| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* |
| * Copyright 2016-2022 HabanaLabs, Ltd. |
| * All Rights Reserved. |
| */ |
| |
| #include <uapi/misc/habanalabs.h> |
| #include "habanalabs.h" |
| #include "../include/hw_ip/mmu/mmu_general.h" |
| |
| #include <linux/uaccess.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/pci-p2pdma.h> |
| |
| MODULE_IMPORT_NS(DMA_BUF); |
| |
| #define HL_MMU_DEBUG 0 |
| |
| /* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */ |
| #define DRAM_POOL_PAGE_SIZE SZ_8M |
| |
| static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, |
| struct hl_mem_in *args, u64 *handle); |
| |
| static int set_alloc_page_size(struct hl_device *hdev, struct hl_mem_in *args, u32 *page_size) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u64 psize; |
| |
| /* |
| * for ASIC that supports setting the allocation page size by user we will address |
| * user's choice only if it is not 0 (as 0 means taking the default page size) |
| */ |
| if (prop->supports_user_set_page_size && args->alloc.page_size) { |
| psize = args->alloc.page_size; |
| |
| if (!is_power_of_2(psize)) { |
| dev_err(hdev->dev, "user page size (%#llx) is not power of 2\n", psize); |
| return -EINVAL; |
| } |
| } else { |
| psize = prop->device_mem_alloc_default_page_size; |
| } |
| |
| *page_size = psize; |
| |
| return 0; |
| } |
| |
| /* |
| * The va ranges in context object contain a list with the available chunks of |
| * device virtual memory. |
| * There is one range for host allocations and one for DRAM allocations. |
| * |
| * On initialization each range contains one chunk of all of its available |
| * virtual range which is a half of the total device virtual range. |
| * |
| * On each mapping of physical pages, a suitable virtual range chunk (with a |
| * minimum size) is selected from the list. If the chunk size equals the |
| * requested size, the chunk is returned. Otherwise, the chunk is split into |
| * two chunks - one to return as result and a remainder to stay in the list. |
| * |
| * On each Unmapping of a virtual address, the relevant virtual chunk is |
| * returned to the list. The chunk is added to the list and if its edges match |
| * the edges of the adjacent chunks (means a contiguous chunk can be created), |
| * the chunks are merged. |
| * |
| * On finish, the list is checked to have only one chunk of all the relevant |
| * virtual range (which is a half of the device total virtual range). |
| * If not (means not all mappings were unmapped), a warning is printed. |
| */ |
| |
| /* |
| * alloc_device_memory() - allocate device memory. |
| * @ctx: pointer to the context structure. |
| * @args: host parameters containing the requested size. |
| * @ret_handle: result handle. |
| * |
| * This function does the following: |
| * - Allocate the requested size rounded up to 'dram_page_size' pages. |
| * - Return unique handle for later map/unmap/free. |
| */ |
| static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args, |
| u32 *ret_handle) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct hl_vm *vm = &hdev->vm; |
| struct hl_vm_phys_pg_pack *phys_pg_pack; |
| u64 paddr = 0, total_size, num_pgs, i; |
| u32 num_curr_pgs, page_size; |
| bool contiguous; |
| int handle, rc; |
| |
| num_curr_pgs = 0; |
| |
| rc = set_alloc_page_size(hdev, args, &page_size); |
| if (rc) |
| return rc; |
| |
| num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size); |
| total_size = num_pgs * page_size; |
| |
| if (!total_size) { |
| dev_err(hdev->dev, "Cannot allocate 0 bytes\n"); |
| return -EINVAL; |
| } |
| |
| contiguous = args->flags & HL_MEM_CONTIGUOUS; |
| |
| if (contiguous) { |
| if (is_power_of_2(page_size)) |
| paddr = (uintptr_t) gen_pool_dma_alloc_align(vm->dram_pg_pool, |
| total_size, NULL, page_size); |
| else |
| paddr = gen_pool_alloc(vm->dram_pg_pool, total_size); |
| if (!paddr) { |
| dev_err(hdev->dev, |
| "Cannot allocate %llu contiguous pages with total size of %llu\n", |
| num_pgs, total_size); |
| return -ENOMEM; |
| } |
| } |
| |
| phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL); |
| if (!phys_pg_pack) { |
| rc = -ENOMEM; |
| goto pages_pack_err; |
| } |
| |
| phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK; |
| phys_pg_pack->asid = ctx->asid; |
| phys_pg_pack->npages = num_pgs; |
| phys_pg_pack->page_size = page_size; |
| phys_pg_pack->total_size = total_size; |
| phys_pg_pack->flags = args->flags; |
| phys_pg_pack->contiguous = contiguous; |
| |
| phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL); |
| if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) { |
| rc = -ENOMEM; |
| goto pages_arr_err; |
| } |
| |
| if (phys_pg_pack->contiguous) { |
| for (i = 0 ; i < num_pgs ; i++) |
| phys_pg_pack->pages[i] = paddr + i * page_size; |
| } else { |
| for (i = 0 ; i < num_pgs ; i++) { |
| if (is_power_of_2(page_size)) |
| phys_pg_pack->pages[i] = |
| (uintptr_t)gen_pool_dma_alloc_align(vm->dram_pg_pool, |
| page_size, NULL, |
| page_size); |
| else |
| phys_pg_pack->pages[i] = gen_pool_alloc(vm->dram_pg_pool, |
| page_size); |
| |
| if (!phys_pg_pack->pages[i]) { |
| dev_err(hdev->dev, |
| "Cannot allocate device memory (out of memory)\n"); |
| rc = -ENOMEM; |
| goto page_err; |
| } |
| |
| num_curr_pgs++; |
| } |
| } |
| |
| spin_lock(&vm->idr_lock); |
| handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0, |
| GFP_ATOMIC); |
| spin_unlock(&vm->idr_lock); |
| |
| if (handle < 0) { |
| dev_err(hdev->dev, "Failed to get handle for page\n"); |
| rc = -EFAULT; |
| goto idr_err; |
| } |
| |
| for (i = 0 ; i < num_pgs ; i++) |
| kref_get(&vm->dram_pg_pool_refcount); |
| |
| phys_pg_pack->handle = handle; |
| |
| atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem); |
| atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem); |
| |
| *ret_handle = handle; |
| |
| return 0; |
| |
| idr_err: |
| page_err: |
| if (!phys_pg_pack->contiguous) |
| for (i = 0 ; i < num_curr_pgs ; i++) |
| gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i], |
| page_size); |
| |
| kvfree(phys_pg_pack->pages); |
| pages_arr_err: |
| kfree(phys_pg_pack); |
| pages_pack_err: |
| if (contiguous) |
| gen_pool_free(vm->dram_pg_pool, paddr, total_size); |
| |
| return rc; |
| } |
| |
| /** |
| * dma_map_host_va() - DMA mapping of the given host virtual address. |
| * @hdev: habanalabs device structure. |
| * @addr: the host virtual address of the memory area. |
| * @size: the size of the memory area. |
| * @p_userptr: pointer to result userptr structure. |
| * |
| * This function does the following: |
| * - Allocate userptr structure. |
| * - Pin the given host memory using the userptr structure. |
| * - Perform DMA mapping to have the DMA addresses of the pages. |
| */ |
| static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size, |
| struct hl_userptr **p_userptr) |
| { |
| struct hl_userptr *userptr; |
| int rc; |
| |
| userptr = kzalloc(sizeof(*userptr), GFP_KERNEL); |
| if (!userptr) { |
| rc = -ENOMEM; |
| goto userptr_err; |
| } |
| |
| rc = hl_pin_host_memory(hdev, addr, size, userptr); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to pin host memory\n"); |
| goto pin_err; |
| } |
| |
| userptr->dma_mapped = true; |
| userptr->dir = DMA_BIDIRECTIONAL; |
| userptr->vm_type = VM_TYPE_USERPTR; |
| |
| *p_userptr = userptr; |
| |
| rc = hdev->asic_funcs->asic_dma_map_sgtable(hdev, userptr->sgt, DMA_BIDIRECTIONAL); |
| if (rc) { |
| dev_err(hdev->dev, "failed to map sgt with DMA region\n"); |
| goto dma_map_err; |
| } |
| |
| return 0; |
| |
| dma_map_err: |
| hl_unpin_host_memory(hdev, userptr); |
| pin_err: |
| kfree(userptr); |
| userptr_err: |
| |
| return rc; |
| } |
| |
| /** |
| * dma_unmap_host_va() - DMA unmapping of the given host virtual address. |
| * @hdev: habanalabs device structure. |
| * @userptr: userptr to free. |
| * |
| * This function does the following: |
| * - Unpins the physical pages. |
| * - Frees the userptr structure. |
| */ |
| static void dma_unmap_host_va(struct hl_device *hdev, |
| struct hl_userptr *userptr) |
| { |
| hl_unpin_host_memory(hdev, userptr); |
| kfree(userptr); |
| } |
| |
| /** |
| * dram_pg_pool_do_release() - free DRAM pages pool |
| * @ref: pointer to reference object. |
| * |
| * This function does the following: |
| * - Frees the idr structure of physical pages handles. |
| * - Frees the generic pool of DRAM physical pages. |
| */ |
| static void dram_pg_pool_do_release(struct kref *ref) |
| { |
| struct hl_vm *vm = container_of(ref, struct hl_vm, |
| dram_pg_pool_refcount); |
| |
| /* |
| * free the idr here as only here we know for sure that there are no |
| * allocated physical pages and hence there are no handles in use |
| */ |
| idr_destroy(&vm->phys_pg_pack_handles); |
| gen_pool_destroy(vm->dram_pg_pool); |
| } |
| |
| /** |
| * free_phys_pg_pack() - free physical page pack. |
| * @hdev: habanalabs device structure. |
| * @phys_pg_pack: physical page pack to free. |
| * |
| * This function does the following: |
| * - For DRAM memory only |
| * - iterate over the pack, free each physical block structure by |
| * returning it to the general pool. |
| * - Free the hl_vm_phys_pg_pack structure. |
| */ |
| static void free_phys_pg_pack(struct hl_device *hdev, |
| struct hl_vm_phys_pg_pack *phys_pg_pack) |
| { |
| struct hl_vm *vm = &hdev->vm; |
| u64 i; |
| |
| if (phys_pg_pack->created_from_userptr) |
| goto end; |
| |
| if (phys_pg_pack->contiguous) { |
| gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0], |
| phys_pg_pack->total_size); |
| |
| for (i = 0; i < phys_pg_pack->npages ; i++) |
| kref_put(&vm->dram_pg_pool_refcount, |
| dram_pg_pool_do_release); |
| } else { |
| for (i = 0 ; i < phys_pg_pack->npages ; i++) { |
| gen_pool_free(vm->dram_pg_pool, |
| phys_pg_pack->pages[i], |
| phys_pg_pack->page_size); |
| kref_put(&vm->dram_pg_pool_refcount, |
| dram_pg_pool_do_release); |
| } |
| } |
| |
| end: |
| kvfree(phys_pg_pack->pages); |
| kfree(phys_pg_pack); |
| |
| return; |
| } |
| |
| /** |
| * free_device_memory() - free device memory. |
| * @ctx: pointer to the context structure. |
| * @args: host parameters containing the requested size. |
| * |
| * This function does the following: |
| * - Free the device memory related to the given handle. |
| */ |
| static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct hl_vm *vm = &hdev->vm; |
| struct hl_vm_phys_pg_pack *phys_pg_pack; |
| u32 handle = args->free.handle; |
| |
| spin_lock(&vm->idr_lock); |
| phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); |
| if (!phys_pg_pack) { |
| spin_unlock(&vm->idr_lock); |
| dev_err(hdev->dev, "free device memory failed, no match for handle %u\n", handle); |
| return -EINVAL; |
| } |
| |
| if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) { |
| spin_unlock(&vm->idr_lock); |
