| /* |
| * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <rdma/ib_umem.h> |
| #include <rdma/ib_umem_odp.h> |
| |
| #include "mlx5_ib.h" |
| #include "cmd.h" |
| |
| #define MAX_PREFETCH_LEN (4*1024*1024U) |
| |
| /* Timeout in ms to wait for an active mmu notifier to complete when handling |
| * a pagefault. */ |
| #define MMU_NOTIFIER_TIMEOUT 1000 |
| |
| #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT) |
| #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT) |
| #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS) |
| #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT) |
| #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1)) |
| |
| #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT |
| |
| static u64 mlx5_imr_ksm_entries; |
| |
| static int check_parent(struct ib_umem_odp *odp, |
| struct mlx5_ib_mr *parent) |
| { |
| struct mlx5_ib_mr *mr = odp->private; |
| |
| return mr && mr->parent == parent; |
| } |
| |
| static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp) |
| { |
| struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent; |
| struct ib_ucontext *ctx = odp->umem->context; |
| struct rb_node *rb; |
| |
| down_read(&ctx->umem_rwsem); |
| while (1) { |
| rb = rb_next(&odp->interval_tree.rb); |
| if (!rb) |
| goto not_found; |
| odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb); |
| if (check_parent(odp, parent)) |
| goto end; |
| } |
| not_found: |
| odp = NULL; |
| end: |
| up_read(&ctx->umem_rwsem); |
| return odp; |
| } |
| |
| static struct ib_umem_odp *odp_lookup(struct ib_ucontext *ctx, |
| u64 start, u64 length, |
| struct mlx5_ib_mr *parent) |
| { |
| struct ib_umem_odp *odp; |
| struct rb_node *rb; |
| |
| down_read(&ctx->umem_rwsem); |
| odp = rbt_ib_umem_lookup(&ctx->umem_tree, start, length); |
| if (!odp) |
| goto end; |
| |
| while (1) { |
| if (check_parent(odp, parent)) |
| goto end; |
| rb = rb_next(&odp->interval_tree.rb); |
| if (!rb) |
| goto not_found; |
| odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb); |
| if (ib_umem_start(odp->umem) > start + length) |
| goto not_found; |
| } |
| not_found: |
| odp = NULL; |
| end: |
| up_read(&ctx->umem_rwsem); |
| return odp; |
| } |
| |
| void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset, |
| size_t nentries, struct mlx5_ib_mr *mr, int flags) |
| { |
| struct ib_pd *pd = mr->ibmr.pd; |
| struct ib_ucontext *ctx = pd->uobject->context; |
| struct mlx5_ib_dev *dev = to_mdev(pd->device); |
| struct ib_umem_odp *odp; |
| unsigned long va; |
| int i; |
| |
| if (flags & MLX5_IB_UPD_XLT_ZAP) { |
| for (i = 0; i < nentries; i++, pklm++) { |
| pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); |
| pklm->key = cpu_to_be32(dev->null_mkey); |
| pklm->va = 0; |
| } |
| return; |
| } |
| |
| odp = odp_lookup(ctx, offset * MLX5_IMR_MTT_SIZE, |
| nentries * MLX5_IMR_MTT_SIZE, mr); |
| |
| for (i = 0; i < nentries; i++, pklm++) { |
| pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); |
| va = (offset + i) * MLX5_IMR_MTT_SIZE; |
| if (odp && odp->umem->address == va) { |
| struct mlx5_ib_mr *mtt = odp->private; |
| |
| pklm->key = cpu_to_be32(mtt->ibmr.lkey); |
| odp = odp_next(odp); |
| } else { |
| pklm->key = cpu_to_be32(dev->null_mkey); |
| } |
| mlx5_ib_dbg(dev, "[%d] va %lx key %x\n", |
| i, va, be32_to_cpu(pklm->key)); |
| } |
| } |
| |
| static void mr_leaf_free_action(struct work_struct *work) |
| { |
| struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work); |
| int idx = ib_umem_start(odp->umem) >> MLX5_IMR_MTT_SHIFT; |
| struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent; |
| |
| mr->parent = NULL; |
| synchronize_srcu(&mr->dev->mr_srcu); |
| |
| if (!READ_ONCE(odp->dying)) { |
| mr->parent = imr; |
| if (atomic_dec_and_test(&imr->num_leaf_free)) |
| wake_up(&imr->q_leaf_free); |
| return; |
| } |
| |
| ib_umem_release(odp->umem); |
| if (imr->live) |
| mlx5_ib_update_xlt(imr, idx, 1, 0, |
| MLX5_IB_UPD_XLT_INDIRECT | |
| MLX5_IB_UPD_XLT_ATOMIC); |
