| /* |
| * tools/testing/selftests/kvm/lib/kvm_util.c |
| * |
| * Copyright (C) 2018, Google LLC. |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. |
| */ |
| |
| #include "test_util.h" |
| #include "kvm_util.h" |
| #include "kvm_util_internal.h" |
| |
| #include <assert.h> |
| #include <sys/mman.h> |
| #include <sys/types.h> |
| #include <sys/stat.h> |
| #include <linux/kernel.h> |
| |
| #define KVM_UTIL_PGS_PER_HUGEPG 512 |
| #define KVM_UTIL_MIN_PFN 2 |
| |
| /* Aligns x up to the next multiple of size. Size must be a power of 2. */ |
| static void *align(void *x, size_t size) |
| { |
| size_t mask = size - 1; |
| TEST_ASSERT(size != 0 && !(size & (size - 1)), |
| "size not a power of 2: %lu", size); |
| return (void *) (((size_t) x + mask) & ~mask); |
| } |
| |
| /* |
| * Capability |
| * |
| * Input Args: |
| * cap - Capability |
| * |
| * Output Args: None |
| * |
| * Return: |
| * On success, the Value corresponding to the capability (KVM_CAP_*) |
| * specified by the value of cap. On failure a TEST_ASSERT failure |
| * is produced. |
| * |
| * Looks up and returns the value corresponding to the capability |
| * (KVM_CAP_*) given by cap. |
| */ |
| int kvm_check_cap(long cap) |
| { |
| int ret; |
| int kvm_fd; |
| |
| kvm_fd = open(KVM_DEV_PATH, O_RDONLY); |
| if (kvm_fd < 0) |
| exit(KSFT_SKIP); |
| |
| ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap); |
| TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n" |
| " rc: %i errno: %i", ret, errno); |
| |
| close(kvm_fd); |
| |
| return ret; |
| } |
| |
| /* VM Enable Capability |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * cap - Capability |
| * |
| * Output Args: None |
| * |
| * Return: On success, 0. On failure a TEST_ASSERT failure is produced. |
| * |
| * Enables a capability (KVM_CAP_*) on the VM. |
| */ |
| int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap) |
| { |
| int ret; |
| |
| ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap); |
| TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n" |
| " rc: %i errno: %i", ret, errno); |
| |
| return ret; |
| } |
| |
| static void vm_open(struct kvm_vm *vm, int perm, unsigned long type) |
| { |
| vm->kvm_fd = open(KVM_DEV_PATH, perm); |
| if (vm->kvm_fd < 0) |
| exit(KSFT_SKIP); |
| |
| if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) { |
| fprintf(stderr, "immediate_exit not available, skipping test\n"); |
| exit(KSFT_SKIP); |
| } |
| |
| vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, type); |
| TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, " |
| "rc: %i errno: %i", vm->fd, errno); |
| } |
| |
| const char * const vm_guest_mode_string[] = { |
| "PA-bits:52, VA-bits:48, 4K pages", |
| "PA-bits:52, VA-bits:48, 64K pages", |
| "PA-bits:48, VA-bits:48, 4K pages", |
| "PA-bits:48, VA-bits:48, 64K pages", |
| "PA-bits:40, VA-bits:48, 4K pages", |
| "PA-bits:40, VA-bits:48, 64K pages", |
| }; |
| _Static_assert(sizeof(vm_guest_mode_string)/sizeof(char *) == NUM_VM_MODES, |
| "Missing new mode strings?"); |
| |
| /* |
| * VM Create |
| * |
| * Input Args: |
| * mode - VM Mode (e.g. VM_MODE_P52V48_4K) |
| * phy_pages - Physical memory pages |
| * perm - permission |
| * |
| * Output Args: None |
| * |
| * Return: |
| * Pointer to opaque structure that describes the created VM. |
| * |
| * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K). |
| * When phy_pages is non-zero, a memory region of phy_pages physical pages |
| * is created and mapped starting at guest physical address 0. The file |
| * descriptor to control the created VM is created with the permissions |
| * given by perm (e.g. O_RDWR). |
| */ |
| struct kvm_vm *_vm_create(enum vm_guest_mode mode, uint64_t phy_pages, |
| int perm, unsigned long type) |
| { |
| struct kvm_vm *vm; |
| int kvm_fd; |
| |
| vm = calloc(1, sizeof(*vm)); |
| TEST_ASSERT(vm != NULL, "Insufficient Memory"); |
| |
| vm->mode = mode; |
| vm->type = type; |
| vm_open(vm, perm, type); |
| |
| /* Setup mode specific traits. */ |
| switch (vm->mode) { |
| case VM_MODE_P52V48_4K: |
| vm->pgtable_levels = 4; |
| vm->pa_bits = 52; |
| vm->va_bits = 48; |
| vm->page_size = 0x1000; |
| vm->page_shift = 12; |
| break; |
| case VM_MODE_P52V48_64K: |
| vm->pgtable_levels = 3; |
| vm->pa_bits = 52; |
| vm->va_bits = 48; |
| vm->page_size = 0x10000; |
| vm->page_shift = 16; |
| break; |
| case VM_MODE_P48V48_4K: |
| vm->pgtable_levels = 4; |
| vm->pa_bits = 48; |
| vm->va_bits = 48; |
| vm->page_size = 0x1000; |
| vm->page_shift = 12; |
| break; |
| case VM_MODE_P48V48_64K: |
| vm->pgtable_levels = 3; |
| vm->pa_bits = 48; |
| vm->va_bits = 48; |
| vm->page_size = 0x10000; |
| vm->page_shift = 16; |
| break; |
| case VM_MODE_P40V48_4K: |
| vm->pgtable_levels = 4; |
| vm->pa_bits = 40; |
| vm->va_bits = 48; |
| vm->page_size = 0x1000; |
| vm->page_shift = 12; |
| break; |
| case VM_MODE_P40V48_64K: |
| vm->pgtable_levels = 3; |
| vm->pa_bits = 40; |
| vm->va_bits = 48; |
| vm->page_size = 0x10000; |
| vm->page_shift = 16; |
| break; |
| default: |
| TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", mode); |
| } |
| |
| /* Limit to VA-bit canonical virtual addresses. */ |
| vm->vpages_valid = sparsebit_alloc(); |
| sparsebit_set_num(vm->vpages_valid, |
| 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); |
| sparsebit_set_num(vm->vpages_valid, |
| (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift, |
| (1ULL << (vm->va_bits - 1)) >> vm->page_shift); |
| |
| /* Limit physical addresses to PA-bits. */ |
| vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1; |
