| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _BCACHEFS_BTREE_TYPES_H |
| #define _BCACHEFS_BTREE_TYPES_H |
| |
| #include <linux/list.h> |
| #include <linux/rhashtable.h> |
| |
| #include "bkey_methods.h" |
| #include "buckets_types.h" |
| #include "darray.h" |
| #include "journal_types.h" |
| #include "six.h" |
| |
| struct open_bucket; |
| struct btree_update; |
| struct btree_trans; |
| |
| #define MAX_BSETS 3U |
| |
| struct btree_nr_keys { |
| |
| /* |
| * Amount of live metadata (i.e. size of node after a compaction) in |
| * units of u64s |
| */ |
| u16 live_u64s; |
| u16 bset_u64s[MAX_BSETS]; |
| |
| /* live keys only: */ |
| u16 packed_keys; |
| u16 unpacked_keys; |
| }; |
| |
| struct bset_tree { |
| /* |
| * We construct a binary tree in an array as if the array |
| * started at 1, so that things line up on the same cachelines |
| * better: see comments in bset.c at cacheline_to_bkey() for |
| * details |
| */ |
| |
| /* size of the binary tree and prev array */ |
| u16 size; |
| |
| /* function of size - precalculated for to_inorder() */ |
| u16 extra; |
| |
| u16 data_offset; |
| u16 aux_data_offset; |
| u16 end_offset; |
| }; |
| |
| struct btree_write { |
| struct journal_entry_pin journal; |
| }; |
| |
| struct btree_alloc { |
| struct open_buckets ob; |
| __BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX); |
| }; |
| |
| struct btree_bkey_cached_common { |
| struct six_lock lock; |
| u8 level; |
| u8 btree_id; |
| }; |
| |
| struct btree { |
| struct btree_bkey_cached_common c; |
| |
| struct rhash_head hash; |
| u64 hash_val; |
| |
| unsigned long flags; |
| u16 written; |
| u8 nsets; |
| u8 nr_key_bits; |
| u16 version_ondisk; |
| |
| struct bkey_format format; |
| |
| struct btree_node *data; |
| void *aux_data; |
| |
| /* |
| * Sets of sorted keys - the real btree node - plus a binary search tree |
| * |
| * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point |
| * to the memory we have allocated for this btree node. Additionally, |
| * set[0]->data points to the entire btree node as it exists on disk. |
| */ |
| struct bset_tree set[MAX_BSETS]; |
| |
| struct btree_nr_keys nr; |
| u16 sib_u64s[2]; |
| u16 whiteout_u64s; |
| u8 byte_order; |
| u8 unpack_fn_len; |
| |
| struct btree_write writes[2]; |
| |
| /* Key/pointer for this btree node */ |
| __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX); |
| |
| /* |
| * XXX: add a delete sequence number, so when bch2_btree_node_relock() |
| * fails because the lock sequence number has changed - i.e. the |
| * contents were modified - we can still relock the node if it's still |
| * the one we want, without redoing the traversal |
| */ |
| |
| /* |
| * For asynchronous splits/interior node updates: |
| * When we do a split, we allocate new child nodes and update the parent |
| * node to point to them: we update the parent in memory immediately, |
| * but then we must wait until the children have been written out before |
| * the update to the parent can be written - this is a list of the |
| * btree_updates that are blocking this node from being |
| * written: |
| */ |
| struct list_head write_blocked; |
| |
| /* |
| * Also for asynchronous splits/interior node updates: |
| * If a btree node isn't reachable yet, we don't want to kick off |
| * another write - because that write also won't yet be reachable and |
