| // SPDX-License-Identifier: GPL-2.0 |
| #define DISABLE_BRANCH_PROFILING |
| #define pr_fmt(fmt) "kasan: " fmt |
| |
| /* cpu_feature_enabled() cannot be used this early */ |
| #define USE_EARLY_PGTABLE_L5 |
| |
| #include <linux/memblock.h> |
| #include <linux/kasan.h> |
| #include <linux/kdebug.h> |
| #include <linux/mm.h> |
| #include <linux/sched.h> |
| #include <linux/sched/task.h> |
| #include <linux/vmalloc.h> |
| |
| #include <asm/e820/types.h> |
| #include <asm/pgalloc.h> |
| #include <asm/tlbflush.h> |
| #include <asm/sections.h> |
| #include <asm/pgtable.h> |
| #include <asm/cpu_entry_area.h> |
| |
| extern struct range pfn_mapped[E820_MAX_ENTRIES]; |
| |
| static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE); |
| |
| static __init void *early_alloc(size_t size, int nid, bool should_panic) |
| { |
| void *ptr = memblock_alloc_try_nid(size, size, |
| __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid); |
| |
| if (!ptr && should_panic) |
| panic("%pS: Failed to allocate page, nid=%d from=%lx\n", |
| (void *)_RET_IP_, nid, __pa(MAX_DMA_ADDRESS)); |
| |
| return ptr; |
| } |
| |
| static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr, |
| unsigned long end, int nid) |
| { |
| pte_t *pte; |
| |
| if (pmd_none(*pmd)) { |
| void *p; |
| |
| if (boot_cpu_has(X86_FEATURE_PSE) && |
| ((end - addr) == PMD_SIZE) && |
| IS_ALIGNED(addr, PMD_SIZE)) { |
| p = early_alloc(PMD_SIZE, nid, false); |
| if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL)) |
| return; |
| else if (p) |
| memblock_free(__pa(p), PMD_SIZE); |
| } |
| |
| p = early_alloc(PAGE_SIZE, nid, true); |
| pmd_populate_kernel(&init_mm, pmd, p); |
| } |
| |
| pte = pte_offset_kernel(pmd, addr); |
| do { |
| pte_t entry; |
| void *p; |
| |
| if (!pte_none(*pte)) |
| continue; |
| |
| p = early_alloc(PAGE_SIZE, nid, true); |
| entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL); |
| set_pte_at(&init_mm, addr, pte, entry); |
| } while (pte++, addr += PAGE_SIZE, addr != end); |
| } |
| |
| static void __init kasan_populate_pud(pud_t *pud, unsigned long addr, |
| unsigned long end, int nid) |
| { |
| pmd_t *pmd; |
| unsigned long next; |
| |
| if (pud_none(*pud)) { |
| void *p; |
| |
| if (boot_cpu_has(X86_FEATURE_GBPAGES) && |
| ((end - addr) == PUD_SIZE) && |
| IS_ALIGNED(addr, PUD_SIZE)) { |
| p = early_alloc(PUD_SIZE, nid, false); |
| if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL)) |
| return; |
| else if (p) |
| memblock_free(__pa(p), PUD_SIZE); |
| } |
| |
| p = early_alloc(PAGE_SIZE, nid, true); |
| pud_populate(&init_mm, pud, p); |
| } |
| |
| pmd = pmd_offset(pud, addr); |
| do { |
| next = pmd_addr_end(addr, end); |
| if (!pmd_large(*pmd)) |
| kasan_populate_pmd(pmd, addr, next, nid); |
| } while (pmd++, addr = next, addr != end); |
| } |
| |
| static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr, |
| unsigned long end, int nid) |
| { |
| pud_t *pud; |
| unsigned long next; |
| |
| if (p4d_none(*p4d)) { |
| void *p = early_alloc(PAGE_SIZE, nid, true); |
| |
| p4d_populate(&init_mm, p4d, p); |
| } |
| |
| pud = pud_offset(p4d, addr); |
| do { |
| next = pud_addr_end(addr, end); |
| if (!pud_large(*pud)) |
| kasan_populate_pud(pud, addr, next, nid); |
| } while (pud++, addr = next, addr != end); |
| } |
| |
| static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr, |
| unsigned long end, int nid) |
| { |
| void *p; |
| p4d_t *p4d; |
| unsigned long next; |
| |
| if (pgd_none(*pgd)) { |
| p = early_alloc(PAGE_SIZE, nid, true); |
| pgd_populate(&init_mm, pgd, p); |
| } |
| |
| p4d = p4d_offset(pgd, addr); |
| do { |
| next = p4d_addr_end(addr, end); |
| kasan_populate_p4d(p4d, addr, next, nid); |
| } while (p4d++, addr = next, addr != end); |
| } |
| |
| static void __init kasan_populate_shadow(unsigned long addr, unsigned long end, |
