blob: 2d74c6e4d7b618fe3c5dd44d3ae93c2a433d3491 [file] [log] [blame]
/*******************************************************************************
*
* Intel Ethernet Controller XL710 Family Linux Driver
* Copyright(c) 2013 - 2015 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
* Contact Information:
* e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
******************************************************************************/
#include "i40e_type.h"
#include "i40e_adminq.h"
#include "i40e_prototype.h"
#include "i40e_virtchnl.h"
/**
* i40e_set_mac_type - Sets MAC type
* @hw: pointer to the HW structure
*
* This function sets the mac type of the adapter based on the
* vendor ID and device ID stored in the hw structure.
**/
static i40e_status i40e_set_mac_type(struct i40e_hw *hw)
{
i40e_status status = 0;
if (hw->vendor_id == PCI_VENDOR_ID_INTEL) {
switch (hw->device_id) {
case I40E_DEV_ID_SFP_XL710:
case I40E_DEV_ID_QEMU:
case I40E_DEV_ID_KX_A:
case I40E_DEV_ID_KX_B:
case I40E_DEV_ID_KX_C:
case I40E_DEV_ID_QSFP_A:
case I40E_DEV_ID_QSFP_B:
case I40E_DEV_ID_QSFP_C:
case I40E_DEV_ID_10G_BASE_T:
case I40E_DEV_ID_10G_BASE_T4:
case I40E_DEV_ID_20G_KR2:
case I40E_DEV_ID_20G_KR2_A:
hw->mac.type = I40E_MAC_XL710;
break;
case I40E_DEV_ID_SFP_X722:
case I40E_DEV_ID_1G_BASE_T_X722:
case I40E_DEV_ID_10G_BASE_T_X722:
hw->mac.type = I40E_MAC_X722;
break;
case I40E_DEV_ID_X722_VF:
case I40E_DEV_ID_X722_VF_HV:
hw->mac.type = I40E_MAC_X722_VF;
break;
case I40E_DEV_ID_VF:
case I40E_DEV_ID_VF_HV:
hw->mac.type = I40E_MAC_VF;
break;
default:
hw->mac.type = I40E_MAC_GENERIC;
break;
}
} else {
status = I40E_ERR_DEVICE_NOT_SUPPORTED;
}
hw_dbg(hw, "i40e_set_mac_type found mac: %d, returns: %d\n",
hw->mac.type, status);
return status;
}
/**
* i40e_aq_str - convert AQ err code to a string
* @hw: pointer to the HW structure
* @aq_err: the AQ error code to convert
**/
const char *i40e_aq_str(struct i40e_hw *hw, enum i40e_admin_queue_err aq_err)
{
switch (aq_err) {
case I40E_AQ_RC_OK:
return "OK";
case I40E_AQ_RC_EPERM:
return "I40E_AQ_RC_EPERM";
case I40E_AQ_RC_ENOENT:
return "I40E_AQ_RC_ENOENT";
case I40E_AQ_RC_ESRCH:
return "I40E_AQ_RC_ESRCH";
case I40E_AQ_RC_EINTR:
return "I40E_AQ_RC_EINTR";
case I40E_AQ_RC_EIO:
return "I40E_AQ_RC_EIO";
case I40E_AQ_RC_ENXIO:
return "I40E_AQ_RC_ENXIO";
case I40E_AQ_RC_E2BIG:
return "I40E_AQ_RC_E2BIG";
case I40E_AQ_RC_EAGAIN:
return "I40E_AQ_RC_EAGAIN";
case I40E_AQ_RC_ENOMEM:
return "I40E_AQ_RC_ENOMEM";
case I40E_AQ_RC_EACCES:
return "I40E_AQ_RC_EACCES";
case I40E_AQ_RC_EFAULT:
return "I40E_AQ_RC_EFAULT";
case I40E_AQ_RC_EBUSY:
return "I40E_AQ_RC_EBUSY";
case I40E_AQ_RC_EEXIST:
return "I40E_AQ_RC_EEXIST";
case I40E_AQ_RC_EINVAL:
return "I40E_AQ_RC_EINVAL";
case I40E_AQ_RC_ENOTTY:
return "I40E_AQ_RC_ENOTTY";
case I40E_AQ_RC_ENOSPC:
return "I40E_AQ_RC_ENOSPC";
case I40E_AQ_RC_ENOSYS:
return "I40E_AQ_RC_ENOSYS";
case I40E_AQ_RC_ERANGE:
return "I40E_AQ_RC_ERANGE";
case I40E_AQ_RC_EFLUSHED:
return "I40E_AQ_RC_EFLUSHED";
case I40E_AQ_RC_BAD_ADDR:
return "I40E_AQ_RC_BAD_ADDR";
case I40E_AQ_RC_EMODE:
return "I40E_AQ_RC_EMODE";
case I40E_AQ_RC_EFBIG:
return "I40E_AQ_RC_EFBIG";
}
snprintf(hw->err_str, sizeof(hw->err_str), "%d", aq_err);
return hw->err_str;
}
/**
* i40e_stat_str - convert status err code to a string
* @hw: pointer to the HW structure
* @stat_err: the status error code to convert
**/
const char *i40e_stat_str(struct i40e_hw *hw, i40e_status stat_err)
{
switch (stat_err) {
case 0:
return "OK";
case I40E_ERR_NVM:
return "I40E_ERR_NVM";
case I40E_ERR_NVM_CHECKSUM:
return "I40E_ERR_NVM_CHECKSUM";
case I40E_ERR_PHY:
return "I40E_ERR_PHY";
case I40E_ERR_CONFIG:
return "I40E_ERR_CONFIG";
case I40E_ERR_PARAM:
return "I40E_ERR_PARAM";
case I40E_ERR_MAC_TYPE:
return "I40E_ERR_MAC_TYPE";
case I40E_ERR_UNKNOWN_PHY:
return "I40E_ERR_UNKNOWN_PHY";
case I40E_ERR_LINK_SETUP:
return "I40E_ERR_LINK_SETUP";
case I40E_ERR_ADAPTER_STOPPED:
return "I40E_ERR_ADAPTER_STOPPED";
case I40E_ERR_INVALID_MAC_ADDR:
return "I40E_ERR_INVALID_MAC_ADDR";
case I40E_ERR_DEVICE_NOT_SUPPORTED:
return "I40E_ERR_DEVICE_NOT_SUPPORTED";
case I40E_ERR_MASTER_REQUESTS_PENDING:
return "I40E_ERR_MASTER_REQUESTS_PENDING";
case I40E_ERR_INVALID_LINK_SETTINGS:
return "I40E_ERR_INVALID_LINK_SETTINGS";
case I40E_ERR_AUTONEG_NOT_COMPLETE:
return "I40E_ERR_AUTONEG_NOT_COMPLETE";
case I40E_ERR_RESET_FAILED:
return "I40E_ERR_RESET_FAILED";
case I40E_ERR_SWFW_SYNC:
return "I40E_ERR_SWFW_SYNC";
case I40E_ERR_NO_AVAILABLE_VSI:
return "I40E_ERR_NO_AVAILABLE_VSI";
case I40E_ERR_NO_MEMORY:
return "I40E_ERR_NO_MEMORY";
case I40E_ERR_BAD_PTR:
return "I40E_ERR_BAD_PTR";
case I40E_ERR_RING_FULL:
return "I40E_ERR_RING_FULL";
case I40E_ERR_INVALID_PD_ID:
return "I40E_ERR_INVALID_PD_ID";
case I40E_ERR_INVALID_QP_ID:
return "I40E_ERR_INVALID_QP_ID";
case I40E_ERR_INVALID_CQ_ID:
return "I40E_ERR_INVALID_CQ_ID";
case I40E_ERR_INVALID_CEQ_ID:
return "I40E_ERR_INVALID_CEQ_ID";
case I40E_ERR_INVALID_AEQ_ID:
return "I40E_ERR_INVALID_AEQ_ID";
case I40E_ERR_INVALID_SIZE:
return "I40E_ERR_INVALID_SIZE";
case I40E_ERR_INVALID_ARP_INDEX:
return "I40E_ERR_INVALID_ARP_INDEX";
case I40E_ERR_INVALID_FPM_FUNC_ID:
return "I40E_ERR_INVALID_FPM_FUNC_ID";
case I40E_ERR_QP_INVALID_MSG_SIZE:
return "I40E_ERR_QP_INVALID_MSG_SIZE";
case I40E_ERR_QP_TOOMANY_WRS_POSTED:
return "I40E_ERR_QP_TOOMANY_WRS_POSTED";
case I40E_ERR_INVALID_FRAG_COUNT:
return "I40E_ERR_INVALID_FRAG_COUNT";
case I40E_ERR_QUEUE_EMPTY:
return "I40E_ERR_QUEUE_EMPTY";
case I40E_ERR_INVALID_ALIGNMENT:
return "I40E_ERR_INVALID_ALIGNMENT";
case I40E_ERR_FLUSHED_QUEUE:
return "I40E_ERR_FLUSHED_QUEUE";
case I40E_ERR_INVALID_PUSH_PAGE_INDEX:
return "I40E_ERR_INVALID_PUSH_PAGE_INDEX";
case I40E_ERR_INVALID_IMM_DATA_SIZE:
return "I40E_ERR_INVALID_IMM_DATA_SIZE";
case I40E_ERR_TIMEOUT:
return "I40E_ERR_TIMEOUT";
case I40E_ERR_OPCODE_MISMATCH:
return "I40E_ERR_OPCODE_MISMATCH";
case I40E_ERR_CQP_COMPL_ERROR:
return "I40E_ERR_CQP_COMPL_ERROR";
case I40E_ERR_INVALID_VF_ID:
return "I40E_ERR_INVALID_VF_ID";
case I40E_ERR_INVALID_HMCFN_ID:
return "I40E_ERR_INVALID_HMCFN_ID";
case I40E_ERR_BACKING_PAGE_ERROR:
return "I40E_ERR_BACKING_PAGE_ERROR";
case I40E_ERR_NO_PBLCHUNKS_AVAILABLE:
return "I40E_ERR_NO_PBLCHUNKS_AVAILABLE";
case I40E_ERR_INVALID_PBLE_INDEX:
return "I40E_ERR_INVALID_PBLE_INDEX";
case I40E_ERR_INVALID_SD_INDEX:
return "I40E_ERR_INVALID_SD_INDEX";
case I40E_ERR_INVALID_PAGE_DESC_INDEX:
return "I40E_ERR_INVALID_PAGE_DESC_INDEX";
case I40E_ERR_INVALID_SD_TYPE:
return "I40E_ERR_INVALID_SD_TYPE";
case I40E_ERR_MEMCPY_FAILED:
return "I40E_ERR_MEMCPY_FAILED";
case I40E_ERR_INVALID_HMC_OBJ_INDEX:
return "I40E_ERR_INVALID_HMC_OBJ_INDEX";
case I40E_ERR_INVALID_HMC_OBJ_COUNT:
return "I40E_ERR_INVALID_HMC_OBJ_COUNT";
case I40E_ERR_INVALID_SRQ_ARM_LIMIT:
return "I40E_ERR_INVALID_SRQ_ARM_LIMIT";
case I40E_ERR_SRQ_ENABLED:
return "I40E_ERR_SRQ_ENABLED";
case I40E_ERR_ADMIN_QUEUE_ERROR:
return "I40E_ERR_ADMIN_QUEUE_ERROR";
case I40E_ERR_ADMIN_QUEUE_TIMEOUT:
return "I40E_ERR_ADMIN_QUEUE_TIMEOUT";
case I40E_ERR_BUF_TOO_SHORT:
return "I40E_ERR_BUF_TOO_SHORT";
case I40E_ERR_ADMIN_QUEUE_FULL:
return "I40E_ERR_ADMIN_QUEUE_FULL";
case I40E_ERR_ADMIN_QUEUE_NO_WORK:
return "I40E_ERR_ADMIN_QUEUE_NO_WORK";
case I40E_ERR_BAD_IWARP_CQE:
return "I40E_ERR_BAD_IWARP_CQE";
case I40E_ERR_NVM_BLANK_MODE:
return "I40E_ERR_NVM_BLANK_MODE";
case I40E_ERR_NOT_IMPLEMENTED:
return "I40E_ERR_NOT_IMPLEMENTED";
case I40E_ERR_PE_DOORBELL_NOT_ENABLED:
return "I40E_ERR_PE_DOORBELL_NOT_ENABLED";
case I40E_ERR_DIAG_TEST_FAILED:
return "I40E_ERR_DIAG_TEST_FAILED";
case I40E_ERR_NOT_READY:
return "I40E_ERR_NOT_READY";
case I40E_NOT_SUPPORTED:
return "I40E_NOT_SUPPORTED";
case I40E_ERR_FIRMWARE_API_VERSION:
return "I40E_ERR_FIRMWARE_API_VERSION";
}
snprintf(hw->err_str, sizeof(hw->err_str), "%d", stat_err);
return hw->err_str;
}
/**
* i40e_debug_aq
* @hw: debug mask related to admin queue
* @mask: debug mask
* @desc: pointer to admin queue descriptor
* @buffer: pointer to command buffer
* @buf_len: max length of buffer
*
* Dumps debug log about adminq command with descriptor contents.
**/
void i40e_debug_aq(struct i40e_hw *hw, enum i40e_debug_mask mask, void *desc,
void *buffer, u16 buf_len)
{
struct i40e_aq_desc *aq_desc = (struct i40e_aq_desc *)desc;
u16 len = le16_to_cpu(aq_desc->datalen);
u8 *buf = (u8 *)buffer;
u16 i = 0;
if ((!(mask & hw->debug_mask)) || (desc == NULL))
return;
i40e_debug(hw, mask,
"AQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
le16_to_cpu(aq_desc->opcode),
le16_to_cpu(aq_desc->flags),
le16_to_cpu(aq_desc->datalen),
le16_to_cpu(aq_desc->retval));
i40e_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
le32_to_cpu(aq_desc->cookie_high),
le32_to_cpu(aq_desc->cookie_low));
i40e_debug(hw, mask, "\tparam (0,1) 0x%08X 0x%08X\n",
le32_to_cpu(aq_desc->params.internal.param0),
le32_to_cpu(aq_desc->params.internal.param1));
i40e_debug(hw, mask, "\taddr (h,l) 0x%08X 0x%08X\n",
le32_to_cpu(aq_desc->params.external.addr_high),
le32_to_cpu(aq_desc->params.external.addr_low));
if ((buffer != NULL) && (aq_desc->datalen != 0)) {
i40e_debug(hw, mask, "AQ CMD Buffer:\n");
if (buf_len < len)
len = buf_len;
/* write the full 16-byte chunks */
for (i = 0; i < (len - 16); i += 16)
i40e_debug(hw, mask, "\t0x%04X %16ph\n", i, buf + i);
/* write whatever's left over without overrunning the buffer */
if (i < len)
i40e_debug(hw, mask, "\t0x%04X %*ph\n",
i, len - i, buf + i);
}
}
/**
* i40e_check_asq_alive
* @hw: pointer to the hw struct
*
* Returns true if Queue is enabled else false.
**/
bool i40e_check_asq_alive(struct i40e_hw *hw)
{
if (hw->aq.asq.len)
return !!(rd32(hw, hw->aq.asq.len) &
I40E_PF_ATQLEN_ATQENABLE_MASK);
else
return false;
}
/**
* i40e_aq_queue_shutdown
* @hw: pointer to the hw struct
* @unloading: is the driver unloading itself
*
* Tell the Firmware that we're shutting down the AdminQ and whether
* or not the driver is unloading as well.
