| #ifndef _ASM_X86_MMU_CONTEXT_H | 
 | #define _ASM_X86_MMU_CONTEXT_H | 
 |  | 
 | #include <asm/desc.h> | 
 | #include <linux/atomic.h> | 
 | #include <linux/mm_types.h> | 
 | #include <linux/pkeys.h> | 
 |  | 
 | #include <trace/events/tlb.h> | 
 |  | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/paravirt.h> | 
 | #include <asm/mpx.h> | 
 | #ifndef CONFIG_PARAVIRT | 
 | static inline void paravirt_activate_mm(struct mm_struct *prev, | 
 | 					struct mm_struct *next) | 
 | { | 
 | } | 
 | #endif	/* !CONFIG_PARAVIRT */ | 
 |  | 
 | #ifdef CONFIG_PERF_EVENTS | 
 | extern struct static_key rdpmc_always_available; | 
 |  | 
 | static inline void load_mm_cr4(struct mm_struct *mm) | 
 | { | 
 | 	if (static_key_false(&rdpmc_always_available) || | 
 | 	    atomic_read(&mm->context.perf_rdpmc_allowed)) | 
 | 		cr4_set_bits(X86_CR4_PCE); | 
 | 	else | 
 | 		cr4_clear_bits(X86_CR4_PCE); | 
 | } | 
 | #else | 
 | static inline void load_mm_cr4(struct mm_struct *mm) {} | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_MODIFY_LDT_SYSCALL | 
 | /* | 
 |  * ldt_structs can be allocated, used, and freed, but they are never | 
 |  * modified while live. | 
 |  */ | 
 | struct ldt_struct { | 
 | 	/* | 
 | 	 * Xen requires page-aligned LDTs with special permissions.  This is | 
 | 	 * needed to prevent us from installing evil descriptors such as | 
 | 	 * call gates.  On native, we could merge the ldt_struct and LDT | 
 | 	 * allocations, but it's not worth trying to optimize. | 
 | 	 */ | 
 | 	struct desc_struct *entries; | 
 | 	unsigned int nr_entries; | 
 | }; | 
 |  | 
 | /* | 
 |  * Used for LDT copy/destruction. | 
 |  */ | 
 | int init_new_context_ldt(struct task_struct *tsk, struct mm_struct *mm); | 
 | void destroy_context_ldt(struct mm_struct *mm); | 
 | #else	/* CONFIG_MODIFY_LDT_SYSCALL */ | 
 | static inline int init_new_context_ldt(struct task_struct *tsk, | 
 | 				       struct mm_struct *mm) | 
 | { | 
 | 	return 0; | 
 | } | 
 | static inline void destroy_context_ldt(struct mm_struct *mm) {} | 
 | #endif | 
 |  | 
 | static inline void load_mm_ldt(struct mm_struct *mm) | 
 | { | 
 | #ifdef CONFIG_MODIFY_LDT_SYSCALL | 
 | 	struct ldt_struct *ldt; | 
 |  | 
 | 	/* lockless_dereference synchronizes with smp_store_release */ | 
 | 	ldt = lockless_dereference(mm->context.ldt); | 
 |  | 
 | 	/* | 
 | 	 * Any change to mm->context.ldt is followed by an IPI to all | 
 | 	 * CPUs with the mm active.  The LDT will not be freed until | 
 | 	 * after the IPI is handled by all such CPUs.  This means that, | 
 | 	 * if the ldt_struct changes before we return, the values we see | 
 | 	 * will be safe, and the new values will be loaded before we run | 
 | 	 * any user code. | 
 | 	 * | 
 | 	 * NB: don't try to convert this to use RCU without extreme care. | 
 | 	 * We would still need IRQs off, because we don't want to change | 
 | 	 * the local LDT after an IPI loaded a newer value than the one | 
 | 	 * that we can see. | 
 | 	 */ | 
 |  | 
 | 	if (unlikely(ldt)) | 
 | 		set_ldt(ldt->entries, ldt->nr_entries); | 
 | 	else | 
 | 		clear_LDT(); | 
 | #else | 
 | 	clear_LDT(); | 
 | #endif | 
 | } | 
 |  | 
 | static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next) | 
 | { | 
 | #ifdef CONFIG_MODIFY_LDT_SYSCALL | 
 | 	/* | 
 | 	 * Load the LDT if either the old or new mm had an LDT. | 
 | 	 * | 