| mlx5_mr_cache_free(mr->dev, mr); |
| |
| if (atomic_dec_and_test(&imr->num_leaf_free)) |
| wake_up(&imr->q_leaf_free); |
| } |
| |
| void mlx5_ib_invalidate_range(struct ib_umem *umem, unsigned long start, |
| unsigned long end) |
| { |
| struct mlx5_ib_mr *mr; |
| const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT / |
| sizeof(struct mlx5_mtt)) - 1; |
| u64 idx = 0, blk_start_idx = 0; |
| int in_block = 0; |
| u64 addr; |
| |
| if (!umem || !umem->odp_data) { |
| pr_err("invalidation called on NULL umem or non-ODP umem\n"); |
| return; |
| } |
| |
| mr = umem->odp_data->private; |
| |
| if (!mr || !mr->ibmr.pd) |
| return; |
| |
| start = max_t(u64, ib_umem_start(umem), start); |
| end = min_t(u64, ib_umem_end(umem), end); |
| |
| /* |
| * Iteration one - zap the HW's MTTs. The notifiers_count ensures that |
| * while we are doing the invalidation, no page fault will attempt to |
| * overwrite the same MTTs. Concurent invalidations might race us, |
| * but they will write 0s as well, so no difference in the end result. |
| */ |
| |
| for (addr = start; addr < end; addr += (u64)umem->page_size) { |
| idx = (addr - ib_umem_start(umem)) / PAGE_SIZE; |
| /* |
| * Strive to write the MTTs in chunks, but avoid overwriting |
| * non-existing MTTs. The huristic here can be improved to |
| * estimate the cost of another UMR vs. the cost of bigger |
| * UMR. |
| */ |
| if (umem->odp_data->dma_list[idx] & |
| (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) { |
| if (!in_block) { |
| blk_start_idx = idx; |
| in_block = 1; |
| } |
| } else { |
| u64 umr_offset = idx & umr_block_mask; |
| |
| if (in_block && umr_offset == 0) { |
| mlx5_ib_update_xlt(mr, blk_start_idx, |
| idx - blk_start_idx, |
| PAGE_SHIFT, |
| MLX5_IB_UPD_XLT_ZAP | |
| MLX5_IB_UPD_XLT_ATOMIC); |
| in_block = 0; |
| } |
| } |
| } |
| if (in_block) |
| mlx5_ib_update_xlt(mr, blk_start_idx, |
| idx - blk_start_idx + 1, |
| PAGE_SHIFT, |
| MLX5_IB_UPD_XLT_ZAP | |
| MLX5_IB_UPD_XLT_ATOMIC); |
| /* |
| * We are now sure that the device will not access the |
| * memory. We can safely unmap it, and mark it as dirty if |
| * needed. |
| */ |
| |
| ib_umem_odp_unmap_dma_pages(umem, start, end); |
| |
| if (unlikely(!umem->npages && mr->parent && |
| !umem->odp_data->dying)) { |
| WRITE_ONCE(umem->odp_data->dying, 1); |
| atomic_inc(&mr->parent->num_leaf_free); |
| schedule_work(&umem->odp_data->work); |
| } |
| } |
| |
| void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev) |
| { |
| struct ib_odp_caps *caps = &dev->odp_caps; |
| |
| memset(caps, 0, sizeof(*caps)); |
| |
| if (!MLX5_CAP_GEN(dev->mdev, pg)) |
| return; |
| |
| caps->general_caps = IB_ODP_SUPPORT; |
| |
| if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) |
| dev->odp_max_size = U64_MAX; |
| else |
| dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT); |
| |
| if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send)) |
| caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND; |
| |
| if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send)) |
| caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND; |
| |
| if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive)) |
| caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV; |
| |
| if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write)) |
| caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE; |
| |
| if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read)) |
| caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ; |
| |
| if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic)) |
| caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; |
| |
| if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) && |
| MLX5_CAP_GEN(dev->mdev, null_mkey) && |
| MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) |
| caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT; |
| |
| return; |
| } |
| |
| static struct mlx5_ib_mr *mlx5_ib_odp_find_mr_lkey(struct mlx5_ib_dev *dev, |
| u32 key) |
| { |
