| /* |
| * RTC class driver for "CMOS RTC": PCs, ACPI, etc |
| * |
| * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) |
| * Copyright (C) 2006 David Brownell (convert to new framework) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| /* |
| * The original "cmos clock" chip was an MC146818 chip, now obsolete. |
| * That defined the register interface now provided by all PCs, some |
| * non-PC systems, and incorporated into ACPI. Modern PC chipsets |
| * integrate an MC146818 clone in their southbridge, and boards use |
| * that instead of discrete clones like the DS12887 or M48T86. There |
| * are also clones that connect using the LPC bus. |
| * |
| * That register API is also used directly by various other drivers |
| * (notably for integrated NVRAM), infrastructure (x86 has code to |
| * bypass the RTC framework, directly reading the RTC during boot |
| * and updating minutes/seconds for systems using NTP synch) and |
| * utilities (like userspace 'hwclock', if no /dev node exists). |
| * |
| * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with |
| * interrupts disabled, holding the global rtc_lock, to exclude those |
| * other drivers and utilities on correctly configured systems. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock.h> |
| #include <linux/platform_device.h> |
| #include <linux/log2.h> |
| #include <linux/pm.h> |
| #include <linux/of.h> |
| #include <linux/of_platform.h> |
| #ifdef CONFIG_X86 |
| #include <asm/i8259.h> |
| #endif |
| |
| /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ |
| #include <linux/mc146818rtc.h> |
| |
| /* |
| * Use ACPI SCI to replace HPET interrupt for RTC Alarm event |
| * |
| * If cleared, ACPI SCI is only used to wake up the system from suspend |
| * |
| * If set, ACPI SCI is used to handle UIE/AIE and system wakeup |
| */ |
| |
| static bool use_acpi_alarm; |
| module_param(use_acpi_alarm, bool, 0444); |
| |
| struct cmos_rtc { |
| struct rtc_device *rtc; |
| struct device *dev; |
| int irq; |
| struct resource *iomem; |
| time64_t alarm_expires; |
| |
| void (*wake_on)(struct device *); |
| void (*wake_off)(struct device *); |
| |
| u8 enabled_wake; |
| u8 suspend_ctrl; |
| |
| /* newer hardware extends the original register set */ |
| u8 day_alrm; |
| u8 mon_alrm; |
| u8 century; |
| |
| struct rtc_wkalrm saved_wkalrm; |
| }; |
| |
| /* both platform and pnp busses use negative numbers for invalid irqs */ |
| #define is_valid_irq(n) ((n) > 0) |
| |
| static const char driver_name[] = "rtc_cmos"; |
| |
| /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; |
| * always mask it against the irq enable bits in RTC_CONTROL. Bit values |
| * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. |
| */ |
| #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) |
| |
| static inline int is_intr(u8 rtc_intr) |
| { |
| if (!(rtc_intr & RTC_IRQF)) |
| return 0; |
| return rtc_intr & RTC_IRQMASK; |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because |
| * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly |
| * used in a broken "legacy replacement" mode. The breakage includes |
| * HPET #1 hijacking the IRQ for this RTC, and being unavailable for |
| * other (better) use. |
| * |
| * When that broken mode is in use, platform glue provides a partial |
| * emulation of hardware RTC IRQ facilities using HPET #1. We don't |
| * want to use HPET for anything except those IRQs though... |
| */ |
| #ifdef CONFIG_HPET_EMULATE_RTC |
| #include <asm/hpet.h> |
| #else |
| |
| static inline int is_hpet_enabled(void) |
| { |
| return 0; |
| } |
| |
| static inline int hpet_mask_rtc_irq_bit(unsigned long mask) |
| { |
| return 0; |
| } |
| |
| static inline int hpet_set_rtc_irq_bit(unsigned long mask) |
| { |
| return 0; |
| } |
| |
| static inline int |
| hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) |
| { |
| return 0; |
| } |
| |
| static inline int hpet_set_periodic_freq(unsigned long freq) |
| { |
| return 0; |
| } |
| |
| static inline int hpet_rtc_dropped_irq(void) |
| { |
| return 0; |
| } |
| |
| static inline int hpet_rtc_timer_init(void) |
| { |
| return 0; |
| } |
| |
| extern irq_handler_t hpet_rtc_interrupt; |
| |
| static inline int hpet_register_irq_handler(irq_handler_t handler) |
| { |
| return 0; |
| } |
| |
| static inline int hpet_unregister_irq_handler(irq_handler_t handler) |
| { |
| return 0; |
| } |
| |
| #endif |
| |
| /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */ |
| static int use_hpet_alarm(void) |
| { |
| return is_hpet_enabled() && !use_acpi_alarm; |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| #ifdef RTC_PORT |
| |
| /* Most newer x86 systems have two register banks, the first used |
| * for RTC and NVRAM and the second only for NVRAM. Caller must |
| * own rtc_lock ... and we won't worry about access during NMI. |
| */ |
| #define can_bank2 true |
| |
| static inline unsigned char cmos_read_bank2(unsigned char addr) |
| { |
| outb(addr, RTC_PORT(2)); |