| dev_err(hdev->dev, "handle %u is mapped, cannot free\n", handle); |
| return -EINVAL; |
| } |
| |
| if (phys_pg_pack->exporting_cnt) { |
| spin_unlock(&vm->idr_lock); |
| dev_dbg(hdev->dev, "handle %u is exported, cannot free\n", handle); |
| return -EINVAL; |
| } |
| |
| /* must remove from idr before the freeing of the physical pages as the refcount of the pool |
| * is also the trigger of the idr destroy |
| */ |
| idr_remove(&vm->phys_pg_pack_handles, handle); |
| spin_unlock(&vm->idr_lock); |
| |
| atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem); |
| atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem); |
| |
| free_phys_pg_pack(hdev, phys_pg_pack); |
| |
| return 0; |
| } |
| |
| /** |
| * clear_va_list_locked() - free virtual addresses list. |
| * @hdev: habanalabs device structure. |
| * @va_list: list of virtual addresses to free. |
| * |
| * This function does the following: |
| * - Iterate over the list and free each virtual addresses block. |
| * |
| * This function should be called only when va_list lock is taken. |
| */ |
| static void clear_va_list_locked(struct hl_device *hdev, |
| struct list_head *va_list) |
| { |
| struct hl_vm_va_block *va_block, *tmp; |
| |
| list_for_each_entry_safe(va_block, tmp, va_list, node) { |
| list_del(&va_block->node); |
| kfree(va_block); |
| } |
| } |
| |
| /** |
| * print_va_list_locked() - print virtual addresses list. |
| * @hdev: habanalabs device structure. |
| * @va_list: list of virtual addresses to print. |
| * |
| * This function does the following: |
| * - Iterate over the list and print each virtual addresses block. |
| * |
| * This function should be called only when va_list lock is taken. |
| */ |
| static void print_va_list_locked(struct hl_device *hdev, |
| struct list_head *va_list) |
| { |
| #if HL_MMU_DEBUG |
| struct hl_vm_va_block *va_block; |
| |
| dev_dbg(hdev->dev, "print va list:\n"); |
| |
| list_for_each_entry(va_block, va_list, node) |
| dev_dbg(hdev->dev, |
| "va block, start: 0x%llx, end: 0x%llx, size: %llu\n", |
| va_block->start, va_block->end, va_block->size); |
| #endif |
| } |
| |
| /** |
| * merge_va_blocks_locked() - merge a virtual block if possible. |
| * @hdev: pointer to the habanalabs device structure. |
| * @va_list: pointer to the virtual addresses block list. |
| * @va_block: virtual block to merge with adjacent blocks. |
| * |
| * This function does the following: |
| * - Merge the given blocks with the adjacent blocks if their virtual ranges |
| * create a contiguous virtual range. |
| * |
| * This Function should be called only when va_list lock is taken. |
| */ |
| static void merge_va_blocks_locked(struct hl_device *hdev, |
| struct list_head *va_list, struct hl_vm_va_block *va_block) |
| { |
| struct hl_vm_va_block *prev, *next; |
| |
| prev = list_prev_entry(va_block, node); |
| if (&prev->node != va_list && prev->end + 1 == va_block->start) { |
| prev->end = va_block->end; |
| prev->size = prev->end - prev->start; |
| list_del(&va_block->node); |
| kfree(va_block); |
| va_block = prev; |
| } |
| |
| next = list_next_entry(va_block, node); |
| if (&next->node != va_list && va_block->end + 1 == next->start) { |
| next->start = va_block->start; |
| next->size = next->end - next->start; |
| list_del(&va_block->node); |
| kfree(va_block); |
| } |
| } |
| |
| /** |
| * add_va_block_locked() - add a virtual block to the virtual addresses list. |
| * @hdev: pointer to the habanalabs device structure. |
| * @va_list: pointer to the virtual addresses block list. |
| * @start: start virtual address. |
| * @end: end virtual address. |
| * |
| * This function does the following: |
| * - Add the given block to the virtual blocks list and merge with other blocks |
| * if a contiguous virtual block can be created. |
| * |
| * This Function should be called only when va_list lock is taken. |
| */ |
| static int add_va_block_locked(struct hl_device *hdev, |
| struct list_head *va_list, u64 start, u64 end) |
| { |
| struct hl_vm_va_block *va_block, *res = NULL; |
| u64 size = end - start + 1; |
| |
| print_va_list_locked(hdev, va_list); |
| |
| list_for_each_entry(va_block, va_list, node) { |
| /* TODO: remove upon matureness */ |
| if (hl_mem_area_crosses_range(start, size, va_block->start, |
| va_block->end)) { |
| dev_err(hdev->dev, |
| "block crossing ranges at start 0x%llx, end 0x%llx\n", |
| va_block->start, va_block->end); |
| return -EINVAL; |
| } |
| |
| if (va_block->end < start) |
| res = va_block; |
| } |
| |
| va_block = kmalloc(sizeof(*va_block), GFP_KERNEL); |
| if (!va_block) |
| return -ENOMEM; |
| |
| va_block->start = start; |
| va_block->end = end; |
| va_block->size = size; |
| |
| if (!res) |
| list_add(&va_block->node, va_list); |
| else |
| list_add(&va_block->node, &res->node); |
| |
| merge_va_blocks_locked(hdev, va_list, va_block); |
| |
| print_va_list_locked(hdev, va_list); |
| |
| return 0; |
| } |
| |
| /** |
| * add_va_block() - wrapper for add_va_block_locked. |
| * @hdev: pointer to the habanalabs device structure. |
| * @va_range: pointer to the virtual addresses range object. |
| * @start: start virtual address. |
| * @end: end virtual address. |
| * |
| * This function does the following: |
| * - Takes the list lock and calls add_va_block_locked. |
| */ |
| static inline int add_va_block(struct hl_device *hdev, |
| struct hl_va_range *va_range, u64 start, u64 end) |
| { |
| int rc; |
| |
| mutex_lock(&va_range->lock); |
| rc = add_va_block_locked(hdev, &va_range->list, start, end); |
| mutex_unlock(&va_range->lock); |
| |
| return rc; |
| } |
| |
| /** |
| * is_hint_crossing_range() - check if hint address crossing specified reserved. |
| * @range_type: virtual space range type. |
| * @start_addr: start virtual address. |
| * @size: block size. |
| * @prop: asic properties structure to retrieve reserved ranges from. |
| */ |
| static inline bool is_hint_crossing_range(enum hl_va_range_type range_type, |
| u64 start_addr, u32 size, struct asic_fixed_properties *prop) { |
| bool range_cross; |
| |
| if (range_type == HL_VA_RANGE_TYPE_DRAM) |
| range_cross = |
| hl_mem_area_crosses_range(start_addr, size, |
| prop->hints_dram_reserved_va_range.start_addr, |
| prop->hints_dram_reserved_va_range.end_addr); |
| else if (range_type == HL_VA_RANGE_TYPE_HOST) |
| range_cross = |
| hl_mem_area_crosses_range(start_addr, size, |
| prop->hints_host_reserved_va_range.start_addr, |
| prop->hints_host_reserved_va_range.end_addr); |
| else |
| range_cross = |
| hl_mem_area_crosses_range(start_addr, size, |
| prop->hints_host_hpage_reserved_va_range.start_addr, |
| prop->hints_host_hpage_reserved_va_range.end_addr); |
| |
| return range_cross; |
| } |
| |
| /** |
| * get_va_block() - get a virtual block for the given size and alignment. |
| * |
| * @hdev: pointer to the habanalabs device structure. |
| * @va_range: pointer to the virtual addresses range. |
| * @size: requested block size. |
| * @hint_addr: hint for requested address by the user. |
| * @va_block_align: required alignment of the virtual block start address. |
| * @range_type: va range type (host, dram) |
| * @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT |
| * |
| * This function does the following: |
| * - Iterate on the virtual block list to find a suitable virtual block for the |
| * given size, hint address and alignment. |
| * - Reserve the requested block and update the list. |
| * - Return the start address of the virtual block. |
| */ |
| static u64 get_va_block(struct hl_device *hdev, |
| struct hl_va_range *va_range, |
| u64 size, u64 hint_addr, u32 va_block_align, |
| enum hl_va_range_type range_type, |
| u32 flags) |
| { |
| struct hl_vm_va_block *va_block, *new_va_block = NULL; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end, |
| align_mask, reserved_valid_start = 0, reserved_valid_size = 0, |
| dram_hint_mask = prop->dram_hints_align_mask; |
| bool add_prev = false; |
| bool is_align_pow_2 = is_power_of_2(va_range->page_size); |
| bool is_hint_dram_addr = hl_is_dram_va(hdev, hint_addr); |
| bool force_hint = flags & HL_MEM_FORCE_HINT; |
| |
| if (is_align_pow_2) |
| align_mask = ~((u64)va_block_align - 1); |
| else |
| /* |
| * with non-power-of-2 range we work only with page granularity |
| * and the start address is page aligned, |
| * so no need for alignment checking. |
| */ |
| size = DIV_ROUND_UP_ULL(size, va_range->page_size) * |
| va_range->page_size; |
| |
| tmp_hint_addr = hint_addr & ~dram_hint_mask; |
| |
| /* Check if we need to ignore hint address */ |
| if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) || |
| (!is_align_pow_2 && is_hint_dram_addr && |
| do_div(tmp_hint_addr, va_range->page_size))) { |
| |
| if (force_hint) { |
| /* Hint must be respected, so here we just fail */ |
| dev_err(hdev->dev, |
| "Hint address 0x%llx is not page aligned - cannot be respected\n", |
| hint_addr); |
| return 0; |
| } |
| |
| dev_dbg(hdev->dev, |
| "Hint address 0x%llx will be ignored because it is not aligned\n", |
| hint_addr); |
| hint_addr = 0; |
| } |
| |
| mutex_lock(&va_range->lock); |
| |
| print_va_list_locked(hdev, &va_range->list); |
| |
| list_for_each_entry(va_block, &va_range->list, node) { |
| /* Calc the first possible aligned addr */ |
| valid_start = va_block->start; |
| |
| if (is_align_pow_2 && (valid_start & (va_block_align - 1))) { |
| valid_start &= align_mask; |
| valid_start += va_block_align; |
| if (valid_start > va_block->end) |
| continue; |
| } |
| |
| valid_size = va_block->end - valid_start + 1; |
| if (valid_size < size) |
| continue; |
| |
| /* |
| * In case hint address is 0, and hints_range_reservation |
| * property enabled, then avoid allocating va blocks from the |
| * range reserved for hint addresses |
| */ |
| if (prop->hints_range_reservation && !hint_addr) |
| if (is_hint_crossing_range(range_type, valid_start, |
| size, prop)) |
| continue; |
| |
| /* Pick the minimal length block which has the required size */ |
| if (!new_va_block || (valid_size < reserved_valid_size)) { |
| new_va_block = va_block; |
| reserved_valid_start = valid_start; |
| reserved_valid_size = valid_size; |
| } |
| |
| if (hint_addr && hint_addr >= valid_start && |
| (hint_addr + size) <= va_block->end) { |
| new_va_block = va_block; |
| reserved_valid_start = hint_addr; |
| reserved_valid_size = valid_size; |
| break; |
| } |
| } |
| |
| if (!new_va_block) { |
| dev_err(hdev->dev, "no available va block for size %llu\n", |
| size); |
| goto out; |
| } |
| |
| if (force_hint && reserved_valid_start != hint_addr) { |
| /* Hint address must be respected. If we are here - this means |
| * we could not respect it. |
| */ |
| dev_err(hdev->dev, |
| "Hint address 0x%llx could not be respected\n", |
| hint_addr); |
| reserved_valid_start = 0; |
| goto out; |