| u32 base_key = mlx5_base_mkey(key); |
| struct mlx5_core_mkey *mmkey = __mlx5_mr_lookup(dev->mdev, base_key); |
| struct mlx5_ib_mr *mr; |
| |
| if (!mmkey || mmkey->key != key || mmkey->type != MLX5_MKEY_MR) |
| return NULL; |
| |
| mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); |
| |
| if (!mr->live) |
| return NULL; |
| |
| return container_of(mmkey, struct mlx5_ib_mr, mmkey); |
| } |
| |
| static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev, |
| struct mlx5_pagefault *pfault, |
| int error) |
| { |
| int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ? |
| pfault->wqe.wq_num : pfault->token; |
| int ret = mlx5_core_page_fault_resume(dev->mdev, |
| pfault->token, |
| wq_num, |
| pfault->type, |
| error); |
| if (ret) |
| mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x\n", |
| wq_num); |
| } |
| |
| static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd, |
| struct ib_umem *umem, |
| bool ksm, int access_flags) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(pd->device); |
| struct mlx5_ib_mr *mr; |
| int err; |
| |
| mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY : |
| MLX5_IMR_MTT_CACHE_ENTRY); |
| |
| if (IS_ERR(mr)) |
| return mr; |
| |
| mr->ibmr.pd = pd; |
| |
| mr->dev = dev; |
| mr->access_flags = access_flags; |
| mr->mmkey.iova = 0; |
| mr->umem = umem; |
| |
| if (ksm) { |
| err = mlx5_ib_update_xlt(mr, 0, |
| mlx5_imr_ksm_entries, |
| MLX5_KSM_PAGE_SHIFT, |
| MLX5_IB_UPD_XLT_INDIRECT | |
| MLX5_IB_UPD_XLT_ZAP | |
| MLX5_IB_UPD_XLT_ENABLE); |
| |
| } else { |
| err = mlx5_ib_update_xlt(mr, 0, |
| MLX5_IMR_MTT_ENTRIES, |
| PAGE_SHIFT, |
| MLX5_IB_UPD_XLT_ZAP | |
| MLX5_IB_UPD_XLT_ENABLE | |
| MLX5_IB_UPD_XLT_ATOMIC); |
| } |
| |
| if (err) |
| goto fail; |
| |
| mr->ibmr.lkey = mr->mmkey.key; |
| mr->ibmr.rkey = mr->mmkey.key; |
| |
| mr->live = 1; |
| |
| mlx5_ib_dbg(dev, "key %x dev %p mr %p\n", |
| mr->mmkey.key, dev->mdev, mr); |
| |
| return mr; |
| |
| fail: |
| mlx5_ib_err(dev, "Failed to register MKEY %d\n", err); |
| mlx5_mr_cache_free(dev, mr); |
| |
| return ERR_PTR(err); |
| } |
| |
| static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr, |
| u64 io_virt, size_t bcnt) |
| { |
| struct ib_ucontext *ctx = mr->ibmr.pd->uobject->context; |
| struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device); |
| struct ib_umem_odp *odp, *result = NULL; |
| u64 addr = io_virt & MLX5_IMR_MTT_MASK; |
| int nentries = 0, start_idx = 0, ret; |
| struct mlx5_ib_mr *mtt; |
| struct ib_umem *umem; |
| |
| mutex_lock(&mr->umem->odp_data->umem_mutex); |
| odp = odp_lookup(ctx, addr, 1, mr); |
| |
| mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n", |
| io_virt, bcnt, addr, odp); |
| |
| next_mr: |
| if (likely(odp)) { |
| if (nentries) |
| nentries++; |
| } else { |
| umem = ib_alloc_odp_umem(ctx, addr, MLX5_IMR_MTT_SIZE); |
| if (IS_ERR(umem)) { |
| mutex_unlock(&mr->umem->odp_data->umem_mutex); |
| return ERR_CAST(umem); |
| } |
| |
| mtt = implicit_mr_alloc(mr->ibmr.pd, umem, 0, mr->access_flags); |
| if (IS_ERR(mtt)) { |
| mutex_unlock(&mr->umem->odp_data->umem_mutex); |
| ib_umem_release(umem); |
| return ERR_CAST(mtt); |
| } |
| |
| odp = umem->odp_data; |
| odp->private = mtt; |
| mtt->umem = umem; |
| mtt->mmkey.iova = addr; |
| mtt->parent = mr; |
| INIT_WORK(&odp->work, mr_leaf_free_action); |
| |
| if (!nentries) |
| start_idx = addr >> MLX5_IMR_MTT_SHIFT; |
| nentries++; |
| } |
| |
| odp->dying = 0; |
| |
| /* Return first odp if region not covered by single one */ |
| if (likely(!result)) |
| result = odp; |
| |
| addr += MLX5_IMR_MTT_SIZE; |
| if (unlikely(addr < io_virt + bcnt)) { |
| odp = odp_next(odp); |
| if (odp && odp->umem->address != addr) |
| odp = NULL; |
| goto next_mr; |
| } |
| |
| if (unlikely(nentries)) { |
| ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0, |
| MLX5_IB_UPD_XLT_INDIRECT | |
| MLX5_IB_UPD_XLT_ATOMIC); |
| if (ret) { |
| mlx5_ib_err(dev, "Failed to update PAS\n"); |
| result = ERR_PTR(ret); |
| } |
| } |
| |
