| /* |
| * Device probing and sysfs code. |
| * |
| * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software Foundation, |
| * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/wait.h> |
| #include <linux/errno.h> |
| #include <linux/kthread.h> |
| #include <linux/device.h> |
| #include <linux/delay.h> |
| #include <linux/idr.h> |
| #include <linux/rwsem.h> |
| #include <asm/semaphore.h> |
| #include <linux/ctype.h> |
| #include "fw-transaction.h" |
| #include "fw-topology.h" |
| #include "fw-device.h" |
| |
| void fw_csr_iterator_init(struct fw_csr_iterator *ci, u32 * p) |
| { |
| ci->p = p + 1; |
| ci->end = ci->p + (p[0] >> 16); |
| } |
| EXPORT_SYMBOL(fw_csr_iterator_init); |
| |
| int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value) |
| { |
| *key = *ci->p >> 24; |
| *value = *ci->p & 0xffffff; |
| |
| return ci->p++ < ci->end; |
| } |
| EXPORT_SYMBOL(fw_csr_iterator_next); |
| |
| static int is_fw_unit(struct device *dev); |
| |
| static int match_unit_directory(u32 * directory, const struct fw_device_id *id) |
| { |
| struct fw_csr_iterator ci; |
| int key, value, match; |
| |
| match = 0; |
| fw_csr_iterator_init(&ci, directory); |
| while (fw_csr_iterator_next(&ci, &key, &value)) { |
| if (key == CSR_VENDOR && value == id->vendor) |
| match |= FW_MATCH_VENDOR; |
| if (key == CSR_MODEL && value == id->model) |
| match |= FW_MATCH_MODEL; |
| if (key == CSR_SPECIFIER_ID && value == id->specifier_id) |
| match |= FW_MATCH_SPECIFIER_ID; |
| if (key == CSR_VERSION && value == id->version) |
| match |= FW_MATCH_VERSION; |
| } |
| |
| return (match & id->match_flags) == id->match_flags; |
| } |
| |
| static int fw_unit_match(struct device *dev, struct device_driver *drv) |
| { |
| struct fw_unit *unit = fw_unit(dev); |
| struct fw_driver *driver = fw_driver(drv); |
| int i; |
| |
| /* We only allow binding to fw_units. */ |
| if (!is_fw_unit(dev)) |
| return 0; |
| |
| for (i = 0; driver->id_table[i].match_flags != 0; i++) { |
| if (match_unit_directory(unit->directory, &driver->id_table[i])) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size) |
| { |
| struct fw_device *device = fw_device(unit->device.parent); |
| struct fw_csr_iterator ci; |
| |
| int key, value; |
| int vendor = 0; |
| int model = 0; |
| int specifier_id = 0; |
| int version = 0; |
| |
| fw_csr_iterator_init(&ci, &device->config_rom[5]); |
| while (fw_csr_iterator_next(&ci, &key, &value)) { |
| switch (key) { |
| case CSR_VENDOR: |
| vendor = value; |
| break; |
| case CSR_MODEL: |
| model = value; |
| break; |
| } |
| } |
| |
| fw_csr_iterator_init(&ci, unit->directory); |
| while (fw_csr_iterator_next(&ci, &key, &value)) { |
| switch (key) { |
| case CSR_SPECIFIER_ID: |
| specifier_id = value; |
| break; |
| case CSR_VERSION: |
| version = value; |
| break; |
| } |
| } |
| |
| return snprintf(buffer, buffer_size, |
| "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", |
| vendor, model, specifier_id, version); |
| } |
| |
| static int |
| fw_unit_uevent(struct device *dev, char **envp, int num_envp, |
| char *buffer, int buffer_size) |
| { |
| struct fw_unit *unit = fw_unit(dev); |
| char modalias[64]; |
| int length = 0; |
| int i = 0; |
| |
| get_modalias(unit, modalias, sizeof modalias); |
| |
| if (add_uevent_var(envp, num_envp, &i, |
| buffer, buffer_size, &length, |
| "MODALIAS=%s", modalias)) |
| return -ENOMEM; |
| |
| envp[i] = NULL; |
| |
| return 0; |
| } |
| |
| struct bus_type fw_bus_type = { |
| .name = "firewire", |
| .match = fw_unit_match, |
| }; |
| EXPORT_SYMBOL(fw_bus_type); |
| |
| struct fw_device *fw_device_get(struct fw_device *device) |
| { |
| get_device(&device->device); |
| |