| } |
| |
| /* |
| * Check if there is some leftover range due to reserving the new |
| * va block, then return it to the main virtual addresses list. |
| */ |
| if (reserved_valid_start > new_va_block->start) { |
| prev_start = new_va_block->start; |
| prev_end = reserved_valid_start - 1; |
| |
| new_va_block->start = reserved_valid_start; |
| new_va_block->size = reserved_valid_size; |
| |
| add_prev = true; |
| } |
| |
| if (new_va_block->size > size) { |
| new_va_block->start += size; |
| new_va_block->size = new_va_block->end - new_va_block->start + 1; |
| } else { |
| list_del(&new_va_block->node); |
| kfree(new_va_block); |
| } |
| |
| if (add_prev) |
| add_va_block_locked(hdev, &va_range->list, prev_start, |
| prev_end); |
| |
| print_va_list_locked(hdev, &va_range->list); |
| out: |
| mutex_unlock(&va_range->lock); |
| |
| return reserved_valid_start; |
| } |
| |
| /* |
| * hl_reserve_va_block() - reserve a virtual block of a given size. |
| * @hdev: pointer to the habanalabs device structure. |
| * @ctx: current context |
| * @type: virtual addresses range type. |
| * @size: requested block size. |
| * @alignment: required alignment in bytes of the virtual block start address, |
| * 0 means no alignment. |
| * |
| * This function does the following: |
| * - Iterate on the virtual block list to find a suitable virtual block for the |
| * given size and alignment. |
| * - Reserve the requested block and update the list. |
| * - Return the start address of the virtual block. |
| */ |
| u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, |
| enum hl_va_range_type type, u32 size, u32 alignment) |
| { |
| return get_va_block(hdev, ctx->va_range[type], size, 0, |
| max(alignment, ctx->va_range[type]->page_size), |
| type, 0); |
| } |
| |
| /** |
| * hl_get_va_range_type() - get va_range type for the given address and size. |
| * @ctx: context to fetch va_range from. |
| * @address: the start address of the area we want to validate. |
| * @size: the size in bytes of the area we want to validate. |
| * @type: returned va_range type. |
| * |
| * Return: true if the area is inside a valid range, false otherwise. |
| */ |
| static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size, |
| enum hl_va_range_type *type) |
| { |
| int i; |
| |
| for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) { |
| if (hl_mem_area_inside_range(address, size, |
| ctx->va_range[i]->start_addr, |
| ctx->va_range[i]->end_addr)) { |
| *type = i; |
| return 0; |
| } |
| } |
| |
| return -EINVAL; |
| } |
| |
| /** |
| * hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block. |
| * @hdev: pointer to the habanalabs device structure |
| * @ctx: pointer to the context structure. |
| * @start_addr: start virtual address. |
| * @size: number of bytes to unreserve. |
| * |
| * This function does the following: |
| * - Takes the list lock and calls add_va_block_locked. |
| */ |
| int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, |
| u64 start_addr, u64 size) |
| { |
| enum hl_va_range_type type; |
| int rc; |
| |
| rc = hl_get_va_range_type(ctx, start_addr, size, &type); |
| if (rc) { |
| dev_err(hdev->dev, |
| "cannot find va_range for va %#llx size %llu", |
| start_addr, size); |
| return rc; |
| } |
| |
| rc = add_va_block(hdev, ctx->va_range[type], start_addr, |
| start_addr + size - 1); |
| if (rc) |
| dev_warn(hdev->dev, |
| "add va block failed for vaddr: 0x%llx\n", start_addr); |
| |
| return rc; |
| } |
| |
| /** |
| * init_phys_pg_pack_from_userptr() - initialize physical page pack from host |
| * memory |
| * @ctx: pointer to the context structure. |
| * @userptr: userptr to initialize from. |
| * @pphys_pg_pack: result pointer. |
| * @force_regular_page: tell the function to ignore huge page optimization, |
| * even if possible. Needed for cases where the device VA |
| * is allocated before we know the composition of the |
| * physical pages |
| * |
| * This function does the following: |
| * - Pin the physical pages related to the given virtual block. |
| * - Create a physical page pack from the physical pages related to the given |
| * virtual block. |
| */ |
| static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx, |
| struct hl_userptr *userptr, |
| struct hl_vm_phys_pg_pack **pphys_pg_pack, |
| bool force_regular_page) |
| { |
| u32 npages, page_size = PAGE_SIZE, |
| huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size; |
| u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size); |
| struct hl_vm_phys_pg_pack *phys_pg_pack; |
| bool first = true, is_huge_page_opt; |
| u64 page_mask, total_npages; |
| struct scatterlist *sg; |
| dma_addr_t dma_addr; |
| int rc, i, j; |
| |
| phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL); |
| if (!phys_pg_pack) |
| return -ENOMEM; |
| |
| phys_pg_pack->vm_type = userptr->vm_type; |
| phys_pg_pack->created_from_userptr = true; |
| phys_pg_pack->asid = ctx->asid; |
| atomic_set(&phys_pg_pack->mapping_cnt, 1); |
| |
| is_huge_page_opt = (force_regular_page ? false : true); |
| |
| /* Only if all dma_addrs are aligned to 2MB and their |
| * sizes is at least 2MB, we can use huge page mapping. |
| * We limit the 2MB optimization to this condition, |
| * since later on we acquire the related VA range as one |
| * consecutive block. |
| */ |
| total_npages = 0; |
| for_each_sgtable_dma_sg(userptr->sgt, sg, i) { |
| npages = hl_get_sg_info(sg, &dma_addr); |
| |
| total_npages += npages; |
| |
| if ((npages % pgs_in_huge_page) || |
| (dma_addr & (huge_page_size - 1))) |
| is_huge_page_opt = false; |
| } |
| |
| if (is_huge_page_opt) { |
| page_size = huge_page_size; |
| do_div(total_npages, pgs_in_huge_page); |
| } |
| |
| page_mask = ~(((u64) page_size) - 1); |
| |
| phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64), |
| GFP_KERNEL); |
| if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) { |
| rc = -ENOMEM; |
| goto page_pack_arr_mem_err; |
| } |
| |
| phys_pg_pack->npages = total_npages; |
| phys_pg_pack->page_size = page_size; |
| phys_pg_pack->total_size = total_npages * page_size; |
| |
| j = 0; |
| for_each_sgtable_dma_sg(userptr->sgt, sg, i) { |
| npages = hl_get_sg_info(sg, &dma_addr); |
| |
| /* align down to physical page size and save the offset */ |
| if (first) { |
| first = false; |
| phys_pg_pack->offset = dma_addr & (page_size - 1); |
| dma_addr &= page_mask; |
| } |
| |
| while (npages) { |
| phys_pg_pack->pages[j++] = dma_addr; |
| dma_addr += page_size; |
| |
| if (is_huge_page_opt) |
| npages -= pgs_in_huge_page; |
| else |
| npages--; |
| } |
| } |
| |
| *pphys_pg_pack = phys_pg_pack; |
| |
| return 0; |
| |
| page_pack_arr_mem_err: |
| kfree(phys_pg_pack); |
| |
| return rc; |
| } |
| |
| /** |
| * map_phys_pg_pack() - maps the physical page pack.. |
| * @ctx: pointer to the context structure. |
| * @vaddr: start address of the virtual area to map from. |
| * @phys_pg_pack: the pack of physical pages to map to. |
| * |
| * This function does the following: |
| * - Maps each chunk of virtual memory to matching physical chunk. |
| * - Stores number of successful mappings in the given argument. |
| * - Returns 0 on success, error code otherwise. |
| */ |
| static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr, |
| struct hl_vm_phys_pg_pack *phys_pg_pack) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i; |
| u32 page_size = phys_pg_pack->page_size; |
| int rc = 0; |
| bool is_host_addr; |
| |
| for (i = 0 ; i < phys_pg_pack->npages ; i++) { |
| paddr = phys_pg_pack->pages[i]; |
| |
| rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size, |
| (i + 1) == phys_pg_pack->npages); |
| if (rc) { |
| dev_err(hdev->dev, |
| "map failed for handle %u, npages: %llu, mapped: %llu", |
| phys_pg_pack->handle, phys_pg_pack->npages, |
| mapped_pg_cnt); |
| goto err; |
| } |
| |
| mapped_pg_cnt++; |
| next_vaddr += page_size; |
| } |
| |
| return 0; |
| |
| err: |
| is_host_addr = !hl_is_dram_va(hdev, vaddr); |
| |
| next_vaddr = vaddr; |
| for (i = 0 ; i < mapped_pg_cnt ; i++) { |
| if (hl_mmu_unmap_page(ctx, next_vaddr, page_size, |
| (i + 1) == mapped_pg_cnt)) |
| dev_warn_ratelimited(hdev->dev, |
| "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n", |
| phys_pg_pack->handle, next_vaddr, |
| phys_pg_pack->pages[i], page_size); |
| |
| next_vaddr += page_size; |
| |
| /* |
| * unmapping on Palladium can be really long, so avoid a CPU |
| * soft lockup bug by sleeping a little between unmapping pages |
| * |
| * In addition, on host num of pages could be huge, |
| * because page size could be 4KB, so when unmapping host |
| * pages sleep every 32K pages to avoid soft lockup |
| */ |
| if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0)) |
| usleep_range(50, 200); |
| } |
| |
| return rc; |
| } |
| |
| /** |
| * unmap_phys_pg_pack() - unmaps the physical page pack. |
| * @ctx: pointer to the context structure. |
| * @vaddr: start address of the virtual area to unmap. |
| * @phys_pg_pack: the pack of physical pages to unmap. |
| */ |
| static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr, |
| struct hl_vm_phys_pg_pack *phys_pg_pack) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| u64 next_vaddr, i; |
| bool is_host_addr; |
| u32 page_size; |
| |
| is_host_addr = !hl_is_dram_va(hdev, vaddr); |
| page_size = phys_pg_pack->page_size; |
| next_vaddr = vaddr; |
| |
| for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) { |
| if (hl_mmu_unmap_page(ctx, next_vaddr, page_size, |
| (i + 1) == phys_pg_pack->npages)) |
| dev_warn_ratelimited(hdev->dev, |
| "unmap failed for vaddr: 0x%llx\n", next_vaddr); |
| |
| /* |
| * unmapping on Palladium can be really long, so avoid a CPU |
| * soft lockup bug by sleeping a little between unmapping pages |
| * |
| * In addition, on host num of pages could be huge, |
| * because page size could be 4KB, so when unmapping host |
| * pages sleep every 32K pages to avoid soft lockup |
| */ |
| if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0)) |
| usleep_range(50, 200); |
| } |
| } |
| |
| static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args, |
| u64 *paddr) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct hl_vm *vm = &hdev->vm; |
| struct hl_vm_phys_pg_pack *phys_pg_pack; |
| u32 handle; |
| |
| handle = lower_32_bits(args->map_device.handle); |
| spin_lock(&vm->idr_lock); |
| phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); |
| if (!phys_pg_pack) { |
| spin_unlock(&vm->idr_lock); |
| dev_err(hdev->dev, "no match for handle %u\n", handle); |
| return -EINVAL; |
| } |
| |
| *paddr = phys_pg_pack->pages[0]; |
| |
| spin_unlock(&vm->idr_lock); |
| |
| return 0; |
| } |
| |
| /** |
| * map_device_va() - map the given memory. |
| * @ctx: pointer to the context structure. |
| * @args: host parameters with handle/host virtual address. |