| |
| /* Allocate and setup memory for guest. */ |
| vm->vpages_mapped = sparsebit_alloc(); |
| if (phy_pages != 0) |
| vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, |
| 0, 0, phy_pages, 0); |
| |
| return vm; |
| } |
| |
| struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm) |
| { |
| return _vm_create(mode, phy_pages, perm, 0); |
| } |
| |
| /* |
| * VM Restart |
| * |
| * Input Args: |
| * vm - VM that has been released before |
| * perm - permission |
| * |
| * Output Args: None |
| * |
| * Reopens the file descriptors associated to the VM and reinstates the |
| * global state, such as the irqchip and the memory regions that are mapped |
| * into the guest. |
| */ |
| void kvm_vm_restart(struct kvm_vm *vmp, int perm) |
| { |
| struct userspace_mem_region *region; |
| |
| vm_open(vmp, perm, vmp->type); |
| if (vmp->has_irqchip) |
| vm_create_irqchip(vmp); |
| |
| for (region = vmp->userspace_mem_region_head; region; |
| region = region->next) { |
| int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); |
| TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" |
| " rc: %i errno: %i\n" |
| " slot: %u flags: 0x%x\n" |
| " guest_phys_addr: 0x%lx size: 0x%lx", |
| ret, errno, region->region.slot, |
| region->region.flags, |
| region->region.guest_phys_addr, |
| region->region.memory_size); |
| } |
| } |
| |
| void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log) |
| { |
| struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot }; |
| int ret; |
| |
| ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args); |
| TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s", |
| strerror(-ret)); |
| } |
| |
| void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log, |
| uint64_t first_page, uint32_t num_pages) |
| { |
| struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot, |
| .first_page = first_page, |
| .num_pages = num_pages }; |
| int ret; |
| |
| ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args); |
| TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s", |
| strerror(-ret)); |
| } |
| |
| /* |
| * Userspace Memory Region Find |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * start - Starting VM physical address |
| * end - Ending VM physical address, inclusive. |
| * |
| * Output Args: None |
| * |
| * Return: |
| * Pointer to overlapping region, NULL if no such region. |
| * |
| * Searches for a region with any physical memory that overlaps with |
| * any portion of the guest physical addresses from start to end |
| * inclusive. If multiple overlapping regions exist, a pointer to any |
| * of the regions is returned. Null is returned only when no overlapping |
| * region exists. |
| */ |
| static struct userspace_mem_region * |
| userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) |
| { |
| struct userspace_mem_region *region; |
| |
| for (region = vm->userspace_mem_region_head; region; |
| region = region->next) { |
| uint64_t existing_start = region->region.guest_phys_addr; |
| uint64_t existing_end = region->region.guest_phys_addr |
| + region->region.memory_size - 1; |
| if (start <= existing_end && end >= existing_start) |
| return region; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * KVM Userspace Memory Region Find |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * start - Starting VM physical address |
| * end - Ending VM physical address, inclusive. |
| * |
| * Output Args: None |
| * |
| * Return: |
| * Pointer to overlapping region, NULL if no such region. |
| * |
| * Public interface to userspace_mem_region_find. Allows tests to look up |
| * the memslot datastructure for a given range of guest physical memory. |
| */ |
| struct kvm_userspace_memory_region * |
| kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start, |
| uint64_t end) |
| { |
| struct userspace_mem_region *region; |
| |
| region = userspace_mem_region_find(vm, start, end); |
| if (!region) |
| return NULL; |
| |
| return ®ion->region; |
| } |
| |
| /* |
| * VCPU Find |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * vcpuid - VCPU ID |
| * |
| * Output Args: None |
| * |
| * Return: |
| * Pointer to VCPU structure |
| * |
| * Locates a vcpu structure that describes the VCPU specified by vcpuid and |
| * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU |
| * for the specified vcpuid. |
| */ |
| struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid) |
| { |
| struct vcpu *vcpup; |
| |
| for (vcpup = vm->vcpu_head; vcpup; vcpup = vcpup->next) { |
| if (vcpup->id == vcpuid) |
| return vcpup; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * VM VCPU Remove |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * vcpuid - VCPU ID |
| * |
| * Output Args: None |
| * |
| * Return: None, TEST_ASSERT failures for all error conditions |
| * |
| * Within the VM specified by vm, removes the VCPU given by vcpuid. |
| */ |
| static void vm_vcpu_rm(struct kvm_vm *vm, uint32_t vcpuid) |
| { |
| struct vcpu *vcpu = vcpu_find(vm, vcpuid); |
| int ret; |
| |
| ret = munmap(vcpu->state, sizeof(*vcpu->state)); |
| TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i " |
| "errno: %i", ret, errno); |
| close(vcpu->fd); |
| TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i " |
| "errno: %i", ret, errno); |
| |
| if (vcpu->next) |
| vcpu->next->prev = vcpu->prev; |
| if (vcpu->prev) |
| vcpu->prev->next = vcpu->next; |
| else |
| vm->vcpu_head = vcpu->next; |
| free(vcpu); |
| } |
| |
| void kvm_vm_release(struct kvm_vm *vmp) |
| { |
| int ret; |