| * marking it as completed before it's reachable would be incorrect: |
| */ |
| unsigned long will_make_reachable; |
| |
| struct open_buckets ob; |
| |
| /* lru list */ |
| struct list_head list; |
| }; |
| |
| struct btree_cache { |
| struct rhashtable table; |
| bool table_init_done; |
| /* |
| * We never free a struct btree, except on shutdown - we just put it on |
| * the btree_cache_freed list and reuse it later. This simplifies the |
| * code, and it doesn't cost us much memory as the memory usage is |
| * dominated by buffers that hold the actual btree node data and those |
| * can be freed - and the number of struct btrees allocated is |
| * effectively bounded. |
| * |
| * btree_cache_freeable effectively is a small cache - we use it because |
| * high order page allocations can be rather expensive, and it's quite |
| * common to delete and allocate btree nodes in quick succession. It |
| * should never grow past ~2-3 nodes in practice. |
| */ |
| struct mutex lock; |
| struct list_head live; |
| struct list_head freeable; |
| struct list_head freed_pcpu; |
| struct list_head freed_nonpcpu; |
| |
| /* Number of elements in live + freeable lists */ |
| unsigned used; |
| unsigned reserve; |
| atomic_t dirty; |
| struct shrinker shrink; |
| |
| /* |
| * If we need to allocate memory for a new btree node and that |
| * allocation fails, we can cannibalize another node in the btree cache |
| * to satisfy the allocation - lock to guarantee only one thread does |
| * this at a time: |
| */ |
| struct task_struct *alloc_lock; |
| struct closure_waitlist alloc_wait; |
| }; |
| |
| struct btree_node_iter { |
| struct btree_node_iter_set { |
| u16 k, end; |
| } data[MAX_BSETS]; |
| }; |
| |
| /* |
| * Iterate over all possible positions, synthesizing deleted keys for holes: |
| */ |
| #define BTREE_ITER_SLOTS (1 << 0) |
| /* |
| * Indicates that intent locks should be taken on leaf nodes, because we expect |
| * to be doing updates: |
| */ |
| #define BTREE_ITER_INTENT (1 << 1) |
| /* |
| * Causes the btree iterator code to prefetch additional btree nodes from disk: |
| */ |
| #define BTREE_ITER_PREFETCH (1 << 2) |
| /* |
| * Indicates that this iterator should not be reused until transaction commit, |
| * either because a pending update references it or because the update depends |
| * on that particular key being locked (e.g. by the str_hash code, for hash |
| * table consistency) |
| */ |
| #define BTREE_ITER_KEEP_UNTIL_COMMIT (1 << 3) |
| /* |
| * Used in bch2_btree_iter_traverse(), to indicate whether we're searching for |
| * @pos or the first key strictly greater than @pos |
| */ |
| #define BTREE_ITER_IS_EXTENTS (1 << 4) |
| #define BTREE_ITER_NOT_EXTENTS (1 << 5) |
| #define BTREE_ITER_CACHED (1 << 6) |
| #define BTREE_ITER_CACHED_NOFILL (1 << 7) |
| #define BTREE_ITER_CACHED_NOCREATE (1 << 8) |
| #define BTREE_ITER_WITH_KEY_CACHE (1 << 9) |
| #define BTREE_ITER_WITH_UPDATES (1 << 10) |
| #define BTREE_ITER_WITH_JOURNAL (1 << 11) |
| #define __BTREE_ITER_ALL_SNAPSHOTS (1 << 12) |
| #define BTREE_ITER_ALL_SNAPSHOTS (1 << 13) |
| #define BTREE_ITER_FILTER_SNAPSHOTS (1 << 14) |
| #define BTREE_ITER_NOPRESERVE (1 << 15) |
| |
| enum btree_path_uptodate { |
| BTREE_ITER_UPTODATE = 0, |
| BTREE_ITER_NEED_RELOCK = 1, |
| BTREE_ITER_NEED_TRAVERSE = 2, |
| }; |
| |
| #define BTREE_ITER_NO_NODE_GET_LOCKS ((struct btree *) 1) |