| * @device_addr: pointer to result device virtual address. |
| * |
| * This function does the following: |
| * - If given a physical device memory handle, map to a device virtual block |
| * and return the start address of this block. |
| * - If given a host virtual address and size, find the related physical pages, |
| * map a device virtual block to this pages and return the start address of |
| * this block. |
| */ |
| static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, u64 *device_addr) |
| { |
| struct hl_vm_phys_pg_pack *phys_pg_pack; |
| enum hl_va_range_type va_range_type = 0; |
| struct hl_device *hdev = ctx->hdev; |
| struct hl_userptr *userptr = NULL; |
| u32 handle = 0, va_block_align; |
| struct hl_vm_hash_node *hnode; |
| struct hl_vm *vm = &hdev->vm; |
| struct hl_va_range *va_range; |
| bool is_userptr, do_prefetch; |
| u64 ret_vaddr, hint_addr; |
| enum vm_type *vm_type; |
| int rc; |
| |
| /* set map flags */ |
| is_userptr = args->flags & HL_MEM_USERPTR; |
| do_prefetch = hdev->supports_mmu_prefetch && (args->flags & HL_MEM_PREFETCH); |
| |
| /* Assume failure */ |
| *device_addr = 0; |
| |
| if (is_userptr) { |
| u64 addr = args->map_host.host_virt_addr, |
| size = args->map_host.mem_size; |
| u32 page_size = hdev->asic_prop.pmmu.page_size, |
| huge_page_size = hdev->asic_prop.pmmu_huge.page_size; |
| |
| rc = dma_map_host_va(hdev, addr, size, &userptr); |
| if (rc) { |
| dev_err(hdev->dev, "failed to get userptr from va\n"); |
| return rc; |
| } |
| |
| rc = init_phys_pg_pack_from_userptr(ctx, userptr, |
| &phys_pg_pack, false); |
| if (rc) { |
| dev_err(hdev->dev, |
| "unable to init page pack for vaddr 0x%llx\n", |
| addr); |
| goto init_page_pack_err; |
| } |
| |
| vm_type = (enum vm_type *) userptr; |
| hint_addr = args->map_host.hint_addr; |
| handle = phys_pg_pack->handle; |
| |
| /* get required alignment */ |
| if (phys_pg_pack->page_size == page_size) { |
| va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST]; |
| va_range_type = HL_VA_RANGE_TYPE_HOST; |
| /* |
| * huge page alignment may be needed in case of regular |
| * page mapping, depending on the host VA alignment |
| */ |
| if (addr & (huge_page_size - 1)) |
| va_block_align = page_size; |
| else |
| va_block_align = huge_page_size; |
| } else { |
| /* |
| * huge page alignment is needed in case of huge page |
| * mapping |
| */ |
| va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]; |
| va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE; |
| va_block_align = huge_page_size; |
| } |
| } else { |
| handle = lower_32_bits(args->map_device.handle); |
| |
| spin_lock(&vm->idr_lock); |
| phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); |
| if (!phys_pg_pack) { |
| spin_unlock(&vm->idr_lock); |
| dev_err(hdev->dev, |
| "no match for handle %u\n", handle); |
| return -EINVAL; |
| } |
| |
| /* increment now to avoid freeing device memory while mapping */ |
| atomic_inc(&phys_pg_pack->mapping_cnt); |
| |
| spin_unlock(&vm->idr_lock); |
| |
| vm_type = (enum vm_type *) phys_pg_pack; |
| |
| hint_addr = args->map_device.hint_addr; |
| |
| /* DRAM VA alignment is the same as the MMU page size */ |
| va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM]; |
| va_range_type = HL_VA_RANGE_TYPE_DRAM; |
| va_block_align = hdev->asic_prop.dmmu.page_size; |
| } |
| |
| /* |
| * relevant for mapping device physical memory only, as host memory is |
| * implicitly shared |
| */ |
| if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) && |
| phys_pg_pack->asid != ctx->asid) { |
| dev_err(hdev->dev, |
| "Failed to map memory, handle %u is not shared\n", |
| handle); |
| rc = -EPERM; |
| goto shared_err; |
| } |
| |
| hnode = kzalloc(sizeof(*hnode), GFP_KERNEL); |
| if (!hnode) { |
| rc = -ENOMEM; |
| goto hnode_err; |
| } |
| |
| if (hint_addr && phys_pg_pack->offset) { |
| if (args->flags & HL_MEM_FORCE_HINT) { |
| /* Fail if hint must be respected but it can't be */ |
| dev_err(hdev->dev, |
| "Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n", |
| hint_addr, phys_pg_pack->offset); |
| rc = -EINVAL; |
| goto va_block_err; |
| } |
| dev_dbg(hdev->dev, |
| "Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n", |
| hint_addr, phys_pg_pack->offset); |
| } |
| |
| ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size, |
| hint_addr, va_block_align, |
| va_range_type, args->flags); |
| if (!ret_vaddr) { |
| dev_err(hdev->dev, "no available va block for handle %u\n", |
| handle); |
| rc = -ENOMEM; |
| goto va_block_err; |
| } |
| |
| mutex_lock(&ctx->mmu_lock); |
| |
| rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack); |
| if (rc) { |
| dev_err(hdev->dev, "mapping page pack failed for handle %u\n", handle); |
| mutex_unlock(&ctx->mmu_lock); |
| goto map_err; |
| } |
| |
| rc = hl_mmu_invalidate_cache_range(hdev, false, *vm_type | MMU_OP_SKIP_LOW_CACHE_INV, |
| ctx->asid, ret_vaddr, phys_pg_pack->total_size); |
| mutex_unlock(&ctx->mmu_lock); |
| if (rc) |
| goto map_err; |
| |
| /* |
| * prefetch is done upon user's request. it is performed in WQ as and so can |
| * be outside the MMU lock. the operation itself is already protected by the mmu lock |
| */ |
| if (do_prefetch) { |
| rc = hl_mmu_prefetch_cache_range(ctx, *vm_type, ctx->asid, ret_vaddr, |
| phys_pg_pack->total_size); |
| if (rc) |
| goto map_err; |
| } |
| |
| ret_vaddr += phys_pg_pack->offset; |
| |
| hnode->ptr = vm_type; |
| hnode->vaddr = ret_vaddr; |
| |
| mutex_lock(&ctx->mem_hash_lock); |
| hash_add(ctx->mem_hash, &hnode->node, ret_vaddr); |
| mutex_unlock(&ctx->mem_hash_lock); |
| |
| *device_addr = ret_vaddr; |
| |
| if (is_userptr) |
| free_phys_pg_pack(hdev, phys_pg_pack); |
| |
| return rc; |
| |
| map_err: |
| if (add_va_block(hdev, va_range, ret_vaddr, |
| ret_vaddr + phys_pg_pack->total_size - 1)) |
| dev_warn(hdev->dev, |
| "release va block failed for handle 0x%x, vaddr: 0x%llx\n", |
| handle, ret_vaddr); |
| |
| va_block_err: |
| kfree(hnode); |
| hnode_err: |
| shared_err: |
| atomic_dec(&phys_pg_pack->mapping_cnt); |
| if (is_userptr) |
| free_phys_pg_pack(hdev, phys_pg_pack); |
| init_page_pack_err: |
| if (is_userptr) |
| dma_unmap_host_va(hdev, userptr); |
| |
| return rc; |
| } |
| |
| /** |
| * unmap_device_va() - unmap the given device virtual address. |
| * @ctx: pointer to the context structure. |
| * @args: host parameters with device virtual address to unmap. |
| * @ctx_free: true if in context free flow, false otherwise. |
| * |
| * This function does the following: |
| * - unmap the physical pages related to the given virtual address. |
| * - return the device virtual block to the virtual block list. |
| */ |
| static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, |
| bool ctx_free) |
| { |
| struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; |
| u64 vaddr = args->unmap.device_virt_addr; |
| struct hl_vm_hash_node *hnode = NULL; |
| struct asic_fixed_properties *prop; |
| struct hl_device *hdev = ctx->hdev; |
| struct hl_userptr *userptr = NULL; |
| struct hl_va_range *va_range; |
| enum vm_type *vm_type; |
| bool is_userptr; |
| int rc = 0; |
| |
| prop = &hdev->asic_prop; |
| |
| /* protect from double entrance */ |
| mutex_lock(&ctx->mem_hash_lock); |
| hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr) |
| if (vaddr == hnode->vaddr) |
| break; |
| |
| if (!hnode) { |
| mutex_unlock(&ctx->mem_hash_lock); |
| dev_err(hdev->dev, |
| "unmap failed, no mem hnode for vaddr 0x%llx\n", |
| vaddr); |
| return -EINVAL; |
| } |
| |
| hash_del(&hnode->node); |
| mutex_unlock(&ctx->mem_hash_lock); |
| |
| vm_type = hnode->ptr; |
| |
| if (*vm_type == VM_TYPE_USERPTR) { |
| is_userptr = true; |
| userptr = hnode->ptr; |
| |
| rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack, |
| false); |
| if (rc) { |
| dev_err(hdev->dev, |
| "unable to init page pack for vaddr 0x%llx\n", |
| vaddr); |
| goto vm_type_err; |
| } |
| |
| if (phys_pg_pack->page_size == |
| hdev->asic_prop.pmmu.page_size) |
| va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST]; |
| else |
| va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]; |
| } else if (*vm_type == VM_TYPE_PHYS_PACK) { |
| is_userptr = false; |
| va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM]; |
| phys_pg_pack = hnode->ptr; |
| } else { |
| dev_warn(hdev->dev, |
| "unmap failed, unknown vm desc for vaddr 0x%llx\n", |
| vaddr); |
| rc = -EFAULT; |
| goto vm_type_err; |
| } |
| |
| if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) { |
| dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr); |
| rc = -EINVAL; |
| goto mapping_cnt_err; |
| } |
| |
| if (!is_userptr && !is_power_of_2(phys_pg_pack->page_size)) |
| vaddr = prop->dram_base_address + |
| DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address, |
| phys_pg_pack->page_size) * |
| phys_pg_pack->page_size; |
| else |
| vaddr &= ~(((u64) phys_pg_pack->page_size) - 1); |
| |
| mutex_lock(&ctx->mmu_lock); |
| |
| unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack); |
| |
| /* |
| * During context free this function is called in a loop to clean all |
| * the context mappings. Hence the cache invalidation can be called once |
| * at the loop end rather than for each iteration |
| */ |
| if (!ctx_free) |
| rc = hl_mmu_invalidate_cache_range(hdev, true, *vm_type, ctx->asid, vaddr, |
| phys_pg_pack->total_size); |
| |
| mutex_unlock(&ctx->mmu_lock); |
| |
| /* |
| * If the context is closing we don't need to check for the MMU cache |
| * invalidation return code and update the VA free list as in this flow |
| * we invalidate the MMU cache outside of this unmap function and the VA |
| * free list will be freed anyway. |
| */ |
| if (!ctx_free) { |
| int tmp_rc; |
| |
| tmp_rc = add_va_block(hdev, va_range, vaddr, |
| vaddr + phys_pg_pack->total_size - 1); |
| if (tmp_rc) { |
| dev_warn(hdev->dev, |
| "add va block failed for vaddr: 0x%llx\n", |
| vaddr); |
| if (!rc) |
| rc = tmp_rc; |
| } |
| } |
| |
| atomic_dec(&phys_pg_pack->mapping_cnt); |
| kfree(hnode); |
| |
| if (is_userptr) { |
| free_phys_pg_pack(hdev, phys_pg_pack); |
| dma_unmap_host_va(hdev, userptr); |
| } |
| |
| return rc; |
| |
| mapping_cnt_err: |
| if (is_userptr) |
| free_phys_pg_pack(hdev, phys_pg_pack); |
| vm_type_err: |
| mutex_lock(&ctx->mem_hash_lock); |
| hash_add(ctx->mem_hash, &hnode->node, vaddr); |
| mutex_unlock(&ctx->mem_hash_lock); |
| |
| return rc; |
| } |
| |
| static int map_block(struct hl_device *hdev, u64 address, u64 *handle, |
| u32 *size) |
| { |
| u32 block_id = 0; |
| int rc; |
| |
| rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id); |
| |
| *handle = block_id | HL_MMAP_TYPE_BLOCK; |
| *handle <<= PAGE_SHIFT; |
| |
| return rc; |
| } |
| |
| static void hw_block_vm_close(struct vm_area_struct *vma) |
| { |
| struct hl_vm_hw_block_list_node *lnode = |