| return device; |
| } |
| |
| void fw_device_put(struct fw_device *device) |
| { |
| put_device(&device->device); |
| } |
| |
| static void fw_device_release(struct device *dev) |
| { |
| struct fw_device *device = fw_device(dev); |
| unsigned long flags; |
| |
| /* |
| * Take the card lock so we don't set this to NULL while a |
| * FW_NODE_UPDATED callback is being handled. |
| */ |
| spin_lock_irqsave(&device->card->lock, flags); |
| device->node->data = NULL; |
| spin_unlock_irqrestore(&device->card->lock, flags); |
| |
| fw_node_put(device->node); |
| fw_card_put(device->card); |
| kfree(device->config_rom); |
| kfree(device); |
| } |
| |
| int fw_device_enable_phys_dma(struct fw_device *device) |
| { |
| return device->card->driver->enable_phys_dma(device->card, |
| device->node_id, |
| device->generation); |
| } |
| EXPORT_SYMBOL(fw_device_enable_phys_dma); |
| |
| struct config_rom_attribute { |
| struct device_attribute attr; |
| u32 key; |
| }; |
| |
| static ssize_t |
| show_immediate(struct device *dev, struct device_attribute *dattr, char *buf) |
| { |
| struct config_rom_attribute *attr = |
| container_of(dattr, struct config_rom_attribute, attr); |
| struct fw_csr_iterator ci; |
| u32 *dir; |
| int key, value; |
| |
| if (is_fw_unit(dev)) |
| dir = fw_unit(dev)->directory; |
| else |
| dir = fw_device(dev)->config_rom + 5; |
| |
| fw_csr_iterator_init(&ci, dir); |
| while (fw_csr_iterator_next(&ci, &key, &value)) |
| if (attr->key == key) |
| return snprintf(buf, buf ? PAGE_SIZE : 0, |
| "0x%06x\n", value); |
| |
| return -ENOENT; |
| } |
| |
| #define IMMEDIATE_ATTR(name, key) \ |
| { __ATTR(name, S_IRUGO, show_immediate, NULL), key } |
| |
| static ssize_t |
| show_text_leaf(struct device *dev, struct device_attribute *dattr, char *buf) |
| { |
| struct config_rom_attribute *attr = |
| container_of(dattr, struct config_rom_attribute, attr); |
| struct fw_csr_iterator ci; |
| u32 *dir, *block = NULL, *p, *end; |
| int length, key, value, last_key = 0; |
| char *b; |
| |
| if (is_fw_unit(dev)) |
| dir = fw_unit(dev)->directory; |
| else |
| dir = fw_device(dev)->config_rom + 5; |
| |
| fw_csr_iterator_init(&ci, dir); |
| while (fw_csr_iterator_next(&ci, &key, &value)) { |
| if (attr->key == last_key && |
| key == (CSR_DESCRIPTOR | CSR_LEAF)) |
| block = ci.p - 1 + value; |
| last_key = key; |
| } |
| |
| if (block == NULL) |
| return -ENOENT; |
| |
| length = min(block[0] >> 16, 256U); |
| if (length < 3) |
| return -ENOENT; |
| |
| if (block[1] != 0 || block[2] != 0) |
| /* Unknown encoding. */ |
| return -ENOENT; |
| |
| if (buf == NULL) |
| return length * 4; |
| |
| b = buf; |
| end = &block[length + 1]; |
| for (p = &block[3]; p < end; p++, b += 4) |
| * (u32 *) b = (__force u32) __cpu_to_be32(*p); |
| |
| /* Strip trailing whitespace and add newline. */ |
| while (b--, (isspace(*b) || *b == '\0') && b > buf); |
| strcpy(b + 1, "\n"); |
| |
| return b + 2 - buf; |
| } |
| |
| #define TEXT_LEAF_ATTR(name, key) \ |
| { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key } |
| |
| static struct config_rom_attribute config_rom_attributes[] = { |
| IMMEDIATE_ATTR(vendor, CSR_VENDOR), |
| IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION), |
| IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID), |
| IMMEDIATE_ATTR(version, CSR_VERSION), |
| IMMEDIATE_ATTR(model, CSR_MODEL), |
| TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR), |
| TEXT_LEAF_ATTR(model_name, CSR_MODEL), |
| TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION), |
| }; |
| |
| static void |
| init_fw_attribute_group(struct device *dev, |
| struct device_attribute *attrs, |
| struct fw_attribute_group *group) |