| mutex_unlock(&mr->umem->odp_data->umem_mutex); |
| return result; |
| } |
| |
| struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd, |
| int access_flags) |
| { |
| struct ib_ucontext *ctx = pd->ibpd.uobject->context; |
| struct mlx5_ib_mr *imr; |
| struct ib_umem *umem; |
| |
| umem = ib_umem_get(ctx, 0, 0, IB_ACCESS_ON_DEMAND, 0); |
| if (IS_ERR(umem)) |
| return ERR_CAST(umem); |
| |
| imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags); |
| if (IS_ERR(imr)) { |
| ib_umem_release(umem); |
| return ERR_CAST(imr); |
| } |
| |
| imr->umem = umem; |
| init_waitqueue_head(&imr->q_leaf_free); |
| atomic_set(&imr->num_leaf_free, 0); |
| |
| return imr; |
| } |
| |
| static int mr_leaf_free(struct ib_umem *umem, u64 start, |
| u64 end, void *cookie) |
| { |
| struct mlx5_ib_mr *mr = umem->odp_data->private, *imr = cookie; |
| |
| if (mr->parent != imr) |
| return 0; |
| |
| ib_umem_odp_unmap_dma_pages(umem, |
| ib_umem_start(umem), |
| ib_umem_end(umem)); |
| |
| if (umem->odp_data->dying) |
| return 0; |
| |
| WRITE_ONCE(umem->odp_data->dying, 1); |
| atomic_inc(&imr->num_leaf_free); |
| schedule_work(&umem->odp_data->work); |
| |
| return 0; |
| } |
| |
| void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr) |
| { |
| struct ib_ucontext *ctx = imr->ibmr.pd->uobject->context; |
| |
| down_read(&ctx->umem_rwsem); |
| rbt_ib_umem_for_each_in_range(&ctx->umem_tree, 0, ULLONG_MAX, |
| mr_leaf_free, imr); |
| up_read(&ctx->umem_rwsem); |
| |
| wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free)); |
| } |
| |
| /* |
| * Handle a single data segment in a page-fault WQE or RDMA region. |
| * |
| * Returns number of pages retrieved on success. The caller may continue to |
| * the next data segment. |
| * Can return the following error codes: |
| * -EAGAIN to designate a temporary error. The caller will abort handling the |
| * page fault and resolve it. |
| * -EFAULT when there's an error mapping the requested pages. The caller will |
| * abort the page fault handling. |
| */ |
| static int pagefault_single_data_segment(struct mlx5_ib_dev *dev, |
| u32 key, u64 io_virt, size_t bcnt, |
| u32 *bytes_committed, |
| u32 *bytes_mapped) |
| { |
| int srcu_key; |
| unsigned int current_seq = 0; |
| u64 start_idx; |
| int npages = 0, ret = 0; |
| struct mlx5_ib_mr *mr; |
| u64 access_mask = ODP_READ_ALLOWED_BIT; |
| struct ib_umem_odp *odp; |
| int implicit = 0; |
| size_t size; |
| |
| srcu_key = srcu_read_lock(&dev->mr_srcu); |
| mr = mlx5_ib_odp_find_mr_lkey(dev, key); |
| /* |
| * If we didn't find the MR, it means the MR was closed while we were |
| * handling the ODP event. In this case we return -EFAULT so that the |
| * QP will be closed. |
| */ |
| if (!mr || !mr->ibmr.pd) { |
| mlx5_ib_dbg(dev, "Failed to find relevant mr for lkey=0x%06x, probably the MR was destroyed\n", |
| key); |
| ret = -EFAULT; |
| goto srcu_unlock; |
| } |
| if (!mr->umem->odp_data) { |
| mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n", |
| key); |
| if (bytes_mapped) |
| *bytes_mapped += |
| (bcnt - *bytes_committed); |
| goto srcu_unlock; |
| } |
| |
| /* |
| * Avoid branches - this code will perform correctly |
| * in all iterations (in iteration 2 and above, |
| * bytes_committed == 0). |
| */ |
| io_virt += *bytes_committed; |
| bcnt -= *bytes_committed; |
| |
| if (!mr->umem->odp_data->page_list) { |
| odp = implicit_mr_get_data(mr, io_virt, bcnt); |
| |
| if (IS_ERR(odp)) { |
| ret = PTR_ERR(odp); |
| goto srcu_unlock; |
| } |
| mr = odp->private; |
| implicit = 1; |
| |
| } else { |
| odp = mr->umem->odp_data; |
| } |
| |
| next_mr: |
| current_seq = READ_ONCE(odp->notifiers_seq); |
| /* |
| * Ensure the sequence number is valid for some time before we call |
| * gup. |
| */ |
| smp_rmb(); |
| |
| size = min_t(size_t, bcnt, ib_umem_end(odp->umem) - io_virt); |
| start_idx = (io_virt - (mr->mmkey.iova & PAGE_MASK)) >> PAGE_SHIFT; |
| |
| if (mr->umem->writable) |
| access_mask |= ODP_WRITE_ALLOWED_BIT; |
| |