 | 	 * An mm will never go from having an LDT to not having an LDT.  Two | 
 | 	 * mms never share an LDT, so we don't gain anything by checking to | 
 | 	 * see whether the LDT changed.  There's also no guarantee that | 
 | 	 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL, | 
 | 	 * then prev->context.ldt will also be non-NULL. | 
 | 	 * | 
 | 	 * If we really cared, we could optimize the case where prev == next | 
 | 	 * and we're exiting lazy mode.  Most of the time, if this happens, | 
 | 	 * we don't actually need to reload LDTR, but modify_ldt() is mostly | 
 | 	 * used by legacy code and emulators where we don't need this level of | 
 | 	 * performance. | 
 | 	 * | 
 | 	 * This uses | instead of || because it generates better code. | 
 | 	 */ | 
 | 	if (unlikely((unsigned long)prev->context.ldt | | 
 | 		     (unsigned long)next->context.ldt)) | 
 | 		load_mm_ldt(next); | 
 | #endif | 
 |  | 
 | 	DEBUG_LOCKS_WARN_ON(preemptible()); | 
 | } | 
 |  | 
 | static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) | 
 | { | 
 | 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) | 
 | 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY); | 
 | } | 
 |  | 
 | static inline int init_new_context(struct task_struct *tsk, | 
 | 				   struct mm_struct *mm) | 
 | { | 
 | 	#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS | 
 | 	if (cpu_feature_enabled(X86_FEATURE_OSPKE)) { | 
 | 		/* pkey 0 is the default and always allocated */ | 
 | 		mm->context.pkey_allocation_map = 0x1; | 
 | 		/* -1 means unallocated or invalid */ | 
 | 		mm->context.execute_only_pkey = -1; | 
 | 	} | 
 | 	#endif | 
 | 	return init_new_context_ldt(tsk, mm); | 
 | } | 
 | static inline void destroy_context(struct mm_struct *mm) | 
 | { | 
 | 	destroy_context_ldt(mm); | 
 | } | 
 |  | 
 | extern void switch_mm(struct mm_struct *prev, struct mm_struct *next, | 
 | 		      struct task_struct *tsk); | 
 |  | 
 | extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, | 
 | 			       struct task_struct *tsk); | 
 | #define switch_mm_irqs_off switch_mm_irqs_off | 
 |  | 
 | #define activate_mm(prev, next)			\ | 
 | do {						\ | 
 | 	paravirt_activate_mm((prev), (next));	\ | 
 | 	switch_mm((prev), (next), NULL);	\ | 
 | } while (0); | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | #define deactivate_mm(tsk, mm)			\ | 
 | do {						\ | 
 | 	lazy_load_gs(0);			\ | 
 | } while (0) | 
 | #else | 
 | #define deactivate_mm(tsk, mm)			\ | 
 | do {						\ | 
 | 	load_gs_index(0);			\ | 
 | 	loadsegment(fs, 0);			\ | 
 | } while (0) | 
 | #endif | 
 |  | 
 | static inline void arch_dup_mmap(struct mm_struct *oldmm, | 
 | 				 struct mm_struct *mm) | 
 | { | 
 | 	paravirt_arch_dup_mmap(oldmm, mm); | 
 | } | 
 |  | 
 | static inline void arch_exit_mmap(struct mm_struct *mm) | 
 | { | 
 | 	paravirt_arch_exit_mmap(mm); | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | static inline bool is_64bit_mm(struct mm_struct *mm) | 
 | { | 
 | 	return	!IS_ENABLED(CONFIG_IA32_EMULATION) || | 
 | 		!(mm->context.ia32_compat == TIF_IA32); | 
 | } | 
 | #else | 
 | static inline bool is_64bit_mm(struct mm_struct *mm) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif | 
 |  | 
 | static inline void arch_bprm_mm_init(struct mm_struct *mm, | 
 | 		struct vm_area_struct *vma) | 
 | { | 
 | 	mpx_mm_init(mm); | 
 | } | 
 |  | 