**/
i40e_status i40e_aq_queue_shutdown(struct i40e_hw *hw,
bool unloading)
{
struct i40e_aq_desc desc;
struct i40e_aqc_queue_shutdown *cmd =
(struct i40e_aqc_queue_shutdown *)&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_queue_shutdown);
if (unloading)
cmd->driver_unloading = cpu_to_le32(I40E_AQ_DRIVER_UNLOADING);
status = i40e_asq_send_command(hw, &desc, NULL, 0, NULL);
return status;
}
/**
* i40e_aq_get_set_rss_lut
* @hw: pointer to the hardware structure
* @vsi_id: vsi fw index
* @pf_lut: for PF table set true, for VSI table set false
* @lut: pointer to the lut buffer provided by the caller
* @lut_size: size of the lut buffer
* @set: set true to set the table, false to get the table
*
* Internal function to get or set RSS look up table
**/
static i40e_status i40e_aq_get_set_rss_lut(struct i40e_hw *hw,
u16 vsi_id, bool pf_lut,
u8 *lut, u16 lut_size,
bool set)
{
i40e_status status;
struct i40e_aq_desc desc;
struct i40e_aqc_get_set_rss_lut *cmd_resp =
(struct i40e_aqc_get_set_rss_lut *)&desc.params.raw;
if (set)
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_set_rss_lut);
else
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_get_rss_lut);
/* Indirect command */
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
cmd_resp->vsi_id =
cpu_to_le16((u16)((vsi_id <<
I40E_AQC_SET_RSS_LUT_VSI_ID_SHIFT) &
I40E_AQC_SET_RSS_LUT_VSI_ID_MASK));
cmd_resp->vsi_id |= cpu_to_le16((u16)I40E_AQC_SET_RSS_LUT_VSI_VALID);
if (pf_lut)
cmd_resp->flags |= cpu_to_le16((u16)
((I40E_AQC_SET_RSS_LUT_TABLE_TYPE_PF <<
I40E_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) &
I40E_AQC_SET_RSS_LUT_TABLE_TYPE_MASK));
else
cmd_resp->flags |= cpu_to_le16((u16)
((I40E_AQC_SET_RSS_LUT_TABLE_TYPE_VSI <<
I40E_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) &
I40E_AQC_SET_RSS_LUT_TABLE_TYPE_MASK));
status = i40e_asq_send_command(hw, &desc, lut, lut_size, NULL);
return status;
}
/**
* i40e_aq_get_rss_lut
* @hw: pointer to the hardware structure
* @vsi_id: vsi fw index
* @pf_lut: for PF table set true, for VSI table set false
* @lut: pointer to the lut buffer provided by the caller
* @lut_size: size of the lut buffer
*
* get the RSS lookup table, PF or VSI type
**/
i40e_status i40e_aq_get_rss_lut(struct i40e_hw *hw, u16 vsi_id,
bool pf_lut, u8 *lut, u16 lut_size)
{
return i40e_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size,
false);
}
/**
* i40e_aq_set_rss_lut
* @hw: pointer to the hardware structure
* @vsi_id: vsi fw index
* @pf_lut: for PF table set true, for VSI table set false
* @lut: pointer to the lut buffer provided by the caller
* @lut_size: size of the lut buffer
*
* set the RSS lookup table, PF or VSI type
**/
i40e_status i40e_aq_set_rss_lut(struct i40e_hw *hw, u16 vsi_id,
bool pf_lut, u8 *lut, u16 lut_size)
{
return i40e_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size, true);
}
/**
* i40e_aq_get_set_rss_key
* @hw: pointer to the hw struct
* @vsi_id: vsi fw index
* @key: pointer to key info struct
* @set: set true to set the key, false to get the key
*
* get the RSS key per VSI
**/
static i40e_status i40e_aq_get_set_rss_key(struct i40e_hw *hw,
u16 vsi_id,
struct i40e_aqc_get_set_rss_key_data *key,
bool set)
{
i40e_status status;
struct i40e_aq_desc desc;
struct i40e_aqc_get_set_rss_key *cmd_resp =
(struct i40e_aqc_get_set_rss_key *)&desc.params.raw;
u16 key_size = sizeof(struct i40e_aqc_get_set_rss_key_data);
if (set)
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_set_rss_key);
else
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_get_rss_key);
/* Indirect command */
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
cmd_resp->vsi_id =
cpu_to_le16((u16)((vsi_id <<
I40E_AQC_SET_RSS_KEY_VSI_ID_SHIFT) &
I40E_AQC_SET_RSS_KEY_VSI_ID_MASK));
cmd_resp->vsi_id |= cpu_to_le16((u16)I40E_AQC_SET_RSS_KEY_VSI_VALID);
status = i40e_asq_send_command(hw, &desc, key, key_size, NULL);
return status;
}
/**
* i40e_aq_get_rss_key
* @hw: pointer to the hw struct
* @vsi_id: vsi fw index
* @key: pointer to key info struct
*
**/
i40e_status i40e_aq_get_rss_key(struct i40e_hw *hw,
u16 vsi_id,
struct i40e_aqc_get_set_rss_key_data *key)
{
return i40e_aq_get_set_rss_key(hw, vsi_id, key, false);
}
/**
* i40e_aq_set_rss_key
* @hw: pointer to the hw struct
* @vsi_id: vsi fw index
* @key: pointer to key info struct
*
* set the RSS key per VSI
**/
i40e_status i40e_aq_set_rss_key(struct i40e_hw *hw,
u16 vsi_id,
struct i40e_aqc_get_set_rss_key_data *key)
{
return i40e_aq_get_set_rss_key(hw, vsi_id, key, true);
}
/* The i40e_ptype_lookup table is used to convert from the 8-bit ptype in the
* hardware to a bit-field that can be used by SW to more easily determine the
* packet type.
*
* Macros are used to shorten the table lines and make this table human
* readable.
*
* We store the PTYPE in the top byte of the bit field - this is just so that
* we can check that the table doesn't have a row missing, as the index into
* the table should be the PTYPE.
*
* Typical work flow:
*
* IF NOT i40e_ptype_lookup[ptype].known
* THEN
* Packet is unknown
* ELSE IF i40e_ptype_lookup[ptype].outer_ip == I40E_RX_PTYPE_OUTER_IP
* Use the rest of the fields to look at the tunnels, inner protocols, etc
* ELSE
* Use the enum i40e_rx_l2_ptype to decode the packet type
* ENDIF
*/
/* macro to make the table lines short */
#define I40E_PTT(PTYPE, OUTER_IP, OUTER_IP_VER, OUTER_FRAG, T, TE, TEF, I, PL)\
{ PTYPE, \
1, \
I40E_RX_PTYPE_OUTER_##OUTER_IP, \
I40E_RX_PTYPE_OUTER_##OUTER_IP_VER, \
I40E_RX_PTYPE_##OUTER_FRAG, \
I40E_RX_PTYPE_TUNNEL_##T, \
I40E_RX_PTYPE_TUNNEL_END_##TE, \
I40E_RX_PTYPE_##TEF, \
I40E_RX_PTYPE_INNER_PROT_##I, \
I40E_RX_PTYPE_PAYLOAD_LAYER_##PL }
#define I40E_PTT_UNUSED_ENTRY(PTYPE) \
{ PTYPE, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
/* shorter macros makes the table fit but are terse */
#define I40E_RX_PTYPE_NOF I40E_RX_PTYPE_NOT_FRAG
#define I40E_RX_PTYPE_FRG I40E_RX_PTYPE_FRAG
#define I40E_RX_PTYPE_INNER_PROT_TS I40E_RX_PTYPE_INNER_PROT_TIMESYNC
/* Lookup table mapping the HW PTYPE to the bit field for decoding */
struct i40e_rx_ptype_decoded i40e_ptype_lookup[] = {
/* L2 Packet types */
I40E_PTT_UNUSED_ENTRY(0),
I40E_PTT(1, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
I40E_PTT(2, L2, NONE, NOF, NONE, NONE, NOF, TS, PAY2),
I40E_PTT(3, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
I40E_PTT_UNUSED_ENTRY(4),
I40E_PTT_UNUSED_ENTRY(5),
I40E_PTT(6, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
I40E_PTT(7, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
I40E_PTT_UNUSED_ENTRY(8),
I40E_PTT_UNUSED_ENTRY(9),
I40E_PTT(10, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
I40E_PTT(11, L2, NONE, NOF, NONE, NONE, NOF, NONE, NONE),
I40E_PTT(12, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
I40E_PTT(13, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
I40E_PTT(14, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
I40E_PTT(15, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
I40E_PTT(16, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
I40E_PTT(17, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
I40E_PTT(18, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
I40E_PTT(19, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
I40E_PTT(20, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
I40E_PTT(21, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
/* Non Tunneled IPv4 */
I40E_PTT(22, IP, IPV4, FRG, NONE, NONE, NOF, NONE, PAY3),
I40E_PTT(23, IP, IPV4, NOF, NONE, NONE, NOF, NONE, PAY3),
I40E_PTT(24, IP, IPV4, NOF, NONE, NONE, NOF, UDP, PAY4),
I40E_PTT_UNUSED_ENTRY(25),
I40E_PTT(26, IP, IPV4, NOF, NONE, NONE, NOF, TCP, PAY4),
I40E_PTT(27, IP, IPV4, NOF, NONE, NONE, NOF, SCTP, PAY4),
I40E_PTT(28, IP, IPV4, NOF, NONE, NONE, NOF, ICMP, PAY4),
/* IPv4 --> IPv4 */
I40E_PTT(29, IP, IPV4, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
I40E_PTT(30, IP, IPV4, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
I40E_PTT(31, IP, IPV4, NOF, IP_IP, IPV4, NOF, UDP, PAY4),
I40E_PTT_UNUSED_ENTRY(32),
I40E_PTT(33, IP, IPV4, NOF, IP_IP, IPV4, NOF, TCP, PAY4),
I40E_PTT(34, IP, IPV4, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
I40E_PTT(35, IP, IPV4, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
/* IPv4 --> IPv6 */
I40E_PTT(36, IP, IPV4, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
I40E_PTT(37, IP, IPV4, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
I40E_PTT(38, IP, IPV4, NOF, IP_IP, IPV6, NOF, UDP, PAY4),
I40E_PTT_UNUSED_ENTRY(39),
I40E_PTT(40, IP, IPV4, NOF, IP_IP, IPV6, NOF, TCP, PAY4),
I40E_PTT(41, IP, IPV4, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
I40E_PTT(42, IP, IPV4, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
/* IPv4 --> GRE/NAT */
I40E_PTT(43, IP, IPV4, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
/* IPv4 --> GRE/NAT --> IPv4 */
I40E_PTT(44, IP, IPV4, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
I40E_PTT(45, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
I40E_PTT(46, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, UDP, PAY4),
I40E_PTT_UNUSED_ENTRY(47),
I40E_PTT(48, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, TCP, PAY4),
I40E_PTT(49, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
I40E_PTT(50, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
/* IPv4 --> GRE/NAT --> IPv6 */
I40E_PTT(51, IP, IPV4, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
I40E_PTT(52, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
I40E_PTT(53, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, UDP, PAY4),
I40E_PTT_UNUSED_ENTRY(54),
I40E_PTT(55, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, TCP, PAY4),
I40E_PTT(56, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
I40E_PTT(57, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
/* IPv4 --> GRE/NAT --> MAC */
I40E_PTT(58, IP, IPV4, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
/* IPv4 --> GRE/NAT --> MAC --> IPv4 */
I40E_PTT(59, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
I40E_PTT(60, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
I40E_PTT(61, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP, PAY4),
I40E_PTT_UNUSED_ENTRY(62),
I40E_PTT(63, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP, PAY4),
I40E_PTT(64, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
I40E_PTT(65, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
/* IPv4 --> GRE/NAT -> MAC --> IPv6 */
I40E_PTT(66, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
I40E_PTT(67, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
I40E_PTT(68, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP, PAY4),
I40E_PTT_UNUSED_ENTRY(69),
I40E_PTT(70, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP, PAY4),
I40E_PTT(71, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
I40E_PTT(72, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
/* IPv4 --> GRE/NAT --> MAC/VLAN */
I40E_PTT(73, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
/* IPv4 ---> GRE/NAT -> MAC/VLAN --> IPv4 */
I40E_PTT(74, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
I40E_PTT(75, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
I40E_PTT(76, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP, PAY4),
I40E_PTT_UNUSED_ENTRY(77),
I40E_PTT(78, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP, PAY4),
I40E_PTT(79, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
I40E_PTT(80, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
/* IPv4 -> GRE/NAT -> MAC/VLAN --> IPv6 */
I40E_PTT(81, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
I40E_PTT(82, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
I40E_PTT(83, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP, PAY4),
I40E_PTT_UNUSED_ENTRY(84),
I40E_PTT(85, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP, PAY4),
I40E_PTT(86, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
I40E_PTT(87, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
/* Non Tunneled IPv6 */
I40E_PTT(88, IP, IPV6, FRG, NONE, NONE, NOF, NONE, PAY3),
I40E_PTT(89, IP, IPV6, NOF, NONE, NONE, NOF, NONE, PAY3),
I40E_PTT(90, IP, IPV6, NOF, NONE, NONE, NOF, UDP, PAY3),
I40E_PTT_UNUSED_ENTRY(91),
I40E_PTT(92, IP, IPV6, NOF, NONE, NONE, NOF, TCP, PAY4),
I40E_PTT(93, IP, IPV6, NOF, NONE, NONE, NOF, SCTP, PAY4),
I40E_PTT(94, IP, IPV6, NOF, NONE, NONE, NOF, ICMP, PAY4),
/* IPv6 --> IPv4 */
I40E_PTT(95, IP, IPV6, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
I40E_PTT(96, IP, IPV6, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
I40E_PTT(97, IP, IPV6, NOF, IP_IP, IPV4, NOF, UDP, PAY4),
I40E_PTT_UNUSED_ENTRY(98),
I40E_PTT(99, IP, IPV6, NOF, IP_IP, IPV4, NOF, TCP, PAY4),
I40E_PTT(100, IP, IPV6, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
I40E_PTT(101, IP, IPV6, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
/* IPv6 --> IPv6 */
I40E_PTT(102, IP, IPV6, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
I40E_PTT(103, IP, IPV6, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
I40E_PTT(104, IP, IPV6, NOF, IP_IP, IPV6, NOF, UDP, PAY4),
I40E_PTT_UNUSED_ENTRY(105),
I40E_PTT(106, IP, IPV6, NOF, IP_IP, IPV6, NOF, TCP, PAY4),
I40E_PTT(107, IP, IPV6, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
I40E_PTT(108, IP, IPV6, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
/* IPv6 --> GRE/NAT */
I40E_PTT(109, IP, IPV6, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
/* IPv6 --> GRE/NAT -> IPv4 */
I40E_PTT(110, IP, IPV6, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
I40E_PTT(111, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
I40E_PTT(112, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, UDP, PAY4),
I40E_PTT_UNUSED_ENTRY(113),
I40E_PTT(114, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, TCP, PAY4),
I40E_PTT(115, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
I40E_PTT(116, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
/* IPv6 --> GRE/NAT -> IPv6 */
I40E_PTT(117, IP, IPV6, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
I40E_PTT(118, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
I40E_PTT(119, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, UDP, PAY4),
I40E_PTT_UNUSED_ENTRY(120),
I40E_PTT(121, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, TCP, PAY4),
I40E_PTT(122, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
I40E_PTT(123, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
/* IPv6 --> GRE/NAT -> MAC */
I40E_PTT(124, IP, IPV6, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
/* IPv6 --> GRE/NAT -> MAC -> IPv4 */
I40E_PTT(125, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
I40E_PTT(126, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
I40E_PTT(127, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP, PAY4),
I40E_PTT_UNUSED_ENTRY(128),
I40E_PTT(129, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP, PAY4),
I40E_PTT(130, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
I40E_PTT(131, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
/* IPv6 --> GRE/NAT -> MAC -> IPv6 */
I40E_PTT(132, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
I40E_PTT(133, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
I40E_PTT(134, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP, PAY4),
I40E_PTT_UNUSED_ENTRY(135),
I40E_PTT(136, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP, PAY4),
I40E_PTT(137, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
I40E_PTT(138, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
/* IPv6 --> GRE/NAT -> MAC/VLAN */
I40E_PTT(139, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
/* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv4 */
I40E_PTT(140, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
I40E_PTT(141, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
I40E_PTT(142, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP, PAY4),
I40E_PTT_UNUSED_ENTRY(143),
I40E_PTT(144, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP, PAY4),
I40E_PTT(145, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
I40E_PTT(146, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
/* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv6 */
I40E_PTT(147, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
I40E_PTT(148, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
I40E_PTT(149, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP, PAY4),
I40E_PTT_UNUSED_ENTRY(150),
I40E_PTT(151, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP, PAY4),
I40E_PTT(152, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
I40E_PTT(153, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
/* unused entries */
I40E_PTT_UNUSED_ENTRY(154),
I40E_PTT_UNUSED_ENTRY(155),
I40E_PTT_UNUSED_ENTRY(156),
I40E_PTT_UNUSED_ENTRY(157),
I40E_PTT_UNUSED_ENTRY(158),
I40E_PTT_UNUSED_ENTRY(159),
I40E_PTT_UNUSED_ENTRY(160),
I40E_PTT_UNUSED_ENTRY(161),
I40E_PTT_UNUSED_ENTRY(162),
I40E_PTT_UNUSED_ENTRY(163),
I40E_PTT_UNUSED_ENTRY(164),
I40E_PTT_UNUSED_ENTRY(165),
I40E_PTT_UNUSED_ENTRY(166),
I40E_PTT_UNUSED_ENTRY(167),
I40E_PTT_UNUSED_ENTRY(168),
I40E_PTT_UNUSED_ENTRY(169),
I40E_PTT_UNUSED_ENTRY(170),
I40E_PTT_UNUSED_ENTRY(171),
I40E_PTT_UNUSED_ENTRY(172),
I40E_PTT_UNUSED_ENTRY(173),
I40E_PTT_UNUSED_ENTRY(174),
I40E_PTT_UNUSED_ENTRY(175),
I40E_PTT_UNUSED_ENTRY(176),
I40E_PTT_UNUSED_ENTRY(177),
I40E_PTT_UNUSED_ENTRY(178),
I40E_PTT_UNUSED_ENTRY(179),
I40E_PTT_UNUSED_ENTRY(180),
I40E_PTT_UNUSED_ENTRY(181),
I40E_PTT_UNUSED_ENTRY(182),
I40E_PTT_UNUSED_ENTRY(183),
I40E_PTT_UNUSED_ENTRY(184),
I40E_PTT_UNUSED_ENTRY(185),
I40E_PTT_UNUSED_ENTRY(186),
I40E_PTT_UNUSED_ENTRY(187),
I40E_PTT_UNUSED_ENTRY(188),
I40E_PTT_UNUSED_ENTRY(189),
I40E_PTT_UNUSED_ENTRY(190),
I40E_PTT_UNUSED_ENTRY(191),
I40E_PTT_UNUSED_ENTRY(192),
I40E_PTT_UNUSED_ENTRY(193),
I40E_PTT_UNUSED_ENTRY(194),
I40E_PTT_UNUSED_ENTRY(195),
I40E_PTT_UNUSED_ENTRY(196),
I40E_PTT_UNUSED_ENTRY(197),
I40E_PTT_UNUSED_ENTRY(198),
I40E_PTT_UNUSED_ENTRY(199),
I40E_PTT_UNUSED_ENTRY(200),
I40E_PTT_UNUSED_ENTRY(201),
I40E_PTT_UNUSED_ENTRY(202),
I40E_PTT_UNUSED_ENTRY(203),
I40E_PTT_UNUSED_ENTRY(204),
I40E_PTT_UNUSED_ENTRY(205),
I40E_PTT_UNUSED_ENTRY(206),
I40E_PTT_UNUSED_ENTRY(207),
I40E_PTT_UNUSED_ENTRY(208),
I40E_PTT_UNUSED_ENTRY(209),
I40E_PTT_UNUSED_ENTRY(210),
I40E_PTT_UNUSED_ENTRY(211),
I40E_PTT_UNUSED_ENTRY(212),
I40E_PTT_UNUSED_ENTRY(213),
I40E_PTT_UNUSED_ENTRY(214),
I40E_PTT_UNUSED_ENTRY(215),
I40E_PTT_UNUSED_ENTRY(216),
I40E_PTT_UNUSED_ENTRY(217),
I40E_PTT_UNUSED_ENTRY(218),
I40E_PTT_UNUSED_ENTRY(219),
I40E_PTT_UNUSED_ENTRY(220),
I40E_PTT_UNUSED_ENTRY(221),
I40E_PTT_UNUSED_ENTRY(222),
I40E_PTT_UNUSED_ENTRY(223),
I40E_PTT_UNUSED_ENTRY(224),
I40E_PTT_UNUSED_ENTRY(225),
I40E_PTT_UNUSED_ENTRY(226),
I40E_PTT_UNUSED_ENTRY(227),
I40E_PTT_UNUSED_ENTRY(228),
I40E_PTT_UNUSED_ENTRY(229),
I40E_PTT_UNUSED_ENTRY(230),
I40E_PTT_UNUSED_ENTRY(231),
I40E_PTT_UNUSED_ENTRY(232),
I40E_PTT_UNUSED_ENTRY(233),
I40E_PTT_UNUSED_ENTRY(234),
I40E_PTT_UNUSED_ENTRY(235),
I40E_PTT_UNUSED_ENTRY(236),
I40E_PTT_UNUSED_ENTRY(237),
I40E_PTT_UNUSED_ENTRY(238),
I40E_PTT_UNUSED_ENTRY(239),
I40E_PTT_UNUSED_ENTRY(240),
I40E_PTT_UNUSED_ENTRY(241),
I40E_PTT_UNUSED_ENTRY(242),
I40E_PTT_UNUSED_ENTRY(243),
I40E_PTT_UNUSED_ENTRY(244),
I40E_PTT_UNUSED_ENTRY(245),
I40E_PTT_UNUSED_ENTRY(246),
I40E_PTT_UNUSED_ENTRY(247),
I40E_PTT_UNUSED_ENTRY(248),
I40E_PTT_UNUSED_ENTRY(249),
I40E_PTT_UNUSED_ENTRY(250),
I40E_PTT_UNUSED_ENTRY(251),
I40E_PTT_UNUSED_ENTRY(252),
I40E_PTT_UNUSED_ENTRY(253),
I40E_PTT_UNUSED_ENTRY(254),
I40E_PTT_UNUSED_ENTRY(255)
};
/**
* i40e_init_shared_code - Initialize the shared code
* @hw: pointer to hardware structure
*
* This assigns the MAC type and PHY code and inits the NVM.