| ret = ib_umem_odp_map_dma_pages(mr->umem, io_virt, size, |
| access_mask, current_seq); |
| |
| if (ret < 0) |
| goto srcu_unlock; |
| |
| if (ret > 0) { |
| int np = ret; |
| |
| mutex_lock(&odp->umem_mutex); |
| if (!ib_umem_mmu_notifier_retry(mr->umem, current_seq)) { |
| /* |
| * No need to check whether the MTTs really belong to |
| * this MR, since ib_umem_odp_map_dma_pages already |
| * checks this. |
| */ |
| ret = mlx5_ib_update_xlt(mr, start_idx, np, |
| PAGE_SHIFT, |
| MLX5_IB_UPD_XLT_ATOMIC); |
| } else { |
| ret = -EAGAIN; |
| } |
| mutex_unlock(&odp->umem_mutex); |
| if (ret < 0) { |
| if (ret != -EAGAIN) |
| mlx5_ib_err(dev, "Failed to update mkey page tables\n"); |
| goto srcu_unlock; |
| } |
| |
| if (bytes_mapped) { |
| u32 new_mappings = np * PAGE_SIZE - |
| (io_virt - round_down(io_virt, PAGE_SIZE)); |
| *bytes_mapped += min_t(u32, new_mappings, size); |
| } |
| |
| npages += np; |
| } |
| |
| bcnt -= size; |
| if (unlikely(bcnt)) { |
| struct ib_umem_odp *next; |
| |
| io_virt += size; |
| next = odp_next(odp); |
| if (unlikely(!next || next->umem->address != io_virt)) { |
| mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n", |
| io_virt, next); |
| ret = -EAGAIN; |
| goto srcu_unlock_no_wait; |
| } |
| odp = next; |
| mr = odp->private; |
| goto next_mr; |
| } |
| |
| srcu_unlock: |
| if (ret == -EAGAIN) { |
| if (implicit || !odp->dying) { |
| unsigned long timeout = |
| msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT); |
| |
| if (!wait_for_completion_timeout( |
| &odp->notifier_completion, |
| timeout)) { |
| mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d\n", |
| current_seq, odp->notifiers_seq); |
| } |
| } else { |
| /* The MR is being killed, kill the QP as well. */ |
| ret = -EFAULT; |
| } |
| } |
| |
| srcu_unlock_no_wait: |
| srcu_read_unlock(&dev->mr_srcu, srcu_key); |
| *bytes_committed = 0; |
| return ret ? ret : npages; |
| } |
| |
| /** |
| * Parse a series of data segments for page fault handling. |
| * |
| * @qp the QP on which the fault occurred. |
| * @pfault contains page fault information. |
| * @wqe points at the first data segment in the WQE. |
| * @wqe_end points after the end of the WQE. |
| * @bytes_mapped receives the number of bytes that the function was able to |
| * map. This allows the caller to decide intelligently whether |
| * enough memory was mapped to resolve the page fault |
| * successfully (e.g. enough for the next MTU, or the entire |
| * WQE). |
| * @total_wqe_bytes receives the total data size of this WQE in bytes (minus |
| * the committed bytes). |
| * |
| * Returns the number of pages loaded if positive, zero for an empty WQE, or a |
| * negative error code. |
| */ |
| static int pagefault_data_segments(struct mlx5_ib_dev *dev, |
| struct mlx5_pagefault *pfault, |
| struct mlx5_ib_qp *qp, void *wqe, |
| void *wqe_end, u32 *bytes_mapped, |
| u32 *total_wqe_bytes, int receive_queue) |
| { |
| int ret = 0, npages = 0; |
| u64 io_virt; |
| u32 key; |
| u32 byte_count; |
| size_t bcnt; |
| int inline_segment; |
| |
| /* Skip SRQ next-WQE segment. */ |
| if (receive_queue && qp->ibqp.srq) |
| wqe += sizeof(struct mlx5_wqe_srq_next_seg); |
| |
| if (bytes_mapped) |
| *bytes_mapped = 0; |
| if (total_wqe_bytes) |
| *total_wqe_bytes = 0; |
| |
| while (wqe < wqe_end) { |
| struct mlx5_wqe_data_seg *dseg = wqe; |
| |
| io_virt = be64_to_cpu(dseg->addr); |
| key = be32_to_cpu(dseg->lkey); |
| byte_count = be32_to_cpu(dseg->byte_count); |
| inline_segment = !!(byte_count & MLX5_INLINE_SEG); |
| bcnt = byte_count & ~MLX5_INLINE_SEG; |
| |
| if (inline_segment) { |
| bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK; |
| wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt, |
| 16); |
| } else { |
| wqe += sizeof(*dseg); |
| } |
| |
| /* receive WQE end of sg list. */ |
| if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY && |
| io_virt == 0) |
| break; |
| |
| if (!inline_segment && total_wqe_bytes) { |
| *total_wqe_bytes += bcnt - min_t(size_t, bcnt, |