| return inb(RTC_PORT(3)); |
| } |
| |
| static inline void cmos_write_bank2(unsigned char val, unsigned char addr) |
| { |
| outb(addr, RTC_PORT(2)); |
| outb(val, RTC_PORT(3)); |
| } |
| |
| #else |
| |
| #define can_bank2 false |
| |
| static inline unsigned char cmos_read_bank2(unsigned char addr) |
| { |
| return 0; |
| } |
| |
| static inline void cmos_write_bank2(unsigned char val, unsigned char addr) |
| { |
| } |
| |
| #endif |
| |
| /*----------------------------------------------------------------*/ |
| |
| static int cmos_read_time(struct device *dev, struct rtc_time *t) |
| { |
| /* |
| * If pm_trace abused the RTC for storage, set the timespec to 0, |
| * which tells the caller that this RTC value is unusable. |
| */ |
| if (!pm_trace_rtc_valid()) |
| return -EIO; |
| |
| /* REVISIT: if the clock has a "century" register, use |
| * that instead of the heuristic in mc146818_get_time(). |
| * That'll make Y3K compatility (year > 2070) easy! |
| */ |
| mc146818_get_time(t); |
| return 0; |
| } |
| |
| static int cmos_set_time(struct device *dev, struct rtc_time *t) |
| { |
| /* REVISIT: set the "century" register if available |
| * |
| * NOTE: this ignores the issue whereby updating the seconds |
| * takes effect exactly 500ms after we write the register. |
| * (Also queueing and other delays before we get this far.) |
| */ |
| return mc146818_set_time(t); |
| } |
| |
| static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) |
| { |
| struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| unsigned char rtc_control; |
| |
| if (!is_valid_irq(cmos->irq)) |
| return -EIO; |
| |
| /* Basic alarms only support hour, minute, and seconds fields. |
| * Some also support day and month, for alarms up to a year in |
| * the future. |
| */ |
| |
| spin_lock_irq(&rtc_lock); |
| t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); |
| t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); |
| t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); |
| |
| if (cmos->day_alrm) { |
| /* ignore upper bits on readback per ACPI spec */ |
| t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f; |
| if (!t->time.tm_mday) |
| t->time.tm_mday = -1; |
| |
| if (cmos->mon_alrm) { |
| t->time.tm_mon = CMOS_READ(cmos->mon_alrm); |
| if (!t->time.tm_mon) |
| t->time.tm_mon = -1; |
| } |
| } |
| |
| rtc_control = CMOS_READ(RTC_CONTROL); |
| spin_unlock_irq(&rtc_lock); |
| |
| if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { |
| if (((unsigned)t->time.tm_sec) < 0x60) |
| t->time.tm_sec = bcd2bin(t->time.tm_sec); |
| else |
| t->time.tm_sec = -1; |
| if (((unsigned)t->time.tm_min) < 0x60) |
| t->time.tm_min = bcd2bin(t->time.tm_min); |
| else |
| t->time.tm_min = -1; |
| if (((unsigned)t->time.tm_hour) < 0x24) |
| t->time.tm_hour = bcd2bin(t->time.tm_hour); |
| else |
| t->time.tm_hour = -1; |
| |
| if (cmos->day_alrm) { |
| if (((unsigned)t->time.tm_mday) <= 0x31) |
| t->time.tm_mday = bcd2bin(t->time.tm_mday); |
| else |
| t->time.tm_mday = -1; |
| |
| if (cmos->mon_alrm) { |
| if (((unsigned)t->time.tm_mon) <= 0x12) |
| t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; |
| else |
| t->time.tm_mon = -1; |
| } |
| } |
| } |
| |
| t->enabled = !!(rtc_control & RTC_AIE); |
| t->pending = 0; |
| |
| return 0; |
| } |
| |
| static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) |
| { |
| unsigned char rtc_intr; |
| |
| /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; |
| * allegedly some older rtcs need that to handle irqs properly |
| */ |
| rtc_intr = CMOS_READ(RTC_INTR_FLAGS); |
| |
| if (use_hpet_alarm()) |
| return; |
| |
| rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; |
| if (is_intr(rtc_intr)) |
| rtc_update_irq(cmos->rtc, 1, rtc_intr); |
| } |
| |
| static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) |
| { |
| unsigned char rtc_control; |
| |
| /* flush any pending IRQ status, notably for update irqs, |
| * before we enable new IRQs |
| */ |
| rtc_control = CMOS_READ(RTC_CONTROL); |
| cmos_checkintr(cmos, rtc_control); |
| |
| rtc_control |= mask; |
| CMOS_WRITE(rtc_control, RTC_CONTROL); |
| if (use_hpet_alarm()) |
| hpet_set_rtc_irq_bit(mask); |
| |
| if ((mask & RTC_AIE) && use_acpi_alarm) { |
| if (cmos->wake_on) |
| cmos->wake_on(cmos->dev); |
| } |
| |
| cmos_checkintr(cmos, rtc_control); |
| } |
| |
| static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) |
| { |
| unsigned char rtc_control; |
| |
| rtc_control = CMOS_READ(RTC_CONTROL); |
| rtc_control &= ~mask; |
| CMOS_WRITE(rtc_control, RTC_CONTROL); |
| if (use_hpet_alarm()) |
| hpet_mask_rtc_irq_bit(mask); |
| |
| if ((mask & RTC_AIE) && use_acpi_alarm) { |
| if (cmos->wake_off) |
| cmos->wake_off(cmos->dev); |
| } |
| |
| cmos_checkintr(cmos, rtc_control); |
| } |
| |
| static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t) |
| { |
| struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| struct rtc_time now; |
| |
| cmos_read_time(dev, &now); |
| |
| if (!cmos->day_alrm) { |