* Does not touch the hardware. This function must be called prior to any
* other function in the shared code. The i40e_hw structure should be
* memset to 0 prior to calling this function. The following fields in
* hw structure should be filled in prior to calling this function:
* hw_addr, back, device_id, vendor_id, subsystem_device_id,
* subsystem_vendor_id, and revision_id
**/
i40e_status i40e_init_shared_code(struct i40e_hw *hw)
{
i40e_status status = 0;
u32 port, ari, func_rid;
i40e_set_mac_type(hw);
switch (hw->mac.type) {
case I40E_MAC_XL710:
case I40E_MAC_X722:
break;
default:
return I40E_ERR_DEVICE_NOT_SUPPORTED;
}
hw->phy.get_link_info = true;
/* Determine port number and PF number*/
port = (rd32(hw, I40E_PFGEN_PORTNUM) & I40E_PFGEN_PORTNUM_PORT_NUM_MASK)
>> I40E_PFGEN_PORTNUM_PORT_NUM_SHIFT;
hw->port = (u8)port;
ari = (rd32(hw, I40E_GLPCI_CAPSUP) & I40E_GLPCI_CAPSUP_ARI_EN_MASK) >>
I40E_GLPCI_CAPSUP_ARI_EN_SHIFT;
func_rid = rd32(hw, I40E_PF_FUNC_RID);
if (ari)
hw->pf_id = (u8)(func_rid & 0xff);
else
hw->pf_id = (u8)(func_rid & 0x7);
if (hw->mac.type == I40E_MAC_X722)
hw->flags |= I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE;
status = i40e_init_nvm(hw);
return status;
}
/**
* i40e_aq_mac_address_read - Retrieve the MAC addresses
* @hw: pointer to the hw struct
* @flags: a return indicator of what addresses were added to the addr store
* @addrs: the requestor's mac addr store
* @cmd_details: pointer to command details structure or NULL
**/
static i40e_status i40e_aq_mac_address_read(struct i40e_hw *hw,
u16 *flags,
struct i40e_aqc_mac_address_read_data *addrs,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_mac_address_read *cmd_data =
(struct i40e_aqc_mac_address_read *)&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_mac_address_read);
desc.flags |= cpu_to_le16(I40E_AQ_FLAG_BUF);
status = i40e_asq_send_command(hw, &desc, addrs,
sizeof(*addrs), cmd_details);
*flags = le16_to_cpu(cmd_data->command_flags);
return status;
}
/**
* i40e_aq_mac_address_write - Change the MAC addresses
* @hw: pointer to the hw struct
* @flags: indicates which MAC to be written
* @mac_addr: address to write
* @cmd_details: pointer to command details structure or NULL
**/
i40e_status i40e_aq_mac_address_write(struct i40e_hw *hw,
u16 flags, u8 *mac_addr,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_mac_address_write *cmd_data =
(struct i40e_aqc_mac_address_write *)&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_mac_address_write);
cmd_data->command_flags = cpu_to_le16(flags);
cmd_data->mac_sah = cpu_to_le16((u16)mac_addr[0] << 8 | mac_addr[1]);
cmd_data->mac_sal = cpu_to_le32(((u32)mac_addr[2] << 24) |
((u32)mac_addr[3] << 16) |
((u32)mac_addr[4] << 8) |
mac_addr[5]);
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
return status;
}
/**
* i40e_get_mac_addr - get MAC address
* @hw: pointer to the HW structure
* @mac_addr: pointer to MAC address
*
* Reads the adapter's MAC address from register
**/
i40e_status i40e_get_mac_addr(struct i40e_hw *hw, u8 *mac_addr)
{
struct i40e_aqc_mac_address_read_data addrs;
i40e_status status;
u16 flags = 0;
status = i40e_aq_mac_address_read(hw, &flags, &addrs, NULL);
if (flags & I40E_AQC_LAN_ADDR_VALID)
ether_addr_copy(mac_addr, addrs.pf_lan_mac);
return status;
}
/**
* i40e_get_port_mac_addr - get Port MAC address
* @hw: pointer to the HW structure
* @mac_addr: pointer to Port MAC address
*
* Reads the adapter's Port MAC address
**/
i40e_status i40e_get_port_mac_addr(struct i40e_hw *hw, u8 *mac_addr)
{
struct i40e_aqc_mac_address_read_data addrs;
i40e_status status;
u16 flags = 0;
status = i40e_aq_mac_address_read(hw, &flags, &addrs, NULL);
if (status)
return status;
if (flags & I40E_AQC_PORT_ADDR_VALID)
ether_addr_copy(mac_addr, addrs.port_mac);
else
status = I40E_ERR_INVALID_MAC_ADDR;
return status;
}
/**
* i40e_pre_tx_queue_cfg - pre tx queue configure
* @hw: pointer to the HW structure
* @queue: target PF queue index
* @enable: state change request
*
* Handles hw requirement to indicate intention to enable
* or disable target queue.
**/
void i40e_pre_tx_queue_cfg(struct i40e_hw *hw, u32 queue, bool enable)
{
u32 abs_queue_idx = hw->func_caps.base_queue + queue;
u32 reg_block = 0;
u32 reg_val;
if (abs_queue_idx >= 128) {
reg_block = abs_queue_idx / 128;
abs_queue_idx %= 128;
}
reg_val = rd32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block));
reg_val &= ~I40E_GLLAN_TXPRE_QDIS_QINDX_MASK;
reg_val |= (abs_queue_idx << I40E_GLLAN_TXPRE_QDIS_QINDX_SHIFT);
if (enable)
reg_val |= I40E_GLLAN_TXPRE_QDIS_CLEAR_QDIS_MASK;
else
reg_val |= I40E_GLLAN_TXPRE_QDIS_SET_QDIS_MASK;
wr32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block), reg_val);
}
#ifdef I40E_FCOE
/**
* i40e_get_san_mac_addr - get SAN MAC address
* @hw: pointer to the HW structure
* @mac_addr: pointer to SAN MAC address
*
* Reads the adapter's SAN MAC address from NVM
**/
i40e_status i40e_get_san_mac_addr(struct i40e_hw *hw, u8 *mac_addr)
{
struct i40e_aqc_mac_address_read_data addrs;
i40e_status status;
u16 flags = 0;
status = i40e_aq_mac_address_read(hw, &flags, &addrs, NULL);
if (status)
return status;
if (flags & I40E_AQC_SAN_ADDR_VALID)
ether_addr_copy(mac_addr, addrs.pf_san_mac);
else
status = I40E_ERR_INVALID_MAC_ADDR;
return status;
}
#endif
/**
* i40e_read_pba_string - Reads part number string from EEPROM
* @hw: pointer to hardware structure
* @pba_num: stores the part number string from the EEPROM
* @pba_num_size: part number string buffer length
*
* Reads the part number string from the EEPROM.
**/
i40e_status i40e_read_pba_string(struct i40e_hw *hw, u8 *pba_num,
u32 pba_num_size)
{
i40e_status status = 0;
u16 pba_word = 0;
u16 pba_size = 0;
u16 pba_ptr = 0;
u16 i = 0;
status = i40e_read_nvm_word(hw, I40E_SR_PBA_FLAGS, &pba_word);
if (status || (pba_word != 0xFAFA)) {
hw_dbg(hw, "Failed to read PBA flags or flag is invalid.\n");
return status;
}
status = i40e_read_nvm_word(hw, I40E_SR_PBA_BLOCK_PTR, &pba_ptr);
if (status) {
hw_dbg(hw, "Failed to read PBA Block pointer.\n");
return status;
}
status = i40e_read_nvm_word(hw, pba_ptr, &pba_size);
if (status) {
hw_dbg(hw, "Failed to read PBA Block size.\n");
return status;
}
/* Subtract one to get PBA word count (PBA Size word is included in
* total size)
*/
pba_size--;
if (pba_num_size < (((u32)pba_size * 2) + 1)) {
hw_dbg(hw, "Buffer to small for PBA data.\n");
return I40E_ERR_PARAM;
}
for (i = 0; i < pba_size; i++) {
status = i40e_read_nvm_word(hw, (pba_ptr + 1) + i, &pba_word);
if (status) {
hw_dbg(hw, "Failed to read PBA Block word %d.\n", i);
return status;
}
pba_num[(i * 2)] = (pba_word >> 8) & 0xFF;
pba_num[(i * 2) + 1] = pba_word & 0xFF;
}
pba_num[(pba_size * 2)] = '\0';
return status;
}
/**
* i40e_get_media_type - Gets media type
* @hw: pointer to the hardware structure
**/
static enum i40e_media_type i40e_get_media_type(struct i40e_hw *hw)
{
enum i40e_media_type media;
switch (hw->phy.link_info.phy_type) {
case I40E_PHY_TYPE_10GBASE_SR:
case I40E_PHY_TYPE_10GBASE_LR:
case I40E_PHY_TYPE_1000BASE_SX:
case I40E_PHY_TYPE_1000BASE_LX:
case I40E_PHY_TYPE_40GBASE_SR4:
case I40E_PHY_TYPE_40GBASE_LR4:
media = I40E_MEDIA_TYPE_FIBER;
break;
case I40E_PHY_TYPE_100BASE_TX:
case I40E_PHY_TYPE_1000BASE_T:
case I40E_PHY_TYPE_10GBASE_T:
media = I40E_MEDIA_TYPE_BASET;
break;
case I40E_PHY_TYPE_10GBASE_CR1_CU:
case I40E_PHY_TYPE_40GBASE_CR4_CU:
case I40E_PHY_TYPE_10GBASE_CR1:
case I40E_PHY_TYPE_40GBASE_CR4:
case I40E_PHY_TYPE_10GBASE_SFPP_CU:
case I40E_PHY_TYPE_40GBASE_AOC:
case I40E_PHY_TYPE_10GBASE_AOC:
media = I40E_MEDIA_TYPE_DA;
break;
case I40E_PHY_TYPE_1000BASE_KX:
case I40E_PHY_TYPE_10GBASE_KX4:
case I40E_PHY_TYPE_10GBASE_KR:
case I40E_PHY_TYPE_40GBASE_KR4:
case I40E_PHY_TYPE_20GBASE_KR2:
media = I40E_MEDIA_TYPE_BACKPLANE;
break;
case I40E_PHY_TYPE_SGMII:
case I40E_PHY_TYPE_XAUI:
case I40E_PHY_TYPE_XFI:
case I40E_PHY_TYPE_XLAUI:
case I40E_PHY_TYPE_XLPPI:
default:
media = I40E_MEDIA_TYPE_UNKNOWN;
break;
}
return media;
}
#define I40E_PF_RESET_WAIT_COUNT_A0 200
#define I40E_PF_RESET_WAIT_COUNT 200
/**
* i40e_pf_reset - Reset the PF
* @hw: pointer to the hardware structure
*
* Assuming someone else has triggered a global reset,
* assure the global reset is complete and then reset the PF
**/
i40e_status i40e_pf_reset(struct i40e_hw *hw)
{
u32 cnt = 0;
u32 cnt1 = 0;
u32 reg = 0;
u32 grst_del;
/* Poll for Global Reset steady state in case of recent GRST.
* The grst delay value is in 100ms units, and we'll wait a
* couple counts longer to be sure we don't just miss the end.
*/
grst_del = (rd32(hw, I40E_GLGEN_RSTCTL) &
I40E_GLGEN_RSTCTL_GRSTDEL_MASK) >>
I40E_GLGEN_RSTCTL_GRSTDEL_SHIFT;
for (cnt = 0; cnt < grst_del + 10; cnt++) {
reg = rd32(hw, I40E_GLGEN_RSTAT);
if (!(reg & I40E_GLGEN_RSTAT_DEVSTATE_MASK))
break;
msleep(100);
}
if (reg & I40E_GLGEN_RSTAT_DEVSTATE_MASK) {
hw_dbg(hw, "Global reset polling failed to complete.\n");
return I40E_ERR_RESET_FAILED;
}
/* Now Wait for the FW to be ready */
for (cnt1 = 0; cnt1 < I40E_PF_RESET_WAIT_COUNT; cnt1++) {
reg = rd32(hw, I40E_GLNVM_ULD);
reg &= (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK |
I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK);
if (reg == (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK |
I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK)) {
hw_dbg(hw, "Core and Global modules ready %d\n", cnt1);
break;
}
usleep_range(10000, 20000);
}
if (!(reg & (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK |
I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK))) {
hw_dbg(hw, "wait for FW Reset complete timedout\n");
hw_dbg(hw, "I40E_GLNVM_ULD = 0x%x\n", reg);
return I40E_ERR_RESET_FAILED;
}
/* If there was a Global Reset in progress when we got here,
* we don't need to do the PF Reset
*/
if (!cnt) {
if (hw->revision_id == 0)
cnt = I40E_PF_RESET_WAIT_COUNT_A0;
else
cnt = I40E_PF_RESET_WAIT_COUNT;
reg = rd32(hw, I40E_PFGEN_CTRL);
wr32(hw, I40E_PFGEN_CTRL,
(reg | I40E_PFGEN_CTRL_PFSWR_MASK));
for (; cnt; cnt--) {
reg = rd32(hw, I40E_PFGEN_CTRL);
if (!(reg & I40E_PFGEN_CTRL_PFSWR_MASK))
break;
usleep_range(1000, 2000);
}
if (reg & I40E_PFGEN_CTRL_PFSWR_MASK) {
hw_dbg(hw, "PF reset polling failed to complete.\n");
return I40E_ERR_RESET_FAILED;
}
}
i40e_clear_pxe_mode(hw);
return 0;
}
/**
* i40e_clear_hw - clear out any left over hw state
* @hw: pointer to the hw struct
*
* Clear queues and interrupts, typically called at init time,
* but after the capabilities have been found so we know how many
* queues and msix vectors have been allocated.