| pfault->bytes_committed); |
| } |
| |
| /* A zero length data segment designates a length of 2GB. */ |
| if (bcnt == 0) |
| bcnt = 1U << 31; |
| |
| if (inline_segment || bcnt <= pfault->bytes_committed) { |
| pfault->bytes_committed -= |
| min_t(size_t, bcnt, |
| pfault->bytes_committed); |
| continue; |
| } |
| |
| ret = pagefault_single_data_segment(dev, key, io_virt, bcnt, |
| &pfault->bytes_committed, |
| bytes_mapped); |
| if (ret < 0) |
| break; |
| npages += ret; |
| } |
| |
| return ret < 0 ? ret : npages; |
| } |
| |
| static const u32 mlx5_ib_odp_opcode_cap[] = { |
| [MLX5_OPCODE_SEND] = IB_ODP_SUPPORT_SEND, |
| [MLX5_OPCODE_SEND_IMM] = IB_ODP_SUPPORT_SEND, |
| [MLX5_OPCODE_SEND_INVAL] = IB_ODP_SUPPORT_SEND, |
| [MLX5_OPCODE_RDMA_WRITE] = IB_ODP_SUPPORT_WRITE, |
| [MLX5_OPCODE_RDMA_WRITE_IMM] = IB_ODP_SUPPORT_WRITE, |
| [MLX5_OPCODE_RDMA_READ] = IB_ODP_SUPPORT_READ, |
| [MLX5_OPCODE_ATOMIC_CS] = IB_ODP_SUPPORT_ATOMIC, |
| [MLX5_OPCODE_ATOMIC_FA] = IB_ODP_SUPPORT_ATOMIC, |
| }; |
| |
| /* |
| * Parse initiator WQE. Advances the wqe pointer to point at the |
| * scatter-gather list, and set wqe_end to the end of the WQE. |
| */ |
| static int mlx5_ib_mr_initiator_pfault_handler( |
| struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, |
| struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length) |
| { |
| struct mlx5_wqe_ctrl_seg *ctrl = *wqe; |
| u16 wqe_index = pfault->wqe.wqe_index; |
| u32 transport_caps; |
| struct mlx5_base_av *av; |
| unsigned ds, opcode; |
| #if defined(DEBUG) |
| u32 ctrl_wqe_index, ctrl_qpn; |
| #endif |
| u32 qpn = qp->trans_qp.base.mqp.qpn; |
| |
| ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK; |
| if (ds * MLX5_WQE_DS_UNITS > wqe_length) { |
| mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n", |
| ds, wqe_length); |
| return -EFAULT; |
| } |
| |
| if (ds == 0) { |
| mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n", |
| wqe_index, qpn); |
| return -EFAULT; |
| } |
| |
| #if defined(DEBUG) |
| ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) & |
| MLX5_WQE_CTRL_WQE_INDEX_MASK) >> |
| MLX5_WQE_CTRL_WQE_INDEX_SHIFT; |
| if (wqe_index != ctrl_wqe_index) { |
| mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n", |
| wqe_index, qpn, |
| ctrl_wqe_index); |
| return -EFAULT; |
| } |
| |
| ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >> |
| MLX5_WQE_CTRL_QPN_SHIFT; |
| if (qpn != ctrl_qpn) { |
| mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n", |
| wqe_index, qpn, |
| ctrl_qpn); |
| return -EFAULT; |
| } |
| #endif /* DEBUG */ |
| |
| *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS; |
| *wqe += sizeof(*ctrl); |
| |
| opcode = be32_to_cpu(ctrl->opmod_idx_opcode) & |
| MLX5_WQE_CTRL_OPCODE_MASK; |
| |
| switch (qp->ibqp.qp_type) { |
| case IB_QPT_RC: |
| transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps; |
| break; |
| case IB_QPT_UD: |
| transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps; |
| break; |
| default: |
| mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n", |
| qp->ibqp.qp_type); |
| return -EFAULT; |
| } |
| |
| if (unlikely(opcode >= sizeof(mlx5_ib_odp_opcode_cap) / |
| sizeof(mlx5_ib_odp_opcode_cap[0]) || |
| !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) { |
| mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n", |
| opcode); |
| return -EFAULT; |
| } |
| |
| if (qp->ibqp.qp_type != IB_QPT_RC) { |
| av = *wqe; |
| if (av->dqp_dct & be32_to_cpu(MLX5_WQE_AV_EXT)) |
| *wqe += sizeof(struct mlx5_av); |
| else |
| *wqe += sizeof(struct mlx5_base_av); |
| } |
| |
| switch (opcode) { |
| case MLX5_OPCODE_RDMA_WRITE: |
| case MLX5_OPCODE_RDMA_WRITE_IMM: |
| case MLX5_OPCODE_RDMA_READ: |
| *wqe += sizeof(struct mlx5_wqe_raddr_seg); |
| break; |
| case MLX5_OPCODE_ATOMIC_CS: |
| case MLX5_OPCODE_ATOMIC_FA: |
| *wqe += sizeof(struct mlx5_wqe_raddr_seg); |
| *wqe += sizeof(struct mlx5_wqe_atomic_seg); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Parse responder WQE. Advances the wqe pointer to point at the |
