|  | /* | 
|  | * x86 FPU boot time init code: | 
|  | */ | 
|  | #include <asm/fpu/internal.h> | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | #include <linux/sched.h> | 
|  |  | 
|  | /* | 
|  | * Initialize the TS bit in CR0 according to the style of context-switches | 
|  | * we are using: | 
|  | */ | 
|  | static void fpu__init_cpu_ctx_switch(void) | 
|  | { | 
|  | if (!cpu_has_eager_fpu) | 
|  | stts(); | 
|  | else | 
|  | clts(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the registers found in all CPUs, CR0 and CR4: | 
|  | */ | 
|  | static void fpu__init_cpu_generic(void) | 
|  | { | 
|  | unsigned long cr0; | 
|  | unsigned long cr4_mask = 0; | 
|  |  | 
|  | if (cpu_has_fxsr) | 
|  | cr4_mask |= X86_CR4_OSFXSR; | 
|  | if (cpu_has_xmm) | 
|  | cr4_mask |= X86_CR4_OSXMMEXCPT; | 
|  | if (cr4_mask) | 
|  | cr4_set_bits(cr4_mask); | 
|  |  | 
|  | cr0 = read_cr0(); | 
|  | cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */ | 
|  | if (!cpu_has_fpu) | 
|  | cr0 |= X86_CR0_EM; | 
|  | write_cr0(cr0); | 
|  |  | 
|  | /* Flush out any pending x87 state: */ | 
|  | asm volatile ("fninit"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable all supported FPU features. Called when a CPU is brought online: | 
|  | */ | 
|  | void fpu__init_cpu(void) | 
|  | { | 
|  | fpu__init_cpu_generic(); | 
|  | fpu__init_cpu_xstate(); | 
|  | fpu__init_cpu_ctx_switch(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The earliest FPU detection code. | 
|  | * | 
|  | * Set the X86_FEATURE_FPU CPU-capability bit based on | 
|  | * trying to execute an actual sequence of FPU instructions: | 
|  | */ | 
|  | static void fpu__init_system_early_generic(struct cpuinfo_x86 *c) | 
|  | { | 
|  | unsigned long cr0; | 
|  | u16 fsw, fcw; | 
|  |  | 
|  | fsw = fcw = 0xffff; | 
|  |  | 
|  | cr0 = read_cr0(); | 
|  | cr0 &= ~(X86_CR0_TS | X86_CR0_EM); | 
|  | write_cr0(cr0); | 
|  |  | 
|  | asm volatile("fninit ; fnstsw %0 ; fnstcw %1" | 
|  | : "+m" (fsw), "+m" (fcw)); | 
|  |  | 
|  | if (fsw == 0 && (fcw & 0x103f) == 0x003f) | 
|  | set_cpu_cap(c, X86_FEATURE_FPU); | 
|  | else | 
|  | clear_cpu_cap(c, X86_FEATURE_FPU); | 
|  |  | 
|  | #ifndef CONFIG_MATH_EMULATION | 
|  | if (!cpu_has_fpu) { | 
|  | pr_emerg("x86/fpu: Giving up, no FPU found and no math emulation present\n"); | 
|  | for (;;) | 
|  | asm volatile("hlt"); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Boot time FPU feature detection code: | 
|  | */ | 
|  | unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu; | 
|  |  | 
|  | static void __init fpu__init_system_mxcsr(void) | 
|  | { | 
|  | unsigned int mask = 0; | 
|  |  | 
|  | if (cpu_has_fxsr) { | 
|  | /* Static because GCC does not get 16-byte stack alignment right: */ | 
|  | static struct fxregs_state fxregs __initdata; | 
|  |  | 
|  | asm volatile("fxsave %0" : "+m" (fxregs)); | 
|  |  | 
|  | mask = fxregs.mxcsr_mask; | 
|  |  | 
|  | /* | 
|  | * If zero then use the default features mask, | 
|  | * which has all features set, except the | 
|  | * denormals-are-zero feature bit: | 
|  | */ | 
|  | if (mask == 0) | 
|  | mask = 0x0000ffbf; | 
|  | } | 