**/
void i40e_clear_hw(struct i40e_hw *hw)
{
u32 num_queues, base_queue;
u32 num_pf_int;
u32 num_vf_int;
u32 num_vfs;
u32 i, j;
u32 val;
u32 eol = 0x7ff;
/* get number of interrupts, queues, and VFs */
val = rd32(hw, I40E_GLPCI_CNF2);
num_pf_int = (val & I40E_GLPCI_CNF2_MSI_X_PF_N_MASK) >>
I40E_GLPCI_CNF2_MSI_X_PF_N_SHIFT;
num_vf_int = (val & I40E_GLPCI_CNF2_MSI_X_VF_N_MASK) >>
I40E_GLPCI_CNF2_MSI_X_VF_N_SHIFT;
val = rd32(hw, I40E_PFLAN_QALLOC);
base_queue = (val & I40E_PFLAN_QALLOC_FIRSTQ_MASK) >>
I40E_PFLAN_QALLOC_FIRSTQ_SHIFT;
j = (val & I40E_PFLAN_QALLOC_LASTQ_MASK) >>
I40E_PFLAN_QALLOC_LASTQ_SHIFT;
if (val & I40E_PFLAN_QALLOC_VALID_MASK)
num_queues = (j - base_queue) + 1;
else
num_queues = 0;
val = rd32(hw, I40E_PF_VT_PFALLOC);
i = (val & I40E_PF_VT_PFALLOC_FIRSTVF_MASK) >>
I40E_PF_VT_PFALLOC_FIRSTVF_SHIFT;
j = (val & I40E_PF_VT_PFALLOC_LASTVF_MASK) >>
I40E_PF_VT_PFALLOC_LASTVF_SHIFT;
if (val & I40E_PF_VT_PFALLOC_VALID_MASK)
num_vfs = (j - i) + 1;
else
num_vfs = 0;
/* stop all the interrupts */
wr32(hw, I40E_PFINT_ICR0_ENA, 0);
val = 0x3 << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT;
for (i = 0; i < num_pf_int - 2; i++)
wr32(hw, I40E_PFINT_DYN_CTLN(i), val);
/* Set the FIRSTQ_INDX field to 0x7FF in PFINT_LNKLSTx */
val = eol << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT;
wr32(hw, I40E_PFINT_LNKLST0, val);
for (i = 0; i < num_pf_int - 2; i++)
wr32(hw, I40E_PFINT_LNKLSTN(i), val);
val = eol << I40E_VPINT_LNKLST0_FIRSTQ_INDX_SHIFT;
for (i = 0; i < num_vfs; i++)
wr32(hw, I40E_VPINT_LNKLST0(i), val);
for (i = 0; i < num_vf_int - 2; i++)
wr32(hw, I40E_VPINT_LNKLSTN(i), val);
/* warn the HW of the coming Tx disables */
for (i = 0; i < num_queues; i++) {
u32 abs_queue_idx = base_queue + i;
u32 reg_block = 0;
if (abs_queue_idx >= 128) {
reg_block = abs_queue_idx / 128;
abs_queue_idx %= 128;
}
val = rd32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block));
val &= ~I40E_GLLAN_TXPRE_QDIS_QINDX_MASK;
val |= (abs_queue_idx << I40E_GLLAN_TXPRE_QDIS_QINDX_SHIFT);
val |= I40E_GLLAN_TXPRE_QDIS_SET_QDIS_MASK;
wr32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block), val);
}
udelay(400);
/* stop all the queues */
for (i = 0; i < num_queues; i++) {
wr32(hw, I40E_QINT_TQCTL(i), 0);
wr32(hw, I40E_QTX_ENA(i), 0);
wr32(hw, I40E_QINT_RQCTL(i), 0);
wr32(hw, I40E_QRX_ENA(i), 0);
}
/* short wait for all queue disables to settle */
udelay(50);
}
/**
* i40e_clear_pxe_mode - clear pxe operations mode
* @hw: pointer to the hw struct
*
* Make sure all PXE mode settings are cleared, including things
* like descriptor fetch/write-back mode.
**/
void i40e_clear_pxe_mode(struct i40e_hw *hw)
{
u32 reg;
if (i40e_check_asq_alive(hw))
i40e_aq_clear_pxe_mode(hw, NULL);
/* Clear single descriptor fetch/write-back mode */
reg = rd32(hw, I40E_GLLAN_RCTL_0);
if (hw->revision_id == 0) {
/* As a work around clear PXE_MODE instead of setting it */
wr32(hw, I40E_GLLAN_RCTL_0, (reg & (~I40E_GLLAN_RCTL_0_PXE_MODE_MASK)));
} else {
wr32(hw, I40E_GLLAN_RCTL_0, (reg | I40E_GLLAN_RCTL_0_PXE_MODE_MASK));
}
}
/**
* i40e_led_is_mine - helper to find matching led
* @hw: pointer to the hw struct
* @idx: index into GPIO registers
*
* returns: 0 if no match, otherwise the value of the GPIO_CTL register
*/
static u32 i40e_led_is_mine(struct i40e_hw *hw, int idx)
{
u32 gpio_val = 0;
u32 port;
if (!hw->func_caps.led[idx])
return 0;
gpio_val = rd32(hw, I40E_GLGEN_GPIO_CTL(idx));
port = (gpio_val & I40E_GLGEN_GPIO_CTL_PRT_NUM_MASK) >>
I40E_GLGEN_GPIO_CTL_PRT_NUM_SHIFT;
/* if PRT_NUM_NA is 1 then this LED is not port specific, OR
* if it is not our port then ignore
*/
if ((gpio_val & I40E_GLGEN_GPIO_CTL_PRT_NUM_NA_MASK) ||
(port != hw->port))
return 0;
return gpio_val;
}
#define I40E_COMBINED_ACTIVITY 0xA
#define I40E_FILTER_ACTIVITY 0xE
#define I40E_LINK_ACTIVITY 0xC
#define I40E_MAC_ACTIVITY 0xD
#define I40E_LED0 22
/**
* i40e_led_get - return current on/off mode
* @hw: pointer to the hw struct
*
* The value returned is the 'mode' field as defined in the
* GPIO register definitions: 0x0 = off, 0xf = on, and other
* values are variations of possible behaviors relating to
* blink, link, and wire.
**/
u32 i40e_led_get(struct i40e_hw *hw)
{
u32 current_mode = 0;
u32 mode = 0;
int i;
/* as per the documentation GPIO 22-29 are the LED
* GPIO pins named LED0..LED7
*/
for (i = I40E_LED0; i <= I40E_GLGEN_GPIO_CTL_MAX_INDEX; i++) {
u32 gpio_val = i40e_led_is_mine(hw, i);
if (!gpio_val)
continue;
/* ignore gpio LED src mode entries related to the activity
* LEDs
*/
current_mode = ((gpio_val & I40E_GLGEN_GPIO_CTL_LED_MODE_MASK)
>> I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT);
switch (current_mode) {
case I40E_COMBINED_ACTIVITY:
case I40E_FILTER_ACTIVITY:
case I40E_MAC_ACTIVITY:
continue;
default:
break;
}
mode = (gpio_val & I40E_GLGEN_GPIO_CTL_LED_MODE_MASK) >>
I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT;
break;
}
return mode;
}
/**
* i40e_led_set - set new on/off mode
* @hw: pointer to the hw struct
* @mode: 0=off, 0xf=on (else see manual for mode details)
* @blink: true if the LED should blink when on, false if steady
*
* if this function is used to turn on the blink it should
* be used to disable the blink when restoring the original state.
**/
void i40e_led_set(struct i40e_hw *hw, u32 mode, bool blink)
{
u32 current_mode = 0;
int i;
if (mode & 0xfffffff0)
hw_dbg(hw, "invalid mode passed in %X\n", mode);
/* as per the documentation GPIO 22-29 are the LED
* GPIO pins named LED0..LED7
*/
for (i = I40E_LED0; i <= I40E_GLGEN_GPIO_CTL_MAX_INDEX; i++) {
u32 gpio_val = i40e_led_is_mine(hw, i);
if (!gpio_val)
continue;
/* ignore gpio LED src mode entries related to the activity
* LEDs
*/
current_mode = ((gpio_val & I40E_GLGEN_GPIO_CTL_LED_MODE_MASK)
>> I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT);
switch (current_mode) {
case I40E_COMBINED_ACTIVITY:
case I40E_FILTER_ACTIVITY:
case I40E_MAC_ACTIVITY:
continue;
default:
break;
}
gpio_val &= ~I40E_GLGEN_GPIO_CTL_LED_MODE_MASK;
/* this & is a bit of paranoia, but serves as a range check */
gpio_val |= ((mode << I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT) &
I40E_GLGEN_GPIO_CTL_LED_MODE_MASK);
if (mode == I40E_LINK_ACTIVITY)
blink = false;
if (blink)
gpio_val |= BIT(I40E_GLGEN_GPIO_CTL_LED_BLINK_SHIFT);
else
gpio_val &= ~BIT(I40E_GLGEN_GPIO_CTL_LED_BLINK_SHIFT);
wr32(hw, I40E_GLGEN_GPIO_CTL(i), gpio_val);
break;
}
}
/* Admin command wrappers */
/**
* i40e_aq_get_phy_capabilities
* @hw: pointer to the hw struct
* @abilities: structure for PHY capabilities to be filled
* @qualified_modules: report Qualified Modules
* @report_init: report init capabilities (active are default)
* @cmd_details: pointer to command details structure or NULL
*
* Returns the various PHY abilities supported on the Port.
**/
i40e_status i40e_aq_get_phy_capabilities(struct i40e_hw *hw,
bool qualified_modules, bool report_init,
struct i40e_aq_get_phy_abilities_resp *abilities,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
i40e_status status;
u16 abilities_size = sizeof(struct i40e_aq_get_phy_abilities_resp);
if (!abilities)
return I40E_ERR_PARAM;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_get_phy_abilities);
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
if (abilities_size > I40E_AQ_LARGE_BUF)
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
if (qualified_modules)
desc.params.external.param0 |=
cpu_to_le32(I40E_AQ_PHY_REPORT_QUALIFIED_MODULES);
if (report_init)
desc.params.external.param0 |=
cpu_to_le32(I40E_AQ_PHY_REPORT_INITIAL_VALUES);
status = i40e_asq_send_command(hw, &desc, abilities, abilities_size,
cmd_details);
if (hw->aq.asq_last_status == I40E_AQ_RC_EIO)
status = I40E_ERR_UNKNOWN_PHY;
if (report_init)
hw->phy.phy_types = le32_to_cpu(abilities->phy_type);
return status;
}
/**
* i40e_aq_set_phy_config
* @hw: pointer to the hw struct
* @config: structure with PHY configuration to be set
* @cmd_details: pointer to command details structure or NULL
*
* Set the various PHY configuration parameters
* supported on the Port.One or more of the Set PHY config parameters may be
* ignored in an MFP mode as the PF may not have the privilege to set some
* of the PHY Config parameters. This status will be indicated by the
* command response.
**/
enum i40e_status_code i40e_aq_set_phy_config(struct i40e_hw *hw,
struct i40e_aq_set_phy_config *config,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aq_set_phy_config *cmd =
(struct i40e_aq_set_phy_config *)&desc.params.raw;
enum i40e_status_code status;
if (!config)
return I40E_ERR_PARAM;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_set_phy_config);
*cmd = *config;
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
return status;
}
/**
* i40e_set_fc
* @hw: pointer to the hw struct
*
* Set the requested flow control mode using set_phy_config.
**/
enum i40e_status_code i40e_set_fc(struct i40e_hw *hw, u8 *aq_failures,
bool atomic_restart)
{
enum i40e_fc_mode fc_mode = hw->fc.requested_mode;
struct i40e_aq_get_phy_abilities_resp abilities;
struct i40e_aq_set_phy_config config;
enum i40e_status_code status;
u8 pause_mask = 0x0;
*aq_failures = 0x0;
switch (fc_mode) {
case I40E_FC_FULL:
pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_TX;
pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_RX;
break;
case I40E_FC_RX_PAUSE:
pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_RX;
break;
case I40E_FC_TX_PAUSE:
pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_TX;
break;
default:
break;
}
/* Get the current phy config */
status = i40e_aq_get_phy_capabilities(hw, false, false, &abilities,
NULL);
if (status) {
*aq_failures |= I40E_SET_FC_AQ_FAIL_GET;
return status;
}
memset(&config, 0, sizeof(struct i40e_aq_set_phy_config));
/* clear the old pause settings */
config.abilities = abilities.abilities & ~(I40E_AQ_PHY_FLAG_PAUSE_TX) &
~(I40E_AQ_PHY_FLAG_PAUSE_RX);
/* set the new abilities */
config.abilities |= pause_mask;
/* If the abilities have changed, then set the new config */
if (config.abilities != abilities.abilities) {
/* Auto restart link so settings take effect */
if (atomic_restart)
config.abilities |= I40E_AQ_PHY_ENABLE_ATOMIC_LINK;
/* Copy over all the old settings */
config.phy_type = abilities.phy_type;
config.link_speed = abilities.link_speed;
config.eee_capability = abilities.eee_capability;
config.eeer = abilities.eeer_val;
config.low_power_ctrl = abilities.d3_lpan;
status = i40e_aq_set_phy_config(hw, &config, NULL);
if (status)
*aq_failures |= I40E_SET_FC_AQ_FAIL_SET;
}
/* Update the link info */
status = i40e_update_link_info(hw);
if (status) {
/* Wait a little bit (on 40G cards it sometimes takes a really
* long time for link to come back from the atomic reset)
* and try once more
*/
msleep(1000);
status = i40e_update_link_info(hw);
}
if (status)
*aq_failures |= I40E_SET_FC_AQ_FAIL_UPDATE;
return status;
}
/**
* i40e_aq_clear_pxe_mode
* @hw: pointer to the hw struct
* @cmd_details: pointer to command details structure or NULL
*
* Tell the firmware that the driver is taking over from PXE
**/
i40e_status i40e_aq_clear_pxe_mode(struct i40e_hw *hw,
struct i40e_asq_cmd_details *cmd_details)
{
i40e_status status;
struct i40e_aq_desc desc;
struct i40e_aqc_clear_pxe *cmd =
(struct i40e_aqc_clear_pxe *)&desc.params.raw;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_clear_pxe_mode);
cmd->rx_cnt = 0x2;
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
wr32(hw, I40E_GLLAN_RCTL_0, 0x1);
return status;
}
/**
* i40e_aq_set_link_restart_an
* @hw: pointer to the hw struct
* @enable_link: if true: enable link, if false: disable link
* @cmd_details: pointer to command details structure or NULL
*
* Sets up the link and restarts the Auto-Negotiation over the link.
**/
i40e_status i40e_aq_set_link_restart_an(struct i40e_hw *hw,
bool enable_link,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_set_link_restart_an *cmd =
(struct i40e_aqc_set_link_restart_an *)&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_set_link_restart_an);
cmd->command = I40E_AQ_PHY_RESTART_AN;
if (enable_link)
cmd->command |= I40E_AQ_PHY_LINK_ENABLE;
else
cmd->command &= ~I40E_AQ_PHY_LINK_ENABLE;
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
return status;
}
/**
* i40e_aq_get_link_info
* @hw: pointer to the hw struct
* @enable_lse: enable/disable LinkStatusEvent reporting
* @link: pointer to link status structure - optional
* @cmd_details: pointer to command details structure or NULL
*
* Returns the link status of the adapter.