| |
| while (vmp->vcpu_head) |
| vm_vcpu_rm(vmp, vmp->vcpu_head->id); |
| |
| ret = close(vmp->fd); |
| TEST_ASSERT(ret == 0, "Close of vm fd failed,\n" |
| " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno); |
| |
| close(vmp->kvm_fd); |
| TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n" |
| " vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno); |
| } |
| |
| /* |
| * Destroys and frees the VM pointed to by vmp. |
| */ |
| void kvm_vm_free(struct kvm_vm *vmp) |
| { |
| int ret; |
| |
| if (vmp == NULL) |
| return; |
| |
| /* Free userspace_mem_regions. */ |
| while (vmp->userspace_mem_region_head) { |
| struct userspace_mem_region *region |
| = vmp->userspace_mem_region_head; |
| |
| region->region.memory_size = 0; |
| ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, |
| ®ion->region); |
| TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, " |
| "rc: %i errno: %i", ret, errno); |
| |
| vmp->userspace_mem_region_head = region->next; |
| sparsebit_free(®ion->unused_phy_pages); |
| ret = munmap(region->mmap_start, region->mmap_size); |
| TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", |
| ret, errno); |
| |
| free(region); |
| } |
| |
| /* Free sparsebit arrays. */ |
| sparsebit_free(&vmp->vpages_valid); |
| sparsebit_free(&vmp->vpages_mapped); |
| |
| kvm_vm_release(vmp); |
| |
| /* Free the structure describing the VM. */ |
| free(vmp); |
| } |
| |
| /* |
| * Memory Compare, host virtual to guest virtual |
| * |
| * Input Args: |
| * hva - Starting host virtual address |
| * vm - Virtual Machine |
| * gva - Starting guest virtual address |
| * len - number of bytes to compare |
| * |
| * Output Args: None |
| * |
| * Input/Output Args: None |
| * |
| * Return: |
| * Returns 0 if the bytes starting at hva for a length of len |
| * are equal the guest virtual bytes starting at gva. Returns |
| * a value < 0, if bytes at hva are less than those at gva. |
| * Otherwise a value > 0 is returned. |
| * |
| * Compares the bytes starting at the host virtual address hva, for |
| * a length of len, to the guest bytes starting at the guest virtual |
| * address given by gva. |
| */ |
| int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len) |
| { |
| size_t amt; |
| |
| /* |
| * Compare a batch of bytes until either a match is found |
| * or all the bytes have been compared. |
| */ |
| for (uintptr_t offset = 0; offset < len; offset += amt) { |
| uintptr_t ptr1 = (uintptr_t)hva + offset; |
| |
| /* |
| * Determine host address for guest virtual address |
| * at offset. |
| */ |
| uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset); |
| |
| /* |
| * Determine amount to compare on this pass. |
| * Don't allow the comparsion to cross a page boundary. |
| */ |
| amt = len - offset; |
| if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift)) |
| amt = vm->page_size - (ptr1 % vm->page_size); |
| if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift)) |
| amt = vm->page_size - (ptr2 % vm->page_size); |
| |
| assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift)); |
| assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift)); |
| |
| /* |
| * Perform the comparison. If there is a difference |
| * return that result to the caller, otherwise need |
| * to continue on looking for a mismatch. |
| */ |
| int ret = memcmp((void *)ptr1, (void *)ptr2, amt); |
| if (ret != 0) |
| return ret; |
| } |
| |
| /* |
| * No mismatch found. Let the caller know the two memory |
| * areas are equal. |
| */ |
| return 0; |
| } |
| |
| /* |
| * VM Userspace Memory Region Add |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * backing_src - Storage source for this region. |
| * NULL to use anonymous memory. |
| * guest_paddr - Starting guest physical address |
| * slot - KVM region slot |
| * npages - Number of physical pages |
| * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES) |
| * |
| * Output Args: None |
| * |
| * Return: None |
| * |
| * Allocates a memory area of the number of pages specified by npages |
| * and maps it to the VM specified by vm, at a starting physical address |
| * given by guest_paddr. The region is created with a KVM region slot |
| * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The |
| * region is created with the flags given by flags. |
| */ |
| void vm_userspace_mem_region_add(struct kvm_vm *vm, |
| enum vm_mem_backing_src_type src_type, |
| uint64_t guest_paddr, uint32_t slot, uint64_t npages, |
| uint32_t flags) |
| { |
| int ret; |
| unsigned long pmem_size = 0; |
| struct userspace_mem_region *region; |
| size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size; |
| |
| TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical " |
| "address not on a page boundary.\n" |
| " guest_paddr: 0x%lx vm->page_size: 0x%x", |
| guest_paddr, vm->page_size); |
| TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1) |
| <= vm->max_gfn, "Physical range beyond maximum " |
| "supported physical address,\n" |
| " guest_paddr: 0x%lx npages: 0x%lx\n" |
| " vm->max_gfn: 0x%lx vm->page_size: 0x%x", |
| guest_paddr, npages, vm->max_gfn, vm->page_size); |
| |
| /* |
| * Confirm a mem region with an overlapping address doesn't |
| * already exist. |
| */ |
| region = (struct userspace_mem_region *) userspace_mem_region_find( |
| vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1); |
| if (region != NULL) |
| TEST_ASSERT(false, "overlapping userspace_mem_region already " |
| "exists\n" |
| " requested guest_paddr: 0x%lx npages: 0x%lx " |
| "page_size: 0x%x\n" |