| (struct hl_vm_hw_block_list_node *) vma->vm_private_data; |
| struct hl_ctx *ctx = lnode->ctx; |
| |
| mutex_lock(&ctx->hw_block_list_lock); |
| list_del(&lnode->node); |
| mutex_unlock(&ctx->hw_block_list_lock); |
| hl_ctx_put(ctx); |
| kfree(lnode); |
| vma->vm_private_data = NULL; |
| } |
| |
| static const struct vm_operations_struct hw_block_vm_ops = { |
| .close = hw_block_vm_close |
| }; |
| |
| /** |
| * hl_hw_block_mmap() - mmap a hw block to user. |
| * @hpriv: pointer to the private data of the fd |
| * @vma: pointer to vm_area_struct of the process |
| * |
| * Driver increments context reference for every HW block mapped in order |
| * to prevent user from closing FD without unmapping first |
| */ |
| int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma) |
| { |
| struct hl_vm_hw_block_list_node *lnode; |
| struct hl_device *hdev = hpriv->hdev; |
| struct hl_ctx *ctx = hpriv->ctx; |
| u32 block_id, block_size; |
| int rc; |
| |
| /* We use the page offset to hold the block id and thus we need to clear |
| * it before doing the mmap itself |
| */ |
| block_id = vma->vm_pgoff; |
| vma->vm_pgoff = 0; |
| |
| /* Driver only allows mapping of a complete HW block */ |
| block_size = vma->vm_end - vma->vm_start; |
| |
| if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) { |
| dev_err(hdev->dev, |
| "user pointer is invalid - 0x%lx\n", |
| vma->vm_start); |
| |
| return -EINVAL; |
| } |
| |
| lnode = kzalloc(sizeof(*lnode), GFP_KERNEL); |
| if (!lnode) |
| return -ENOMEM; |
| |
| vma->vm_ops = &hw_block_vm_ops; |
| vma->vm_private_data = lnode; |
| |
| hl_ctx_get(ctx); |
| |
| rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size); |
| if (rc) { |
| hl_ctx_put(ctx); |
| kfree(lnode); |
| return rc; |
| } |
| |
| lnode->ctx = ctx; |
| lnode->vaddr = vma->vm_start; |
| lnode->size = block_size; |
| lnode->id = block_id; |
| |
| mutex_lock(&ctx->hw_block_list_lock); |
| list_add_tail(&lnode->node, &ctx->hw_block_mem_list); |
| mutex_unlock(&ctx->hw_block_list_lock); |
| |
| vma->vm_pgoff = block_id; |
| |
| return 0; |
| } |
| |
| static int set_dma_sg(struct scatterlist *sg, u64 bar_address, u64 chunk_size, |
| struct device *dev, enum dma_data_direction dir) |
| { |
| dma_addr_t addr; |
| int rc; |
| |
| addr = dma_map_resource(dev, bar_address, chunk_size, dir, |
| DMA_ATTR_SKIP_CPU_SYNC); |
| rc = dma_mapping_error(dev, addr); |
| if (rc) |
| return rc; |
| |
| sg_set_page(sg, NULL, chunk_size, 0); |
| sg_dma_address(sg) = addr; |
| sg_dma_len(sg) = chunk_size; |
| |
| return 0; |
| } |
| |
| static struct sg_table *alloc_sgt_from_device_pages(struct hl_device *hdev, u64 *pages, u64 npages, |
| u64 page_size, struct device *dev, |
| enum dma_data_direction dir) |
| { |
| u64 chunk_size, bar_address, dma_max_seg_size; |
| struct asic_fixed_properties *prop; |
| int rc, i, j, nents, cur_page; |
| struct scatterlist *sg; |
| struct sg_table *sgt; |
| |
| prop = &hdev->asic_prop; |
| |
| dma_max_seg_size = dma_get_max_seg_size(dev); |
| |
| /* We would like to align the max segment size to PAGE_SIZE, so the |
| * SGL will contain aligned addresses that can be easily mapped to |
| * an MMU |
| */ |
| dma_max_seg_size = ALIGN_DOWN(dma_max_seg_size, PAGE_SIZE); |
| if (dma_max_seg_size < PAGE_SIZE) { |
| dev_err_ratelimited(hdev->dev, |
| "dma_max_seg_size %llu can't be smaller than PAGE_SIZE\n", |
| dma_max_seg_size); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| sgt = kzalloc(sizeof(*sgt), GFP_KERNEL); |
| if (!sgt) |
| return ERR_PTR(-ENOMEM); |
| |
| /* If the size of each page is larger than the dma max segment size, |
| * then we can't combine pages and the number of entries in the SGL |
| * will just be the |
| * <number of pages> * <chunks of max segment size in each page> |
| */ |
| if (page_size > dma_max_seg_size) |
| nents = npages * DIV_ROUND_UP_ULL(page_size, dma_max_seg_size); |
| else |
| /* Get number of non-contiguous chunks */ |
| for (i = 1, nents = 1, chunk_size = page_size ; i < npages ; i++) { |
| if (pages[i - 1] + page_size != pages[i] || |
| chunk_size + page_size > dma_max_seg_size) { |
| nents++; |
| chunk_size = page_size; |
| continue; |
| } |
| |
| chunk_size += page_size; |
| } |
| |
| rc = sg_alloc_table(sgt, nents, GFP_KERNEL | __GFP_ZERO); |
| if (rc) |
| goto error_free; |
| |
| cur_page = 0; |
| |
| if (page_size > dma_max_seg_size) { |
| u64 size_left, cur_device_address = 0; |
| |
| size_left = page_size; |
| |
| /* Need to split each page into the number of chunks of |
| * dma_max_seg_size |
| */ |
| for_each_sgtable_dma_sg(sgt, sg, i) { |
| if (size_left == page_size) |
| cur_device_address = |
| pages[cur_page] - prop->dram_base_address; |
| else |
| cur_device_address += dma_max_seg_size; |
| |
| chunk_size = min(size_left, dma_max_seg_size); |
| |
| bar_address = hdev->dram_pci_bar_start + cur_device_address; |
| |
| rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir); |
| if (rc) |
| goto error_unmap; |
| |
| if (size_left > dma_max_seg_size) { |
| size_left -= dma_max_seg_size; |
| } else { |
| cur_page++; |
| size_left = page_size; |
| } |
| } |
| } else { |
| /* Merge pages and put them into the scatterlist */ |
| for_each_sgtable_dma_sg(sgt, sg, i) { |
| chunk_size = page_size; |
| for (j = cur_page + 1 ; j < npages ; j++) { |
| if (pages[j - 1] + page_size != pages[j] || |
| chunk_size + page_size > dma_max_seg_size) |
| break; |
| |
| chunk_size += page_size; |
| } |
| |
| bar_address = hdev->dram_pci_bar_start + |
| (pages[cur_page] - prop->dram_base_address); |
| |
| rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir); |
| if (rc) |
| goto error_unmap; |
| |
| cur_page = j; |
| } |
| } |
| |
| /* Because we are not going to include a CPU list we want to have some |
| * chance that other users will detect this by setting the orig_nents |
| * to 0 and using only nents (length of DMA list) when going over the |
| * sgl |
| */ |
| sgt->orig_nents = 0; |
| |
| return sgt; |
| |
| error_unmap: |
| for_each_sgtable_dma_sg(sgt, sg, i) { |
| if (!sg_dma_len(sg)) |
| continue; |
| |
| dma_unmap_resource(dev, sg_dma_address(sg), |
| sg_dma_len(sg), dir, |
| DMA_ATTR_SKIP_CPU_SYNC); |
| } |
| |
| sg_free_table(sgt); |
| |
| error_free: |
| kfree(sgt); |
| return ERR_PTR(rc); |
| } |
| |
| static int hl_dmabuf_attach(struct dma_buf *dmabuf, |
| struct dma_buf_attachment *attachment) |
| { |
| struct hl_dmabuf_priv *hl_dmabuf; |
| struct hl_device *hdev; |
| int rc; |
| |
| hl_dmabuf = dmabuf->priv; |
| hdev = hl_dmabuf->ctx->hdev; |
| |
| rc = pci_p2pdma_distance_many(hdev->pdev, &attachment->dev, 1, true); |
| |
| if (rc < 0) |
| attachment->peer2peer = false; |
| return 0; |
| } |
| |
| static struct sg_table *hl_map_dmabuf(struct dma_buf_attachment *attachment, |
| enum dma_data_direction dir) |
| { |
| struct dma_buf *dma_buf = attachment->dmabuf; |
| struct hl_vm_phys_pg_pack *phys_pg_pack; |
| struct hl_dmabuf_priv *hl_dmabuf; |
| struct hl_device *hdev; |
| struct sg_table *sgt; |
| |
| hl_dmabuf = dma_buf->priv; |
| hdev = hl_dmabuf->ctx->hdev; |
| phys_pg_pack = hl_dmabuf->phys_pg_pack; |
| |
| if (!attachment->peer2peer) { |
| dev_dbg(hdev->dev, "Failed to map dmabuf because p2p is disabled\n"); |
| return ERR_PTR(-EPERM); |
| } |
| |
| if (phys_pg_pack) |
| sgt = alloc_sgt_from_device_pages(hdev, |
| phys_pg_pack->pages, |
| phys_pg_pack->npages, |
| phys_pg_pack->page_size, |
| attachment->dev, |
| dir); |
| else |
| sgt = alloc_sgt_from_device_pages(hdev, |
| &hl_dmabuf->device_address, |
| 1, |
| hl_dmabuf->dmabuf->size, |
| attachment->dev, |
| dir); |
| |
| if (IS_ERR(sgt)) |
| dev_err(hdev->dev, "failed (%ld) to initialize sgt for dmabuf\n", PTR_ERR(sgt)); |
| |
| return sgt; |
| } |
| |
| static void hl_unmap_dmabuf(struct dma_buf_attachment *attachment, |
| struct sg_table *sgt, |
| enum dma_data_direction dir) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| /* The memory behind the dma-buf has *always* resided on the device itself, i.e. it lives |
| * only in the 'device' domain (after all, it maps a PCI bar address which points to the |
| * device memory). |
| * |
| * Therefore, it was never in the 'CPU' domain and hence, there is no need to perform |
| * a sync of the memory to the CPU's cache, as it never resided inside that cache. |
| */ |
| for_each_sgtable_dma_sg(sgt, sg, i) |
| dma_unmap_resource(attachment->dev, sg_dma_address(sg), |
| sg_dma_len(sg), dir, |
| DMA_ATTR_SKIP_CPU_SYNC); |
| |
| /* Need to restore orig_nents because sg_free_table use that field */ |
| sgt->orig_nents = sgt->nents; |
| sg_free_table(sgt); |
| kfree(sgt); |
| } |
| |
| static void hl_release_dmabuf(struct dma_buf *dmabuf) |
| { |
| struct hl_dmabuf_priv *hl_dmabuf = dmabuf->priv; |
| struct hl_ctx *ctx = hl_dmabuf->ctx; |
| struct hl_device *hdev = ctx->hdev; |
| struct hl_vm *vm = &hdev->vm; |
| |
| if (hl_dmabuf->phys_pg_pack) { |
| spin_lock(&vm->idr_lock); |
| hl_dmabuf->phys_pg_pack->exporting_cnt--; |
| spin_unlock(&vm->idr_lock); |
| } |
| |
| hl_ctx_put(hl_dmabuf->ctx); |
| |
| kfree(hl_dmabuf); |
| } |
| |
| static const struct dma_buf_ops habanalabs_dmabuf_ops = { |
| .attach = hl_dmabuf_attach, |
| .map_dma_buf = hl_map_dmabuf, |
| .unmap_dma_buf = hl_unmap_dmabuf, |
| .release = hl_release_dmabuf, |
| }; |
| |
| static int export_dmabuf_common(struct hl_ctx *ctx, |
| struct hl_dmabuf_priv *hl_dmabuf, |
| u64 total_size, int flags, int *dmabuf_fd) |
| { |
| DEFINE_DMA_BUF_EXPORT_INFO(exp_info); |
| struct hl_device *hdev = ctx->hdev; |
| int rc, fd; |
| |
| exp_info.ops = &habanalabs_dmabuf_ops; |
| exp_info.size = total_size; |
| exp_info.flags = flags; |
| exp_info.priv = hl_dmabuf; |
| |
| hl_dmabuf->dmabuf = dma_buf_export(&exp_info); |
| if (IS_ERR(hl_dmabuf->dmabuf)) { |
| dev_err(hdev->dev, "failed to export dma-buf\n"); |
| return PTR_ERR(hl_dmabuf->dmabuf); |
| } |
| |
| fd = dma_buf_fd(hl_dmabuf->dmabuf, flags); |
| if (fd < 0) { |
| dev_err(hdev->dev, "failed to get a file descriptor for a dma-buf\n"); |
| rc = fd; |
| goto err_dma_buf_put; |
| } |
| |
| hl_dmabuf->ctx = ctx; |
| hl_ctx_get(hl_dmabuf->ctx); |
| |
| *dmabuf_fd = fd; |
| |
| return 0; |
| |
| err_dma_buf_put: |
| dma_buf_put(hl_dmabuf->dmabuf); |
| return rc; |
| } |
| |
| /** |
| * export_dmabuf_from_addr() - export a dma-buf object for the given memory |
| * address and size. |
| * @ctx: pointer to the context structure. |
| * @device_addr: device memory physical address. |
| * @size: size of device memory. |
| * @flags: DMA-BUF file/FD flags. |
| * @dmabuf_fd: pointer to result FD that represents the dma-buf object. |
| * |
| * Create and export a dma-buf object for an existing memory allocation inside |
| * the device memory, and return a FD which is associated with the dma-buf |
| * object. |
| * |