|  | mxcsr_feature_mask &= mask; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Once per bootup FPU initialization sequences that will run on most x86 CPUs: | 
|  | */ | 
|  | static void __init fpu__init_system_generic(void) | 
|  | { | 
|  | /* | 
|  | * Set up the legacy init FPU context. (xstate init might overwrite this | 
|  | * with a more modern format, if the CPU supports it.) | 
|  | */ | 
|  | fpstate_init_fxstate(&init_fpstate.fxsave); | 
|  |  | 
|  | fpu__init_system_mxcsr(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Size of the FPU context state. All tasks in the system use the | 
|  | * same context size, regardless of what portion they use. | 
|  | * This is inherent to the XSAVE architecture which puts all state | 
|  | * components into a single, continuous memory block: | 
|  | */ | 
|  | unsigned int xstate_size; | 
|  | EXPORT_SYMBOL_GPL(xstate_size); | 
|  |  | 
|  | /* Enforce that 'MEMBER' is the last field of 'TYPE': */ | 
|  | #define CHECK_MEMBER_AT_END_OF(TYPE, MEMBER) \ | 
|  | BUILD_BUG_ON(sizeof(TYPE) != offsetofend(TYPE, MEMBER)) | 
|  |  | 
|  | /* | 
|  | * We append the 'struct fpu' to the task_struct: | 
|  | */ | 
|  | static void __init fpu__init_task_struct_size(void) | 
|  | { | 
|  | int task_size = sizeof(struct task_struct); | 
|  |  | 
|  | /* | 
|  | * Subtract off the static size of the register state. | 
|  | * It potentially has a bunch of padding. | 
|  | */ | 
|  | task_size -= sizeof(((struct task_struct *)0)->thread.fpu.state); | 
|  |  | 
|  | /* | 
|  | * Add back the dynamically-calculated register state | 
|  | * size. | 
|  | */ | 
|  | task_size += xstate_size; | 
|  |  | 
|  | /* | 
|  | * We dynamically size 'struct fpu', so we require that | 
|  | * it be at the end of 'thread_struct' and that | 
|  | * 'thread_struct' be at the end of 'task_struct'.  If | 
|  | * you hit a compile error here, check the structure to | 
|  | * see if something got added to the end. | 
|  | */ | 
|  | CHECK_MEMBER_AT_END_OF(struct fpu, state); | 
|  | CHECK_MEMBER_AT_END_OF(struct thread_struct, fpu); | 
|  | CHECK_MEMBER_AT_END_OF(struct task_struct, thread); | 
|  |  | 
|  | arch_task_struct_size = task_size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up the xstate_size based on the legacy FPU context size. | 
|  | * | 
|  | * We set this up first, and later it will be overwritten by | 
|  | * fpu__init_system_xstate() if the CPU knows about xstates. | 
|  | */ | 
|  | static void __init fpu__init_system_xstate_size_legacy(void) | 
|  | { | 
|  | static int on_boot_cpu = 1; | 
|  |  | 
|  | WARN_ON_FPU(!on_boot_cpu); | 
|  | on_boot_cpu = 0; | 
|  |  | 
|  | /* | 
|  | * Note that xstate_size might be overwriten later during | 
|  | * fpu__init_system_xstate(). | 
|  | */ | 
|  |  | 
|  | if (!cpu_has_fpu) { | 
|  | /* | 
|  | * Disable xsave as we do not support it if i387 | 
|  | * emulation is enabled. | 
|  | */ | 
|  | setup_clear_cpu_cap(X86_FEATURE_XSAVE); | 
|  | setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); | 
|  | xstate_size = sizeof(struct swregs_state); | 
|  | } else { | 
|  | if (cpu_has_fxsr) | 
|  | xstate_size = sizeof(struct fxregs_state); | 
|  | else | 
|  | xstate_size = sizeof(struct fregs_state); | 
|  | } | 
|  | /* | 
|  | * Quirk: we don't yet handle the XSAVES* instructions | 