| " existing guest_paddr: 0x%lx size: 0x%lx", |
| guest_paddr, npages, vm->page_size, |
| (uint64_t) region->region.guest_phys_addr, |
| (uint64_t) region->region.memory_size); |
| |
| /* Confirm no region with the requested slot already exists. */ |
| for (region = vm->userspace_mem_region_head; region; |
| region = region->next) { |
| if (region->region.slot == slot) |
| break; |
| } |
| if (region != NULL) |
| TEST_ASSERT(false, "A mem region with the requested slot " |
| "already exists.\n" |
| " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" |
| " existing slot: %u paddr: 0x%lx size: 0x%lx", |
| slot, guest_paddr, npages, |
| region->region.slot, |
| (uint64_t) region->region.guest_phys_addr, |
| (uint64_t) region->region.memory_size); |
| |
| /* Allocate and initialize new mem region structure. */ |
| region = calloc(1, sizeof(*region)); |
| TEST_ASSERT(region != NULL, "Insufficient Memory"); |
| region->mmap_size = npages * vm->page_size; |
| |
| /* Enough memory to align up to a huge page. */ |
| if (src_type == VM_MEM_SRC_ANONYMOUS_THP) |
| region->mmap_size += huge_page_size; |
| region->mmap_start = mmap(NULL, region->mmap_size, |
| PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS |
| | (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0), |
| -1, 0); |
| TEST_ASSERT(region->mmap_start != MAP_FAILED, |
| "test_malloc failed, mmap_start: %p errno: %i", |
| region->mmap_start, errno); |
| |
| /* Align THP allocation up to start of a huge page. */ |
| region->host_mem = align(region->mmap_start, |
| src_type == VM_MEM_SRC_ANONYMOUS_THP ? huge_page_size : 1); |
| |
| /* As needed perform madvise */ |
| if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) { |
| ret = madvise(region->host_mem, npages * vm->page_size, |
| src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); |
| TEST_ASSERT(ret == 0, "madvise failed,\n" |
| " addr: %p\n" |
| " length: 0x%lx\n" |
| " src_type: %x", |
| region->host_mem, npages * vm->page_size, src_type); |
| } |
| |
| region->unused_phy_pages = sparsebit_alloc(); |
| sparsebit_set_num(region->unused_phy_pages, |
| guest_paddr >> vm->page_shift, npages); |
| region->region.slot = slot; |
| region->region.flags = flags; |
| region->region.guest_phys_addr = guest_paddr; |
| region->region.memory_size = npages * vm->page_size; |
| region->region.userspace_addr = (uintptr_t) region->host_mem; |
| ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); |
| TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" |
| " rc: %i errno: %i\n" |
| " slot: %u flags: 0x%x\n" |
| " guest_phys_addr: 0x%lx size: 0x%lx", |
| ret, errno, slot, flags, |
| guest_paddr, (uint64_t) region->region.memory_size); |
| |
| /* Add to linked-list of memory regions. */ |
| if (vm->userspace_mem_region_head) |
| vm->userspace_mem_region_head->prev = region; |
| region->next = vm->userspace_mem_region_head; |
| vm->userspace_mem_region_head = region; |
| } |
| |
| /* |
| * Memslot to region |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * memslot - KVM memory slot ID |
| * |
| * Output Args: None |
| * |
| * Return: |
| * Pointer to memory region structure that describe memory region |
| * using kvm memory slot ID given by memslot. TEST_ASSERT failure |
| * on error (e.g. currently no memory region using memslot as a KVM |
| * memory slot ID). |
| */ |
| static struct userspace_mem_region * |
| memslot2region(struct kvm_vm *vm, uint32_t memslot) |
| { |
| struct userspace_mem_region *region; |
| |
| for (region = vm->userspace_mem_region_head; region; |
| region = region->next) { |
| if (region->region.slot == memslot) |
| break; |
| } |
| if (region == NULL) { |
| fprintf(stderr, "No mem region with the requested slot found,\n" |
| " requested slot: %u\n", memslot); |
| fputs("---- vm dump ----\n", stderr); |
| vm_dump(stderr, vm, 2); |
| TEST_ASSERT(false, "Mem region not found"); |
| } |
| |
| return region; |
| } |
| |
| /* |
| * VM Memory Region Flags Set |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * flags - Starting guest physical address |
| * |
| * Output Args: None |
| * |
| * Return: None |
| * |
| * Sets the flags of the memory region specified by the value of slot, |
| * to the values given by flags. |
| */ |
| void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) |
| { |
| int ret; |
| struct userspace_mem_region *region; |
| |
| region = memslot2region(vm, slot); |
| |
| region->region.flags = flags; |
| |
| ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); |
| |
| TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" |
| " rc: %i errno: %i slot: %u flags: 0x%x", |
| ret, errno, slot, flags); |
| } |
| |
| /* |
| * VCPU mmap Size |
| * |
| * Input Args: None |
| * |
| * Output Args: None |
| * |
| * Return: |
| * Size of VCPU state |
| * |
| * Returns the size of the structure pointed to by the return value |
| * of vcpu_state(). |
| */ |
| static int vcpu_mmap_sz(void) |
| { |
| int dev_fd, ret; |
| |
| dev_fd = open(KVM_DEV_PATH, O_RDONLY); |
| if (dev_fd < 0) |
| exit(KSFT_SKIP); |
| |
| ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); |
| TEST_ASSERT(ret >= sizeof(struct kvm_run), |
| "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i", |
| __func__, ret, errno); |
| |
| close(dev_fd); |
| |
| return ret; |
| } |
| |
| /* |
| * VM VCPU Add |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * vcpuid - VCPU ID |
| * |
| * Output Args: None |
| * |
| * Return: None |
| * |
| * Creates and adds to the VM specified by vm and virtual CPU with |