**/
i40e_status i40e_aq_get_link_info(struct i40e_hw *hw,
bool enable_lse, struct i40e_link_status *link,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_get_link_status *resp =
(struct i40e_aqc_get_link_status *)&desc.params.raw;
struct i40e_link_status *hw_link_info = &hw->phy.link_info;
i40e_status status;
bool tx_pause, rx_pause;
u16 command_flags;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_link_status);
if (enable_lse)
command_flags = I40E_AQ_LSE_ENABLE;
else
command_flags = I40E_AQ_LSE_DISABLE;
resp->command_flags = cpu_to_le16(command_flags);
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
if (status)
goto aq_get_link_info_exit;
/* save off old link status information */
hw->phy.link_info_old = *hw_link_info;
/* update link status */
hw_link_info->phy_type = (enum i40e_aq_phy_type)resp->phy_type;
hw->phy.media_type = i40e_get_media_type(hw);
hw_link_info->link_speed = (enum i40e_aq_link_speed)resp->link_speed;
hw_link_info->link_info = resp->link_info;
hw_link_info->an_info = resp->an_info;
hw_link_info->ext_info = resp->ext_info;
hw_link_info->loopback = resp->loopback;
hw_link_info->max_frame_size = le16_to_cpu(resp->max_frame_size);
hw_link_info->pacing = resp->config & I40E_AQ_CONFIG_PACING_MASK;
/* update fc info */
tx_pause = !!(resp->an_info & I40E_AQ_LINK_PAUSE_TX);
rx_pause = !!(resp->an_info & I40E_AQ_LINK_PAUSE_RX);
if (tx_pause & rx_pause)
hw->fc.current_mode = I40E_FC_FULL;
else if (tx_pause)
hw->fc.current_mode = I40E_FC_TX_PAUSE;
else if (rx_pause)
hw->fc.current_mode = I40E_FC_RX_PAUSE;
else
hw->fc.current_mode = I40E_FC_NONE;
if (resp->config & I40E_AQ_CONFIG_CRC_ENA)
hw_link_info->crc_enable = true;
else
hw_link_info->crc_enable = false;
if (resp->command_flags & cpu_to_le16(I40E_AQ_LSE_ENABLE))
hw_link_info->lse_enable = true;
else
hw_link_info->lse_enable = false;
if ((hw->aq.fw_maj_ver < 4 || (hw->aq.fw_maj_ver == 4 &&
hw->aq.fw_min_ver < 40)) && hw_link_info->phy_type == 0xE)
hw_link_info->phy_type = I40E_PHY_TYPE_10GBASE_SFPP_CU;
/* save link status information */
if (link)
*link = *hw_link_info;
/* flag cleared so helper functions don't call AQ again */
hw->phy.get_link_info = false;
aq_get_link_info_exit:
return status;
}
/**
* i40e_aq_set_phy_int_mask
* @hw: pointer to the hw struct
* @mask: interrupt mask to be set
* @cmd_details: pointer to command details structure or NULL
*
* Set link interrupt mask.
**/
i40e_status i40e_aq_set_phy_int_mask(struct i40e_hw *hw,
u16 mask,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_set_phy_int_mask *cmd =
(struct i40e_aqc_set_phy_int_mask *)&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_set_phy_int_mask);
cmd->event_mask = cpu_to_le16(mask);
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
return status;
}
/**
* i40e_aq_add_vsi
* @hw: pointer to the hw struct
* @vsi_ctx: pointer to a vsi context struct
* @cmd_details: pointer to command details structure or NULL
*
* Add a VSI context to the hardware.
**/
i40e_status i40e_aq_add_vsi(struct i40e_hw *hw,
struct i40e_vsi_context *vsi_ctx,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_add_get_update_vsi *cmd =
(struct i40e_aqc_add_get_update_vsi *)&desc.params.raw;
struct i40e_aqc_add_get_update_vsi_completion *resp =
(struct i40e_aqc_add_get_update_vsi_completion *)
&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_add_vsi);
cmd->uplink_seid = cpu_to_le16(vsi_ctx->uplink_seid);
cmd->connection_type = vsi_ctx->connection_type;
cmd->vf_id = vsi_ctx->vf_num;
cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
status = i40e_asq_send_command(hw, &desc, &vsi_ctx->info,
sizeof(vsi_ctx->info), cmd_details);
if (status)
goto aq_add_vsi_exit;
vsi_ctx->seid = le16_to_cpu(resp->seid);
vsi_ctx->vsi_number = le16_to_cpu(resp->vsi_number);
vsi_ctx->vsis_allocated = le16_to_cpu(resp->vsi_used);
vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
aq_add_vsi_exit:
return status;
}
/**
* i40e_aq_set_vsi_unicast_promiscuous
* @hw: pointer to the hw struct
* @seid: vsi number
* @set: set unicast promiscuous enable/disable
* @cmd_details: pointer to command details structure or NULL
**/
i40e_status i40e_aq_set_vsi_unicast_promiscuous(struct i40e_hw *hw,
u16 seid, bool set,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
i40e_status status;
u16 flags = 0;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_set_vsi_promiscuous_modes);
if (set)
flags |= I40E_AQC_SET_VSI_PROMISC_UNICAST;
cmd->promiscuous_flags = cpu_to_le16(flags);
cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_UNICAST);
cmd->seid = cpu_to_le16(seid);
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
return status;
}
/**
* i40e_aq_set_vsi_multicast_promiscuous
* @hw: pointer to the hw struct
* @seid: vsi number
* @set: set multicast promiscuous enable/disable
* @cmd_details: pointer to command details structure or NULL
**/
i40e_status i40e_aq_set_vsi_multicast_promiscuous(struct i40e_hw *hw,
u16 seid, bool set, struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
i40e_status status;
u16 flags = 0;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_set_vsi_promiscuous_modes);
if (set)
flags |= I40E_AQC_SET_VSI_PROMISC_MULTICAST;
cmd->promiscuous_flags = cpu_to_le16(flags);
cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_MULTICAST);
cmd->seid = cpu_to_le16(seid);
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
return status;
}
/**
* i40e_aq_set_vsi_broadcast
* @hw: pointer to the hw struct
* @seid: vsi number
* @set_filter: true to set filter, false to clear filter
* @cmd_details: pointer to command details structure or NULL
*
* Set or clear the broadcast promiscuous flag (filter) for a given VSI.
**/
i40e_status i40e_aq_set_vsi_broadcast(struct i40e_hw *hw,
u16 seid, bool set_filter,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_set_vsi_promiscuous_modes);
if (set_filter)
cmd->promiscuous_flags
|= cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_BROADCAST);
else
cmd->promiscuous_flags
&= cpu_to_le16(~I40E_AQC_SET_VSI_PROMISC_BROADCAST);
cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_BROADCAST);
cmd->seid = cpu_to_le16(seid);
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
return status;
}
/**
* i40e_get_vsi_params - get VSI configuration info
* @hw: pointer to the hw struct
* @vsi_ctx: pointer to a vsi context struct
* @cmd_details: pointer to command details structure or NULL
**/
i40e_status i40e_aq_get_vsi_params(struct i40e_hw *hw,
struct i40e_vsi_context *vsi_ctx,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_add_get_update_vsi *cmd =
(struct i40e_aqc_add_get_update_vsi *)&desc.params.raw;
struct i40e_aqc_add_get_update_vsi_completion *resp =
(struct i40e_aqc_add_get_update_vsi_completion *)
&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_get_vsi_parameters);
cmd->uplink_seid = cpu_to_le16(vsi_ctx->seid);
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
status = i40e_asq_send_command(hw, &desc, &vsi_ctx->info,
sizeof(vsi_ctx->info), NULL);
if (status)
goto aq_get_vsi_params_exit;
vsi_ctx->seid = le16_to_cpu(resp->seid);
vsi_ctx->vsi_number = le16_to_cpu(resp->vsi_number);
vsi_ctx->vsis_allocated = le16_to_cpu(resp->vsi_used);
vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
aq_get_vsi_params_exit:
return status;
}
/**
* i40e_aq_update_vsi_params
* @hw: pointer to the hw struct
* @vsi_ctx: pointer to a vsi context struct
* @cmd_details: pointer to command details structure or NULL
*
* Update a VSI context.
**/
i40e_status i40e_aq_update_vsi_params(struct i40e_hw *hw,
struct i40e_vsi_context *vsi_ctx,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_add_get_update_vsi *cmd =
(struct i40e_aqc_add_get_update_vsi *)&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_update_vsi_parameters);
cmd->uplink_seid = cpu_to_le16(vsi_ctx->seid);
desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
status = i40e_asq_send_command(hw, &desc, &vsi_ctx->info,
sizeof(vsi_ctx->info), cmd_details);
return status;
}
/**
* i40e_aq_get_switch_config
* @hw: pointer to the hardware structure
* @buf: pointer to the result buffer
* @buf_size: length of input buffer
* @start_seid: seid to start for the report, 0 == beginning
* @cmd_details: pointer to command details structure or NULL
*
* Fill the buf with switch configuration returned from AdminQ command
**/
i40e_status i40e_aq_get_switch_config(struct i40e_hw *hw,
struct i40e_aqc_get_switch_config_resp *buf,
u16 buf_size, u16 *start_seid,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_switch_seid *scfg =
(struct i40e_aqc_switch_seid *)&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_get_switch_config);
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
if (buf_size > I40E_AQ_LARGE_BUF)
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
scfg->seid = cpu_to_le16(*start_seid);
status = i40e_asq_send_command(hw, &desc, buf, buf_size, cmd_details);
*start_seid = le16_to_cpu(scfg->seid);
return status;
}
/**
* i40e_aq_get_firmware_version
* @hw: pointer to the hw struct
* @fw_major_version: firmware major version
* @fw_minor_version: firmware minor version
* @fw_build: firmware build number
* @api_major_version: major queue version
* @api_minor_version: minor queue version
* @cmd_details: pointer to command details structure or NULL
*
* Get the firmware version from the admin queue commands
**/
i40e_status i40e_aq_get_firmware_version(struct i40e_hw *hw,
u16 *fw_major_version, u16 *fw_minor_version,
u32 *fw_build,
u16 *api_major_version, u16 *api_minor_version,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_get_version *resp =
(struct i40e_aqc_get_version *)&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_version);
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
if (!status) {
if (fw_major_version)
*fw_major_version = le16_to_cpu(resp->fw_major);
if (fw_minor_version)
*fw_minor_version = le16_to_cpu(resp->fw_minor);
if (fw_build)
*fw_build = le32_to_cpu(resp->fw_build);
if (api_major_version)
*api_major_version = le16_to_cpu(resp->api_major);
if (api_minor_version)
*api_minor_version = le16_to_cpu(resp->api_minor);
}
return status;
}
/**
* i40e_aq_send_driver_version
* @hw: pointer to the hw struct
* @dv: driver's major, minor version
* @cmd_details: pointer to command details structure or NULL
*
* Send the driver version to the firmware
**/
i40e_status i40e_aq_send_driver_version(struct i40e_hw *hw,
struct i40e_driver_version *dv,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_driver_version *cmd =
(struct i40e_aqc_driver_version *)&desc.params.raw;
i40e_status status;
u16 len;
if (dv == NULL)
return I40E_ERR_PARAM;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_driver_version);
desc.flags |= cpu_to_le16(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD);
cmd->driver_major_ver = dv->major_version;
cmd->driver_minor_ver = dv->minor_version;
cmd->driver_build_ver = dv->build_version;
cmd->driver_subbuild_ver = dv->subbuild_version;
len = 0;
while (len < sizeof(dv->driver_string) &&
(dv->driver_string[len] < 0x80) &&
dv->driver_string[len])
len++;
status = i40e_asq_send_command(hw, &desc, dv->driver_string,
len, cmd_details);
return status;
}
/**
* i40e_get_link_status - get status of the HW network link
* @hw: pointer to the hw struct
* @link_up: pointer to bool (true/false = linkup/linkdown)
*
* Variable link_up true if link is up, false if link is down.
* The variable link_up is invalid if returned value of status != 0
*
* Side effect: LinkStatusEvent reporting becomes enabled
**/
i40e_status i40e_get_link_status(struct i40e_hw *hw, bool *link_up)
{
i40e_status status = 0;
if (hw->phy.get_link_info) {
status = i40e_update_link_info(hw);
if (status)
i40e_debug(hw, I40E_DEBUG_LINK, "get link failed: status %d\n",
status);
}
*link_up = hw->phy.link_info.link_info & I40E_AQ_LINK_UP;
return status;
}
/**
* i40e_updatelink_status - update status of the HW network link
* @hw: pointer to the hw struct
**/
i40e_status i40e_update_link_info(struct i40e_hw *hw)
{
struct i40e_aq_get_phy_abilities_resp abilities;
i40e_status status = 0;
status = i40e_aq_get_link_info(hw, true, NULL, NULL);
if (status)
return status;
if (hw->phy.link_info.link_info & I40E_AQ_MEDIA_AVAILABLE) {
status = i40e_aq_get_phy_capabilities(hw, false, false,
&abilities, NULL);
if (status)
return status;
memcpy(hw->phy.link_info.module_type, &abilities.module_type,
sizeof(hw->phy.link_info.module_type));
}
return status;
}
/**
* i40e_aq_add_veb - Insert a VEB between the VSI and the MAC
* @hw: pointer to the hw struct
* @uplink_seid: the MAC or other gizmo SEID
* @downlink_seid: the VSI SEID
* @enabled_tc: bitmap of TCs to be enabled
* @default_port: true for default port VSI, false for control port
* @enable_l2_filtering: true to add L2 filter table rules to regular forwarding rules for cloud support
* @veb_seid: pointer to where to put the resulting VEB SEID
* @cmd_details: pointer to command details structure or NULL
*
* This asks the FW to add a VEB between the uplink and downlink
* elements. If the uplink SEID is 0, this will be a floating VEB.
**/
i40e_status i40e_aq_add_veb(struct i40e_hw *hw, u16 uplink_seid,
u16 downlink_seid, u8 enabled_tc,
bool default_port, bool enable_l2_filtering,
u16 *veb_seid,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_add_veb *cmd =
(struct i40e_aqc_add_veb *)&desc.params.raw;
struct i40e_aqc_add_veb_completion *resp =
(struct i40e_aqc_add_veb_completion *)&desc.params.raw;
i40e_status status;
u16 veb_flags = 0;
/* SEIDs need to either both be set or both be 0 for floating VEB */
if (!!uplink_seid != !!downlink_seid)
return I40E_ERR_PARAM;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_veb);
cmd->uplink_seid = cpu_to_le16(uplink_seid);
cmd->downlink_seid = cpu_to_le16(downlink_seid);
cmd->enable_tcs = enabled_tc;
if (!uplink_seid)
veb_flags |= I40E_AQC_ADD_VEB_FLOATING;
if (default_port)
veb_flags |= I40E_AQC_ADD_VEB_PORT_TYPE_DEFAULT;
else
veb_flags |= I40E_AQC_ADD_VEB_PORT_TYPE_DATA;
if (enable_l2_filtering)
veb_flags |= I40E_AQC_ADD_VEB_ENABLE_L2_FILTER;
cmd->veb_flags = cpu_to_le16(veb_flags);
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
if (!status && veb_seid)
*veb_seid = le16_to_cpu(resp->veb_seid);
return status;
}
/**
* i40e_aq_get_veb_parameters - Retrieve VEB parameters
* @hw: pointer to the hw struct
* @veb_seid: the SEID of the VEB to query
* @switch_id: the uplink switch id
* @floating: set to true if the VEB is floating
* @statistic_index: index of the stats counter block for this VEB
* @vebs_used: number of VEB's used by function
* @vebs_free: total VEB's not reserved by any function
* @cmd_details: pointer to command details structure or NULL
*
* This retrieves the parameters for a particular VEB, specified by
* uplink_seid, and returns them to the caller.