|  | * correctly, as we don't correctly convert between | 
|  | * standard and compacted format when interfacing | 
|  | * with user-space - so disable it for now. | 
|  | * | 
|  | * The difference is small: with recent CPUs the | 
|  | * compacted format is only marginally smaller than | 
|  | * the standard FPU state format. | 
|  | * | 
|  | * ( This is easy to backport while we are fixing | 
|  | *   XSAVES* support. ) | 
|  | */ | 
|  | setup_clear_cpu_cap(X86_FEATURE_XSAVES); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * FPU context switching strategies: | 
|  | * | 
|  | * Against popular belief, we don't do lazy FPU saves, due to the | 
|  | * task migration complications it brings on SMP - we only do | 
|  | * lazy FPU restores. | 
|  | * | 
|  | * 'lazy' is the traditional strategy, which is based on setting | 
|  | * CR0::TS to 1 during context-switch (instead of doing a full | 
|  | * restore of the FPU state), which causes the first FPU instruction | 
|  | * after the context switch (whenever it is executed) to fault - at | 
|  | * which point we lazily restore the FPU state into FPU registers. | 
|  | * | 
|  | * Tasks are of course under no obligation to execute FPU instructions, | 
|  | * so it can easily happen that another context-switch occurs without | 
|  | * a single FPU instruction being executed. If we eventually switch | 
|  | * back to the original task (that still owns the FPU) then we have | 
|  | * not only saved the restores along the way, but we also have the | 
|  | * FPU ready to be used for the original task. | 
|  | * | 
|  | * 'eager' switching is used on modern CPUs, there we switch the FPU | 
|  | * state during every context switch, regardless of whether the task | 
|  | * has used FPU instructions in that time slice or not. This is done | 
|  | * because modern FPU context saving instructions are able to optimize | 
|  | * state saving and restoration in hardware: they can detect both | 
|  | * unused and untouched FPU state and optimize accordingly. | 
|  | * | 
|  | * [ Note that even in 'lazy' mode we might optimize context switches | 
|  | *   to use 'eager' restores, if we detect that a task is using the FPU | 
|  | *   frequently. See the fpu->counter logic in fpu/internal.h for that. ] | 
|  | */ | 
|  | static enum { AUTO, ENABLE, DISABLE } eagerfpu = AUTO; | 
|  |  | 
|  | static int __init eager_fpu_setup(char *s) | 
|  | { | 
|  | if (!strcmp(s, "on")) | 
|  | eagerfpu = ENABLE; | 
|  | else if (!strcmp(s, "off")) | 
|  | eagerfpu = DISABLE; | 
|  | else if (!strcmp(s, "auto")) | 
|  | eagerfpu = AUTO; | 
|  | return 1; | 
|  | } | 
|  | __setup("eagerfpu=", eager_fpu_setup); | 
|  |  | 
|  | /* | 
|  | * Pick the FPU context switching strategy: | 
|  | */ | 
|  | static void __init fpu__init_system_ctx_switch(void) | 
|  | { | 
|  | static bool on_boot_cpu = 1; | 
|  |  | 
|  | WARN_ON_FPU(!on_boot_cpu); | 
|  | on_boot_cpu = 0; | 
|  |  | 
|  | WARN_ON_FPU(current->thread.fpu.fpstate_active); | 
|  | current_thread_info()->status = 0; | 
|  |  | 
|  | /* Auto enable eagerfpu for xsaveopt */ | 
|  | if (cpu_has_xsaveopt && eagerfpu != DISABLE) | 
|  | eagerfpu = ENABLE; | 
|  |  | 