| * the ID given by vcpuid. |
| */ |
| void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid, int pgd_memslot, |
| int gdt_memslot) |
| { |
| struct vcpu *vcpu; |
| |
| /* Confirm a vcpu with the specified id doesn't already exist. */ |
| vcpu = vcpu_find(vm, vcpuid); |
| if (vcpu != NULL) |
| TEST_ASSERT(false, "vcpu with the specified id " |
| "already exists,\n" |
| " requested vcpuid: %u\n" |
| " existing vcpuid: %u state: %p", |
| vcpuid, vcpu->id, vcpu->state); |
| |
| /* Allocate and initialize new vcpu structure. */ |
| vcpu = calloc(1, sizeof(*vcpu)); |
| TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); |
| vcpu->id = vcpuid; |
| vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid); |
| TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i", |
| vcpu->fd, errno); |
| |
| TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size " |
| "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi", |
| vcpu_mmap_sz(), sizeof(*vcpu->state)); |
| vcpu->state = (struct kvm_run *) mmap(NULL, sizeof(*vcpu->state), |
| PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0); |
| TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, " |
| "vcpu id: %u errno: %i", vcpuid, errno); |
| |
| /* Add to linked-list of VCPUs. */ |
| if (vm->vcpu_head) |
| vm->vcpu_head->prev = vcpu; |
| vcpu->next = vm->vcpu_head; |
| vm->vcpu_head = vcpu; |
| |
| vcpu_setup(vm, vcpuid, pgd_memslot, gdt_memslot); |
| } |
| |
| /* |
| * VM Virtual Address Unused Gap |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * sz - Size (bytes) |
| * vaddr_min - Minimum Virtual Address |
| * |
| * Output Args: None |
| * |
| * Return: |
| * Lowest virtual address at or below vaddr_min, with at least |
| * sz unused bytes. TEST_ASSERT failure if no area of at least |
| * size sz is available. |
| * |
| * Within the VM specified by vm, locates the lowest starting virtual |
| * address >= vaddr_min, that has at least sz unallocated bytes. A |
| * TEST_ASSERT failure occurs for invalid input or no area of at least |
| * sz unallocated bytes >= vaddr_min is available. |
| */ |
| static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, |
| vm_vaddr_t vaddr_min) |
| { |
| uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; |
| |
| /* Determine lowest permitted virtual page index. */ |
| uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; |
| if ((pgidx_start * vm->page_size) < vaddr_min) |
| goto no_va_found; |
| |
| /* Loop over section with enough valid virtual page indexes. */ |
| if (!sparsebit_is_set_num(vm->vpages_valid, |
| pgidx_start, pages)) |
| pgidx_start = sparsebit_next_set_num(vm->vpages_valid, |
| pgidx_start, pages); |
| do { |
| /* |
| * Are there enough unused virtual pages available at |
| * the currently proposed starting virtual page index. |
| * If not, adjust proposed starting index to next |
| * possible. |
| */ |
| if (sparsebit_is_clear_num(vm->vpages_mapped, |
| pgidx_start, pages)) |
| goto va_found; |
| pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, |
| pgidx_start, pages); |
| if (pgidx_start == 0) |
| goto no_va_found; |
| |
| /* |
| * If needed, adjust proposed starting virtual address, |
| * to next range of valid virtual addresses. |
| */ |
| if (!sparsebit_is_set_num(vm->vpages_valid, |
| pgidx_start, pages)) { |
| pgidx_start = sparsebit_next_set_num( |
| vm->vpages_valid, pgidx_start, pages); |
| if (pgidx_start == 0) |
| goto no_va_found; |
| } |
| } while (pgidx_start != 0); |
| |
| no_va_found: |
| TEST_ASSERT(false, "No vaddr of specified pages available, " |
| "pages: 0x%lx", pages); |
| |
| /* NOT REACHED */ |
| return -1; |
| |
| va_found: |
| TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, |
| pgidx_start, pages), |
| "Unexpected, invalid virtual page index range,\n" |
| " pgidx_start: 0x%lx\n" |
| " pages: 0x%lx", |
| pgidx_start, pages); |
| TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, |
| pgidx_start, pages), |
| "Unexpected, pages already mapped,\n" |
| " pgidx_start: 0x%lx\n" |
| " pages: 0x%lx", |
| pgidx_start, pages); |
| |
| return pgidx_start * vm->page_size; |
| } |
| |
| /* |
| * VM Virtual Address Allocate |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * sz - Size in bytes |
| * vaddr_min - Minimum starting virtual address |
| * data_memslot - Memory region slot for data pages |
| * pgd_memslot - Memory region slot for new virtual translation tables |
| * |
| * Output Args: None |
| * |
| * Return: |
| * Starting guest virtual address |
| * |
| * Allocates at least sz bytes within the virtual address space of the vm |
| * given by vm. The allocated bytes are mapped to a virtual address >= |
| * the address given by vaddr_min. Note that each allocation uses a |
| * a unique set of pages, with the minimum real allocation being at least |
| * a page. |
| */ |
| vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, |
| uint32_t data_memslot, uint32_t pgd_memslot) |
| { |
| uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); |
| |
| virt_pgd_alloc(vm, pgd_memslot); |
| |
| /* |
| * Find an unused range of virtual page addresses of at least |
| * pages in length. |
| */ |
| vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); |
| |
| /* Map the virtual pages. */ |
| for (vm_vaddr_t vaddr = vaddr_start; pages > 0; |
| pages--, vaddr += vm->page_size) { |
| vm_paddr_t paddr; |
| |
| paddr = vm_phy_page_alloc(vm, |
| KVM_UTIL_MIN_PFN * vm->page_size, data_memslot); |
| |
| virt_pg_map(vm, vaddr, paddr, pgd_memslot); |
| |
| sparsebit_set(vm->vpages_mapped, |