| { |
| struct device_attribute *attr; |
| int i, j; |
| |
| for (j = 0; attrs[j].attr.name != NULL; j++) |
| group->attrs[j] = &attrs[j].attr; |
| |
| for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) { |
| attr = &config_rom_attributes[i].attr; |
| if (attr->show(dev, attr, NULL) < 0) |
| continue; |
| group->attrs[j++] = &attr->attr; |
| } |
| |
| BUG_ON(j >= ARRAY_SIZE(group->attrs)); |
| group->attrs[j++] = NULL; |
| group->groups[0] = &group->group; |
| group->groups[1] = NULL; |
| group->group.attrs = group->attrs; |
| dev->groups = group->groups; |
| } |
| |
| static ssize_t |
| modalias_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct fw_unit *unit = fw_unit(dev); |
| int length; |
| |
| length = get_modalias(unit, buf, PAGE_SIZE); |
| strcpy(buf + length, "\n"); |
| |
| return length + 1; |
| } |
| |
| static ssize_t |
| rom_index_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct fw_device *device = fw_device(dev->parent); |
| struct fw_unit *unit = fw_unit(dev); |
| |
| return snprintf(buf, PAGE_SIZE, "%d\n", |
| (int)(unit->directory - device->config_rom)); |
| } |
| |
| static struct device_attribute fw_unit_attributes[] = { |
| __ATTR_RO(modalias), |
| __ATTR_RO(rom_index), |
| __ATTR_NULL, |
| }; |
| |
| static ssize_t |
| config_rom_show(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| struct fw_device *device = fw_device(dev); |
| |
| memcpy(buf, device->config_rom, device->config_rom_length * 4); |
| |
| return device->config_rom_length * 4; |
| } |
| |
| static ssize_t |
| guid_show(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| struct fw_device *device = fw_device(dev); |
| u64 guid; |
| |
| guid = ((u64)device->config_rom[3] << 32) | device->config_rom[4]; |
| |
| return snprintf(buf, PAGE_SIZE, "0x%016llx\n", |
| (unsigned long long)guid); |
| } |
| |
| static struct device_attribute fw_device_attributes[] = { |
| __ATTR_RO(config_rom), |
| __ATTR_RO(guid), |
| __ATTR_NULL, |
| }; |
| |
| struct read_quadlet_callback_data { |
| struct completion done; |
| int rcode; |
| u32 data; |
| }; |
| |
| static void |
| complete_transaction(struct fw_card *card, int rcode, |
| void *payload, size_t length, void *data) |
| { |
| struct read_quadlet_callback_data *callback_data = data; |
| |
| if (rcode == RCODE_COMPLETE) |
| callback_data->data = be32_to_cpu(*(__be32 *)payload); |
| callback_data->rcode = rcode; |
| complete(&callback_data->done); |
| } |
| |
| static int read_rom(struct fw_device *device, int index, u32 * data) |
| { |
| struct read_quadlet_callback_data callback_data; |
| struct fw_transaction t; |
| u64 offset; |
| |
| init_completion(&callback_data.done); |
| |
| offset = 0xfffff0000400ULL + index * 4; |
| fw_send_request(device->card, &t, TCODE_READ_QUADLET_REQUEST, |
| device->node_id, |
| device->generation, SCODE_100, |
| offset, NULL, 4, complete_transaction, &callback_data); |
| |
| wait_for_completion(&callback_data.done); |
| |
| *data = callback_data.data; |
| |
| return callback_data.rcode; |
| } |
| |
| static int read_bus_info_block(struct fw_device *device) |
| { |
| static u32 rom[256]; |
| u32 stack[16], sp, key; |
| int i, end, length; |
| |
| /* First read the bus info block. */ |
| for (i = 0; i < 5; i++) { |
| if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE) |
| return -1; |
| /* |
| * As per IEEE1212 7.2, during power-up, devices can |
| * reply with a 0 for the first quadlet of the config |
| * rom to indicate that they are booting (for example, |
| * if the firmware is on the disk of a external |
| * harddisk). In that case we just fail, and the |
| * retry mechanism will try again later. |
| */ |