**/
i40e_status i40e_aq_get_veb_parameters(struct i40e_hw *hw,
u16 veb_seid, u16 *switch_id,
bool *floating, u16 *statistic_index,
u16 *vebs_used, u16 *vebs_free,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_get_veb_parameters_completion *cmd_resp =
(struct i40e_aqc_get_veb_parameters_completion *)
&desc.params.raw;
i40e_status status;
if (veb_seid == 0)
return I40E_ERR_PARAM;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_get_veb_parameters);
cmd_resp->seid = cpu_to_le16(veb_seid);
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
if (status)
goto get_veb_exit;
if (switch_id)
*switch_id = le16_to_cpu(cmd_resp->switch_id);
if (statistic_index)
*statistic_index = le16_to_cpu(cmd_resp->statistic_index);
if (vebs_used)
*vebs_used = le16_to_cpu(cmd_resp->vebs_used);
if (vebs_free)
*vebs_free = le16_to_cpu(cmd_resp->vebs_free);
if (floating) {
u16 flags = le16_to_cpu(cmd_resp->veb_flags);
if (flags & I40E_AQC_ADD_VEB_FLOATING)
*floating = true;
else
*floating = false;
}
get_veb_exit:
return status;
}
/**
* i40e_aq_add_macvlan
* @hw: pointer to the hw struct
* @seid: VSI for the mac address
* @mv_list: list of macvlans to be added
* @count: length of the list
* @cmd_details: pointer to command details structure or NULL
*
* Add MAC/VLAN addresses to the HW filtering
**/
i40e_status i40e_aq_add_macvlan(struct i40e_hw *hw, u16 seid,
struct i40e_aqc_add_macvlan_element_data *mv_list,
u16 count, struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_macvlan *cmd =
(struct i40e_aqc_macvlan *)&desc.params.raw;
i40e_status status;
u16 buf_size;
if (count == 0 || !mv_list || !hw)
return I40E_ERR_PARAM;
buf_size = count * sizeof(*mv_list);
/* prep the rest of the request */
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_macvlan);
cmd->num_addresses = cpu_to_le16(count);
cmd->seid[0] = cpu_to_le16(I40E_AQC_MACVLAN_CMD_SEID_VALID | seid);
cmd->seid[1] = 0;
cmd->seid[2] = 0;
desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
if (buf_size > I40E_AQ_LARGE_BUF)
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
status = i40e_asq_send_command(hw, &desc, mv_list, buf_size,
cmd_details);
return status;
}
/**
* i40e_aq_remove_macvlan
* @hw: pointer to the hw struct
* @seid: VSI for the mac address
* @mv_list: list of macvlans to be removed
* @count: length of the list
* @cmd_details: pointer to command details structure or NULL
*
* Remove MAC/VLAN addresses from the HW filtering
**/
i40e_status i40e_aq_remove_macvlan(struct i40e_hw *hw, u16 seid,
struct i40e_aqc_remove_macvlan_element_data *mv_list,
u16 count, struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_macvlan *cmd =
(struct i40e_aqc_macvlan *)&desc.params.raw;
i40e_status status;
u16 buf_size;
if (count == 0 || !mv_list || !hw)
return I40E_ERR_PARAM;
buf_size = count * sizeof(*mv_list);
/* prep the rest of the request */
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_remove_macvlan);
cmd->num_addresses = cpu_to_le16(count);
cmd->seid[0] = cpu_to_le16(I40E_AQC_MACVLAN_CMD_SEID_VALID | seid);
cmd->seid[1] = 0;
cmd->seid[2] = 0;
desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
if (buf_size > I40E_AQ_LARGE_BUF)
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
status = i40e_asq_send_command(hw, &desc, mv_list, buf_size,
cmd_details);
return status;
}
/**
* i40e_aq_send_msg_to_vf
* @hw: pointer to the hardware structure
* @vfid: VF id to send msg
* @v_opcode: opcodes for VF-PF communication
* @v_retval: return error code
* @msg: pointer to the msg buffer
* @msglen: msg length
* @cmd_details: pointer to command details
*
* send msg to vf
**/
i40e_status i40e_aq_send_msg_to_vf(struct i40e_hw *hw, u16 vfid,
u32 v_opcode, u32 v_retval, u8 *msg, u16 msglen,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_pf_vf_message *cmd =
(struct i40e_aqc_pf_vf_message *)&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_send_msg_to_vf);
cmd->id = cpu_to_le32(vfid);
desc.cookie_high = cpu_to_le32(v_opcode);
desc.cookie_low = cpu_to_le32(v_retval);
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_SI);
if (msglen) {
desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF |
I40E_AQ_FLAG_RD));
if (msglen > I40E_AQ_LARGE_BUF)
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
desc.datalen = cpu_to_le16(msglen);
}
status = i40e_asq_send_command(hw, &desc, msg, msglen, cmd_details);
return status;
}
/**
* i40e_aq_debug_read_register
* @hw: pointer to the hw struct
* @reg_addr: register address
* @reg_val: register value
* @cmd_details: pointer to command details structure or NULL
*
* Read the register using the admin queue commands
**/
i40e_status i40e_aq_debug_read_register(struct i40e_hw *hw,
u32 reg_addr, u64 *reg_val,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_debug_reg_read_write *cmd_resp =
(struct i40e_aqc_debug_reg_read_write *)&desc.params.raw;
i40e_status status;
if (reg_val == NULL)
return I40E_ERR_PARAM;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_debug_read_reg);
cmd_resp->address = cpu_to_le32(reg_addr);
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
if (!status) {
*reg_val = ((u64)le32_to_cpu(cmd_resp->value_high) << 32) |
(u64)le32_to_cpu(cmd_resp->value_low);
}
return status;
}
/**
* i40e_aq_debug_write_register
* @hw: pointer to the hw struct
* @reg_addr: register address
* @reg_val: register value
* @cmd_details: pointer to command details structure or NULL
*
* Write to a register using the admin queue commands
**/
i40e_status i40e_aq_debug_write_register(struct i40e_hw *hw,
u32 reg_addr, u64 reg_val,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_debug_reg_read_write *cmd =
(struct i40e_aqc_debug_reg_read_write *)&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_debug_write_reg);
cmd->address = cpu_to_le32(reg_addr);
cmd->value_high = cpu_to_le32((u32)(reg_val >> 32));
cmd->value_low = cpu_to_le32((u32)(reg_val & 0xFFFFFFFF));
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
return status;
}
/**
* i40e_aq_set_hmc_resource_profile
* @hw: pointer to the hw struct
* @profile: type of profile the HMC is to be set as
* @pe_vf_enabled_count: the number of PE enabled VFs the system has
* @cmd_details: pointer to command details structure or NULL
*
* set the HMC profile of the device.
**/
i40e_status i40e_aq_set_hmc_resource_profile(struct i40e_hw *hw,
enum i40e_aq_hmc_profile profile,
u8 pe_vf_enabled_count,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aq_get_set_hmc_resource_profile *cmd =
(struct i40e_aq_get_set_hmc_resource_profile *)&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_set_hmc_resource_profile);
cmd->pm_profile = (u8)profile;
cmd->pe_vf_enabled = pe_vf_enabled_count;
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
return status;
}
/**
* i40e_aq_request_resource
* @hw: pointer to the hw struct
* @resource: resource id
* @access: access type
* @sdp_number: resource number
* @timeout: the maximum time in ms that the driver may hold the resource
* @cmd_details: pointer to command details structure or NULL
*
* requests common resource using the admin queue commands
**/
i40e_status i40e_aq_request_resource(struct i40e_hw *hw,
enum i40e_aq_resources_ids resource,
enum i40e_aq_resource_access_type access,
u8 sdp_number, u64 *timeout,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_request_resource *cmd_resp =
(struct i40e_aqc_request_resource *)&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_request_resource);
cmd_resp->resource_id = cpu_to_le16(resource);
cmd_resp->access_type = cpu_to_le16(access);
cmd_resp->resource_number = cpu_to_le32(sdp_number);
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
/* The completion specifies the maximum time in ms that the driver
* may hold the resource in the Timeout field.
* If the resource is held by someone else, the command completes with
* busy return value and the timeout field indicates the maximum time
* the current owner of the resource has to free it.
*/
if (!status || hw->aq.asq_last_status == I40E_AQ_RC_EBUSY)
*timeout = le32_to_cpu(cmd_resp->timeout);
return status;
}
/**
* i40e_aq_release_resource
* @hw: pointer to the hw struct
* @resource: resource id
* @sdp_number: resource number
* @cmd_details: pointer to command details structure or NULL
*
* release common resource using the admin queue commands
**/
i40e_status i40e_aq_release_resource(struct i40e_hw *hw,
enum i40e_aq_resources_ids resource,
u8 sdp_number,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_request_resource *cmd =
(struct i40e_aqc_request_resource *)&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_release_resource);
cmd->resource_id = cpu_to_le16(resource);
cmd->resource_number = cpu_to_le32(sdp_number);
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
return status;
}
/**
* i40e_aq_read_nvm
* @hw: pointer to the hw struct
* @module_pointer: module pointer location in words from the NVM beginning
* @offset: byte offset from the module beginning
* @length: length of the section to be read (in bytes from the offset)
* @data: command buffer (size [bytes] = length)
* @last_command: tells if this is the last command in a series
* @cmd_details: pointer to command details structure or NULL
*
* Read the NVM using the admin queue commands
**/
i40e_status i40e_aq_read_nvm(struct i40e_hw *hw, u8 module_pointer,
u32 offset, u16 length, void *data,
bool last_command,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_nvm_update *cmd =
(struct i40e_aqc_nvm_update *)&desc.params.raw;
i40e_status status;
/* In offset the highest byte must be zeroed. */
if (offset & 0xFF000000) {
status = I40E_ERR_PARAM;
goto i40e_aq_read_nvm_exit;
}
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_read);
/* If this is the last command in a series, set the proper flag. */
if (last_command)
cmd->command_flags |= I40E_AQ_NVM_LAST_CMD;
cmd->module_pointer = module_pointer;
cmd->offset = cpu_to_le32(offset);
cmd->length = cpu_to_le16(length);
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
if (length > I40E_AQ_LARGE_BUF)
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
status = i40e_asq_send_command(hw, &desc, data, length, cmd_details);
i40e_aq_read_nvm_exit:
return status;
}
/**
* i40e_aq_erase_nvm
* @hw: pointer to the hw struct
* @module_pointer: module pointer location in words from the NVM beginning
* @offset: offset in the module (expressed in 4 KB from module's beginning)
* @length: length of the section to be erased (expressed in 4 KB)
* @last_command: tells if this is the last command in a series
* @cmd_details: pointer to command details structure or NULL
*
* Erase the NVM sector using the admin queue commands
**/
i40e_status i40e_aq_erase_nvm(struct i40e_hw *hw, u8 module_pointer,
u32 offset, u16 length, bool last_command,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_nvm_update *cmd =
(struct i40e_aqc_nvm_update *)&desc.params.raw;
i40e_status status;
/* In offset the highest byte must be zeroed. */
if (offset & 0xFF000000) {
status = I40E_ERR_PARAM;
goto i40e_aq_erase_nvm_exit;
}
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_erase);
/* If this is the last command in a series, set the proper flag. */
if (last_command)
cmd->command_flags |= I40E_AQ_NVM_LAST_CMD;
cmd->module_pointer = module_pointer;
cmd->offset = cpu_to_le32(offset);
cmd->length = cpu_to_le16(length);
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
i40e_aq_erase_nvm_exit:
return status;
}
#define I40E_DEV_FUNC_CAP_SWITCH_MODE 0x01
#define I40E_DEV_FUNC_CAP_MGMT_MODE 0x02
#define I40E_DEV_FUNC_CAP_NPAR 0x03
#define I40E_DEV_FUNC_CAP_OS2BMC 0x04
#define I40E_DEV_FUNC_CAP_VALID_FUNC 0x05
#define I40E_DEV_FUNC_CAP_SRIOV_1_1 0x12
#define I40E_DEV_FUNC_CAP_VF 0x13
#define I40E_DEV_FUNC_CAP_VMDQ 0x14
#define I40E_DEV_FUNC_CAP_802_1_QBG 0x15
#define I40E_DEV_FUNC_CAP_802_1_QBH 0x16
#define I40E_DEV_FUNC_CAP_VSI 0x17
#define I40E_DEV_FUNC_CAP_DCB 0x18
#define I40E_DEV_FUNC_CAP_FCOE 0x21
#define I40E_DEV_FUNC_CAP_ISCSI 0x22
#define I40E_DEV_FUNC_CAP_RSS 0x40
#define I40E_DEV_FUNC_CAP_RX_QUEUES 0x41
#define I40E_DEV_FUNC_CAP_TX_QUEUES 0x42
#define I40E_DEV_FUNC_CAP_MSIX 0x43
#define I40E_DEV_FUNC_CAP_MSIX_VF 0x44
#define I40E_DEV_FUNC_CAP_FLOW_DIRECTOR 0x45
#define I40E_DEV_FUNC_CAP_IEEE_1588 0x46
#define I40E_DEV_FUNC_CAP_FLEX10 0xF1
#define I40E_DEV_FUNC_CAP_CEM 0xF2
#define I40E_DEV_FUNC_CAP_IWARP 0x51
#define I40E_DEV_FUNC_CAP_LED 0x61
#define I40E_DEV_FUNC_CAP_SDP 0x62
#define I40E_DEV_FUNC_CAP_MDIO 0x63
#define I40E_DEV_FUNC_CAP_WR_CSR_PROT 0x64
/**
* i40e_parse_discover_capabilities
* @hw: pointer to the hw struct
* @buff: pointer to a buffer containing device/function capability records
* @cap_count: number of capability records in the list
* @list_type_opc: type of capabilities list to parse
*
* Parse the device/function capabilities list.
**/
static void i40e_parse_discover_capabilities(struct i40e_hw *hw, void *buff,
u32 cap_count,
enum i40e_admin_queue_opc list_type_opc)
{
struct i40e_aqc_list_capabilities_element_resp *cap;
u32 valid_functions, num_functions;
u32 number, logical_id, phys_id;
struct i40e_hw_capabilities *p;
u8 major_rev;
u32 i = 0;
u16 id;
cap = (struct i40e_aqc_list_capabilities_element_resp *) buff;
if (list_type_opc == i40e_aqc_opc_list_dev_capabilities)
p = &hw->dev_caps;
else if (list_type_opc == i40e_aqc_opc_list_func_capabilities)
p = &hw->func_caps;
else
return;
for (i = 0; i < cap_count; i++, cap++) {
id = le16_to_cpu(cap->id);
number = le32_to_cpu(cap->number);
logical_id = le32_to_cpu(cap->logical_id);
phys_id = le32_to_cpu(cap->phys_id);
major_rev = cap->major_rev;
switch (id) {
case I40E_DEV_FUNC_CAP_SWITCH_MODE:
p->switch_mode = number;
break;
case I40E_DEV_FUNC_CAP_MGMT_MODE:
p->management_mode = number;
break;
case I40E_DEV_FUNC_CAP_NPAR:
p->npar_enable = number;
break;
case I40E_DEV_FUNC_CAP_OS2BMC:
p->os2bmc = number;
break;
case I40E_DEV_FUNC_CAP_VALID_FUNC:
p->valid_functions = number;
break;
case I40E_DEV_FUNC_CAP_SRIOV_1_1:
if (number == 1)
p->sr_iov_1_1 = true;
break;
case I40E_DEV_FUNC_CAP_VF:
p->num_vfs = number;
p->vf_base_id = logical_id;
break;
case I40E_DEV_FUNC_CAP_VMDQ:
if (number == 1)
p->vmdq = true;
break;
case I40E_DEV_FUNC_CAP_802_1_QBG:
if (number == 1)
p->evb_802_1_qbg = true;
break;
case I40E_DEV_FUNC_CAP_802_1_QBH:
if (number == 1)
p->evb_802_1_qbh = true;
break;
case I40E_DEV_FUNC_CAP_VSI:
p->num_vsis = number;
break;
case I40E_DEV_FUNC_CAP_DCB:
if (number == 1) {
p->dcb = true;
p->enabled_tcmap = logical_id;
p->maxtc = phys_id;
}
break;
case I40E_DEV_FUNC_CAP_FCOE:
if (number == 1)
p->fcoe = true;
break;
case I40E_DEV_FUNC_CAP_ISCSI:
if (number == 1)
p->iscsi = true;
break;
case I40E_DEV_FUNC_CAP_RSS:
p->rss = true;
p->rss_table_size = number;
p->rss_table_entry_width = logical_id;
break;
case I40E_DEV_FUNC_CAP_RX_QUEUES:
p->num_rx_qp = number;
p->base_queue = phys_id;
break;
case I40E_DEV_FUNC_CAP_TX_QUEUES:
p->num_tx_qp = number;
p->base_queue = phys_id;
break;
case I40E_DEV_FUNC_CAP_MSIX:
p->num_msix_vectors = number;
break;
case I40E_DEV_FUNC_CAP_MSIX_VF:
p->num_msix_vectors_vf = number;
break;
case I40E_DEV_FUNC_CAP_FLEX10:
if (major_rev == 1) {
if (number == 1) {
p->flex10_enable = true;
p->flex10_capable = true;
}
} else {
/* Capability revision >= 2 */
if (number & 1)
p->flex10_enable = true;
if (number & 2)
p->flex10_capable = true;
}
p->flex10_mode = logical_id;
p->flex10_status = phys_id;
break;
case I40E_DEV_FUNC_CAP_CEM:
if (number == 1)
p->mgmt_cem = true;
break;
case I40E_DEV_FUNC_CAP_IWARP:
if (number == 1)
p->iwarp = true;
break;
case I40E_DEV_FUNC_CAP_LED:
if (phys_id < I40E_HW_CAP_MAX_GPIO)
p->led[phys_id] = true;
break;
case I40E_DEV_FUNC_CAP_SDP:
if (phys_id < I40E_HW_CAP_MAX_GPIO)
p->sdp[phys_id] = true;
break;
case I40E_DEV_FUNC_CAP_MDIO:
if (number == 1) {
p->mdio_port_num = phys_id;
p->mdio_port_mode = logical_id;
}
break;
case I40E_DEV_FUNC_CAP_IEEE_1588:
if (number == 1)
p->ieee_1588 = true;
break;
case I40E_DEV_FUNC_CAP_FLOW_DIRECTOR:
p->fd = true;
p->fd_filters_guaranteed = number;
p->fd_filters_best_effort = logical_id;
break;
case I40E_DEV_FUNC_CAP_WR_CSR_PROT:
p->wr_csr_prot = (u64)number;
p->wr_csr_prot |= (u64)logical_id << 32;
break;
default:
break;
}
}
if (p->fcoe)
i40e_debug(hw, I40E_DEBUG_ALL, "device is FCoE capable\n");
/* Software override ensuring FCoE is disabled if npar or mfp
* mode because it is not supported in these modes.