| vaddr >> vm->page_shift); |
| } |
| |
| return vaddr_start; |
| } |
| |
| /* |
| * Map a range of VM virtual address to the VM's physical address |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * vaddr - Virtuall address to map |
| * paddr - VM Physical Address |
| * size - The size of the range to map |
| * pgd_memslot - Memory region slot for new virtual translation tables |
| * |
| * Output Args: None |
| * |
| * Return: None |
| * |
| * Within the VM given by vm, creates a virtual translation for the |
| * page range starting at vaddr to the page range starting at paddr. |
| */ |
| void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, |
| size_t size, uint32_t pgd_memslot) |
| { |
| size_t page_size = vm->page_size; |
| size_t npages = size / page_size; |
| |
| TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow"); |
| TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); |
| |
| while (npages--) { |
| virt_pg_map(vm, vaddr, paddr, pgd_memslot); |
| vaddr += page_size; |
| paddr += page_size; |
| } |
| } |
| |
| /* |
| * Address VM Physical to Host Virtual |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * gpa - VM physical address |
| * |
| * Output Args: None |
| * |
| * Return: |
| * Equivalent host virtual address |
| * |
| * Locates the memory region containing the VM physical address given |
| * by gpa, within the VM given by vm. When found, the host virtual |
| * address providing the memory to the vm physical address is returned. |
| * A TEST_ASSERT failure occurs if no region containing gpa exists. |
| */ |
| void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) |
| { |
| struct userspace_mem_region *region; |
| for (region = vm->userspace_mem_region_head; region; |
| region = region->next) { |
| if ((gpa >= region->region.guest_phys_addr) |
| && (gpa <= (region->region.guest_phys_addr |
| + region->region.memory_size - 1))) |
| return (void *) ((uintptr_t) region->host_mem |
| + (gpa - region->region.guest_phys_addr)); |
| } |
| |
| TEST_ASSERT(false, "No vm physical memory at 0x%lx", gpa); |
| return NULL; |
| } |
| |
| /* |
| * Address Host Virtual to VM Physical |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * hva - Host virtual address |
| * |
| * Output Args: None |
| * |
| * Return: |
| * Equivalent VM physical address |
| * |
| * Locates the memory region containing the host virtual address given |
| * by hva, within the VM given by vm. When found, the equivalent |
| * VM physical address is returned. A TEST_ASSERT failure occurs if no |
| * region containing hva exists. |
| */ |
| vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) |
| { |
| struct userspace_mem_region *region; |
| for (region = vm->userspace_mem_region_head; region; |
| region = region->next) { |
| if ((hva >= region->host_mem) |
| && (hva <= (region->host_mem |
| + region->region.memory_size - 1))) |
| return (vm_paddr_t) ((uintptr_t) |
| region->region.guest_phys_addr |
| + (hva - (uintptr_t) region->host_mem)); |
| } |
| |
| TEST_ASSERT(false, "No mapping to a guest physical address, " |
| "hva: %p", hva); |
| return -1; |
| } |
| |
| /* |
| * VM Create IRQ Chip |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * |
| * Output Args: None |
| * |
| * Return: None |
| * |
| * Creates an interrupt controller chip for the VM specified by vm. |
| */ |
| void vm_create_irqchip(struct kvm_vm *vm) |
| { |
| int ret; |
| |
| ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0); |
| TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, " |
| "rc: %i errno: %i", ret, errno); |
| |
| vm->has_irqchip = true; |
| } |
| |
| /* |
| * VM VCPU State |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * vcpuid - VCPU ID |
| * |
| * Output Args: None |
| * |
| * Return: |
| * Pointer to structure that describes the state of the VCPU. |
| * |
| * Locates and returns a pointer to a structure that describes the |
| * state of the VCPU with the given vcpuid. |
| */ |
| struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid) |
| { |
| struct vcpu *vcpu = vcpu_find(vm, vcpuid); |
| TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); |
| |
| return vcpu->state; |
| } |
| |
| /* |
| * VM VCPU Run |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * vcpuid - VCPU ID |
| * |
| * Output Args: None |
| * |
| * Return: None |
| * |
| * Switch to executing the code for the VCPU given by vcpuid, within the VM |
| * given by vm. |
| */ |
| void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid) |
| { |
| int ret = _vcpu_run(vm, vcpuid); |
| TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, " |
| "rc: %i errno: %i", ret, errno); |
| } |
| |
| int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid) |
| { |
| struct vcpu *vcpu = vcpu_find(vm, vcpuid); |
| int rc; |
| |
| TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); |
| do { |
| rc = ioctl(vcpu->fd, KVM_RUN, NULL); |
| } while (rc == -1 && errno == EINTR); |
| return rc; |
| } |
| |
| void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid) |
| { |
| struct vcpu *vcpu = vcpu_find(vm, vcpuid); |
| int ret; |
| |
| TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); |
| |
| vcpu->state->immediate_exit = 1; |
| ret = ioctl(vcpu->fd, KVM_RUN, NULL); |
| vcpu->state->immediate_exit = 0; |
| |
| TEST_ASSERT(ret == -1 && errno == EINTR, |
| "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i", |
| ret, errno); |
| } |
| |
| /* |
| * VM VCPU Set MP State |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * vcpuid - VCPU ID |
| * mp_state - mp_state to be set |