| if (i == 0 && rom[i] == 0) |
| return -1; |
| } |
| |
| /* |
| * Now parse the config rom. The config rom is a recursive |
| * directory structure so we parse it using a stack of |
| * references to the blocks that make up the structure. We |
| * push a reference to the root directory on the stack to |
| * start things off. |
| */ |
| length = i; |
| sp = 0; |
| stack[sp++] = 0xc0000005; |
| while (sp > 0) { |
| /* |
| * Pop the next block reference of the stack. The |
| * lower 24 bits is the offset into the config rom, |
| * the upper 8 bits are the type of the reference the |
| * block. |
| */ |
| key = stack[--sp]; |
| i = key & 0xffffff; |
| if (i >= ARRAY_SIZE(rom)) |
| /* |
| * The reference points outside the standard |
| * config rom area, something's fishy. |
| */ |
| return -1; |
| |
| /* Read header quadlet for the block to get the length. */ |
| if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE) |
| return -1; |
| end = i + (rom[i] >> 16) + 1; |
| i++; |
| if (end > ARRAY_SIZE(rom)) |
| /* |
| * This block extends outside standard config |
| * area (and the array we're reading it |
| * into). That's broken, so ignore this |
| * device. |
| */ |
| return -1; |
| |
| /* |
| * Now read in the block. If this is a directory |
| * block, check the entries as we read them to see if |
| * it references another block, and push it in that case. |
| */ |
| while (i < end) { |
| if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE) |
| return -1; |
| if ((key >> 30) == 3 && (rom[i] >> 30) > 1 && |
| sp < ARRAY_SIZE(stack)) |
| stack[sp++] = i + rom[i]; |
| i++; |
| } |
| if (length < i) |
| length = i; |
| } |
| |
| device->config_rom = kmalloc(length * 4, GFP_KERNEL); |
| if (device->config_rom == NULL) |
| return -1; |
| memcpy(device->config_rom, rom, length * 4); |
| device->config_rom_length = length; |
| |
| return 0; |
| } |
| |
| static void fw_unit_release(struct device *dev) |
| { |
| struct fw_unit *unit = fw_unit(dev); |
| |
| kfree(unit); |
| } |
| |
| static struct device_type fw_unit_type = { |
| .uevent = fw_unit_uevent, |
| .release = fw_unit_release, |
| }; |
| |
| static int is_fw_unit(struct device *dev) |
| { |
| return dev->type == &fw_unit_type; |
| } |
| |
| static void create_units(struct fw_device *device) |
| { |
| struct fw_csr_iterator ci; |
| struct fw_unit *unit; |
| int key, value, i; |
| |
| i = 0; |
| fw_csr_iterator_init(&ci, &device->config_rom[5]); |
| while (fw_csr_iterator_next(&ci, &key, &value)) { |
| if (key != (CSR_UNIT | CSR_DIRECTORY)) |
| continue; |
| |
| /* |
| * Get the address of the unit directory and try to |
| * match the drivers id_tables against it. |
| */ |
| unit = kzalloc(sizeof *unit, GFP_KERNEL); |
| if (unit == NULL) { |
| fw_error("failed to allocate memory for unit\n"); |
| continue; |
| } |
| |
| unit->directory = ci.p + value - 1; |
| unit->device.bus = &fw_bus_type; |
| unit->device.type = &fw_unit_type; |
| unit->device.parent = &device->device; |
| snprintf(unit->device.bus_id, sizeof unit->device.bus_id, |
| "%s.%d", device->device.bus_id, i++); |
| |
| init_fw_attribute_group(&unit->device, |
| fw_unit_attributes, |
| &unit->attribute_group); |
| if (device_register(&unit->device) < 0) |
| goto skip_unit; |
| |
| continue; |
| |
| skip_unit: |
| kfree(unit); |
| } |
| } |
| |
| static int shutdown_unit(struct device *device, void *data) |
| { |
| device_unregister(device); |
| |
| return 0; |
| } |
| |
| static DECLARE_RWSEM(idr_rwsem); |
| static DEFINE_IDR(fw_device_idr); |
| int fw_cdev_major; |
| |
| struct fw_device *fw_device_from_devt(dev_t devt) |
| { |
| struct fw_device *device; |
| |
| down_read(&idr_rwsem); |