| * Return: 0 on success, non-zero for failure. |
| */ |
| static int export_dmabuf_from_addr(struct hl_ctx *ctx, u64 device_addr, |
| u64 size, int flags, int *dmabuf_fd) |
| { |
| struct hl_dmabuf_priv *hl_dmabuf; |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop; |
| u64 bar_address; |
| int rc; |
| |
| prop = &hdev->asic_prop; |
| |
| if (!IS_ALIGNED(device_addr, PAGE_SIZE)) { |
| dev_dbg(hdev->dev, |
| "exported device memory address 0x%llx should be aligned to 0x%lx\n", |
| device_addr, PAGE_SIZE); |
| return -EINVAL; |
| } |
| |
| if (size < PAGE_SIZE) { |
| dev_dbg(hdev->dev, |
| "exported device memory size %llu should be equal to or greater than %lu\n", |
| size, PAGE_SIZE); |
| return -EINVAL; |
| } |
| |
| if (device_addr < prop->dram_user_base_address || |
| device_addr + size > prop->dram_end_address || |
| device_addr + size < device_addr) { |
| dev_dbg(hdev->dev, |
| "DRAM memory range 0x%llx (+0x%llx) is outside of DRAM boundaries\n", |
| device_addr, size); |
| return -EINVAL; |
| } |
| |
| bar_address = hdev->dram_pci_bar_start + |
| (device_addr - prop->dram_base_address); |
| |
| if (bar_address + size > |
| hdev->dram_pci_bar_start + prop->dram_pci_bar_size || |
| bar_address + size < bar_address) { |
| dev_dbg(hdev->dev, |
| "DRAM memory range 0x%llx (+0x%llx) is outside of PCI BAR boundaries\n", |
| device_addr, size); |
| return -EINVAL; |
| } |
| |
| hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL); |
| if (!hl_dmabuf) |
| return -ENOMEM; |
| |
| hl_dmabuf->device_address = device_addr; |
| |
| rc = export_dmabuf_common(ctx, hl_dmabuf, size, flags, dmabuf_fd); |
| if (rc) |
| goto err_free_dmabuf_wrapper; |
| |
| return 0; |
| |
| err_free_dmabuf_wrapper: |
| kfree(hl_dmabuf); |
| return rc; |
| } |
| |
| /** |
| * export_dmabuf_from_handle() - export a dma-buf object for the given memory |
| * handle. |
| * @ctx: pointer to the context structure. |
| * @handle: device memory allocation handle. |
| * @flags: DMA-BUF file/FD flags. |
| * @dmabuf_fd: pointer to result FD that represents the dma-buf object. |
| * |
| * Create and export a dma-buf object for an existing memory allocation inside |
| * the device memory, and return a FD which is associated with the dma-buf |
| * object. |
| * |
| * Return: 0 on success, non-zero for failure. |
| */ |
| static int export_dmabuf_from_handle(struct hl_ctx *ctx, u64 handle, int flags, |
| int *dmabuf_fd) |
| { |
| struct hl_vm_phys_pg_pack *phys_pg_pack; |
| struct hl_dmabuf_priv *hl_dmabuf; |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop; |
| struct hl_vm *vm = &hdev->vm; |
| u64 bar_address; |
| int rc, i; |
| |
| prop = &hdev->asic_prop; |
| |
| if (upper_32_bits(handle)) { |
| dev_dbg(hdev->dev, "no match for handle 0x%llx\n", handle); |
| return -EINVAL; |
| } |
| |
| spin_lock(&vm->idr_lock); |
| |
| phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, (u32) handle); |
| if (!phys_pg_pack) { |
| spin_unlock(&vm->idr_lock); |
| dev_dbg(hdev->dev, "no match for handle 0x%x\n", (u32) handle); |
| return -EINVAL; |
| } |
| |
| /* increment now to avoid freeing device memory while exporting */ |
| phys_pg_pack->exporting_cnt++; |
| |
| spin_unlock(&vm->idr_lock); |
| |
| if (phys_pg_pack->vm_type != VM_TYPE_PHYS_PACK) { |
| dev_dbg(hdev->dev, "handle 0x%llx does not represent DRAM memory\n", handle); |
| rc = -EINVAL; |
| goto err_dec_exporting_cnt; |
| } |
| |
| for (i = 0 ; i < phys_pg_pack->npages ; i++) { |
| |
| bar_address = hdev->dram_pci_bar_start + |
| (phys_pg_pack->pages[i] - |
| prop->dram_base_address); |
| |
| if (bar_address + phys_pg_pack->page_size > |
| hdev->dram_pci_bar_start + prop->dram_pci_bar_size || |
| bar_address + phys_pg_pack->page_size < bar_address) { |
| |
| dev_dbg(hdev->dev, |
| "DRAM memory range 0x%llx (+0x%x) is outside of PCI BAR boundaries\n", |
| phys_pg_pack->pages[i], |
| phys_pg_pack->page_size); |
| |
| rc = -EINVAL; |
| goto err_dec_exporting_cnt; |
| } |
| } |
| |
| hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL); |
| if (!hl_dmabuf) { |
| rc = -ENOMEM; |
| goto err_dec_exporting_cnt; |
| } |
| |
| hl_dmabuf->phys_pg_pack = phys_pg_pack; |
| |
| rc = export_dmabuf_common(ctx, hl_dmabuf, phys_pg_pack->total_size, |
| flags, dmabuf_fd); |
| if (rc) |
| goto err_free_dmabuf_wrapper; |
| |
| return 0; |
| |
| err_free_dmabuf_wrapper: |
| kfree(hl_dmabuf); |
| |
| err_dec_exporting_cnt: |
| spin_lock(&vm->idr_lock); |
| phys_pg_pack->exporting_cnt--; |
| spin_unlock(&vm->idr_lock); |
| |
| return rc; |
| } |
| |
| static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args) |
| { |
| struct hl_device *hdev = hpriv->hdev; |
| u64 block_handle, device_addr = 0; |
| struct hl_ctx *ctx = hpriv->ctx; |
| u32 handle = 0, block_size; |
| int rc; |
| |
| switch (args->in.op) { |
| case HL_MEM_OP_ALLOC: |
| if (args->in.alloc.mem_size == 0) { |
| dev_err(hdev->dev, "alloc size must be larger than 0\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| /* Force contiguous as there are no real MMU |
| * translations to overcome physical memory gaps |
| */ |
| args->in.flags |= HL_MEM_CONTIGUOUS; |
| rc = alloc_device_memory(ctx, &args->in, &handle); |
| |
| memset(args, 0, sizeof(*args)); |
| args->out.handle = (__u64) handle; |
| break; |
| |
| case HL_MEM_OP_FREE: |
| rc = free_device_memory(ctx, &args->in); |
| break; |
| |
| case HL_MEM_OP_MAP: |
| if (args->in.flags & HL_MEM_USERPTR) { |
| dev_err(hdev->dev, "Failed to map host memory when MMU is disabled\n"); |
| rc = -EPERM; |
| } else { |
| rc = get_paddr_from_handle(ctx, &args->in, &device_addr); |
| memset(args, 0, sizeof(*args)); |
| args->out.device_virt_addr = device_addr; |
| } |
| |
| break; |
| |
| case HL_MEM_OP_UNMAP: |
| rc = 0; |
| break; |
| |
| case HL_MEM_OP_MAP_BLOCK: |
| rc = map_block(hdev, args->in.map_block.block_addr, &block_handle, &block_size); |
| args->out.block_handle = block_handle; |
| args->out.block_size = block_size; |
| break; |
| |
| case HL_MEM_OP_EXPORT_DMABUF_FD: |
| dev_err(hdev->dev, "Failed to export dma-buf object when MMU is disabled\n"); |
| rc = -EPERM; |
| break; |
| |
| case HL_MEM_OP_TS_ALLOC: |
| rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle); |
| break; |
| default: |
| dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n"); |
| rc = -EINVAL; |
| break; |
| } |
| |
| out: |
| return rc; |
| } |
| |
| static void ts_buff_release(struct hl_mmap_mem_buf *buf) |
| { |
| struct hl_ts_buff *ts_buff = buf->private; |
| |
| vfree(ts_buff->kernel_buff_address); |
| vfree(ts_buff->user_buff_address); |
| kfree(ts_buff); |
| } |
| |
| static int hl_ts_mmap(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args) |
| { |
| struct hl_ts_buff *ts_buff = buf->private; |
| |
| vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE; |
| return remap_vmalloc_range(vma, ts_buff->user_buff_address, 0); |
| } |
| |
| static int hl_ts_alloc_buf(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args) |
| { |
| struct hl_ts_buff *ts_buff = NULL; |
| u32 size, num_elements; |
| void *p; |
| |
| num_elements = *(u32 *)args; |
| |
| ts_buff = kzalloc(sizeof(*ts_buff), GFP_KERNEL); |
| if (!ts_buff) |
| return -ENOMEM; |
| |
| /* Allocate the user buffer */ |
| size = num_elements * sizeof(u64); |
| p = vmalloc_user(size); |
| if (!p) |
| goto free_mem; |
| |
| ts_buff->user_buff_address = p; |
| buf->mappable_size = size; |
| |
| /* Allocate the internal kernel buffer */ |
| size = num_elements * sizeof(struct hl_user_pending_interrupt); |
| p = vmalloc(size); |
| if (!p) |
| goto free_user_buff; |
| |
| ts_buff->kernel_buff_address = p; |
| ts_buff->kernel_buff_size = size; |
| |
| buf->private = ts_buff; |
| |
| return 0; |
| |
| free_user_buff: |
| vfree(ts_buff->user_buff_address); |
| free_mem: |
| kfree(ts_buff); |
| return -ENOMEM; |
| } |
| |
| static struct hl_mmap_mem_buf_behavior hl_ts_behavior = { |
| .topic = "TS", |
| .mem_id = HL_MMAP_TYPE_TS_BUFF, |
| .mmap = hl_ts_mmap, |
| .alloc = hl_ts_alloc_buf, |
| .release = ts_buff_release, |
| }; |
| |
| /** |
| * allocate_timestamps_buffers() - allocate timestamps buffers |
| * This function will allocate ts buffer that will later on be mapped to the user |
| * in order to be able to read the timestamp. |
| * in additon it'll allocate an extra buffer for registration management. |
| * since we cannot fail during registration for out-of-memory situation, so |
| * we'll prepare a pool which will be used as user interrupt nodes and instead |
| * of dynamically allocating nodes while registration we'll pick the node from |
| * this pool. in addtion it'll add node to the mapping hash which will be used |
| * to map user ts buffer to the internal kernel ts buffer. |
| * @hpriv: pointer to the private data of the fd |
| * @args: ioctl input |
| * @handle: user timestamp buffer handle as an output |
| */ |
| static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle) |
| { |
| struct hl_mem_mgr *mmg = &hpriv->mem_mgr; |
| struct hl_mmap_mem_buf *buf; |
| |
| if (args->num_of_elements > TS_MAX_ELEMENTS_NUM) { |
| dev_err(mmg->dev, "Num of elements exceeds Max allowed number (0x%x > 0x%x)\n", |
| args->num_of_elements, TS_MAX_ELEMENTS_NUM); |
| return -EINVAL; |
| } |
| |
| buf = hl_mmap_mem_buf_alloc(mmg, &hl_ts_behavior, GFP_KERNEL, &args->num_of_elements); |
| if (!buf) |
| return -ENOMEM; |
| |
| *handle = buf->handle; |
| |
| return 0; |
| } |
| |
| int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data) |
| { |
| enum hl_device_status status; |
| union hl_mem_args *args = data; |
| struct hl_device *hdev = hpriv->hdev; |
| struct hl_ctx *ctx = hpriv->ctx; |
| u64 block_handle, device_addr = 0; |
| u32 handle = 0, block_size; |
| int rc, dmabuf_fd = -EBADF; |
| |
| if (!hl_device_operational(hdev, &status)) { |
| dev_warn_ratelimited(hdev->dev, |
| "Device is %s. Can't execute MEMORY IOCTL\n", |
| hdev->status[status]); |
| return -EBUSY; |
| } |
| |
| if (!hdev->mmu_enable) |
| return mem_ioctl_no_mmu(hpriv, args); |
| |
| switch (args->in.op) { |
| case HL_MEM_OP_ALLOC: |
| if (args->in.alloc.mem_size == 0) { |
| dev_err(hdev->dev, |
| "alloc size must be larger than 0\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| /* If DRAM does not support virtual memory the driver won't |
| * handle the allocation/freeing of that memory. However, for |
| * system administration/monitoring purposes, the driver will |
| * keep track of the amount of DRAM memory that is allocated |
| * and freed by the user. Because this code totally relies on |
| * the user's input, the driver can't ensure the validity |
| * of this accounting. |
| */ |
| if (!hdev->asic_prop.dram_supports_virtual_memory) { |
| atomic64_add(args->in.alloc.mem_size, |
| &ctx->dram_phys_mem); |
| atomic64_add(args->in.alloc.mem_size, |
| &hdev->dram_used_mem); |