| time64_t t_max_date; |
| time64_t t_alrm; |
| |
| t_max_date = rtc_tm_to_time64(&now); |
| t_max_date += 24 * 60 * 60 - 1; |
| t_alrm = rtc_tm_to_time64(&t->time); |
| if (t_alrm > t_max_date) { |
| dev_err(dev, |
| "Alarms can be up to one day in the future\n"); |
| return -EINVAL; |
| } |
| } else if (!cmos->mon_alrm) { |
| struct rtc_time max_date = now; |
| time64_t t_max_date; |
| time64_t t_alrm; |
| int max_mday; |
| |
| if (max_date.tm_mon == 11) { |
| max_date.tm_mon = 0; |
| max_date.tm_year += 1; |
| } else { |
| max_date.tm_mon += 1; |
| } |
| max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); |
| if (max_date.tm_mday > max_mday) |
| max_date.tm_mday = max_mday; |
| |
| t_max_date = rtc_tm_to_time64(&max_date); |
| t_max_date -= 1; |
| t_alrm = rtc_tm_to_time64(&t->time); |
| if (t_alrm > t_max_date) { |
| dev_err(dev, |
| "Alarms can be up to one month in the future\n"); |
| return -EINVAL; |
| } |
| } else { |
| struct rtc_time max_date = now; |
| time64_t t_max_date; |
| time64_t t_alrm; |
| int max_mday; |
| |
| max_date.tm_year += 1; |
| max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); |
| if (max_date.tm_mday > max_mday) |
| max_date.tm_mday = max_mday; |
| |
| t_max_date = rtc_tm_to_time64(&max_date); |
| t_max_date -= 1; |
| t_alrm = rtc_tm_to_time64(&t->time); |
| if (t_alrm > t_max_date) { |
| dev_err(dev, |
| "Alarms can be up to one year in the future\n"); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) |
| { |
| struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| unsigned char mon, mday, hrs, min, sec, rtc_control; |
| int ret; |
| |
| if (!is_valid_irq(cmos->irq)) |
| return -EIO; |
| |
| ret = cmos_validate_alarm(dev, t); |
| if (ret < 0) |
| return ret; |
| |
| mon = t->time.tm_mon + 1; |
| mday = t->time.tm_mday; |
| hrs = t->time.tm_hour; |
| min = t->time.tm_min; |
| sec = t->time.tm_sec; |
| |
| rtc_control = CMOS_READ(RTC_CONTROL); |
| if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { |
| /* Writing 0xff means "don't care" or "match all". */ |
| mon = (mon <= 12) ? bin2bcd(mon) : 0xff; |
| mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff; |
| hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff; |
| min = (min < 60) ? bin2bcd(min) : 0xff; |
| sec = (sec < 60) ? bin2bcd(sec) : 0xff; |
| } |
| |
| spin_lock_irq(&rtc_lock); |
| |
| /* next rtc irq must not be from previous alarm setting */ |
| cmos_irq_disable(cmos, RTC_AIE); |
| |
| /* update alarm */ |
| CMOS_WRITE(hrs, RTC_HOURS_ALARM); |
| CMOS_WRITE(min, RTC_MINUTES_ALARM); |
| CMOS_WRITE(sec, RTC_SECONDS_ALARM); |
| |
| /* the system may support an "enhanced" alarm */ |
| if (cmos->day_alrm) { |
| CMOS_WRITE(mday, cmos->day_alrm); |
| if (cmos->mon_alrm) |
| CMOS_WRITE(mon, cmos->mon_alrm); |
| } |
| |
| if (use_hpet_alarm()) { |
| /* |
| * FIXME the HPET alarm glue currently ignores day_alrm |
| * and mon_alrm ... |
| */ |
| hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, |
| t->time.tm_sec); |
| } |
| |
| if (t->enabled) |
| cmos_irq_enable(cmos, RTC_AIE); |
| |
| spin_unlock_irq(&rtc_lock); |
| |
| cmos->alarm_expires = rtc_tm_to_time64(&t->time); |
| |
| return 0; |
| } |
| |
| static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) |
| { |
| struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| unsigned long flags; |
| |
| if (!is_valid_irq(cmos->irq)) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&rtc_lock, flags); |
| |
| if (enabled) |
| cmos_irq_enable(cmos, RTC_AIE); |
| else |
| cmos_irq_disable(cmos, RTC_AIE); |
| |
| spin_unlock_irqrestore(&rtc_lock, flags); |
| return 0; |
| } |
| |
| #if IS_ENABLED(CONFIG_RTC_INTF_PROC) |
| |
| static int cmos_procfs(struct device *dev, struct seq_file *seq) |
| { |
| struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| unsigned char rtc_control, valid; |
| |
| spin_lock_irq(&rtc_lock); |
| rtc_control = CMOS_READ(RTC_CONTROL); |
| valid = CMOS_READ(RTC_VALID); |
| spin_unlock_irq(&rtc_lock); |
| |
| /* NOTE: at least ICH6 reports battery status using a different |
| * (non-RTC) bit; and SQWE is ignored on many current systems. |
| */ |
| seq_printf(seq, |
| "periodic_IRQ\t: %s\n" |
| "update_IRQ\t: %s\n" |
| "HPET_emulated\t: %s\n" |
| // "square_wave\t: %s\n" |
| "BCD\t\t: %s\n" |
| "DST_enable\t: %s\n" |
| "periodic_freq\t: %d\n" |
| "batt_status\t: %s\n", |
| (rtc_control & RTC_PIE) ? "yes" : "no", |
| (rtc_control & RTC_UIE) ? "yes" : "no", |
| use_hpet_alarm() ? "yes" : "no", |
| // (rtc_control & RTC_SQWE) ? "yes" : "no", |
| (rtc_control & RTC_DM_BINARY) ? "no" : "yes", |
| (rtc_control & RTC_DST_EN) ? "yes" : "no", |
| cmos->rtc->irq_freq, |
| (valid & RTC_VRT) ? "okay" : "dead"); |
| |
| return 0; |
| } |
| |
| #else |
| #define cmos_procfs NULL |
| #endif |
| |
| static const struct rtc_class_ops cmos_rtc_ops = { |
| .read_time = cmos_read_time, |
| .set_time = cmos_set_time, |
| .read_alarm = cmos_read_alarm, |
| .set_alarm = cmos_set_alarm, |