| #define BTREE_ITER_NO_NODE_DROP ((struct btree *) 2) |
| #define BTREE_ITER_NO_NODE_LOCK_ROOT ((struct btree *) 3) |
| #define BTREE_ITER_NO_NODE_UP ((struct btree *) 4) |
| #define BTREE_ITER_NO_NODE_DOWN ((struct btree *) 5) |
| #define BTREE_ITER_NO_NODE_INIT ((struct btree *) 6) |
| #define BTREE_ITER_NO_NODE_ERROR ((struct btree *) 7) |
| #define BTREE_ITER_NO_NODE_CACHED ((struct btree *) 8) |
| |
| struct btree_path { |
| u8 idx; |
| u8 sorted_idx; |
| u8 ref; |
| u8 intent_ref; |
| |
| /* btree_iter_copy starts here: */ |
| struct bpos pos; |
| |
| enum btree_id btree_id:4; |
| bool cached:1; |
| bool preserve:1; |
| enum btree_path_uptodate uptodate:2; |
| /* |
| * When true, failing to relock this path will cause the transaction to |
| * restart: |
| */ |
| bool should_be_locked:1; |
| unsigned level:3, |
| locks_want:4, |
| nodes_locked:4, |
| nodes_intent_locked:4; |
| |
| struct btree_path_level { |
| struct btree *b; |
| struct btree_node_iter iter; |
| u32 lock_seq; |
| } l[BTREE_MAX_DEPTH]; |
| #ifdef CONFIG_BCACHEFS_DEBUG |
| unsigned long ip_allocated; |
| #endif |
| }; |
| |
| static inline struct btree_path_level *path_l(struct btree_path *path) |
| { |
| return path->l + path->level; |
| } |
| |
| /* |
| * @pos - iterator's current position |
| * @level - current btree depth |
| * @locks_want - btree level below which we start taking intent locks |
| * @nodes_locked - bitmask indicating which nodes in @nodes are locked |
| * @nodes_intent_locked - bitmask indicating which locks are intent locks |
| */ |
| struct btree_iter { |
| struct btree_trans *trans; |
| struct btree_path *path; |
| struct btree_path *update_path; |
| struct btree_path *key_cache_path; |
| |
| enum btree_id btree_id:4; |
| unsigned min_depth:4; |
| |
| /* btree_iter_copy starts here: */ |
| u16 flags; |
| |
| /* When we're filtering by snapshot, the snapshot ID we're looking for: */ |
| unsigned snapshot; |
| |
| struct bpos pos; |
| struct bpos pos_after_commit; |
| /* |
| * Current unpacked key - so that bch2_btree_iter_next()/ |
| * bch2_btree_iter_next_slot() can correctly advance pos. |
| */ |
| struct bkey k; |
| }; |
| |
| struct btree_key_cache { |
| struct mutex lock; |
| struct rhashtable table; |
| bool table_init_done; |
| struct list_head freed; |
| struct shrinker shrink; |
| unsigned shrink_iter; |
| |
| size_t nr_freed; |
| atomic_long_t nr_keys; |
| atomic_long_t nr_dirty; |
| }; |
| |
| struct bkey_cached_key { |
| u32 btree_id; |
| struct bpos pos; |
| } __attribute__((packed, aligned(4))); |
| |
| #define BKEY_CACHED_ACCESSED 0 |
| #define BKEY_CACHED_DIRTY 1 |
| |
| struct bkey_cached { |
| struct btree_bkey_cached_common c; |
| |
| unsigned long flags; |
| u16 u64s; |
| bool valid; |
| u32 btree_trans_barrier_seq; |
| struct bkey_cached_key key; |
| |
| struct rhash_head hash; |
| struct list_head list; |
| |
| struct journal_preres res; |
| struct journal_entry_pin journal; |
| u64 seq; |
| |
| struct bkey_i *k; |
| }; |
| |
| struct btree_insert_entry { |
| unsigned flags; |
| u8 bkey_type; |
| enum btree_id btree_id:8; |
| u8 level:4; |
| bool cached:1; |
| bool insert_trigger_run:1; |
| bool overwrite_trigger_run:1; |
| bool key_cache_already_flushed:1; |
| /* |
| * @old_k may be a key from the journal; @old_btree_u64s always refers |