| device = idr_find(&fw_device_idr, MINOR(devt)); |
| up_read(&idr_rwsem); |
| |
| return device; |
| } |
| |
| static void fw_device_shutdown(struct work_struct *work) |
| { |
| struct fw_device *device = |
| container_of(work, struct fw_device, work.work); |
| int minor = MINOR(device->device.devt); |
| |
| down_write(&idr_rwsem); |
| idr_remove(&fw_device_idr, minor); |
| up_write(&idr_rwsem); |
| |
| fw_device_cdev_remove(device); |
| device_for_each_child(&device->device, NULL, shutdown_unit); |
| device_unregister(&device->device); |
| } |
| |
| static struct device_type fw_device_type = { |
| .release = fw_device_release, |
| }; |
| |
| /* |
| * These defines control the retry behavior for reading the config |
| * rom. It shouldn't be necessary to tweak these; if the device |
| * doesn't respond to a config rom read within 10 seconds, it's not |
| * going to respond at all. As for the initial delay, a lot of |
| * devices will be able to respond within half a second after bus |
| * reset. On the other hand, it's not really worth being more |
| * aggressive than that, since it scales pretty well; if 10 devices |
| * are plugged in, they're all getting read within one second. |
| */ |
| |
| #define MAX_RETRIES 10 |
| #define RETRY_DELAY (3 * HZ) |
| #define INITIAL_DELAY (HZ / 2) |
| |
| static void fw_device_init(struct work_struct *work) |
| { |
| struct fw_device *device = |
| container_of(work, struct fw_device, work.work); |
| int minor, err; |
| |
| /* |
| * All failure paths here set node->data to NULL, so that we |
| * don't try to do device_for_each_child() on a kfree()'d |
| * device. |
| */ |
| |
| if (read_bus_info_block(device) < 0) { |
| if (device->config_rom_retries < MAX_RETRIES) { |
| device->config_rom_retries++; |
| schedule_delayed_work(&device->work, RETRY_DELAY); |
| } else { |
| fw_notify("giving up on config rom for node id %x\n", |
| device->node_id); |
| if (device->node == device->card->root_node) |
| schedule_delayed_work(&device->card->work, 0); |
| fw_device_release(&device->device); |
| } |
| return; |
| } |
| |
| err = -ENOMEM; |
| down_write(&idr_rwsem); |
| if (idr_pre_get(&fw_device_idr, GFP_KERNEL)) |
| err = idr_get_new(&fw_device_idr, device, &minor); |
| up_write(&idr_rwsem); |
| if (err < 0) |
| goto error; |
| |
| device->device.bus = &fw_bus_type; |
| device->device.type = &fw_device_type; |
| device->device.parent = device->card->device; |
| device->device.devt = MKDEV(fw_cdev_major, minor); |
| snprintf(device->device.bus_id, sizeof device->device.bus_id, |
| "fw%d", minor); |
| |
| init_fw_attribute_group(&device->device, |
| fw_device_attributes, |
| &device->attribute_group); |
| if (device_add(&device->device)) { |
| fw_error("Failed to add device.\n"); |
| goto error_with_cdev; |
| } |
| |
| create_units(device); |
| |
| /* |
| * Transition the device to running state. If it got pulled |
| * out from under us while we did the intialization work, we |
| * have to shut down the device again here. Normally, though, |
| * fw_node_event will be responsible for shutting it down when |
| * necessary. We have to use the atomic cmpxchg here to avoid |
| * racing with the FW_NODE_DESTROYED case in |
| * fw_node_event(). |
| */ |
| if (atomic_cmpxchg(&device->state, |
| FW_DEVICE_INITIALIZING, |
| FW_DEVICE_RUNNING) == FW_DEVICE_SHUTDOWN) |
| fw_device_shutdown(&device->work.work); |
| else |
| fw_notify("created new fw device %s (%d config rom retries)\n", |
| device->device.bus_id, device->config_rom_retries); |
| |
| /* |
| * Reschedule the IRM work if we just finished reading the |
| * root node config rom. If this races with a bus reset we |