| .proc = cmos_procfs, |
| .alarm_irq_enable = cmos_alarm_irq_enable, |
| }; |
| |
| /*----------------------------------------------------------------*/ |
| |
| /* |
| * All these chips have at least 64 bytes of address space, shared by |
| * RTC registers and NVRAM. Most of those bytes of NVRAM are used |
| * by boot firmware. Modern chips have 128 or 256 bytes. |
| */ |
| |
| #define NVRAM_OFFSET (RTC_REG_D + 1) |
| |
| static int cmos_nvram_read(void *priv, unsigned int off, void *val, |
| size_t count) |
| { |
| unsigned char *buf = val; |
| int retval; |
| |
| off += NVRAM_OFFSET; |
| spin_lock_irq(&rtc_lock); |
| for (retval = 0; count; count--, off++, retval++) { |
| if (off < 128) |
| *buf++ = CMOS_READ(off); |
| else if (can_bank2) |
| *buf++ = cmos_read_bank2(off); |
| else |
| break; |
| } |
| spin_unlock_irq(&rtc_lock); |
| |
| return retval; |
| } |
| |
| static int cmos_nvram_write(void *priv, unsigned int off, void *val, |
| size_t count) |
| { |
| struct cmos_rtc *cmos = priv; |
| unsigned char *buf = val; |
| int retval; |
| |
| /* NOTE: on at least PCs and Ataris, the boot firmware uses a |
| * checksum on part of the NVRAM data. That's currently ignored |
| * here. If userspace is smart enough to know what fields of |
| * NVRAM to update, updating checksums is also part of its job. |
| */ |
| off += NVRAM_OFFSET; |
| spin_lock_irq(&rtc_lock); |
| for (retval = 0; count; count--, off++, retval++) { |
| /* don't trash RTC registers */ |
| if (off == cmos->day_alrm |
| || off == cmos->mon_alrm |
| || off == cmos->century) |
| buf++; |
| else if (off < 128) |
| CMOS_WRITE(*buf++, off); |
| else if (can_bank2) |
| cmos_write_bank2(*buf++, off); |
| else |
| break; |
| } |
| spin_unlock_irq(&rtc_lock); |
| |
| return retval; |
| } |
| |
| /*----------------------------------------------------------------*/ |
| |
| static struct cmos_rtc cmos_rtc; |
| |
| static irqreturn_t cmos_interrupt(int irq, void *p) |
| { |
| u8 irqstat; |
| u8 rtc_control; |
| |
| spin_lock(&rtc_lock); |
| |
| /* When the HPET interrupt handler calls us, the interrupt |
| * status is passed as arg1 instead of the irq number. But |
| * always clear irq status, even when HPET is in the way. |
| * |
| * Note that HPET and RTC are almost certainly out of phase, |
| * giving different IRQ status ... |
| */ |
| irqstat = CMOS_READ(RTC_INTR_FLAGS); |
| rtc_control = CMOS_READ(RTC_CONTROL); |
| if (use_hpet_alarm()) |
| irqstat = (unsigned long)irq & 0xF0; |
| |
| /* If we were suspended, RTC_CONTROL may not be accurate since the |
| * bios may have cleared it. |
| */ |
| if (!cmos_rtc.suspend_ctrl) |
| irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; |
| else |
| irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; |
| |
| /* All Linux RTC alarms should be treated as if they were oneshot. |
| * Similar code may be needed in system wakeup paths, in case the |
| * alarm woke the system. |
| */ |
| if (irqstat & RTC_AIE) { |
| cmos_rtc.suspend_ctrl &= ~RTC_AIE; |
| rtc_control &= ~RTC_AIE; |
| CMOS_WRITE(rtc_control, RTC_CONTROL); |
| if (use_hpet_alarm()) |
| hpet_mask_rtc_irq_bit(RTC_AIE); |
| CMOS_READ(RTC_INTR_FLAGS); |
| } |
| spin_unlock(&rtc_lock); |
| |
| if (is_intr(irqstat)) { |
| rtc_update_irq(p, 1, irqstat); |
| return IRQ_HANDLED; |
| } else |
| return IRQ_NONE; |
| } |
| |
| #ifdef CONFIG_PNP |
| #define INITSECTION |
| |
| #else |
| #define INITSECTION __init |
| #endif |
| |
| static int INITSECTION |
| cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) |
| { |
| struct cmos_rtc_board_info *info = dev_get_platdata(dev); |
| int retval = 0; |
| unsigned char rtc_control; |
| unsigned address_space; |
| u32 flags = 0; |
| struct nvmem_config nvmem_cfg = { |
| .name = "cmos_nvram", |
| .word_size = 1, |
| .stride = 1, |
| .reg_read = cmos_nvram_read, |
| .reg_write = cmos_nvram_write, |
| .priv = &cmos_rtc, |
| }; |
| |
| /* there can be only one ... */ |
| if (cmos_rtc.dev) |
| return -EBUSY; |
| |
| if (!ports) |
| return -ENODEV; |
| |
| /* Claim I/O ports ASAP, minimizing conflict with legacy driver. |
| * |
| * REVISIT non-x86 systems may instead use memory space resources |
| * (needing ioremap etc), not i/o space resources like this ... |
| */ |
| if (RTC_IOMAPPED) |
| ports = request_region(ports->start, resource_size(ports), |
| driver_name); |
| else |
| ports = request_mem_region(ports->start, resource_size(ports), |
| driver_name); |
| if (!ports) { |
| dev_dbg(dev, "i/o registers already in use\n"); |
| return -EBUSY; |
| } |
| |
| cmos_rtc.irq = rtc_irq; |
| cmos_rtc.iomem = ports; |
| |
| /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM |
| * driver did, but don't reject unknown configs. Old hardware |
| * won't address 128 bytes. Newer chips have multiple banks, |
| * though they may not be listed in one I/O resource. |
| */ |
| #if defined(CONFIG_ATARI) |
| address_space = 64; |
| #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ |
| || defined(__sparc__) || defined(__mips__) \ |