| * to the size of the key being overwritten in the btree: |
| */ |
| u8 old_btree_u64s; |
| struct bkey_i *k; |
| struct btree_path *path; |
| /* key being overwritten: */ |
| struct bkey old_k; |
| const struct bch_val *old_v; |
| unsigned long ip_allocated; |
| }; |
| |
| #ifndef CONFIG_LOCKDEP |
| #define BTREE_ITER_MAX 64 |
| #else |
| #define BTREE_ITER_MAX 32 |
| #endif |
| |
| struct btree_trans_commit_hook; |
| typedef int (btree_trans_commit_hook_fn)(struct btree_trans *, struct btree_trans_commit_hook *); |
| |
| struct btree_trans_commit_hook { |
| btree_trans_commit_hook_fn *fn; |
| struct btree_trans_commit_hook *next; |
| }; |
| |
| #define BTREE_TRANS_MEM_MAX (1U << 14) |
| |
| struct btree_trans { |
| struct bch_fs *c; |
| const char *fn; |
| struct list_head list; |
| struct btree *locking; |
| unsigned locking_path_idx; |
| struct bpos locking_pos; |
| u8 locking_btree_id; |
| u8 locking_level; |
| u8 locking_lock_type; |
| pid_t pid; |
| int srcu_idx; |
| |
| u8 nr_sorted; |
| u8 nr_updates; |
| bool used_mempool:1; |
| bool in_traverse_all:1; |
| bool restarted:1; |
| bool paths_sorted:1; |
| bool memory_allocation_failure:1; |
| bool journal_transaction_names:1; |
| bool journal_replay_not_finished:1; |
| /* |
| * For when bch2_trans_update notices we'll be splitting a compressed |
| * extent: |
| */ |
| unsigned extra_journal_res; |
| |
| u64 paths_allocated; |
| |
| unsigned mem_top; |
| unsigned mem_bytes; |
| void *mem; |
| |
| u8 sorted[BTREE_ITER_MAX + 8]; |
| struct btree_path *paths; |
| struct btree_insert_entry *updates; |
| |
| /* update path: */ |
| struct btree_trans_commit_hook *hooks; |
| DARRAY(u64) extra_journal_entries; |
| struct journal_entry_pin *journal_pin; |
| |
| struct journal_res journal_res; |
| struct journal_preres journal_preres; |
| u64 *journal_seq; |
| struct disk_reservation *disk_res; |
| unsigned flags; |
| unsigned journal_u64s; |
| unsigned journal_preres_u64s; |
| struct replicas_delta_list *fs_usage_deltas; |
| }; |
| |
| #define BTREE_FLAGS() \ |
| x(read_in_flight) \ |
| x(read_error) \ |
| x(dirty) \ |
| x(need_write) \ |
| x(write_blocked) \ |
| x(will_make_reachable) \ |
| x(noevict) \ |
| x(write_idx) \ |
| x(accessed) \ |
| x(write_in_flight) \ |
| x(write_in_flight_inner) \ |
| x(just_written) \ |
| x(dying) \ |
| x(fake) \ |
| x(need_rewrite) \ |
| x(never_write) |
| |
| enum btree_flags { |
| #define x(flag) BTREE_NODE_##flag, |
| BTREE_FLAGS() |
| #undef x |
| }; |
| |
| #define x(flag) \ |
| static inline bool btree_node_ ## flag(struct btree *b) \ |
| { return test_bit(BTREE_NODE_ ## flag, &b->flags); } \ |
| \ |
| static inline void set_btree_node_ ## flag(struct btree *b) \ |
| { set_bit(BTREE_NODE_ ## flag, &b->flags); } \ |
| \ |
| static inline void clear_btree_node_ ## flag(struct btree *b) \ |
| { clear_bit(BTREE_NODE_ ## flag, &b->flags); } |
| |
| BTREE_FLAGS() |
| #undef x |
| |
| static inline struct btree_write *btree_current_write(struct btree *b) |
| { |
| return b->writes + btree_node_write_idx(b); |
| } |
| |
| static inline struct btree_write *btree_prev_write(struct btree *b) |
| { |
| return b->writes + (btree_node_write_idx(b) ^ 1); |
| } |
| |
| static inline struct bset_tree *bset_tree_last(struct btree *b) |
| { |
| EBUG_ON(!b->nsets); |
| return b->set + b->nsets - 1; |
| } |
| |
| static inline void * |