| int nid) |
| { |
| pgd_t *pgd; |
| unsigned long next; |
| |
| addr = addr & PAGE_MASK; |
| end = round_up(end, PAGE_SIZE); |
| pgd = pgd_offset_k(addr); |
| do { |
| next = pgd_addr_end(addr, end); |
| kasan_populate_pgd(pgd, addr, next, nid); |
| } while (pgd++, addr = next, addr != end); |
| } |
| |
| static void __init map_range(struct range *range) |
| { |
| unsigned long start; |
| unsigned long end; |
| |
| start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start)); |
| end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end)); |
| |
| kasan_populate_shadow(start, end, early_pfn_to_nid(range->start)); |
| } |
| |
| static void __init clear_pgds(unsigned long start, |
| unsigned long end) |
| { |
| pgd_t *pgd; |
| /* See comment in kasan_init() */ |
| unsigned long pgd_end = end & PGDIR_MASK; |
| |
| for (; start < pgd_end; start += PGDIR_SIZE) { |
| pgd = pgd_offset_k(start); |
| /* |
| * With folded p4d, pgd_clear() is nop, use p4d_clear() |
| * instead. |
| */ |
| if (pgtable_l5_enabled()) |
| pgd_clear(pgd); |
| else |
| p4d_clear(p4d_offset(pgd, start)); |
| } |
| |
| pgd = pgd_offset_k(start); |
| for (; start < end; start += P4D_SIZE) |
| p4d_clear(p4d_offset(pgd, start)); |
| } |
| |
| static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr) |
| { |
| unsigned long p4d; |
| |
| if (!pgtable_l5_enabled()) |
| return (p4d_t *)pgd; |
| |
| p4d = __pa_nodebug(pgd_val(*pgd)) & PTE_PFN_MASK; |
| p4d += __START_KERNEL_map - phys_base; |
| return (p4d_t *)p4d + p4d_index(addr); |
| } |
| |
| static void __init kasan_early_p4d_populate(pgd_t *pgd, |
| unsigned long addr, |
| unsigned long end) |
| { |
| pgd_t pgd_entry; |
| p4d_t *p4d, p4d_entry; |
| unsigned long next; |
| |
| if (pgd_none(*pgd)) { |
| pgd_entry = __pgd(_KERNPG_TABLE | |
| __pa_nodebug(kasan_early_shadow_p4d)); |
| set_pgd(pgd, pgd_entry); |
| } |
| |
| p4d = early_p4d_offset(pgd, addr); |
| do { |
| next = p4d_addr_end(addr, end); |
| |
| if (!p4d_none(*p4d)) |
| continue; |
| |
| p4d_entry = __p4d(_KERNPG_TABLE | |
| __pa_nodebug(kasan_early_shadow_pud)); |
| set_p4d(p4d, p4d_entry); |
| } while (p4d++, addr = next, addr != end && p4d_none(*p4d)); |
| } |
| |
| static void __init kasan_map_early_shadow(pgd_t *pgd) |
| { |
| /* See comment in kasan_init() */ |
| unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK; |
| unsigned long end = KASAN_SHADOW_END; |
| unsigned long next; |
| |
| pgd += pgd_index(addr); |
| do { |
| next = pgd_addr_end(addr, end); |
| kasan_early_p4d_populate(pgd, addr, next); |
| } while (pgd++, addr = next, addr != end); |
| } |
| |
| #ifdef CONFIG_KASAN_INLINE |
| static int kasan_die_handler(struct notifier_block *self, |
| unsigned long val, |
| void *data) |
| { |
| if (val == DIE_GPF) { |
| pr_emerg("CONFIG_KASAN_INLINE enabled\n"); |
| pr_emerg("GPF could be caused by NULL-ptr deref or user memory access\n"); |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block kasan_die_notifier = { |
| .notifier_call = kasan_die_handler, |
| }; |
| #endif |
| |
| void __init kasan_early_init(void) |
| { |
| int i; |
| pteval_t pte_val = __pa_nodebug(kasan_early_shadow_page) | |
| __PAGE_KERNEL | _PAGE_ENC; |
| pmdval_t pmd_val = __pa_nodebug(kasan_early_shadow_pte) | _KERNPG_TABLE; |
| pudval_t pud_val = __pa_nodebug(kasan_early_shadow_pmd) | _KERNPG_TABLE; |
| p4dval_t p4d_val = __pa_nodebug(kasan_early_shadow_pud) | _KERNPG_TABLE; |
| |
| /* Mask out unsupported __PAGE_KERNEL bits: */ |
| pte_val &= __default_kernel_pte_mask; |
| pmd_val &= __default_kernel_pte_mask; |
| pud_val &= __default_kernel_pte_mask; |
| p4d_val &= __default_kernel_pte_mask; |
| |
| for (i = 0; i < PTRS_PER_PTE; i++) |
| kasan_early_shadow_pte[i] = __pte(pte_val); |
| |
| for (i = 0; i < PTRS_PER_PMD; i++) |
| kasan_early_shadow_pmd[i] = __pmd(pmd_val); |