| || defined(__powerpc__) |
| address_space = 128; |
| #else |
| #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. |
| address_space = 128; |
| #endif |
| if (can_bank2 && ports->end > (ports->start + 1)) |
| address_space = 256; |
| |
| /* For ACPI systems extension info comes from the FADT. On others, |
| * board specific setup provides it as appropriate. Systems where |
| * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and |
| * some almost-clones) can provide hooks to make that behave. |
| * |
| * Note that ACPI doesn't preclude putting these registers into |
| * "extended" areas of the chip, including some that we won't yet |
| * expect CMOS_READ and friends to handle. |
| */ |
| if (info) { |
| if (info->flags) |
| flags = info->flags; |
| if (info->address_space) |
| address_space = info->address_space; |
| |
| if (info->rtc_day_alarm && info->rtc_day_alarm < 128) |
| cmos_rtc.day_alrm = info->rtc_day_alarm; |
| if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128) |
| cmos_rtc.mon_alrm = info->rtc_mon_alarm; |
| if (info->rtc_century && info->rtc_century < 128) |
| cmos_rtc.century = info->rtc_century; |
| |
| if (info->wake_on && info->wake_off) { |
| cmos_rtc.wake_on = info->wake_on; |
| cmos_rtc.wake_off = info->wake_off; |
| } |
| } |
| |
| cmos_rtc.dev = dev; |
| dev_set_drvdata(dev, &cmos_rtc); |
| |
| cmos_rtc.rtc = devm_rtc_allocate_device(dev); |
| if (IS_ERR(cmos_rtc.rtc)) { |
| retval = PTR_ERR(cmos_rtc.rtc); |
| goto cleanup0; |
| } |
| |
| rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); |
| |
| spin_lock_irq(&rtc_lock); |
| |
| if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) { |
| /* force periodic irq to CMOS reset default of 1024Hz; |
| * |
| * REVISIT it's been reported that at least one x86_64 ALI |
| * mobo doesn't use 32KHz here ... for portability we might |
| * need to do something about other clock frequencies. |
| */ |
| cmos_rtc.rtc->irq_freq = 1024; |
| if (use_hpet_alarm()) |
| hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); |
| CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); |
| } |
| |
| /* disable irqs */ |
| if (is_valid_irq(rtc_irq)) |
| cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); |
| |
| rtc_control = CMOS_READ(RTC_CONTROL); |
| |
| spin_unlock_irq(&rtc_lock); |
| |
| if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { |
| dev_warn(dev, "only 24-hr supported\n"); |
| retval = -ENXIO; |
| goto cleanup1; |
| } |
| |
| if (use_hpet_alarm()) |
| hpet_rtc_timer_init(); |
| |
| if (is_valid_irq(rtc_irq)) { |
| irq_handler_t rtc_cmos_int_handler; |
| |
| if (use_hpet_alarm()) { |
| rtc_cmos_int_handler = hpet_rtc_interrupt; |
| retval = hpet_register_irq_handler(cmos_interrupt); |
| if (retval) { |
| hpet_mask_rtc_irq_bit(RTC_IRQMASK); |
| dev_warn(dev, "hpet_register_irq_handler " |
| " failed in rtc_init()."); |
| goto cleanup1; |
| } |
| } else |
| rtc_cmos_int_handler = cmos_interrupt; |
| |
| retval = request_irq(rtc_irq, rtc_cmos_int_handler, |
| IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev), |
| cmos_rtc.rtc); |
| if (retval < 0) { |
| dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); |
| goto cleanup1; |
| } |
| } |
| |
| cmos_rtc.rtc->ops = &cmos_rtc_ops; |
| cmos_rtc.rtc->nvram_old_abi = true; |
| retval = rtc_register_device(cmos_rtc.rtc); |
| if (retval) |
| goto cleanup2; |
| |
| /* export at least the first block of NVRAM */ |
| nvmem_cfg.size = address_space - NVRAM_OFFSET; |
| if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg)) |
| dev_err(dev, "nvmem registration failed\n"); |
| |
| dev_info(dev, "%s%s, %d bytes nvram%s\n", |
| !is_valid_irq(rtc_irq) ? "no alarms" : |
| cmos_rtc.mon_alrm ? "alarms up to one year" : |
| cmos_rtc.day_alrm ? "alarms up to one month" : |
| "alarms up to one day", |
| cmos_rtc.century ? ", y3k" : "", |
| nvmem_cfg.size, |
| use_hpet_alarm() ? ", hpet irqs" : ""); |
| |
| return 0; |
| |
| cleanup2: |
| if (is_valid_irq(rtc_irq)) |
| free_irq(rtc_irq, cmos_rtc.rtc); |
| cleanup1: |
| cmos_rtc.dev = NULL; |
| cleanup0: |
| if (RTC_IOMAPPED) |
| release_region(ports->start, resource_size(ports)); |
| else |
| release_mem_region(ports->start, resource_size(ports)); |
| return retval; |
| } |
| |
| static void cmos_do_shutdown(int rtc_irq) |
| { |
| spin_lock_irq(&rtc_lock); |
| if (is_valid_irq(rtc_irq)) |
| cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); |
| spin_unlock_irq(&rtc_lock); |
| } |
| |
| static void cmos_do_remove(struct device *dev) |
| { |
| struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| struct resource *ports; |
| |
| cmos_do_shutdown(cmos->irq); |
| |
| if (is_valid_irq(cmos->irq)) { |
| free_irq(cmos->irq, cmos->rtc); |
| if (use_hpet_alarm()) |
| hpet_unregister_irq_handler(cmos_interrupt); |
| } |
| |
| cmos->rtc = NULL; |
| |
| ports = cmos->iomem; |
| if (RTC_IOMAPPED) |
| release_region(ports->start, resource_size(ports)); |
| else |