| __btree_node_offset_to_ptr(const struct btree *b, u16 offset) |
| { |
| return (void *) ((u64 *) b->data + 1 + offset); |
| } |
| |
| static inline u16 |
| __btree_node_ptr_to_offset(const struct btree *b, const void *p) |
| { |
| u16 ret = (u64 *) p - 1 - (u64 *) b->data; |
| |
| EBUG_ON(__btree_node_offset_to_ptr(b, ret) != p); |
| return ret; |
| } |
| |
| static inline struct bset *bset(const struct btree *b, |
| const struct bset_tree *t) |
| { |
| return __btree_node_offset_to_ptr(b, t->data_offset); |
| } |
| |
| static inline void set_btree_bset_end(struct btree *b, struct bset_tree *t) |
| { |
| t->end_offset = |
| __btree_node_ptr_to_offset(b, vstruct_last(bset(b, t))); |
| } |
| |
| static inline void set_btree_bset(struct btree *b, struct bset_tree *t, |
| const struct bset *i) |
| { |
| t->data_offset = __btree_node_ptr_to_offset(b, i); |
| set_btree_bset_end(b, t); |
| } |
| |
| static inline struct bset *btree_bset_first(struct btree *b) |
| { |
| return bset(b, b->set); |
| } |
| |
| static inline struct bset *btree_bset_last(struct btree *b) |
| { |
| return bset(b, bset_tree_last(b)); |
| } |
| |
| static inline u16 |
| __btree_node_key_to_offset(const struct btree *b, const struct bkey_packed *k) |
| { |
| return __btree_node_ptr_to_offset(b, k); |
| } |
| |
| static inline struct bkey_packed * |
| __btree_node_offset_to_key(const struct btree *b, u16 k) |
| { |
| return __btree_node_offset_to_ptr(b, k); |
| } |
| |
| static inline unsigned btree_bkey_first_offset(const struct bset_tree *t) |
| { |
| return t->data_offset + offsetof(struct bset, _data) / sizeof(u64); |
| } |
| |
| #define btree_bkey_first(_b, _t) \ |
| ({ \ |
| EBUG_ON(bset(_b, _t)->start != \ |
| __btree_node_offset_to_key(_b, btree_bkey_first_offset(_t)));\ |
| \ |
| bset(_b, _t)->start; \ |
| }) |
| |
| #define btree_bkey_last(_b, _t) \ |
| ({ \ |
| EBUG_ON(__btree_node_offset_to_key(_b, (_t)->end_offset) != \ |
| vstruct_last(bset(_b, _t))); \ |
| \ |
| __btree_node_offset_to_key(_b, (_t)->end_offset); \ |
| }) |
| |
| static inline unsigned bset_u64s(struct bset_tree *t) |
| { |
| return t->end_offset - t->data_offset - |
| sizeof(struct bset) / sizeof(u64); |
| } |
| |
| static inline unsigned bset_dead_u64s(struct btree *b, struct bset_tree *t) |
| { |
| return bset_u64s(t) - b->nr.bset_u64s[t - b->set]; |
| } |
| |
| static inline unsigned bset_byte_offset(struct btree *b, void *i) |
| { |
| return i - (void *) b->data; |
| } |
| |
| enum btree_node_type { |
| #define x(kwd, val) BKEY_TYPE_##kwd = val, |
| BCH_BTREE_IDS() |
| #undef x |
| BKEY_TYPE_btree, |
| }; |
| |
| /* Type of a key in btree @id at level @level: */ |
| static inline enum btree_node_type __btree_node_type(unsigned level, enum btree_id id) |
| { |
| return level ? BKEY_TYPE_btree : (enum btree_node_type) id; |
| } |
| |
| /* Type of keys @b contains: */ |
| static inline enum btree_node_type btree_node_type(struct btree *b) |
| { |
| return __btree_node_type(b->c.level, b->c.btree_id); |
| } |
| |
| #define BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS \ |
| ((1U << BKEY_TYPE_extents)| \ |
| (1U << BKEY_TYPE_alloc)| \ |
| (1U << BKEY_TYPE_inodes)| \ |
| (1U << BKEY_TYPE_stripes)| \ |
| (1U << BKEY_TYPE_reflink)| \ |
| (1U << BKEY_TYPE_btree)) |
| |
| #define BTREE_NODE_TYPE_HAS_MEM_TRIGGERS \ |
| ((1U << BKEY_TYPE_alloc)| \ |
| (1U << BKEY_TYPE_inodes)| \ |