*/
if (p->npar_enable || p->flex10_enable)
p->fcoe = false;
/* count the enabled ports (aka the "not disabled" ports) */
hw->num_ports = 0;
for (i = 0; i < 4; i++) {
u32 port_cfg_reg = I40E_PRTGEN_CNF + (4 * i);
u64 port_cfg = 0;
/* use AQ read to get the physical register offset instead
* of the port relative offset
*/
i40e_aq_debug_read_register(hw, port_cfg_reg, &port_cfg, NULL);
if (!(port_cfg & I40E_PRTGEN_CNF_PORT_DIS_MASK))
hw->num_ports++;
}
valid_functions = p->valid_functions;
num_functions = 0;
while (valid_functions) {
if (valid_functions & 1)
num_functions++;
valid_functions >>= 1;
}
/* partition id is 1-based, and functions are evenly spread
* across the ports as partitions
*/
hw->partition_id = (hw->pf_id / hw->num_ports) + 1;
hw->num_partitions = num_functions / hw->num_ports;
/* additional HW specific goodies that might
* someday be HW version specific
*/
p->rx_buf_chain_len = I40E_MAX_CHAINED_RX_BUFFERS;
}
/**
* i40e_aq_discover_capabilities
* @hw: pointer to the hw struct
* @buff: a virtual buffer to hold the capabilities
* @buff_size: Size of the virtual buffer
* @data_size: Size of the returned data, or buff size needed if AQ err==ENOMEM
* @list_type_opc: capabilities type to discover - pass in the command opcode
* @cmd_details: pointer to command details structure or NULL
*
* Get the device capabilities descriptions from the firmware
**/
i40e_status i40e_aq_discover_capabilities(struct i40e_hw *hw,
void *buff, u16 buff_size, u16 *data_size,
enum i40e_admin_queue_opc list_type_opc,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aqc_list_capabilites *cmd;
struct i40e_aq_desc desc;
i40e_status status = 0;
cmd = (struct i40e_aqc_list_capabilites *)&desc.params.raw;
if (list_type_opc != i40e_aqc_opc_list_func_capabilities &&
list_type_opc != i40e_aqc_opc_list_dev_capabilities) {
status = I40E_ERR_PARAM;
goto exit;
}
i40e_fill_default_direct_cmd_desc(&desc, list_type_opc);
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
if (buff_size > I40E_AQ_LARGE_BUF)
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
*data_size = le16_to_cpu(desc.datalen);
if (status)
goto exit;
i40e_parse_discover_capabilities(hw, buff, le32_to_cpu(cmd->count),
list_type_opc);
exit:
return status;
}
/**
* i40e_aq_update_nvm
* @hw: pointer to the hw struct
* @module_pointer: module pointer location in words from the NVM beginning
* @offset: byte offset from the module beginning
* @length: length of the section to be written (in bytes from the offset)
* @data: command buffer (size [bytes] = length)
* @last_command: tells if this is the last command in a series
* @cmd_details: pointer to command details structure or NULL
*
* Update the NVM using the admin queue commands
**/
i40e_status i40e_aq_update_nvm(struct i40e_hw *hw, u8 module_pointer,
u32 offset, u16 length, void *data,
bool last_command,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_nvm_update *cmd =
(struct i40e_aqc_nvm_update *)&desc.params.raw;
i40e_status status;
/* In offset the highest byte must be zeroed. */
if (offset & 0xFF000000) {
status = I40E_ERR_PARAM;
goto i40e_aq_update_nvm_exit;
}
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_update);
/* If this is the last command in a series, set the proper flag. */
if (last_command)
cmd->command_flags |= I40E_AQ_NVM_LAST_CMD;
cmd->module_pointer = module_pointer;
cmd->offset = cpu_to_le32(offset);
cmd->length = cpu_to_le16(length);
desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
if (length > I40E_AQ_LARGE_BUF)
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
status = i40e_asq_send_command(hw, &desc, data, length, cmd_details);
i40e_aq_update_nvm_exit:
return status;
}
/**
* i40e_aq_get_lldp_mib
* @hw: pointer to the hw struct
* @bridge_type: type of bridge requested
* @mib_type: Local, Remote or both Local and Remote MIBs
* @buff: pointer to a user supplied buffer to store the MIB block
* @buff_size: size of the buffer (in bytes)
* @local_len : length of the returned Local LLDP MIB
* @remote_len: length of the returned Remote LLDP MIB
* @cmd_details: pointer to command details structure or NULL
*
* Requests the complete LLDP MIB (entire packet).
**/
i40e_status i40e_aq_get_lldp_mib(struct i40e_hw *hw, u8 bridge_type,
u8 mib_type, void *buff, u16 buff_size,
u16 *local_len, u16 *remote_len,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_lldp_get_mib *cmd =
(struct i40e_aqc_lldp_get_mib *)&desc.params.raw;
struct i40e_aqc_lldp_get_mib *resp =
(struct i40e_aqc_lldp_get_mib *)&desc.params.raw;
i40e_status status;
if (buff_size == 0 || !buff)
return I40E_ERR_PARAM;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_get_mib);
/* Indirect Command */
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
cmd->type = mib_type & I40E_AQ_LLDP_MIB_TYPE_MASK;
cmd->type |= ((bridge_type << I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) &
I40E_AQ_LLDP_BRIDGE_TYPE_MASK);
desc.datalen = cpu_to_le16(buff_size);
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
if (buff_size > I40E_AQ_LARGE_BUF)
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
if (!status) {
if (local_len != NULL)
*local_len = le16_to_cpu(resp->local_len);
if (remote_len != NULL)
*remote_len = le16_to_cpu(resp->remote_len);
}
return status;
}
/**
* i40e_aq_cfg_lldp_mib_change_event
* @hw: pointer to the hw struct
* @enable_update: Enable or Disable event posting
* @cmd_details: pointer to command details structure or NULL
*
* Enable or Disable posting of an event on ARQ when LLDP MIB
* associated with the interface changes
**/
i40e_status i40e_aq_cfg_lldp_mib_change_event(struct i40e_hw *hw,
bool enable_update,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_lldp_update_mib *cmd =
(struct i40e_aqc_lldp_update_mib *)&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_update_mib);
if (!enable_update)
cmd->command |= I40E_AQ_LLDP_MIB_UPDATE_DISABLE;
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
return status;
}
/**
* i40e_aq_stop_lldp
* @hw: pointer to the hw struct
* @shutdown_agent: True if LLDP Agent needs to be Shutdown
* @cmd_details: pointer to command details structure or NULL
*
* Stop or Shutdown the embedded LLDP Agent
**/
i40e_status i40e_aq_stop_lldp(struct i40e_hw *hw, bool shutdown_agent,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_lldp_stop *cmd =
(struct i40e_aqc_lldp_stop *)&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_stop);
if (shutdown_agent)
cmd->command |= I40E_AQ_LLDP_AGENT_SHUTDOWN;
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
return status;
}
/**
* i40e_aq_start_lldp
* @hw: pointer to the hw struct
* @cmd_details: pointer to command details structure or NULL
*
* Start the embedded LLDP Agent on all ports.
**/
i40e_status i40e_aq_start_lldp(struct i40e_hw *hw,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_lldp_start *cmd =
(struct i40e_aqc_lldp_start *)&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_start);
cmd->command = I40E_AQ_LLDP_AGENT_START;
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
return status;
}
/**
* i40e_aq_get_cee_dcb_config
* @hw: pointer to the hw struct
* @buff: response buffer that stores CEE operational configuration
* @buff_size: size of the buffer passed
* @cmd_details: pointer to command details structure or NULL
*
* Get CEE DCBX mode operational configuration from firmware
**/
i40e_status i40e_aq_get_cee_dcb_config(struct i40e_hw *hw,
void *buff, u16 buff_size,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
i40e_status status;
if (buff_size == 0 || !buff)
return I40E_ERR_PARAM;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_cee_dcb_cfg);
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
status = i40e_asq_send_command(hw, &desc, (void *)buff, buff_size,
cmd_details);
return status;
}
/**
* i40e_aq_add_udp_tunnel
* @hw: pointer to the hw struct
* @udp_port: the UDP port to add
* @header_len: length of the tunneling header length in DWords
* @protocol_index: protocol index type
* @filter_index: pointer to filter index
* @cmd_details: pointer to command details structure or NULL
**/
i40e_status i40e_aq_add_udp_tunnel(struct i40e_hw *hw,
u16 udp_port, u8 protocol_index,
u8 *filter_index,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_add_udp_tunnel *cmd =
(struct i40e_aqc_add_udp_tunnel *)&desc.params.raw;
struct i40e_aqc_del_udp_tunnel_completion *resp =
(struct i40e_aqc_del_udp_tunnel_completion *)&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_udp_tunnel);
cmd->udp_port = cpu_to_le16(udp_port);
cmd->protocol_type = protocol_index;
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
if (!status && filter_index)
*filter_index = resp->index;
return status;
}
/**
* i40e_aq_del_udp_tunnel
* @hw: pointer to the hw struct
* @index: filter index
* @cmd_details: pointer to command details structure or NULL
**/
i40e_status i40e_aq_del_udp_tunnel(struct i40e_hw *hw, u8 index,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_remove_udp_tunnel *cmd =
(struct i40e_aqc_remove_udp_tunnel *)&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_del_udp_tunnel);
cmd->index = index;
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
return status;
}
/**
* i40e_aq_delete_element - Delete switch element
* @hw: pointer to the hw struct
* @seid: the SEID to delete from the switch
* @cmd_details: pointer to command details structure or NULL
*
* This deletes a switch element from the switch.
**/
i40e_status i40e_aq_delete_element(struct i40e_hw *hw, u16 seid,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_switch_seid *cmd =
(struct i40e_aqc_switch_seid *)&desc.params.raw;
i40e_status status;
if (seid == 0)
return I40E_ERR_PARAM;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_delete_element);
cmd->seid = cpu_to_le16(seid);
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
return status;
}
/**
* i40e_aq_dcb_updated - DCB Updated Command
* @hw: pointer to the hw struct
* @cmd_details: pointer to command details structure or NULL
*
* EMP will return when the shared RPB settings have been
* recomputed and modified. The retval field in the descriptor
* will be set to 0 when RPB is modified.
**/
i40e_status i40e_aq_dcb_updated(struct i40e_hw *hw,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_dcb_updated);
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
return status;
}
/**
* i40e_aq_tx_sched_cmd - generic Tx scheduler AQ command handler
* @hw: pointer to the hw struct
* @seid: seid for the physical port/switching component/vsi
* @buff: Indirect buffer to hold data parameters and response
* @buff_size: Indirect buffer size
* @opcode: Tx scheduler AQ command opcode
* @cmd_details: pointer to command details structure or NULL
*
* Generic command handler for Tx scheduler AQ commands
**/
static i40e_status i40e_aq_tx_sched_cmd(struct i40e_hw *hw, u16 seid,
void *buff, u16 buff_size,
enum i40e_admin_queue_opc opcode,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_tx_sched_ind *cmd =
(struct i40e_aqc_tx_sched_ind *)&desc.params.raw;
i40e_status status;
bool cmd_param_flag = false;
switch (opcode) {
case i40e_aqc_opc_configure_vsi_ets_sla_bw_limit:
case i40e_aqc_opc_configure_vsi_tc_bw:
case i40e_aqc_opc_enable_switching_comp_ets:
case i40e_aqc_opc_modify_switching_comp_ets:
case i40e_aqc_opc_disable_switching_comp_ets:
case i40e_aqc_opc_configure_switching_comp_ets_bw_limit:
case i40e_aqc_opc_configure_switching_comp_bw_config:
cmd_param_flag = true;
break;
case i40e_aqc_opc_query_vsi_bw_config:
case i40e_aqc_opc_query_vsi_ets_sla_config:
case i40e_aqc_opc_query_switching_comp_ets_config:
case i40e_aqc_opc_query_port_ets_config:
case i40e_aqc_opc_query_switching_comp_bw_config:
cmd_param_flag = false;
break;
default:
return I40E_ERR_PARAM;
}
i40e_fill_default_direct_cmd_desc(&desc, opcode);
/* Indirect command */
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
if (cmd_param_flag)
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
if (buff_size > I40E_AQ_LARGE_BUF)
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
desc.datalen = cpu_to_le16(buff_size);
cmd->vsi_seid = cpu_to_le16(seid);
status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
return status;
}
/**
* i40e_aq_config_vsi_bw_limit - Configure VSI BW Limit
* @hw: pointer to the hw struct
* @seid: VSI seid
* @credit: BW limit credits (0 = disabled)
* @max_credit: Max BW limit credits
* @cmd_details: pointer to command details structure or NULL
**/
i40e_status i40e_aq_config_vsi_bw_limit(struct i40e_hw *hw,
u16 seid, u16 credit, u8 max_credit,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_configure_vsi_bw_limit *cmd =
(struct i40e_aqc_configure_vsi_bw_limit *)&desc.params.raw;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_configure_vsi_bw_limit);
cmd->vsi_seid = cpu_to_le16(seid);
cmd->credit = cpu_to_le16(credit);
cmd->max_credit = max_credit;
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
return status;
}
/**
* i40e_aq_config_vsi_tc_bw - Config VSI BW Allocation per TC
* @hw: pointer to the hw struct
* @seid: VSI seid
* @bw_data: Buffer holding enabled TCs, relative TC BW limit/credits
* @cmd_details: pointer to command details structure or NULL
**/
i40e_status i40e_aq_config_vsi_tc_bw(struct i40e_hw *hw,
u16 seid,
struct i40e_aqc_configure_vsi_tc_bw_data *bw_data,
struct i40e_asq_cmd_details *cmd_details)
{
return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
i40e_aqc_opc_configure_vsi_tc_bw,
cmd_details);
}
/**
* i40e_aq_config_switch_comp_ets - Enable/Disable/Modify ETS on the port
* @hw: pointer to the hw struct
* @seid: seid of the switching component connected to Physical Port
* @ets_data: Buffer holding ETS parameters
* @cmd_details: pointer to command details structure or NULL
**/
i40e_status i40e_aq_config_switch_comp_ets(struct i40e_hw *hw,
u16 seid,
struct i40e_aqc_configure_switching_comp_ets_data *ets_data,
enum i40e_admin_queue_opc opcode,
struct i40e_asq_cmd_details *cmd_details)
{
return i40e_aq_tx_sched_cmd(hw, seid, (void *)ets_data,
sizeof(*ets_data), opcode, cmd_details);
}
/**
* i40e_aq_config_switch_comp_bw_config - Config Switch comp BW Alloc per TC
* @hw: pointer to the hw struct
* @seid: seid of the switching component
* @bw_data: Buffer holding enabled TCs, relative/absolute TC BW limit/credits
* @cmd_details: pointer to command details structure or NULL
**/
i40e_status i40e_aq_config_switch_comp_bw_config(struct i40e_hw *hw,
u16 seid,
struct i40e_aqc_configure_switching_comp_bw_config_data *bw_data,
struct i40e_asq_cmd_details *cmd_details)
{
return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
i40e_aqc_opc_configure_switching_comp_bw_config,
cmd_details);
}
/**
* i40e_aq_query_vsi_bw_config - Query VSI BW configuration
* @hw: pointer to the hw struct
* @seid: seid of the VSI
* @bw_data: Buffer to hold VSI BW configuration
* @cmd_details: pointer to command details structure or NULL
**/
i40e_status i40e_aq_query_vsi_bw_config(struct i40e_hw *hw,
u16 seid,
struct i40e_aqc_query_vsi_bw_config_resp *bw_data,
struct i40e_asq_cmd_details *cmd_details)
{
return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
i40e_aqc_opc_query_vsi_bw_config,
cmd_details);
}
/**
* i40e_aq_query_vsi_ets_sla_config - Query VSI BW configuration per TC
* @hw: pointer to the hw struct
* @seid: seid of the VSI
* @bw_data: Buffer to hold VSI BW configuration per TC
* @cmd_details: pointer to command details structure or NULL
**/
i40e_status i40e_aq_query_vsi_ets_sla_config(struct i40e_hw *hw,
u16 seid,
struct i40e_aqc_query_vsi_ets_sla_config_resp *bw_data,
struct i40e_asq_cmd_details *cmd_details)
{
return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
i40e_aqc_opc_query_vsi_ets_sla_config,
cmd_details);
}
/**
* i40e_aq_query_switch_comp_ets_config - Query Switch comp BW config per TC
* @hw: pointer to the hw struct
* @seid: seid of the switching component
* @bw_data: Buffer to hold switching component's per TC BW config
* @cmd_details: pointer to command details structure or NULL
**/
i40e_status i40e_aq_query_switch_comp_ets_config(struct i40e_hw *hw,
u16 seid,
struct i40e_aqc_query_switching_comp_ets_config_resp *bw_data,
struct i40e_asq_cmd_details *cmd_details)
{
return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
i40e_aqc_opc_query_switching_comp_ets_config,
cmd_details);
}
/**
* i40e_aq_query_port_ets_config - Query Physical Port ETS configuration
* @hw: pointer to the hw struct
* @seid: seid of the VSI or switching component connected to Physical Port
* @bw_data: Buffer to hold current ETS configuration for the Physical Port
* @cmd_details: pointer to command details structure or NULL
**/
i40e_status i40e_aq_query_port_ets_config(struct i40e_hw *hw,
u16 seid,
struct i40e_aqc_query_port_ets_config_resp *bw_data,
struct i40e_asq_cmd_details *cmd_details)
{
return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
i40e_aqc_opc_query_port_ets_config,
cmd_details);
}
/**
* i40e_aq_query_switch_comp_bw_config - Query Switch comp BW configuration
* @hw: pointer to the hw struct
* @seid: seid of the switching component
* @bw_data: Buffer to hold switching component's BW configuration
* @cmd_details: pointer to command details structure or NULL
**/
i40e_status i40e_aq_query_switch_comp_bw_config(struct i40e_hw *hw,
u16 seid,
struct i40e_aqc_query_switching_comp_bw_config_resp *bw_data,
struct i40e_asq_cmd_details *cmd_details)
{
return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
i40e_aqc_opc_query_switching_comp_bw_config,
cmd_details);
}
/**
* i40e_validate_filter_settings
* @hw: pointer to the hardware structure
* @settings: Filter control settings
*
* Check and validate the filter control settings passed.