| release_mem_region(ports->start, resource_size(ports)); |
| cmos->iomem = NULL; |
| |
| cmos->dev = NULL; |
| } |
| |
| static int cmos_aie_poweroff(struct device *dev) |
| { |
| struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| struct rtc_time now; |
| time64_t t_now; |
| int retval = 0; |
| unsigned char rtc_control; |
| |
| if (!cmos->alarm_expires) |
| return -EINVAL; |
| |
| spin_lock_irq(&rtc_lock); |
| rtc_control = CMOS_READ(RTC_CONTROL); |
| spin_unlock_irq(&rtc_lock); |
| |
| /* We only care about the situation where AIE is disabled. */ |
| if (rtc_control & RTC_AIE) |
| return -EBUSY; |
| |
| cmos_read_time(dev, &now); |
| t_now = rtc_tm_to_time64(&now); |
| |
| /* |
| * When enabling "RTC wake-up" in BIOS setup, the machine reboots |
| * automatically right after shutdown on some buggy boxes. |
| * This automatic rebooting issue won't happen when the alarm |
| * time is larger than now+1 seconds. |
| * |
| * If the alarm time is equal to now+1 seconds, the issue can be |
| * prevented by cancelling the alarm. |
| */ |
| if (cmos->alarm_expires == t_now + 1) { |
| struct rtc_wkalrm alarm; |
| |
| /* Cancel the AIE timer by configuring the past time. */ |
| rtc_time64_to_tm(t_now - 1, &alarm.time); |
| alarm.enabled = 0; |
| retval = cmos_set_alarm(dev, &alarm); |
| } else if (cmos->alarm_expires > t_now + 1) { |
| retval = -EBUSY; |
| } |
| |
| return retval; |
| } |
| |
| static int cmos_suspend(struct device *dev) |
| { |
| struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| unsigned char tmp; |
| |
| /* only the alarm might be a wakeup event source */ |
| spin_lock_irq(&rtc_lock); |
| cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); |
| if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { |
| unsigned char mask; |
| |
| if (device_may_wakeup(dev)) |
| mask = RTC_IRQMASK & ~RTC_AIE; |
| else |
| mask = RTC_IRQMASK; |
| tmp &= ~mask; |
| CMOS_WRITE(tmp, RTC_CONTROL); |
| if (use_hpet_alarm()) |
| hpet_mask_rtc_irq_bit(mask); |
| cmos_checkintr(cmos, tmp); |
| } |
| spin_unlock_irq(&rtc_lock); |
| |
| if ((tmp & RTC_AIE) && !use_acpi_alarm) { |
| cmos->enabled_wake = 1; |
| if (cmos->wake_on) |
| cmos->wake_on(dev); |
| else |
| enable_irq_wake(cmos->irq); |
| } |
| |
| cmos_read_alarm(dev, &cmos->saved_wkalrm); |
| |
| dev_dbg(dev, "suspend%s, ctrl %02x\n", |
| (tmp & RTC_AIE) ? ", alarm may wake" : "", |
| tmp); |
| |
| return 0; |
| } |
| |
| /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even |
| * after a detour through G3 "mechanical off", although the ACPI spec |
| * says wakeup should only work from G1/S4 "hibernate". To most users, |
| * distinctions between S4 and S5 are pointless. So when the hardware |
| * allows, don't draw that distinction. |
| */ |
| static inline int cmos_poweroff(struct device *dev) |
| { |
| if (!IS_ENABLED(CONFIG_PM)) |
| return -ENOSYS; |
| |
| return cmos_suspend(dev); |
| } |
| |
| static void cmos_check_wkalrm(struct device *dev) |
| { |
| struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| struct rtc_wkalrm current_alarm; |
| time64_t t_now; |
| time64_t t_current_expires; |
| time64_t t_saved_expires; |
| struct rtc_time now; |
| |
| /* Check if we have RTC Alarm armed */ |
| if (!(cmos->suspend_ctrl & RTC_AIE)) |
| return; |
| |
| cmos_read_time(dev, &now); |
| t_now = rtc_tm_to_time64(&now); |
| |
| /* |
| * ACPI RTC wake event is cleared after resume from STR, |
| * ACK the rtc irq here |
| */ |
| if (t_now >= cmos->alarm_expires && use_acpi_alarm) { |
| cmos_interrupt(0, (void *)cmos->rtc); |
| return; |
| } |
| |
| cmos_read_alarm(dev, ¤t_alarm); |
| t_current_expires = rtc_tm_to_time64(¤t_alarm.time); |
| t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time); |
| if (t_current_expires != t_saved_expires || |
| cmos->saved_wkalrm.enabled != current_alarm.enabled) { |
| cmos_set_alarm(dev, &cmos->saved_wkalrm); |
| } |
| } |
| |
| static void cmos_check_acpi_rtc_status(struct device *dev, |
| unsigned char *rtc_control); |
| |
| static int __maybe_unused cmos_resume(struct device *dev) |
| { |
| struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| unsigned char tmp; |
| |
| if (cmos->enabled_wake && !use_acpi_alarm) { |
| if (cmos->wake_off) |
| cmos->wake_off(dev); |
| else |
| disable_irq_wake(cmos->irq); |
| cmos->enabled_wake = 0; |
| } |
| |
| /* The BIOS might have changed the alarm, restore it */ |
| cmos_check_wkalrm(dev); |
| |
| spin_lock_irq(&rtc_lock); |
| tmp = cmos->suspend_ctrl; |
| cmos->suspend_ctrl = 0; |
| /* re-enable any irqs previously active */ |
| if (tmp & RTC_IRQMASK) { |
| unsigned char mask; |
| |
| if (device_may_wakeup(dev) && use_hpet_alarm()) |
| hpet_rtc_timer_init(); |
| |
| do { |
| CMOS_WRITE(tmp, RTC_CONTROL); |
| if (use_hpet_alarm()) |
| hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); |
| |
| mask = CMOS_READ(RTC_INTR_FLAGS); |
| mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; |
| if (!use_hpet_alarm() || !is_intr(mask)) |
| break; |
| |