|  | if (xfeatures_mask & XSTATE_EAGER) { | 
|  | if (eagerfpu == DISABLE) { | 
|  | pr_err("x86/fpu: eagerfpu switching disabled, disabling the following xstate features: 0x%llx.\n", | 
|  | xfeatures_mask & XSTATE_EAGER); | 
|  | xfeatures_mask &= ~XSTATE_EAGER; | 
|  | } else { | 
|  | eagerfpu = ENABLE; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (eagerfpu == ENABLE) | 
|  | setup_force_cpu_cap(X86_FEATURE_EAGER_FPU); | 
|  |  | 
|  | printk(KERN_INFO "x86/fpu: Using '%s' FPU context switches.\n", eagerfpu == ENABLE ? "eager" : "lazy"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called on the boot CPU once per system bootup, to set up the initial | 
|  | * FPU state that is later cloned into all processes: | 
|  | */ | 
|  | void __init fpu__init_system(struct cpuinfo_x86 *c) | 
|  | { | 
|  | fpu__init_system_early_generic(c); | 
|  |  | 
|  | /* | 
|  | * The FPU has to be operational for some of the | 
|  | * later FPU init activities: | 
|  | */ | 
|  | fpu__init_cpu(); | 
|  |  | 
|  | /* | 
|  | * But don't leave CR0::TS set yet, as some of the FPU setup | 
|  | * methods depend on being able to execute FPU instructions | 
|  | * that will fault on a set TS, such as the FXSAVE in | 
|  | * fpu__init_system_mxcsr(). | 
|  | */ | 
|  | clts(); | 
|  |  | 
|  | fpu__init_system_generic(); | 
|  | fpu__init_system_xstate_size_legacy(); | 
|  | fpu__init_system_xstate(); | 
|  | fpu__init_task_struct_size(); | 
|  |  | 
|  | fpu__init_system_ctx_switch(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Boot parameter to turn off FPU support and fall back to math-emu: | 
|  | */ | 
|  | static int __init no_387(char *s) | 
|  | { | 
|  | setup_clear_cpu_cap(X86_FEATURE_FPU); | 
|  | return 1; | 
|  | } | 
|  | __setup("no387", no_387); | 
|  |  | 
|  | /* | 
|  | * Disable all xstate CPU features: | 
|  | */ | 
|  | static int __init x86_noxsave_setup(char *s) | 
|  | { | 
|  | if (strlen(s)) | 
|  | return 0; | 
|  |  | 
|  | setup_clear_cpu_cap(X86_FEATURE_XSAVE); | 
|  | setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); | 
|  | setup_clear_cpu_cap(X86_FEATURE_XSAVES); | 
|  | setup_clear_cpu_cap(X86_FEATURE_AVX); | 
|  | setup_clear_cpu_cap(X86_FEATURE_AVX2); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | __setup("noxsave", x86_noxsave_setup); | 
|  |  | 
|  | /* | 
|  | * Disable the XSAVEOPT instruction specifically: | 
|  | */ | 
|  | static int __init x86_noxsaveopt_setup(char *s) | 
|  | { | 
|  | setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | __setup("noxsaveopt", x86_noxsaveopt_setup); | 
|  |  | 
|  | /* | 
|  | * Disable the XSAVES instruction: | 
|  | */ | 
|  | static int __init x86_noxsaves_setup(char *s) | 
|  | { | 
|  | setup_clear_cpu_cap(X86_FEATURE_XSAVES); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | __setup("noxsaves", x86_noxsaves_setup); | 
|  |  | 
|  | /* | 
|  | * Disable FX save/restore and SSE support: | 
|  | */ | 
|  | static int __init x86_nofxsr_setup(char *s) | 
|  | { | 
|  | setup_clear_cpu_cap(X86_FEATURE_FXSR); | 
|  | setup_clear_cpu_cap(X86_FEATURE_FXSR_OPT); | 
|  | setup_clear_cpu_cap(X86_FEATURE_XMM); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | __setup("nofxsr", x86_nofxsr_setup); |