| * just end up running the IRM work a couple of extra times - |
| * pretty harmless. |
| */ |
| if (device->node == device->card->root_node) |
| schedule_delayed_work(&device->card->work, 0); |
| |
| return; |
| |
| error_with_cdev: |
| down_write(&idr_rwsem); |
| idr_remove(&fw_device_idr, minor); |
| up_write(&idr_rwsem); |
| error: |
| put_device(&device->device); |
| } |
| |
| static int update_unit(struct device *dev, void *data) |
| { |
| struct fw_unit *unit = fw_unit(dev); |
| struct fw_driver *driver = (struct fw_driver *)dev->driver; |
| |
| if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) { |
| down(&dev->sem); |
| driver->update(unit); |
| up(&dev->sem); |
| } |
| |
| return 0; |
| } |
| |
| static void fw_device_update(struct work_struct *work) |
| { |
| struct fw_device *device = |
| container_of(work, struct fw_device, work.work); |
| |
| fw_device_cdev_update(device); |
| device_for_each_child(&device->device, NULL, update_unit); |
| } |
| |
| void fw_node_event(struct fw_card *card, struct fw_node *node, int event) |
| { |
| struct fw_device *device; |
| |
| switch (event) { |
| case FW_NODE_CREATED: |
| case FW_NODE_LINK_ON: |
| if (!node->link_on) |
| break; |
| |
| device = kzalloc(sizeof(*device), GFP_ATOMIC); |
| if (device == NULL) |
| break; |
| |
| /* |
| * Do minimal intialization of the device here, the |
| * rest will happen in fw_device_init(). We need the |
| * card and node so we can read the config rom and we |
| * need to do device_initialize() now so |
| * device_for_each_child() in FW_NODE_UPDATED is |
| * doesn't freak out. |
| */ |
| device_initialize(&device->device); |
| atomic_set(&device->state, FW_DEVICE_INITIALIZING); |
| device->card = fw_card_get(card); |
| device->node = fw_node_get(node); |
| device->node_id = node->node_id; |
| device->generation = card->generation; |
| INIT_LIST_HEAD(&device->client_list); |
| |
| /* |
| * Set the node data to point back to this device so |
| * FW_NODE_UPDATED callbacks can update the node_id |
| * and generation for the device. |
| */ |
| node->data = device; |
| |
| /* |
| * Many devices are slow to respond after bus resets, |
| * especially if they are bus powered and go through |
| * power-up after getting plugged in. We schedule the |
| * first config rom scan half a second after bus reset. |
| */ |
| INIT_DELAYED_WORK(&device->work, fw_device_init); |
| schedule_delayed_work(&device->work, INITIAL_DELAY); |
| break; |
| |
| case FW_NODE_UPDATED: |
| if (!node->link_on || node->data == NULL) |
| break; |
| |
| device = node->data; |
| device->node_id = node->node_id; |
| device->generation = card->generation; |
| if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { |
| PREPARE_DELAYED_WORK(&device->work, fw_device_update); |
| schedule_delayed_work(&device->work, 0); |
| } |
| break; |
| |
| case FW_NODE_DESTROYED: |
| case FW_NODE_LINK_OFF: |
| if (!node->data) |
| break; |
| |
| /* |
| * Destroy the device associated with the node. There |
| * are two cases here: either the device is fully |
| * initialized (FW_DEVICE_RUNNING) or we're in the |
| * process of reading its config rom |
| * (FW_DEVICE_INITIALIZING). If it is fully |
| * initialized we can reuse device->work to schedule a |
| * full fw_device_shutdown(). If not, there's work |
| * scheduled to read it's config rom, and we just put |
| * the device in shutdown state to have that code fail |
| * to create the device. |
| */ |
| device = node->data; |
| if (atomic_xchg(&device->state, |
| FW_DEVICE_SHUTDOWN) == FW_DEVICE_RUNNING) { |
| PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); |
| schedule_delayed_work(&device->work, 0); |
| } |
| break; |
| } |
| } |