* The function checks for the valid filter/context sizes being
* passed for FCoE and PE.
*
* Returns 0 if the values passed are valid and within
* range else returns an error.
**/
static i40e_status i40e_validate_filter_settings(struct i40e_hw *hw,
struct i40e_filter_control_settings *settings)
{
u32 fcoe_cntx_size, fcoe_filt_size;
u32 pe_cntx_size, pe_filt_size;
u32 fcoe_fmax;
u32 val;
/* Validate FCoE settings passed */
switch (settings->fcoe_filt_num) {
case I40E_HASH_FILTER_SIZE_1K:
case I40E_HASH_FILTER_SIZE_2K:
case I40E_HASH_FILTER_SIZE_4K:
case I40E_HASH_FILTER_SIZE_8K:
case I40E_HASH_FILTER_SIZE_16K:
case I40E_HASH_FILTER_SIZE_32K:
fcoe_filt_size = I40E_HASH_FILTER_BASE_SIZE;
fcoe_filt_size <<= (u32)settings->fcoe_filt_num;
break;
default:
return I40E_ERR_PARAM;
}
switch (settings->fcoe_cntx_num) {
case I40E_DMA_CNTX_SIZE_512:
case I40E_DMA_CNTX_SIZE_1K:
case I40E_DMA_CNTX_SIZE_2K:
case I40E_DMA_CNTX_SIZE_4K:
fcoe_cntx_size = I40E_DMA_CNTX_BASE_SIZE;
fcoe_cntx_size <<= (u32)settings->fcoe_cntx_num;
break;
default:
return I40E_ERR_PARAM;
}
/* Validate PE settings passed */
switch (settings->pe_filt_num) {
case I40E_HASH_FILTER_SIZE_1K:
case I40E_HASH_FILTER_SIZE_2K:
case I40E_HASH_FILTER_SIZE_4K:
case I40E_HASH_FILTER_SIZE_8K:
case I40E_HASH_FILTER_SIZE_16K:
case I40E_HASH_FILTER_SIZE_32K:
case I40E_HASH_FILTER_SIZE_64K:
case I40E_HASH_FILTER_SIZE_128K:
case I40E_HASH_FILTER_SIZE_256K:
case I40E_HASH_FILTER_SIZE_512K:
case I40E_HASH_FILTER_SIZE_1M:
pe_filt_size = I40E_HASH_FILTER_BASE_SIZE;
pe_filt_size <<= (u32)settings->pe_filt_num;
break;
default:
return I40E_ERR_PARAM;
}
switch (settings->pe_cntx_num) {
case I40E_DMA_CNTX_SIZE_512:
case I40E_DMA_CNTX_SIZE_1K:
case I40E_DMA_CNTX_SIZE_2K:
case I40E_DMA_CNTX_SIZE_4K:
case I40E_DMA_CNTX_SIZE_8K:
case I40E_DMA_CNTX_SIZE_16K:
case I40E_DMA_CNTX_SIZE_32K:
case I40E_DMA_CNTX_SIZE_64K:
case I40E_DMA_CNTX_SIZE_128K:
case I40E_DMA_CNTX_SIZE_256K:
pe_cntx_size = I40E_DMA_CNTX_BASE_SIZE;
pe_cntx_size <<= (u32)settings->pe_cntx_num;
break;
default:
return I40E_ERR_PARAM;
}
/* FCHSIZE + FCDSIZE should not be greater than PMFCOEFMAX */
val = rd32(hw, I40E_GLHMC_FCOEFMAX);
fcoe_fmax = (val & I40E_GLHMC_FCOEFMAX_PMFCOEFMAX_MASK)
>> I40E_GLHMC_FCOEFMAX_PMFCOEFMAX_SHIFT;
if (fcoe_filt_size + fcoe_cntx_size > fcoe_fmax)
return I40E_ERR_INVALID_SIZE;
return 0;
}
/**
* i40e_set_filter_control
* @hw: pointer to the hardware structure
* @settings: Filter control settings
*
* Set the Queue Filters for PE/FCoE and enable filters required
* for a single PF. It is expected that these settings are programmed
* at the driver initialization time.
**/
i40e_status i40e_set_filter_control(struct i40e_hw *hw,
struct i40e_filter_control_settings *settings)
{
i40e_status ret = 0;
u32 hash_lut_size = 0;
u32 val;
if (!settings)
return I40E_ERR_PARAM;
/* Validate the input settings */
ret = i40e_validate_filter_settings(hw, settings);
if (ret)
return ret;
/* Read the PF Queue Filter control register */
val = rd32(hw, I40E_PFQF_CTL_0);
/* Program required PE hash buckets for the PF */
val &= ~I40E_PFQF_CTL_0_PEHSIZE_MASK;
val |= ((u32)settings->pe_filt_num << I40E_PFQF_CTL_0_PEHSIZE_SHIFT) &
I40E_PFQF_CTL_0_PEHSIZE_MASK;
/* Program required PE contexts for the PF */
val &= ~I40E_PFQF_CTL_0_PEDSIZE_MASK;
val |= ((u32)settings->pe_cntx_num << I40E_PFQF_CTL_0_PEDSIZE_SHIFT) &
I40E_PFQF_CTL_0_PEDSIZE_MASK;
/* Program required FCoE hash buckets for the PF */
val &= ~I40E_PFQF_CTL_0_PFFCHSIZE_MASK;
val |= ((u32)settings->fcoe_filt_num <<
I40E_PFQF_CTL_0_PFFCHSIZE_SHIFT) &
I40E_PFQF_CTL_0_PFFCHSIZE_MASK;
/* Program required FCoE DDP contexts for the PF */
val &= ~I40E_PFQF_CTL_0_PFFCDSIZE_MASK;
val |= ((u32)settings->fcoe_cntx_num <<
I40E_PFQF_CTL_0_PFFCDSIZE_SHIFT) &
I40E_PFQF_CTL_0_PFFCDSIZE_MASK;
/* Program Hash LUT size for the PF */
val &= ~I40E_PFQF_CTL_0_HASHLUTSIZE_MASK;
if (settings->hash_lut_size == I40E_HASH_LUT_SIZE_512)
hash_lut_size = 1;
val |= (hash_lut_size << I40E_PFQF_CTL_0_HASHLUTSIZE_SHIFT) &
I40E_PFQF_CTL_0_HASHLUTSIZE_MASK;
/* Enable FDIR, Ethertype and MACVLAN filters for PF and VFs */
if (settings->enable_fdir)
val |= I40E_PFQF_CTL_0_FD_ENA_MASK;
if (settings->enable_ethtype)
val |= I40E_PFQF_CTL_0_ETYPE_ENA_MASK;
if (settings->enable_macvlan)
val |= I40E_PFQF_CTL_0_MACVLAN_ENA_MASK;
wr32(hw, I40E_PFQF_CTL_0, val);
return 0;
}
/**
* i40e_aq_add_rem_control_packet_filter - Add or Remove Control Packet Filter
* @hw: pointer to the hw struct
* @mac_addr: MAC address to use in the filter
* @ethtype: Ethertype to use in the filter
* @flags: Flags that needs to be applied to the filter
* @vsi_seid: seid of the control VSI
* @queue: VSI queue number to send the packet to
* @is_add: Add control packet filter if True else remove
* @stats: Structure to hold information on control filter counts
* @cmd_details: pointer to command details structure or NULL
*
* This command will Add or Remove control packet filter for a control VSI.
* In return it will update the total number of perfect filter count in
* the stats member.
**/
i40e_status i40e_aq_add_rem_control_packet_filter(struct i40e_hw *hw,
u8 *mac_addr, u16 ethtype, u16 flags,
u16 vsi_seid, u16 queue, bool is_add,
struct i40e_control_filter_stats *stats,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_add_remove_control_packet_filter *cmd =
(struct i40e_aqc_add_remove_control_packet_filter *)
&desc.params.raw;
struct i40e_aqc_add_remove_control_packet_filter_completion *resp =
(struct i40e_aqc_add_remove_control_packet_filter_completion *)
&desc.params.raw;
i40e_status status;
if (vsi_seid == 0)
return I40E_ERR_PARAM;
if (is_add) {
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_add_control_packet_filter);
cmd->queue = cpu_to_le16(queue);
} else {
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_remove_control_packet_filter);
}
if (mac_addr)
ether_addr_copy(cmd->mac, mac_addr);
cmd->etype = cpu_to_le16(ethtype);
cmd->flags = cpu_to_le16(flags);
cmd->seid = cpu_to_le16(vsi_seid);
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
if (!status && stats) {
stats->mac_etype_used = le16_to_cpu(resp->mac_etype_used);
stats->etype_used = le16_to_cpu(resp->etype_used);
stats->mac_etype_free = le16_to_cpu(resp->mac_etype_free);
stats->etype_free = le16_to_cpu(resp->etype_free);
}
return status;
}
/**
* i40e_add_filter_to_drop_tx_flow_control_frames- filter to drop flow control
* @hw: pointer to the hw struct
* @seid: VSI seid to add ethertype filter from
**/
#define I40E_FLOW_CONTROL_ETHTYPE 0x8808
void i40e_add_filter_to_drop_tx_flow_control_frames(struct i40e_hw *hw,
u16 seid)
{
u16 flag = I40E_AQC_ADD_CONTROL_PACKET_FLAGS_IGNORE_MAC |
I40E_AQC_ADD_CONTROL_PACKET_FLAGS_DROP |
I40E_AQC_ADD_CONTROL_PACKET_FLAGS_TX;
u16 ethtype = I40E_FLOW_CONTROL_ETHTYPE;
i40e_status status;
status = i40e_aq_add_rem_control_packet_filter(hw, NULL, ethtype, flag,
seid, 0, true, NULL,
NULL);
if (status)
hw_dbg(hw, "Ethtype Filter Add failed: Error pruning Tx flow control frames\n");
}
/**
* i40e_aq_alternate_read
* @hw: pointer to the hardware structure
* @reg_addr0: address of first dword to be read
* @reg_val0: pointer for data read from 'reg_addr0'
* @reg_addr1: address of second dword to be read
* @reg_val1: pointer for data read from 'reg_addr1'
*
* Read one or two dwords from alternate structure. Fields are indicated
* by 'reg_addr0' and 'reg_addr1' register numbers. If 'reg_val1' pointer
* is not passed then only register at 'reg_addr0' is read.
*
**/
static i40e_status i40e_aq_alternate_read(struct i40e_hw *hw,
u32 reg_addr0, u32 *reg_val0,
u32 reg_addr1, u32 *reg_val1)
{
struct i40e_aq_desc desc;
struct i40e_aqc_alternate_write *cmd_resp =
(struct i40e_aqc_alternate_write *)&desc.params.raw;
i40e_status status;
if (!reg_val0)
return I40E_ERR_PARAM;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_alternate_read);
cmd_resp->address0 = cpu_to_le32(reg_addr0);
cmd_resp->address1 = cpu_to_le32(reg_addr1);
status = i40e_asq_send_command(hw, &desc, NULL, 0, NULL);
if (!status) {
*reg_val0 = le32_to_cpu(cmd_resp->data0);
if (reg_val1)
*reg_val1 = le32_to_cpu(cmd_resp->data1);
}
return status;
}
/**
* i40e_aq_resume_port_tx
* @hw: pointer to the hardware structure
* @cmd_details: pointer to command details structure or NULL
*
* Resume port's Tx traffic
**/
i40e_status i40e_aq_resume_port_tx(struct i40e_hw *hw,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
i40e_status status;
i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_resume_port_tx);
status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
return status;
}
/**
* i40e_set_pci_config_data - store PCI bus info
* @hw: pointer to hardware structure
* @link_status: the link status word from PCI config space
*
* Stores the PCI bus info (speed, width, type) within the i40e_hw structure
**/
void i40e_set_pci_config_data(struct i40e_hw *hw, u16 link_status)
{
hw->bus.type = i40e_bus_type_pci_express;
switch (link_status & PCI_EXP_LNKSTA_NLW) {
case PCI_EXP_LNKSTA_NLW_X1:
hw->bus.width = i40e_bus_width_pcie_x1;
break;
case PCI_EXP_LNKSTA_NLW_X2:
hw->bus.width = i40e_bus_width_pcie_x2;
break;
case PCI_EXP_LNKSTA_NLW_X4:
hw->bus.width = i40e_bus_width_pcie_x4;
break;
case PCI_EXP_LNKSTA_NLW_X8:
hw->bus.width = i40e_bus_width_pcie_x8;
break;
default:
hw->bus.width = i40e_bus_width_unknown;
break;
}
switch (link_status & PCI_EXP_LNKSTA_CLS) {
case PCI_EXP_LNKSTA_CLS_2_5GB:
hw->bus.speed = i40e_bus_speed_2500;
break;
case PCI_EXP_LNKSTA_CLS_5_0GB:
hw->bus.speed = i40e_bus_speed_5000;
break;
case PCI_EXP_LNKSTA_CLS_8_0GB:
hw->bus.speed = i40e_bus_speed_8000;
break;
default:
hw->bus.speed = i40e_bus_speed_unknown;
break;
}
}
/**
* i40e_aq_debug_dump
* @hw: pointer to the hardware structure
* @cluster_id: specific cluster to dump
* @table_id: table id within cluster
* @start_index: index of line in the block to read
* @buff_size: dump buffer size
* @buff: dump buffer
* @ret_buff_size: actual buffer size returned
* @ret_next_table: next block to read
* @ret_next_index: next index to read
*
* Dump internal FW/HW data for debug purposes.
*
**/
i40e_status i40e_aq_debug_dump(struct i40e_hw *hw, u8 cluster_id,
u8 table_id, u32 start_index, u16 buff_size,
void *buff, u16 *ret_buff_size,
u8 *ret_next_table, u32 *ret_next_index,
struct i40e_asq_cmd_details *cmd_details)
{
struct i40e_aq_desc desc;
struct i40e_aqc_debug_dump_internals *cmd =
(struct i40e_aqc_debug_dump_internals *)&desc.params.raw;
struct i40e_aqc_debug_dump_internals *resp =
(struct i40e_aqc_debug_dump_internals *)&desc.params.raw;
i40e_status status;
if (buff_size == 0 || !buff)
return I40E_ERR_PARAM;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_debug_dump_internals);
/* Indirect Command */
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
if (buff_size > I40E_AQ_LARGE_BUF)
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
cmd->cluster_id = cluster_id;
cmd->table_id = table_id;
cmd->idx = cpu_to_le32(start_index);
desc.datalen = cpu_to_le16(buff_size);
status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
if (!status) {
if (ret_buff_size)
*ret_buff_size = le16_to_cpu(desc.datalen);
if (ret_next_table)
*ret_next_table = resp->table_id;
if (ret_next_index)
*ret_next_index = le32_to_cpu(resp->idx);
}
return status;
}
/**
* i40e_read_bw_from_alt_ram
* @hw: pointer to the hardware structure
* @max_bw: pointer for max_bw read
* @min_bw: pointer for min_bw read
* @min_valid: pointer for bool that is true if min_bw is a valid value
* @max_valid: pointer for bool that is true if max_bw is a valid value
*
* Read bw from the alternate ram for the given pf
**/
i40e_status i40e_read_bw_from_alt_ram(struct i40e_hw *hw,
u32 *max_bw, u32 *min_bw,
bool *min_valid, bool *max_valid)
{
i40e_status status;
u32 max_bw_addr, min_bw_addr;
/* Calculate the address of the min/max bw registers */
max_bw_addr = I40E_ALT_STRUCT_FIRST_PF_OFFSET +
I40E_ALT_STRUCT_MAX_BW_OFFSET +
(I40E_ALT_STRUCT_DWORDS_PER_PF * hw->pf_id);
min_bw_addr = I40E_ALT_STRUCT_FIRST_PF_OFFSET +
I40E_ALT_STRUCT_MIN_BW_OFFSET +
(I40E_ALT_STRUCT_DWORDS_PER_PF * hw->pf_id);
/* Read the bandwidths from alt ram */
status = i40e_aq_alternate_read(hw, max_bw_addr, max_bw,
min_bw_addr, min_bw);
if (*min_bw & I40E_ALT_BW_VALID_MASK)
*min_valid = true;
else
*min_valid = false;
if (*max_bw & I40E_ALT_BW_VALID_MASK)
*max_valid = true;
else
*max_valid = false;
return status;
}
/**
* i40e_aq_configure_partition_bw
* @hw: pointer to the hardware structure
* @bw_data: Buffer holding valid pfs and bw limits
* @cmd_details: pointer to command details
*
* Configure partitions guaranteed/max bw
**/
i40e_status i40e_aq_configure_partition_bw(struct i40e_hw *hw,
struct i40e_aqc_configure_partition_bw_data *bw_data,
struct i40e_asq_cmd_details *cmd_details)
{
i40e_status status;
struct i40e_aq_desc desc;
u16 bwd_size = sizeof(*bw_data);
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_configure_partition_bw);
/* Indirect command */
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
if (bwd_size > I40E_AQ_LARGE_BUF)
desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
desc.datalen = cpu_to_le16(bwd_size);
status = i40e_asq_send_command(hw, &desc, bw_data, bwd_size,
cmd_details);
return status;
}