| |
| dev_dbg(hdev->dev, "DRAM alloc is not supported\n"); |
| rc = 0; |
| |
| memset(args, 0, sizeof(*args)); |
| args->out.handle = 0; |
| goto out; |
| } |
| |
| rc = alloc_device_memory(ctx, &args->in, &handle); |
| |
| memset(args, 0, sizeof(*args)); |
| args->out.handle = (__u64) handle; |
| break; |
| |
| case HL_MEM_OP_FREE: |
| /* If DRAM does not support virtual memory the driver won't |
| * handle the allocation/freeing of that memory. However, for |
| * system administration/monitoring purposes, the driver will |
| * keep track of the amount of DRAM memory that is allocated |
| * and freed by the user. Because this code totally relies on |
| * the user's input, the driver can't ensure the validity |
| * of this accounting. |
| */ |
| if (!hdev->asic_prop.dram_supports_virtual_memory) { |
| atomic64_sub(args->in.alloc.mem_size, |
| &ctx->dram_phys_mem); |
| atomic64_sub(args->in.alloc.mem_size, |
| &hdev->dram_used_mem); |
| |
| dev_dbg(hdev->dev, "DRAM alloc is not supported\n"); |
| rc = 0; |
| |
| goto out; |
| } |
| |
| rc = free_device_memory(ctx, &args->in); |
| break; |
| |
| case HL_MEM_OP_MAP: |
| rc = map_device_va(ctx, &args->in, &device_addr); |
| |
| memset(args, 0, sizeof(*args)); |
| args->out.device_virt_addr = device_addr; |
| break; |
| |
| case HL_MEM_OP_UNMAP: |
| rc = unmap_device_va(ctx, &args->in, false); |
| break; |
| |
| case HL_MEM_OP_MAP_BLOCK: |
| rc = map_block(hdev, args->in.map_block.block_addr, |
| &block_handle, &block_size); |
| args->out.block_handle = block_handle; |
| args->out.block_size = block_size; |
| break; |
| |
| case HL_MEM_OP_EXPORT_DMABUF_FD: |
| if (hdev->asic_prop.dram_supports_virtual_memory) |
| rc = export_dmabuf_from_handle(ctx, |
| args->in.export_dmabuf_fd.handle, |
| args->in.flags, |
| &dmabuf_fd); |
| else |
| rc = export_dmabuf_from_addr(ctx, |
| args->in.export_dmabuf_fd.handle, |
| args->in.export_dmabuf_fd.mem_size, |
| args->in.flags, |
| &dmabuf_fd); |
| memset(args, 0, sizeof(*args)); |
| args->out.fd = dmabuf_fd; |
| break; |
| |
| case HL_MEM_OP_TS_ALLOC: |
| rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle); |
| break; |
| default: |
| dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n"); |
| rc = -EINVAL; |
| break; |
| } |
| |
| out: |
| return rc; |
| } |
| |
| static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size, |
| u32 npages, u64 start, u32 offset, |
| struct hl_userptr *userptr) |
| { |
| int rc; |
| |
| if (!access_ok((void __user *) (uintptr_t) addr, size)) { |
| dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr); |
| return -EFAULT; |
| } |
| |
| userptr->pages = kvmalloc_array(npages, sizeof(*userptr->pages), |
| GFP_KERNEL); |
| if (!userptr->pages) |
| return -ENOMEM; |
| |
| rc = pin_user_pages_fast(start, npages, |
| FOLL_FORCE | FOLL_WRITE | FOLL_LONGTERM, |
| userptr->pages); |
| |
| if (rc != npages) { |
| dev_err(hdev->dev, |
| "Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n", |
| rc, addr, size, npages); |
| if (rc < 0) |
| goto destroy_pages; |
| npages = rc; |
| rc = -EFAULT; |
| goto put_pages; |
| } |
| userptr->npages = npages; |
| |
| rc = sg_alloc_table_from_pages(userptr->sgt, |
| userptr->pages, |
| npages, offset, size, GFP_KERNEL); |
| if (rc < 0) { |
| dev_err(hdev->dev, "failed to create SG table from pages\n"); |
| goto put_pages; |
| } |
| |
| return 0; |
| |
| put_pages: |
| unpin_user_pages(userptr->pages, npages); |
| destroy_pages: |
| kvfree(userptr->pages); |
| return rc; |
| } |
| |
| /** |
| * hl_pin_host_memory() - pins a chunk of host memory. |
| * @hdev: pointer to the habanalabs device structure. |
| * @addr: the host virtual address of the memory area. |
| * @size: the size of the memory area. |
| * @userptr: pointer to hl_userptr structure. |
| * |
| * This function does the following: |
| * - Pins the physical pages. |
| * - Create an SG list from those pages. |
| */ |
| int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, |
| struct hl_userptr *userptr) |
| { |
| u64 start, end; |
| u32 npages, offset; |
| int rc; |
| |
| if (!size) { |
| dev_err(hdev->dev, "size to pin is invalid - %llu\n", size); |
| return -EINVAL; |
| } |
| |
| /* |
| * If the combination of the address and size requested for this memory |
| * region causes an integer overflow, return error. |
| */ |
| if (((addr + size) < addr) || |
| PAGE_ALIGN(addr + size) < (addr + size)) { |
| dev_err(hdev->dev, |
| "user pointer 0x%llx + %llu causes integer overflow\n", |
| addr, size); |
| return -EINVAL; |
| } |
| |
| userptr->pid = current->pid; |
| userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_KERNEL); |
| if (!userptr->sgt) |
| return -ENOMEM; |
| |
| start = addr & PAGE_MASK; |
| offset = addr & ~PAGE_MASK; |
| end = PAGE_ALIGN(addr + size); |
| npages = (end - start) >> PAGE_SHIFT; |
| |
| userptr->size = size; |
| userptr->addr = addr; |
| userptr->dma_mapped = false; |
| INIT_LIST_HEAD(&userptr->job_node); |
| |
| rc = get_user_memory(hdev, addr, size, npages, start, offset, |
| userptr); |
| if (rc) { |
| dev_err(hdev->dev, |
| "failed to get user memory for address 0x%llx\n", |
| addr); |
| goto free_sgt; |
| } |
| |
| hl_debugfs_add_userptr(hdev, userptr); |
| |
| return 0; |
| |
| free_sgt: |
| kfree(userptr->sgt); |
| return rc; |
| } |
| |
| /* |
| * hl_unpin_host_memory - unpins a chunk of host memory. |
| * @hdev: pointer to the habanalabs device structure |
| * @userptr: pointer to hl_userptr structure |
| * |
| * This function does the following: |
| * - Unpins the physical pages related to the host memory |
| * - Free the SG list |
| */ |
| void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr) |
| { |
| hl_debugfs_remove_userptr(hdev, userptr); |
| |
| if (userptr->dma_mapped) |
| hdev->asic_funcs->hl_dma_unmap_sgtable(hdev, userptr->sgt, userptr->dir); |
| |
| unpin_user_pages_dirty_lock(userptr->pages, userptr->npages, true); |
| kvfree(userptr->pages); |
| |
| list_del(&userptr->job_node); |
| |
| sg_free_table(userptr->sgt); |
| kfree(userptr->sgt); |
| } |
| |
| /** |
| * hl_userptr_delete_list() - clear userptr list. |
| * @hdev: pointer to the habanalabs device structure. |
| * @userptr_list: pointer to the list to clear. |
| * |
| * This function does the following: |
| * - Iterates over the list and unpins the host memory and frees the userptr |
| * structure. |
| */ |
| void hl_userptr_delete_list(struct hl_device *hdev, |
| struct list_head *userptr_list) |
| { |
| struct hl_userptr *userptr, *tmp; |
| |
| list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) { |
| hl_unpin_host_memory(hdev, userptr); |
| kfree(userptr); |
| } |
| |
| INIT_LIST_HEAD(userptr_list); |
| } |
| |
| /** |
| * hl_userptr_is_pinned() - returns whether the given userptr is pinned. |
| * @hdev: pointer to the habanalabs device structure. |
| * @addr: user address to check. |
| * @size: user block size to check. |
| * @userptr_list: pointer to the list to clear. |
| * @userptr: pointer to userptr to check. |
| * |
| * This function does the following: |
| * - Iterates over the list and checks if the given userptr is in it, means is |
| * pinned. If so, returns true, otherwise returns false. |
| */ |
| bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, |
| u32 size, struct list_head *userptr_list, |
| struct hl_userptr **userptr) |
| { |
| list_for_each_entry((*userptr), userptr_list, job_node) { |
| if ((addr == (*userptr)->addr) && (size == (*userptr)->size)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * va_range_init() - initialize virtual addresses range. |
| * @hdev: pointer to the habanalabs device structure. |
| * @va_ranges: pointer to va_ranges array. |
| * @range_type: virtual address range type. |
| * @start: range start address, inclusive. |
| * @end: range end address, inclusive. |
| * @page_size: page size for this va_range. |
| * |
| * This function does the following: |
| * - Initializes the virtual addresses list of the given range with the given |
| * addresses. |
| */ |
| static int va_range_init(struct hl_device *hdev, struct hl_va_range **va_ranges, |
| enum hl_va_range_type range_type, u64 start, |
| u64 end, u32 page_size) |
| { |
| struct hl_va_range *va_range = va_ranges[range_type]; |
| int rc; |
| |
| INIT_LIST_HEAD(&va_range->list); |
| |
| /* |
| * PAGE_SIZE alignment |
| * it is the callers responsibility to align the addresses if the |
| * page size is not a power of 2 |
| */ |
| |
| if (is_power_of_2(page_size)) { |
| if (start & (PAGE_SIZE - 1)) { |
| start &= PAGE_MASK; |
| start += PAGE_SIZE; |
| } |
| |
| /* |
| * The end of the range is inclusive, hence we need to align it |
| * to the end of the last full page in the range. For example if |
| * end = 0x3ff5 with page size 0x1000, we need to align it to |
| * 0x2fff. The remainig 0xff5 bytes do not form a full page. |
| */ |
| if ((end + 1) & (PAGE_SIZE - 1)) |
| end = ((end + 1) & PAGE_MASK) - 1; |
| } |
| |
| if (start >= end) { |
| dev_err(hdev->dev, "too small vm range for va list\n"); |
| return -EFAULT; |
| } |
| |
| rc = add_va_block(hdev, va_range, start, end); |
| |
| if (rc) { |
| dev_err(hdev->dev, "Failed to init host va list\n"); |
| return rc; |
| } |
| |
| va_range->start_addr = start; |
| va_range->end_addr = end; |
| va_range->page_size = page_size; |
| |
| return 0; |
| } |
| |
| /** |
| * va_range_fini() - clear a virtual addresses range. |
| * @hdev: pointer to the habanalabs structure. |
| * @va_range: pointer to virtual addresses range. |
| * |
| * This function does the following: |
| * - Frees the virtual addresses block list and its lock. |
| */ |
| static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range) |
| { |
| mutex_lock(&va_range->lock); |
| clear_va_list_locked(hdev, &va_range->list); |
| mutex_unlock(&va_range->lock); |
| |
| mutex_destroy(&va_range->lock); |
| kfree(va_range); |
| } |
| |
| /** |
| * vm_ctx_init_with_ranges() - initialize virtual memory for context. |
| * @ctx: pointer to the habanalabs context structure. |
| * @host_range_start: host virtual addresses range start. |
| * @host_range_end: host virtual addresses range end. |
| * @host_page_size: host page size. |
| * @host_huge_range_start: host virtual addresses range start for memory |
| * allocated with huge pages. |
| * @host_huge_range_end: host virtual addresses range end for memory allocated |
| * with huge pages. |
| * @host_huge_page_size: host huge page size. |
| * @dram_range_start: dram virtual addresses range start. |
| * @dram_range_end: dram virtual addresses range end. |
| * @dram_page_size: dram page size. |
| * |
| * This function initializes the following: |
| * - MMU for context. |
| * - Virtual address to area descriptor hashtable. |
| * - Virtual block list of available virtual memory. |
| */ |