| * |
| * Output Args: None |
| * |
| * Return: None |
| * |
| * Sets the MP state of the VCPU given by vcpuid, to the state given |
| * by mp_state. |
| */ |
| void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid, |
| struct kvm_mp_state *mp_state) |
| { |
| struct vcpu *vcpu = vcpu_find(vm, vcpuid); |
| int ret; |
| |
| TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); |
| |
| ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state); |
| TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, " |
| "rc: %i errno: %i", ret, errno); |
| } |
| |
| /* |
| * VM VCPU Regs Get |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * vcpuid - VCPU ID |
| * |
| * Output Args: |
| * regs - current state of VCPU regs |
| * |
| * Return: None |
| * |
| * Obtains the current register state for the VCPU specified by vcpuid |
| * and stores it at the location given by regs. |
| */ |
| void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs) |
| { |
| struct vcpu *vcpu = vcpu_find(vm, vcpuid); |
| int ret; |
| |
| TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); |
| |
| ret = ioctl(vcpu->fd, KVM_GET_REGS, regs); |
| TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i", |
| ret, errno); |
| } |
| |
| /* |
| * VM VCPU Regs Set |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * vcpuid - VCPU ID |
| * regs - Values to set VCPU regs to |
| * |
| * Output Args: None |
| * |
| * Return: None |
| * |
| * Sets the regs of the VCPU specified by vcpuid to the values |
| * given by regs. |
| */ |
| void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs) |
| { |
| struct vcpu *vcpu = vcpu_find(vm, vcpuid); |
| int ret; |
| |
| TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); |
| |
| ret = ioctl(vcpu->fd, KVM_SET_REGS, regs); |
| TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i", |
| ret, errno); |
| } |
| |
| void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid, |
| struct kvm_vcpu_events *events) |
| { |
| struct vcpu *vcpu = vcpu_find(vm, vcpuid); |
| int ret; |
| |
| TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); |
| |
| ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events); |
| TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i", |
| ret, errno); |
| } |
| |
| void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid, |
| struct kvm_vcpu_events *events) |
| { |
| struct vcpu *vcpu = vcpu_find(vm, vcpuid); |
| int ret; |
| |
| TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); |
| |
| ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events); |
| TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i", |
| ret, errno); |
| } |
| |
| /* |
| * VM VCPU System Regs Get |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * vcpuid - VCPU ID |
| * |
| * Output Args: |
| * sregs - current state of VCPU system regs |
| * |
| * Return: None |
| * |
| * Obtains the current system register state for the VCPU specified by |
| * vcpuid and stores it at the location given by sregs. |
| */ |
| void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) |
| { |
| struct vcpu *vcpu = vcpu_find(vm, vcpuid); |
| int ret; |
| |
| TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); |
| |
| ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs); |
| TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i", |
| ret, errno); |
| } |
| |
| /* |
| * VM VCPU System Regs Set |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * vcpuid - VCPU ID |
| * sregs - Values to set VCPU system regs to |
| * |
| * Output Args: None |
| * |
| * Return: None |
| * |
| * Sets the system regs of the VCPU specified by vcpuid to the values |
| * given by sregs. |
| */ |
| void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) |
| { |
| int ret = _vcpu_sregs_set(vm, vcpuid, sregs); |
| TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, " |
| "rc: %i errno: %i", ret, errno); |
| } |
| |
| int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) |
| { |
| struct vcpu *vcpu = vcpu_find(vm, vcpuid); |
| int ret; |
| |
| TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); |
| |
| return ioctl(vcpu->fd, KVM_SET_SREGS, sregs); |
| } |
| |
| /* |
| * VCPU Ioctl |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * vcpuid - VCPU ID |
| * cmd - Ioctl number |
| * arg - Argument to pass to the ioctl |
| * |
| * Return: None |
| * |
| * Issues an arbitrary ioctl on a VCPU fd. |
| */ |
| void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid, |
| unsigned long cmd, void *arg) |
| { |
| int ret; |
| |
| ret = _vcpu_ioctl(vm, vcpuid, cmd, arg); |
| TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)", |
| cmd, ret, errno, strerror(errno)); |
| } |
| |
| int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid, |
| unsigned long cmd, void *arg) |
| { |
| struct vcpu *vcpu = vcpu_find(vm, vcpuid); |
| int ret; |
| |
| TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); |
| |
| ret = ioctl(vcpu->fd, cmd, arg); |
| |
| return ret; |
| } |
| |
| /* |
| * VM Ioctl |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * cmd - Ioctl number |
| * arg - Argument to pass to the ioctl |
| * |
| * Return: None |
| * |
| * Issues an arbitrary ioctl on a VM fd. |
| */ |
| void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) |
| { |
| int ret; |
| |
| ret = ioctl(vm->fd, cmd, arg); |
| TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)", |
| cmd, ret, errno, strerror(errno)); |
| } |
| |
| /* |
| * VM Dump |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * indent - Left margin indent amount |