| /* force one-shot behavior if HPET blocked |
| * the wake alarm's irq |
| */ |
| rtc_update_irq(cmos->rtc, 1, mask); |
| tmp &= ~RTC_AIE; |
| hpet_mask_rtc_irq_bit(RTC_AIE); |
| } while (mask & RTC_AIE); |
| |
| if (tmp & RTC_AIE) |
| cmos_check_acpi_rtc_status(dev, &tmp); |
| } |
| spin_unlock_irq(&rtc_lock); |
| |
| dev_dbg(dev, "resume, ctrl %02x\n", tmp); |
| |
| return 0; |
| } |
| |
| static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); |
| |
| /*----------------------------------------------------------------*/ |
| |
| /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. |
| * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs |
| * probably list them in similar PNPBIOS tables; so PNP is more common. |
| * |
| * We don't use legacy "poke at the hardware" probing. Ancient PCs that |
| * predate even PNPBIOS should set up platform_bus devices. |
| */ |
| |
| #ifdef CONFIG_ACPI |
| |
| #include <linux/acpi.h> |
| |
| static u32 rtc_handler(void *context) |
| { |
| struct device *dev = context; |
| struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| unsigned char rtc_control = 0; |
| unsigned char rtc_intr; |
| unsigned long flags; |
| |
| |
| /* |
| * Always update rtc irq when ACPI is used as RTC Alarm. |
| * Or else, ACPI SCI is enabled during suspend/resume only, |
| * update rtc irq in that case. |
| */ |
| if (use_acpi_alarm) |
| cmos_interrupt(0, (void *)cmos->rtc); |
| else { |
| /* Fix me: can we use cmos_interrupt() here as well? */ |
| spin_lock_irqsave(&rtc_lock, flags); |
| if (cmos_rtc.suspend_ctrl) |
| rtc_control = CMOS_READ(RTC_CONTROL); |
| if (rtc_control & RTC_AIE) { |
| cmos_rtc.suspend_ctrl &= ~RTC_AIE; |
| CMOS_WRITE(rtc_control, RTC_CONTROL); |
| rtc_intr = CMOS_READ(RTC_INTR_FLAGS); |
| rtc_update_irq(cmos->rtc, 1, rtc_intr); |
| } |
| spin_unlock_irqrestore(&rtc_lock, flags); |
| } |
| |
| pm_wakeup_hard_event(dev); |
| acpi_clear_event(ACPI_EVENT_RTC); |
| acpi_disable_event(ACPI_EVENT_RTC, 0); |
| return ACPI_INTERRUPT_HANDLED; |
| } |
| |
| static inline void rtc_wake_setup(struct device *dev) |
| { |
| acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev); |
| /* |
| * After the RTC handler is installed, the Fixed_RTC event should |
| * be disabled. Only when the RTC alarm is set will it be enabled. |
| */ |
| acpi_clear_event(ACPI_EVENT_RTC); |
| acpi_disable_event(ACPI_EVENT_RTC, 0); |
| } |
| |
| static void rtc_wake_on(struct device *dev) |
| { |
| acpi_clear_event(ACPI_EVENT_RTC); |
| acpi_enable_event(ACPI_EVENT_RTC, 0); |
| } |
| |
| static void rtc_wake_off(struct device *dev) |
| { |
| acpi_disable_event(ACPI_EVENT_RTC, 0); |
| } |
| |
| /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find |
| * its device node and pass extra config data. This helps its driver use |
| * capabilities that the now-obsolete mc146818 didn't have, and informs it |
| * that this board's RTC is wakeup-capable (per ACPI spec). |
| */ |
| static struct cmos_rtc_board_info acpi_rtc_info; |
| |
| static void cmos_wake_setup(struct device *dev) |
| { |
| if (acpi_disabled) |
| return; |
| |
| rtc_wake_setup(dev); |
| acpi_rtc_info.wake_on = rtc_wake_on; |
| acpi_rtc_info.wake_off = rtc_wake_off; |
| |
| /* workaround bug in some ACPI tables */ |
| if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { |
| dev_dbg(dev, "bogus FADT month_alarm (%d)\n", |
| acpi_gbl_FADT.month_alarm); |
| acpi_gbl_FADT.month_alarm = 0; |
| } |
| |
| acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm; |
| acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm; |
| acpi_rtc_info.rtc_century = acpi_gbl_FADT.century; |
| |
| /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */ |
| if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) |
| dev_info(dev, "RTC can wake from S4\n"); |
| |
| dev->platform_data = &acpi_rtc_info; |
| |
| /* RTC always wakes from S1/S2/S3, and often S4/STD */ |
| device_init_wakeup(dev, 1); |
| } |
| |
| static void cmos_check_acpi_rtc_status(struct device *dev, |
| unsigned char *rtc_control) |
| { |
| struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| acpi_event_status rtc_status; |
| acpi_status status; |
| |
| if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC) |
| return; |
| |
| status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status); |
| if (ACPI_FAILURE(status)) { |
| dev_err(dev, "Could not get RTC status\n"); |
| } else if (rtc_status & ACPI_EVENT_FLAG_SET) { |
| unsigned char mask; |
| *rtc_control &= ~RTC_AIE; |
| CMOS_WRITE(*rtc_control, RTC_CONTROL); |
| mask = CMOS_READ(RTC_INTR_FLAGS); |
| rtc_update_irq(cmos->rtc, 1, mask); |
| } |
| } |
| |
| #else |
| |
| static void cmos_wake_setup(struct device *dev) |
| { |
| } |
| |
| static void cmos_check_acpi_rtc_status(struct device *dev, |
| unsigned char *rtc_control) |
| { |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_PNP |
| |
| #include <linux/pnp.h> |
| |
| static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) |
| { |