| static int vm_ctx_init_with_ranges(struct hl_ctx *ctx, |
| u64 host_range_start, |
| u64 host_range_end, |
| u32 host_page_size, |
| u64 host_huge_range_start, |
| u64 host_huge_range_end, |
| u32 host_huge_page_size, |
| u64 dram_range_start, |
| u64 dram_range_end, |
| u32 dram_page_size) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| int i, rc; |
| |
| for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) { |
| ctx->va_range[i] = |
| kzalloc(sizeof(struct hl_va_range), GFP_KERNEL); |
| if (!ctx->va_range[i]) { |
| rc = -ENOMEM; |
| goto free_va_range; |
| } |
| } |
| |
| rc = hl_mmu_ctx_init(ctx); |
| if (rc) { |
| dev_err(hdev->dev, "failed to init context %d\n", ctx->asid); |
| goto free_va_range; |
| } |
| |
| mutex_init(&ctx->mem_hash_lock); |
| hash_init(ctx->mem_hash); |
| |
| mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); |
| |
| rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_HOST, |
| host_range_start, host_range_end, host_page_size); |
| if (rc) { |
| dev_err(hdev->dev, "failed to init host vm range\n"); |
| goto mmu_ctx_fini; |
| } |
| |
| if (hdev->pmmu_huge_range) { |
| mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); |
| |
| rc = va_range_init(hdev, |
| ctx->va_range, HL_VA_RANGE_TYPE_HOST_HUGE, |
| host_huge_range_start, host_huge_range_end, |
| host_huge_page_size); |
| if (rc) { |
| dev_err(hdev->dev, |
| "failed to init host huge vm range\n"); |
| goto clear_host_va_range; |
| } |
| } else { |
| kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]); |
| ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] = |
| ctx->va_range[HL_VA_RANGE_TYPE_HOST]; |
| } |
| |
| mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock); |
| |
| rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_DRAM, |
| dram_range_start, dram_range_end, dram_page_size); |
| if (rc) { |
| dev_err(hdev->dev, "failed to init dram vm range\n"); |
| goto clear_host_huge_va_range; |
| } |
| |
| hl_debugfs_add_ctx_mem_hash(hdev, ctx); |
| |
| return 0; |
| |
| clear_host_huge_va_range: |
| mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock); |
| |
| if (hdev->pmmu_huge_range) { |
| mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); |
| clear_va_list_locked(hdev, |
| &ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list); |
| mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); |
| } |
| clear_host_va_range: |
| if (hdev->pmmu_huge_range) |
| mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); |
| mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); |
| clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list); |
| mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); |
| mmu_ctx_fini: |
| mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); |
| mutex_destroy(&ctx->mem_hash_lock); |
| hl_mmu_ctx_fini(ctx); |
| free_va_range: |
| for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) |
| kfree(ctx->va_range[i]); |
| |
| return rc; |
| } |
| |
| int hl_vm_ctx_init(struct hl_ctx *ctx) |
| { |
| struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; |
| u64 host_range_start, host_range_end, host_huge_range_start, |
| host_huge_range_end, dram_range_start, dram_range_end; |
| u32 host_page_size, host_huge_page_size, dram_page_size; |
| |
| atomic64_set(&ctx->dram_phys_mem, 0); |
| |
| /* |
| * - If MMU is enabled, init the ranges as usual. |
| * - If MMU is disabled, in case of host mapping, the returned address |
| * is the given one. |
| * In case of DRAM mapping, the returned address is the physical |
| * address of the memory related to the given handle. |
| */ |
| if (!ctx->hdev->mmu_enable) |
| return 0; |
| |
| dram_range_start = prop->dmmu.start_addr; |
| dram_range_end = prop->dmmu.end_addr - 1; |
| dram_page_size = prop->dram_page_size ? |
| prop->dram_page_size : prop->dmmu.page_size; |
| host_range_start = prop->pmmu.start_addr; |
| host_range_end = prop->pmmu.end_addr - 1; |
| host_page_size = prop->pmmu.page_size; |
| host_huge_range_start = prop->pmmu_huge.start_addr; |
| host_huge_range_end = prop->pmmu_huge.end_addr - 1; |
| host_huge_page_size = prop->pmmu_huge.page_size; |
| |
| return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end, |
| host_page_size, host_huge_range_start, |
| host_huge_range_end, host_huge_page_size, |
| dram_range_start, dram_range_end, dram_page_size); |
| } |
| |
| /** |
| * hl_vm_ctx_fini() - virtual memory teardown of context. |
| * @ctx: pointer to the habanalabs context structure. |
| * |
| * This function perform teardown the following: |
| * - Virtual block list of available virtual memory. |
| * - Virtual address to area descriptor hashtable. |
| * - MMU for context. |
| * |
| * In addition this function does the following: |
| * - Unmaps the existing hashtable nodes if the hashtable is not empty. The |
| * hashtable should be empty as no valid mappings should exist at this |
| * point. |
| * - Frees any existing physical page list from the idr which relates to the |
| * current context asid. |
| * - This function checks the virtual block list for correctness. At this point |
| * the list should contain one element which describes the whole virtual |
| * memory range of the context. Otherwise, a warning is printed. |
| */ |
| void hl_vm_ctx_fini(struct hl_ctx *ctx) |
| { |
| struct hl_vm_phys_pg_pack *phys_pg_list, *tmp_phys_node; |
| struct hl_device *hdev = ctx->hdev; |
| struct hl_vm_hash_node *hnode; |
| struct hl_vm *vm = &hdev->vm; |
| struct hlist_node *tmp_node; |
| struct list_head free_list; |
| struct hl_mem_in args; |
| int i; |
| |
| if (!hdev->mmu_enable) |
| return; |
| |
| hl_debugfs_remove_ctx_mem_hash(hdev, ctx); |
| |
| /* |
| * Clearly something went wrong on hard reset so no point in printing |
| * another side effect error |
| */ |
| if (!hdev->reset_info.hard_reset_pending && !hash_empty(ctx->mem_hash)) |
| dev_dbg(hdev->dev, |
| "user released device without removing its memory mappings\n"); |
| |
| hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) { |
| dev_dbg(hdev->dev, |
| "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n", |
| hnode->vaddr, ctx->asid); |
| args.unmap.device_virt_addr = hnode->vaddr; |
| unmap_device_va(ctx, &args, true); |
| } |
| |
| mutex_lock(&ctx->mmu_lock); |
| |
| /* invalidate the cache once after the unmapping loop */ |
| hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR); |
| hl_mmu_invalidate_cache(hdev, true, MMU_OP_PHYS_PACK); |
| |
| mutex_unlock(&ctx->mmu_lock); |
| |
| INIT_LIST_HEAD(&free_list); |
| |
| spin_lock(&vm->idr_lock); |
| idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i) |
| if (phys_pg_list->asid == ctx->asid) { |
| dev_dbg(hdev->dev, |
| "page list 0x%px of asid %d is still alive\n", |
| phys_pg_list, ctx->asid); |
| |
| atomic64_sub(phys_pg_list->total_size, &hdev->dram_used_mem); |
| idr_remove(&vm->phys_pg_pack_handles, i); |
| list_add(&phys_pg_list->node, &free_list); |
| } |
| spin_unlock(&vm->idr_lock); |
| |
| list_for_each_entry_safe(phys_pg_list, tmp_phys_node, &free_list, node) |
| free_phys_pg_pack(hdev, phys_pg_list); |
| |
| va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]); |
| va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]); |
| |
| if (hdev->pmmu_huge_range) |
| va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]); |
| |
| mutex_destroy(&ctx->mem_hash_lock); |
| hl_mmu_ctx_fini(ctx); |
| |
| /* In this case we need to clear the global accounting of DRAM usage |
| * because the user notifies us on allocations. If the user is no more, |
| * all DRAM is available |
| */ |
| if (ctx->asid != HL_KERNEL_ASID_ID && |
| !hdev->asic_prop.dram_supports_virtual_memory) |
| atomic64_set(&hdev->dram_used_mem, 0); |
| } |
| |
| /** |
| * hl_vm_init() - initialize virtual memory module. |
| * @hdev: pointer to the habanalabs device structure. |
| * |
| * This function initializes the following: |
| * - MMU module. |
| * - DRAM physical pages pool of 2MB. |
| * - Idr for device memory allocation handles. |
| */ |
| int hl_vm_init(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct hl_vm *vm = &hdev->vm; |
| int rc; |
| |
| if (is_power_of_2(prop->dram_page_size)) |
| vm->dram_pg_pool = |
| gen_pool_create(__ffs(prop->dram_page_size), -1); |
| else |
| vm->dram_pg_pool = |
| gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1); |
| |
| if (!vm->dram_pg_pool) { |
| dev_err(hdev->dev, "Failed to create dram page pool\n"); |
| return -ENOMEM; |
| } |
| |
| kref_init(&vm->dram_pg_pool_refcount); |
| |
| rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address, |
| prop->dram_end_address - prop->dram_user_base_address, |
| -1); |
| |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to add memory to dram page pool %d\n", rc); |
| goto pool_add_err; |
| } |
| |
| spin_lock_init(&vm->idr_lock); |
| idr_init(&vm->phys_pg_pack_handles); |
| |
| atomic64_set(&hdev->dram_used_mem, 0); |
| |
| vm->init_done = true; |
| |
| return 0; |
| |
| pool_add_err: |
| gen_pool_destroy(vm->dram_pg_pool); |
| |
| return rc; |
| } |
| |
| /** |
| * hl_vm_fini() - virtual memory module teardown. |
| * @hdev: pointer to the habanalabs device structure. |
| * |
| * This function perform teardown to the following: |
| * - Idr for device memory allocation handles. |
| * - DRAM physical pages pool of 2MB. |
| * - MMU module. |
| */ |
| void hl_vm_fini(struct hl_device *hdev) |
| { |
| struct hl_vm *vm = &hdev->vm; |
| |
| if (!vm->init_done) |
| return; |
| |
| /* |
| * At this point all the contexts should be freed and hence no DRAM |
| * memory should be in use. Hence the DRAM pool should be freed here. |
| */ |
| if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1) |
| dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n", |
| __func__); |
| |
| vm->init_done = false; |
| } |
| |
| /** |
| * hl_hw_block_mem_init() - HW block memory initialization. |
| * @ctx: pointer to the habanalabs context structure. |
| * |
| * This function initializes the HW block virtual mapped addresses list and |
| * it's lock. |
| */ |
| void hl_hw_block_mem_init(struct hl_ctx *ctx) |
| { |
| mutex_init(&ctx->hw_block_list_lock); |
| INIT_LIST_HEAD(&ctx->hw_block_mem_list); |
| } |
| |
| /** |
| * hl_hw_block_mem_fini() - HW block memory teardown. |
| * @ctx: pointer to the habanalabs context structure. |
| * |
| * This function clears the HW block virtual mapped addresses list and destroys |
| * it's lock. |
| */ |
| void hl_hw_block_mem_fini(struct hl_ctx *ctx) |
| { |
| struct hl_vm_hw_block_list_node *lnode, *tmp; |
| |
| if (!list_empty(&ctx->hw_block_mem_list)) |
| dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n"); |
| |
| list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) { |
| list_del(&lnode->node); |
| kfree(lnode); |
| } |
| |
| mutex_destroy(&ctx->hw_block_list_lock); |
| } |