| * scatter-gather list, and set wqe_end to the end of the WQE. |
| */ |
| static int mlx5_ib_mr_responder_pfault_handler( |
| struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, |
| struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length) |
| { |
| struct mlx5_ib_wq *wq = &qp->rq; |
| int wqe_size = 1 << wq->wqe_shift; |
| |
| if (qp->ibqp.srq) { |
| mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n"); |
| return -EFAULT; |
| } |
| |
| if (qp->wq_sig) { |
| mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n"); |
| return -EFAULT; |
| } |
| |
| if (wqe_size > wqe_length) { |
| mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); |
| return -EFAULT; |
| } |
| |
| switch (qp->ibqp.qp_type) { |
| case IB_QPT_RC: |
| if (!(dev->odp_caps.per_transport_caps.rc_odp_caps & |
| IB_ODP_SUPPORT_RECV)) |
| goto invalid_transport_or_opcode; |
| break; |
| default: |
| invalid_transport_or_opcode: |
| mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n", |
| qp->ibqp.qp_type); |
| return -EFAULT; |
| } |
| |
| *wqe_end = *wqe + wqe_size; |
| |
| return 0; |
| } |
| |
| static struct mlx5_ib_qp *mlx5_ib_odp_find_qp(struct mlx5_ib_dev *dev, |
| u32 wq_num) |
| { |
| struct mlx5_core_qp *mqp = __mlx5_qp_lookup(dev->mdev, wq_num); |
| |
| if (!mqp) { |
| mlx5_ib_err(dev, "QPN 0x%6x not found\n", wq_num); |
| return NULL; |
| } |
| |
| return to_mibqp(mqp); |
| } |
| |
| static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev, |
| struct mlx5_pagefault *pfault) |
| { |
| int ret; |
| void *wqe, *wqe_end; |
| u32 bytes_mapped, total_wqe_bytes; |
| char *buffer = NULL; |
| int resume_with_error = 1; |
| u16 wqe_index = pfault->wqe.wqe_index; |
| int requestor = pfault->type & MLX5_PFAULT_REQUESTOR; |
| struct mlx5_ib_qp *qp; |
| |
| buffer = (char *)__get_free_page(GFP_KERNEL); |
| if (!buffer) { |
| mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n"); |
| goto resolve_page_fault; |
| } |
| |
| qp = mlx5_ib_odp_find_qp(dev, pfault->wqe.wq_num); |
| if (!qp) |
| goto resolve_page_fault; |
| |
| ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer, |
| PAGE_SIZE, &qp->trans_qp.base); |
| if (ret < 0) { |
| mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%d, wqe_index=%x, qpn=%x\n", |
| ret, wqe_index, pfault->token); |
| goto resolve_page_fault; |
| } |
| |
| wqe = buffer; |
| if (requestor) |
| ret = mlx5_ib_mr_initiator_pfault_handler(dev, pfault, qp, &wqe, |
| &wqe_end, ret); |
| else |
| ret = mlx5_ib_mr_responder_pfault_handler(dev, pfault, qp, &wqe, |
| &wqe_end, ret); |
| if (ret < 0) |
| goto resolve_page_fault; |
| |
| if (wqe >= wqe_end) { |
| mlx5_ib_err(dev, "ODP fault on invalid WQE.\n"); |
| goto resolve_page_fault; |
| } |
| |
| ret = pagefault_data_segments(dev, pfault, qp, wqe, wqe_end, |
| &bytes_mapped, &total_wqe_bytes, |
| !requestor); |
| if (ret == -EAGAIN) { |
| resume_with_error = 0; |
| goto resolve_page_fault; |
| } else if (ret < 0 || total_wqe_bytes > bytes_mapped) { |
| if (ret != -ENOENT) |
| mlx5_ib_err(dev, "PAGE FAULT error: %d. QP 0x%x. type: 0x%x\n", |
| ret, pfault->wqe.wq_num, pfault->type); |
| goto resolve_page_fault; |
| } |
| |
| resume_with_error = 0; |
| resolve_page_fault: |
| mlx5_ib_page_fault_resume(dev, pfault, resume_with_error); |
| mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n", |
| pfault->wqe.wq_num, resume_with_error, |
| pfault->type); |
| free_page((unsigned long)buffer); |
| } |
| |
| static int pages_in_range(u64 address, u32 length) |
| { |
| return (ALIGN(address + length, PAGE_SIZE) - |
| (address & PAGE_MASK)) >> PAGE_SHIFT; |
| } |
| |
| static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev, |
| struct mlx5_pagefault *pfault) |
| { |
| u64 address; |
| u32 length; |
| u32 prefetch_len = pfault->bytes_committed; |
| int prefetch_activated = 0; |
| u32 rkey = pfault->rdma.r_key; |
| int ret; |
| |
| /* The RDMA responder handler handles the page fault in two parts. |