| cmos_wake_setup(&pnp->dev); |
| |
| if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) { |
| unsigned int irq = 0; |
| #ifdef CONFIG_X86 |
| /* Some machines contain a PNP entry for the RTC, but |
| * don't define the IRQ. It should always be safe to |
| * hardcode it on systems with a legacy PIC. |
| */ |
| if (nr_legacy_irqs()) |
| irq = 8; |
| #endif |
| return cmos_do_probe(&pnp->dev, |
| pnp_get_resource(pnp, IORESOURCE_IO, 0), irq); |
| } else { |
| return cmos_do_probe(&pnp->dev, |
| pnp_get_resource(pnp, IORESOURCE_IO, 0), |
| pnp_irq(pnp, 0)); |
| } |
| } |
| |
| static void cmos_pnp_remove(struct pnp_dev *pnp) |
| { |
| cmos_do_remove(&pnp->dev); |
| } |
| |
| static void cmos_pnp_shutdown(struct pnp_dev *pnp) |
| { |
| struct device *dev = &pnp->dev; |
| struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| |
| if (system_state == SYSTEM_POWER_OFF) { |
| int retval = cmos_poweroff(dev); |
| |
| if (cmos_aie_poweroff(dev) < 0 && !retval) |
| return; |
| } |
| |
| cmos_do_shutdown(cmos->irq); |
| } |
| |
| static const struct pnp_device_id rtc_ids[] = { |
| { .id = "PNP0b00", }, |
| { .id = "PNP0b01", }, |
| { .id = "PNP0b02", }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(pnp, rtc_ids); |
| |
| static struct pnp_driver cmos_pnp_driver = { |
| .name = (char *) driver_name, |
| .id_table = rtc_ids, |
| .probe = cmos_pnp_probe, |
| .remove = cmos_pnp_remove, |
| .shutdown = cmos_pnp_shutdown, |
| |
| /* flag ensures resume() gets called, and stops syslog spam */ |
| .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, |
| .driver = { |
| .pm = &cmos_pm_ops, |
| }, |
| }; |
| |
| #endif /* CONFIG_PNP */ |
| |
| #ifdef CONFIG_OF |
| static const struct of_device_id of_cmos_match[] = { |
| { |
| .compatible = "motorola,mc146818", |
| }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(of, of_cmos_match); |
| |
| static __init void cmos_of_init(struct platform_device *pdev) |
| { |
| struct device_node *node = pdev->dev.of_node; |
| const __be32 *val; |
| |
| if (!node) |
| return; |
| |
| val = of_get_property(node, "ctrl-reg", NULL); |
| if (val) |
| CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); |
| |
| val = of_get_property(node, "freq-reg", NULL); |
| if (val) |
| CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); |
| } |
| #else |
| static inline void cmos_of_init(struct platform_device *pdev) {} |
| #endif |
| /*----------------------------------------------------------------*/ |
| |
| /* Platform setup should have set up an RTC device, when PNP is |
| * unavailable ... this could happen even on (older) PCs. |
| */ |
| |
| static int __init cmos_platform_probe(struct platform_device *pdev) |
| { |
| struct resource *resource; |
| int irq; |
| |
| cmos_of_init(pdev); |
| cmos_wake_setup(&pdev->dev); |
| |
| if (RTC_IOMAPPED) |
| resource = platform_get_resource(pdev, IORESOURCE_IO, 0); |
| else |
| resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| irq = -1; |
| |
| return cmos_do_probe(&pdev->dev, resource, irq); |
| } |
| |
| static int cmos_platform_remove(struct platform_device *pdev) |
| { |
| cmos_do_remove(&pdev->dev); |
| return 0; |
| } |
| |
| static void cmos_platform_shutdown(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct cmos_rtc *cmos = dev_get_drvdata(dev); |
| |
| if (system_state == SYSTEM_POWER_OFF) { |
| int retval = cmos_poweroff(dev); |
| |
| if (cmos_aie_poweroff(dev) < 0 && !retval) |
| return; |
| } |
| |
| cmos_do_shutdown(cmos->irq); |
| } |
| |
| /* work with hotplug and coldplug */ |
| MODULE_ALIAS("platform:rtc_cmos"); |
| |
| static struct platform_driver cmos_platform_driver = { |
| .remove = cmos_platform_remove, |
| .shutdown = cmos_platform_shutdown, |
| .driver = { |
| .name = driver_name, |
| .pm = &cmos_pm_ops, |
| .of_match_table = of_match_ptr(of_cmos_match), |
| } |
| }; |
| |
| #ifdef CONFIG_PNP |
| static bool pnp_driver_registered; |
| #endif |
| static bool platform_driver_registered; |
| |
| static int __init cmos_init(void) |
| { |
| int retval = 0; |
| |
| #ifdef CONFIG_PNP |
| retval = pnp_register_driver(&cmos_pnp_driver); |
| if (retval == 0) |
| pnp_driver_registered = true; |
| #endif |
| |
| if (!cmos_rtc.dev) { |
| retval = platform_driver_probe(&cmos_platform_driver, |
| cmos_platform_probe); |
| if (retval == 0) |
| platform_driver_registered = true; |
| } |
| |
| if (retval == 0) |
| return 0; |
| |
| #ifdef CONFIG_PNP |
| if (pnp_driver_registered) |
| pnp_unregister_driver(&cmos_pnp_driver); |
| #endif |
| return retval; |
| } |
| module_init(cmos_init); |
| |
| static void __exit cmos_exit(void) |
| { |
| #ifdef CONFIG_PNP |
| if (pnp_driver_registered) |
| pnp_unregister_driver(&cmos_pnp_driver); |
| #endif |
| if (platform_driver_registered) |
| platform_driver_unregister(&cmos_platform_driver); |
| } |
| module_exit(cmos_exit); |
| |
| |
| MODULE_AUTHOR("David Brownell"); |
| MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); |
| MODULE_LICENSE("GPL"); |