| |
| for (i = 0; i < PTRS_PER_PUD; i++) |
| kasan_early_shadow_pud[i] = __pud(pud_val); |
| |
| for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++) |
| kasan_early_shadow_p4d[i] = __p4d(p4d_val); |
| |
| kasan_map_early_shadow(early_top_pgt); |
| kasan_map_early_shadow(init_top_pgt); |
| } |
| |
| void __init kasan_init(void) |
| { |
| int i; |
| void *shadow_cpu_entry_begin, *shadow_cpu_entry_end; |
| |
| #ifdef CONFIG_KASAN_INLINE |
| register_die_notifier(&kasan_die_notifier); |
| #endif |
| |
| memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt)); |
| |
| /* |
| * We use the same shadow offset for 4- and 5-level paging to |
| * facilitate boot-time switching between paging modes. |
| * As result in 5-level paging mode KASAN_SHADOW_START and |
| * KASAN_SHADOW_END are not aligned to PGD boundary. |
| * |
| * KASAN_SHADOW_START doesn't share PGD with anything else. |
| * We claim whole PGD entry to make things easier. |
| * |
| * KASAN_SHADOW_END lands in the last PGD entry and it collides with |
| * bunch of things like kernel code, modules, EFI mapping, etc. |
| * We need to take extra steps to not overwrite them. |
| */ |
| if (pgtable_l5_enabled()) { |
| void *ptr; |
| |
| ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END)); |
| memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table)); |
| set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)], |
| __pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE)); |
| } |
| |
| load_cr3(early_top_pgt); |
| __flush_tlb_all(); |
| |
| clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END); |
| |
| kasan_populate_early_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK), |
| kasan_mem_to_shadow((void *)PAGE_OFFSET)); |
| |
| for (i = 0; i < E820_MAX_ENTRIES; i++) { |
| if (pfn_mapped[i].end == 0) |
| break; |
| |
| map_range(&pfn_mapped[i]); |
| } |
| |
| shadow_cpu_entry_begin = (void *)CPU_ENTRY_AREA_BASE; |
| shadow_cpu_entry_begin = kasan_mem_to_shadow(shadow_cpu_entry_begin); |
| shadow_cpu_entry_begin = (void *)round_down( |
| (unsigned long)shadow_cpu_entry_begin, PAGE_SIZE); |
| |
| shadow_cpu_entry_end = (void *)(CPU_ENTRY_AREA_BASE + |
| CPU_ENTRY_AREA_MAP_SIZE); |
| shadow_cpu_entry_end = kasan_mem_to_shadow(shadow_cpu_entry_end); |
| shadow_cpu_entry_end = (void *)round_up( |
| (unsigned long)shadow_cpu_entry_end, PAGE_SIZE); |
| |
| kasan_populate_early_shadow( |
| kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM), |
| shadow_cpu_entry_begin); |
| |
| kasan_populate_shadow((unsigned long)shadow_cpu_entry_begin, |
| (unsigned long)shadow_cpu_entry_end, 0); |
| |
| kasan_populate_early_shadow(shadow_cpu_entry_end, |
| kasan_mem_to_shadow((void *)__START_KERNEL_map)); |
| |
| kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext), |
| (unsigned long)kasan_mem_to_shadow(_end), |
| early_pfn_to_nid(__pa(_stext))); |
| |
| kasan_populate_early_shadow(kasan_mem_to_shadow((void *)MODULES_END), |
| (void *)KASAN_SHADOW_END); |
| |
| load_cr3(init_top_pgt); |
| __flush_tlb_all(); |
| |
| /* |
| * kasan_early_shadow_page has been used as early shadow memory, thus |
| * it may contain some garbage. Now we can clear and write protect it, |
| * since after the TLB flush no one should write to it. |
| */ |
| memset(kasan_early_shadow_page, 0, PAGE_SIZE); |
| for (i = 0; i < PTRS_PER_PTE; i++) { |
| pte_t pte; |
| pgprot_t prot; |
| |
| prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC); |
| pgprot_val(prot) &= __default_kernel_pte_mask; |
| |
| pte = __pte(__pa(kasan_early_shadow_page) | pgprot_val(prot)); |
| set_pte(&kasan_early_shadow_pte[i], pte); |
| } |
| /* Flush TLBs again to be sure that write protection applied. */ |
| __flush_tlb_all(); |
| |
| init_task.kasan_depth = 0; |
| pr_info("KernelAddressSanitizer initialized\n"); |
| } |