| * |
| * Output Args: |
| * stream - Output FILE stream |
| * |
| * Return: None |
| * |
| * Dumps the current state of the VM given by vm, to the FILE stream |
| * given by stream. |
| */ |
| void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) |
| { |
| struct userspace_mem_region *region; |
| struct vcpu *vcpu; |
| |
| fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); |
| fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); |
| fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); |
| fprintf(stream, "%*sMem Regions:\n", indent, ""); |
| for (region = vm->userspace_mem_region_head; region; |
| region = region->next) { |
| fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " |
| "host_virt: %p\n", indent + 2, "", |
| (uint64_t) region->region.guest_phys_addr, |
| (uint64_t) region->region.memory_size, |
| region->host_mem); |
| fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); |
| sparsebit_dump(stream, region->unused_phy_pages, 0); |
| } |
| fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); |
| sparsebit_dump(stream, vm->vpages_mapped, indent + 2); |
| fprintf(stream, "%*spgd_created: %u\n", indent, "", |
| vm->pgd_created); |
| if (vm->pgd_created) { |
| fprintf(stream, "%*sVirtual Translation Tables:\n", |
| indent + 2, ""); |
| virt_dump(stream, vm, indent + 4); |
| } |
| fprintf(stream, "%*sVCPUs:\n", indent, ""); |
| for (vcpu = vm->vcpu_head; vcpu; vcpu = vcpu->next) |
| vcpu_dump(stream, vm, vcpu->id, indent + 2); |
| } |
| |
| /* Known KVM exit reasons */ |
| static struct exit_reason { |
| unsigned int reason; |
| const char *name; |
| } exit_reasons_known[] = { |
| {KVM_EXIT_UNKNOWN, "UNKNOWN"}, |
| {KVM_EXIT_EXCEPTION, "EXCEPTION"}, |
| {KVM_EXIT_IO, "IO"}, |
| {KVM_EXIT_HYPERCALL, "HYPERCALL"}, |
| {KVM_EXIT_DEBUG, "DEBUG"}, |
| {KVM_EXIT_HLT, "HLT"}, |
| {KVM_EXIT_MMIO, "MMIO"}, |
| {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"}, |
| {KVM_EXIT_SHUTDOWN, "SHUTDOWN"}, |
| {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"}, |
| {KVM_EXIT_INTR, "INTR"}, |
| {KVM_EXIT_SET_TPR, "SET_TPR"}, |
| {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"}, |
| {KVM_EXIT_S390_SIEIC, "S390_SIEIC"}, |
| {KVM_EXIT_S390_RESET, "S390_RESET"}, |
| {KVM_EXIT_DCR, "DCR"}, |
| {KVM_EXIT_NMI, "NMI"}, |
| {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"}, |
| {KVM_EXIT_OSI, "OSI"}, |
| {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"}, |
| #ifdef KVM_EXIT_MEMORY_NOT_PRESENT |
| {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"}, |
| #endif |
| }; |
| |
| /* |
| * Exit Reason String |
| * |
| * Input Args: |
| * exit_reason - Exit reason |
| * |
| * Output Args: None |
| * |
| * Return: |
| * Constant string pointer describing the exit reason. |
| * |
| * Locates and returns a constant string that describes the KVM exit |
| * reason given by exit_reason. If no such string is found, a constant |
| * string of "Unknown" is returned. |
| */ |
| const char *exit_reason_str(unsigned int exit_reason) |
| { |
| unsigned int n1; |
| |
| for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { |
| if (exit_reason == exit_reasons_known[n1].reason) |
| return exit_reasons_known[n1].name; |
| } |
| |
| return "Unknown"; |
| } |
| |
| /* |
| * Physical Contiguous Page Allocator |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * num - number of pages |
| * paddr_min - Physical address minimum |
| * memslot - Memory region to allocate page from |
| * |
| * Output Args: None |
| * |
| * Return: |
| * Starting physical address |
| * |
| * Within the VM specified by vm, locates a range of available physical |
| * pages at or above paddr_min. If found, the pages are marked as in use |
| * and their base address is returned. A TEST_ASSERT failure occurs if |
| * not enough pages are available at or above paddr_min. |
| */ |
| vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, |
| vm_paddr_t paddr_min, uint32_t memslot) |
| { |
| struct userspace_mem_region *region; |
| sparsebit_idx_t pg, base; |
| |
| TEST_ASSERT(num > 0, "Must allocate at least one page"); |
| |
| TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " |
| "not divisible by page size.\n" |
| " paddr_min: 0x%lx page_size: 0x%x", |
| paddr_min, vm->page_size); |
| |
| region = memslot2region(vm, memslot); |
| base = pg = paddr_min >> vm->page_shift; |
| |
| do { |
| for (; pg < base + num; ++pg) { |
| if (!sparsebit_is_set(region->unused_phy_pages, pg)) { |
| base = pg = sparsebit_next_set(region->unused_phy_pages, pg); |
| break; |
| } |
| } |
| } while (pg && pg != base + num); |
| |
| if (pg == 0) { |
| fprintf(stderr, "No guest physical page available, " |
| "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n", |
| paddr_min, vm->page_size, memslot); |
| fputs("---- vm dump ----\n", stderr); |
| vm_dump(stderr, vm, 2); |
| abort(); |
| } |
| |
| for (pg = base; pg < base + num; ++pg) |
| sparsebit_clear(region->unused_phy_pages, pg); |
| |
| return base * vm->page_size; |
| } |
| |
| vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, |
| uint32_t memslot) |
| { |
| return vm_phy_pages_alloc(vm, 1, paddr_min, memslot); |
| } |
| |
| /* |
| * Address Guest Virtual to Host Virtual |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * gva - VM virtual address |
| * |
| * Output Args: None |
| * |
| * Return: |
| * Equivalent host virtual address |
| */ |
| void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) |
| { |
| return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); |
| } |