 | static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 			      unsigned long start, unsigned long end) | 
 | { | 
 | 	/* | 
 | 	 * mpx_notify_unmap() goes and reads a rarely-hot | 
 | 	 * cacheline in the mm_struct.  That can be expensive | 
 | 	 * enough to be seen in profiles. | 
 | 	 * | 
 | 	 * The mpx_notify_unmap() call and its contents have been | 
 | 	 * observed to affect munmap() performance on hardware | 
 | 	 * where MPX is not present. | 
 | 	 * | 
 | 	 * The unlikely() optimizes for the fast case: no MPX | 
 | 	 * in the CPU, or no MPX use in the process.  Even if | 
 | 	 * we get this wrong (in the unlikely event that MPX | 
 | 	 * is widely enabled on some system) the overhead of | 
 | 	 * MPX itself (reading bounds tables) is expected to | 
 | 	 * overwhelm the overhead of getting this unlikely() | 
 | 	 * consistently wrong. | 
 | 	 */ | 
 | 	if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX))) | 
 | 		mpx_notify_unmap(mm, vma, start, end); | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS | 
 | static inline int vma_pkey(struct vm_area_struct *vma) | 
 | { | 
 | 	unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 | | 
 | 				      VM_PKEY_BIT2 | VM_PKEY_BIT3; | 
 |  | 
 | 	return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT; | 
 | } | 
 | #else | 
 | static inline int vma_pkey(struct vm_area_struct *vma) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * We only want to enforce protection keys on the current process | 
 |  * because we effectively have no access to PKRU for other | 
 |  * processes or any way to tell *which * PKRU in a threaded | 
 |  * process we could use. | 
 |  * | 
 |  * So do not enforce things if the VMA is not from the current | 
 |  * mm, or if we are in a kernel thread. | 
 |  */ | 
 | static inline bool vma_is_foreign(struct vm_area_struct *vma) | 
 | { | 
 | 	if (!current->mm) | 
 | 		return true; | 
 | 	/* | 
 | 	 * Should PKRU be enforced on the access to this VMA?  If | 
 | 	 * the VMA is from another process, then PKRU has no | 
 | 	 * relevance and should not be enforced. | 
 | 	 */ | 
 | 	if (current->mm != vma->vm_mm) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static inline bool arch_vma_access_permitted(struct vm_area_struct *vma, | 
 | 		bool write, bool execute, bool foreign) | 
 | { | 
 | 	/* pkeys never affect instruction fetches */ | 
 | 	if (execute) | 
 | 		return true; | 
 | 	/* allow access if the VMA is not one from this process */ | 
 | 	if (foreign || vma_is_foreign(vma)) | 
 | 		return true; | 
 | 	return __pkru_allows_pkey(vma_pkey(vma), write); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * This can be used from process context to figure out what the value of | 
 |  * CR3 is without needing to do a (slow) __read_cr3(). | 
 |  * | 
 |  * It's intended to be used for code like KVM that sneakily changes CR3 | 
 |  * and needs to restore it.  It needs to be used very carefully. | 
 |  */ | 
 | static inline unsigned long __get_current_cr3_fast(void) | 
 | { | 
 | 	unsigned long cr3 = __pa(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd); | 
 |  | 
 | 	/* For now, be very restrictive about when this can be called. */ | 
 | 	VM_WARN_ON(in_nmi() || preemptible()); | 
 |  | 
 | 	VM_BUG_ON(cr3 != __read_cr3()); | 
 | 	return cr3; | 
 | } | 
 |  | 
 | #endif /* _ASM_X86_MMU_CONTEXT_H */ |