
goto err_unregister_interrupts;
}
nic->msg_enable = debug;
nicvf_set_ethtool_ops(netdev);
return 0;
err_unregister_interrupts:
nicvf_unregister_interrupts(nic);
err_free_netdev:
pci_set_drvdata(pdev, NULL);
free_netdev(netdev);
err_release_regions:
pci_release_regions(pdev);
err_disable_device:
pci_disable_device(pdev);
return err;
}
static void nicvf_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct nicvf *nic;
struct net_device *pnetdev;
if (!netdev)
return;
nic = netdev_priv(netdev);
pnetdev = nic->pnicvf->netdev;
/* Check if this Qset is assigned to different VF.
* If yes, clean primary and all secondary Qsets.
*/
if (pnetdev && (pnetdev->reg_state == NETREG_REGISTERED))
unregister_netdev(pnetdev);
nicvf_unregister_interrupts(nic);
pci_set_drvdata(pdev, NULL);
free_netdev(netdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static void nicvf_shutdown(struct pci_dev *pdev)
{
nicvf_remove(pdev);
}
static struct pci_driver nicvf_driver = {
.name = DRV_NAME,
.id_table = nicvf_id_table,
.probe = nicvf_probe,
.remove = nicvf_remove,
.shutdown = nicvf_shutdown,
};
static int __init nicvf_init_module(void)
{
pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION);
return pci_register_driver(&nicvf_driver);
}
static void __exit nicvf_cleanup_module(void)
{
pci_unregister_driver(&nicvf_driver);
}
module_init(nicvf_init_module);
module_exit(nicvf_cleanup_module);