| (1U << BKEY_TYPE_stripes)| \ |
| (1U << BKEY_TYPE_snapshots)) |
| |
| #define BTREE_NODE_TYPE_HAS_TRIGGERS \ |
| (BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS| \ |
| BTREE_NODE_TYPE_HAS_MEM_TRIGGERS) |
| |
| #define BTREE_ID_IS_EXTENTS \ |
| ((1U << BTREE_ID_extents)| \ |
| (1U << BTREE_ID_reflink)| \ |
| (1U << BTREE_ID_freespace)) |
| |
| static inline bool btree_node_type_is_extents(enum btree_node_type type) |
| { |
| return (1U << type) & BTREE_ID_IS_EXTENTS; |
| } |
| |
| #define BTREE_ID_HAS_SNAPSHOTS \ |
| ((1U << BTREE_ID_extents)| \ |
| (1U << BTREE_ID_inodes)| \ |
| (1U << BTREE_ID_dirents)| \ |
| (1U << BTREE_ID_xattrs)) |
| |
| #define BTREE_ID_HAS_PTRS \ |
| ((1U << BTREE_ID_extents)| \ |
| (1U << BTREE_ID_reflink)) |
| |
| static inline bool btree_type_has_snapshots(enum btree_id id) |
| { |
| return (1 << id) & BTREE_ID_HAS_SNAPSHOTS; |
| } |
| |
| enum btree_update_flags { |
| __BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE, |
| __BTREE_UPDATE_NOJOURNAL, |
| __BTREE_UPDATE_KEY_CACHE_RECLAIM, |
| __BTREE_UPDATE_NO_KEY_CACHE_COHERENCY, |
| |
| __BTREE_TRIGGER_NORUN, /* Don't run triggers at all */ |
| |
| __BTREE_TRIGGER_INSERT, |
| __BTREE_TRIGGER_OVERWRITE, |
| |
| __BTREE_TRIGGER_GC, |
| __BTREE_TRIGGER_BUCKET_INVALIDATE, |
| __BTREE_TRIGGER_NOATOMIC, |
| }; |
| |
| #define BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE (1U << __BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) |
| #define BTREE_UPDATE_NOJOURNAL (1U << __BTREE_UPDATE_NOJOURNAL) |
| #define BTREE_UPDATE_KEY_CACHE_RECLAIM (1U << __BTREE_UPDATE_KEY_CACHE_RECLAIM) |
| #define BTREE_UPDATE_NO_KEY_CACHE_COHERENCY \ |
| (1U << __BTREE_UPDATE_NO_KEY_CACHE_COHERENCY) |
| |
| #define BTREE_TRIGGER_NORUN (1U << __BTREE_TRIGGER_NORUN) |
| |
| #define BTREE_TRIGGER_INSERT (1U << __BTREE_TRIGGER_INSERT) |
| #define BTREE_TRIGGER_OVERWRITE (1U << __BTREE_TRIGGER_OVERWRITE) |
| |
| #define BTREE_TRIGGER_GC (1U << __BTREE_TRIGGER_GC) |
| #define BTREE_TRIGGER_BUCKET_INVALIDATE (1U << __BTREE_TRIGGER_BUCKET_INVALIDATE) |
| #define BTREE_TRIGGER_NOATOMIC (1U << __BTREE_TRIGGER_NOATOMIC) |
| |
| #define BTREE_TRIGGER_WANTS_OLD_AND_NEW \ |
| ((1U << KEY_TYPE_alloc)| \ |
| (1U << KEY_TYPE_alloc_v2)| \ |
| (1U << KEY_TYPE_alloc_v3)| \ |
| (1U << KEY_TYPE_alloc_v4)| \ |
| (1U << KEY_TYPE_stripe)| \ |
| (1U << KEY_TYPE_inode)| \ |
| (1U << KEY_TYPE_inode_v2)| \ |
| (1U << KEY_TYPE_snapshot)) |
| |
| static inline bool btree_node_type_needs_gc(enum btree_node_type type) |
| { |
| return BTREE_NODE_TYPE_HAS_TRIGGERS & (1U << type); |
| } |
| |
| struct btree_root { |
| struct btree *b; |
| |
| /* On disk root - see async splits: */ |
| __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX); |
| u8 level; |
| u8 alive; |
| s8 error; |
| }; |
| |
| enum btree_insert_ret { |
| BTREE_INSERT_OK, |
| /* leaf node needs to be split */ |
| BTREE_INSERT_BTREE_NODE_FULL, |
| BTREE_INSERT_NEED_MARK_REPLICAS, |
| BTREE_INSERT_NEED_JOURNAL_RES, |
| BTREE_INSERT_NEED_JOURNAL_RECLAIM, |
| }; |
| |
| enum btree_gc_coalesce_fail_reason { |
| BTREE_GC_COALESCE_FAIL_RESERVE_GET, |
| BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC, |
| BTREE_GC_COALESCE_FAIL_FORMAT_FITS, |
| }; |
| |
| enum btree_node_sibling { |
| btree_prev_sib, |
| btree_next_sib, |
| }; |
| |
| #endif /* _BCACHEFS_BTREE_TYPES_H */ |