| * First it brings the necessary pages for the current packet |
| * (and uses the pfault context), and then (after resuming the QP) |
| * prefetches more pages. The second operation cannot use the pfault |
| * context and therefore uses the dummy_pfault context allocated on |
| * the stack */ |
| pfault->rdma.rdma_va += pfault->bytes_committed; |
| pfault->rdma.rdma_op_len -= min(pfault->bytes_committed, |
| pfault->rdma.rdma_op_len); |
| pfault->bytes_committed = 0; |
| |
| address = pfault->rdma.rdma_va; |
| length = pfault->rdma.rdma_op_len; |
| |
| /* For some operations, the hardware cannot tell the exact message |
| * length, and in those cases it reports zero. Use prefetch |
| * logic. */ |
| if (length == 0) { |
| prefetch_activated = 1; |
| length = pfault->rdma.packet_size; |
| prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len); |
| } |
| |
| ret = pagefault_single_data_segment(dev, rkey, address, length, |
| &pfault->bytes_committed, NULL); |
| if (ret == -EAGAIN) { |
| /* We're racing with an invalidation, don't prefetch */ |
| prefetch_activated = 0; |
| } else if (ret < 0 || pages_in_range(address, length) > ret) { |
| mlx5_ib_page_fault_resume(dev, pfault, 1); |
| if (ret != -ENOENT) |
| mlx5_ib_warn(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n", |
| ret, pfault->token, pfault->type); |
| return; |
| } |
| |
| mlx5_ib_page_fault_resume(dev, pfault, 0); |
| mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n", |
| pfault->token, pfault->type, |
| prefetch_activated); |
| |
| /* At this point, there might be a new pagefault already arriving in |
| * the eq, switch to the dummy pagefault for the rest of the |
| * processing. We're still OK with the objects being alive as the |
| * work-queue is being fenced. */ |
| |
| if (prefetch_activated) { |
| u32 bytes_committed = 0; |
| |
| ret = pagefault_single_data_segment(dev, rkey, address, |
| prefetch_len, |
| &bytes_committed, NULL); |
| if (ret < 0 && ret != -EAGAIN) { |
| mlx5_ib_warn(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n", |
| ret, pfault->token, address, prefetch_len); |
| } |
| } |
| } |
| |
| void mlx5_ib_pfault(struct mlx5_core_dev *mdev, void *context, |
| struct mlx5_pagefault *pfault) |
| { |
| struct mlx5_ib_dev *dev = context; |
| u8 event_subtype = pfault->event_subtype; |
| |
| switch (event_subtype) { |
| case MLX5_PFAULT_SUBTYPE_WQE: |
| mlx5_ib_mr_wqe_pfault_handler(dev, pfault); |
| break; |
| case MLX5_PFAULT_SUBTYPE_RDMA: |
| mlx5_ib_mr_rdma_pfault_handler(dev, pfault); |
| break; |
| default: |
| mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n", |
| event_subtype); |
| mlx5_ib_page_fault_resume(dev, pfault, 1); |
| } |
| } |
| |
| void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent) |
| { |
| if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) |
| return; |
| |
| switch (ent->order - 2) { |
| case MLX5_IMR_MTT_CACHE_ENTRY: |
| ent->page = PAGE_SHIFT; |
| ent->xlt = MLX5_IMR_MTT_ENTRIES * |
| sizeof(struct mlx5_mtt) / |
| MLX5_IB_UMR_OCTOWORD; |
| ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; |
| ent->limit = 0; |
| break; |
| |
| case MLX5_IMR_KSM_CACHE_ENTRY: |
| ent->page = MLX5_KSM_PAGE_SHIFT; |
| ent->xlt = mlx5_imr_ksm_entries * |
| sizeof(struct mlx5_klm) / |
| MLX5_IB_UMR_OCTOWORD; |
| ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM; |
| ent->limit = 0; |
| break; |
| } |
| } |
| |
| int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev) |
| { |
| int ret; |
| |
| ret = init_srcu_struct(&dev->mr_srcu); |
| if (ret) |
| return ret; |
| |
| if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) { |
| ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey); |
| if (ret) { |
| mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| void mlx5_ib_odp_remove_one(struct mlx5_ib_dev *dev) |
| { |
| cleanup_srcu_struct(&dev->mr_srcu); |
| } |
| |
| int mlx5_ib_odp_init(void) |
| { |
| mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) - |
| MLX5_IMR_MTT_BITS); |
| |
| return 0; |
| } |
| |