| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License v2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| */ |
| |
| #include <linux/blkdev.h> |
| #include <linux/module.h> |
| #include <linux/buffer_head.h> |
| #include <linux/fs.h> |
| #include <linux/pagemap.h> |
| #include <linux/highmem.h> |
| #include <linux/time.h> |
| #include <linux/init.h> |
| #include <linux/seq_file.h> |
| #include <linux/string.h> |
| #include <linux/backing-dev.h> |
| #include <linux/mount.h> |
| #include <linux/mpage.h> |
| #include <linux/swap.h> |
| #include <linux/writeback.h> |
| #include <linux/statfs.h> |
| #include <linux/compat.h> |
| #include <linux/parser.h> |
| #include <linux/ctype.h> |
| #include <linux/namei.h> |
| #include <linux/miscdevice.h> |
| #include <linux/magic.h> |
| #include <linux/slab.h> |
| #include <linux/cleancache.h> |
| #include <linux/mnt_namespace.h> |
| #include "compat.h" |
| #include "delayed-inode.h" |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "transaction.h" |
| #include "btrfs_inode.h" |
| #include "ioctl.h" |
| #include "print-tree.h" |
| #include "xattr.h" |
| #include "volumes.h" |
| #include "version.h" |
| #include "export.h" |
| #include "compression.h" |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/btrfs.h> |
| |
| static const struct super_operations btrfs_super_ops; |
| static struct file_system_type btrfs_fs_type; |
| |
| static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno, |
| char nbuf[16]) |
| { |
| char *errstr = NULL; |
| |
| switch (errno) { |
| case -EIO: |
| errstr = "IO failure"; |
| break; |
| case -ENOMEM: |
| errstr = "Out of memory"; |
| break; |
| case -EROFS: |
| errstr = "Readonly filesystem"; |
| break; |
| default: |
| if (nbuf) { |
| if (snprintf(nbuf, 16, "error %d", -errno) >= 0) |
| errstr = nbuf; |
| } |
| break; |
| } |
| |
| return errstr; |
| } |
| |
| static void __save_error_info(struct btrfs_fs_info *fs_info) |
| { |
| /* |
| * today we only save the error info into ram. Long term we'll |
| * also send it down to the disk |
| */ |
| fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR; |
| } |
| |
| /* NOTE: |
| * We move write_super stuff at umount in order to avoid deadlock |
| * for umount hold all lock. |
| */ |
| static void save_error_info(struct btrfs_fs_info *fs_info) |
| { |
| __save_error_info(fs_info); |
| } |
| |
| /* btrfs handle error by forcing the filesystem readonly */ |
| static void btrfs_handle_error(struct btrfs_fs_info *fs_info) |
| { |
| struct super_block *sb = fs_info->sb; |
| |
| if (sb->s_flags & MS_RDONLY) |
| return; |
| |
| if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { |
| sb->s_flags |= MS_RDONLY; |
| printk(KERN_INFO "btrfs is forced readonly\n"); |
| } |
| } |
| |
| /* |
| * __btrfs_std_error decodes expected errors from the caller and |
| * invokes the approciate error response. |
| */ |
| void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, |
| unsigned int line, int errno) |
| { |
| struct super_block *sb = fs_info->sb; |
| char nbuf[16]; |
| const char *errstr; |
| |
| /* |
| * Special case: if the error is EROFS, and we're already |
| * under MS_RDONLY, then it is safe here. |
| */ |
| if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) |
| return; |
| |
| errstr = btrfs_decode_error(fs_info, errno, nbuf); |
| printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n", |
| sb->s_id, function, line, errstr); |
| save_error_info(fs_info); |
| |
| btrfs_handle_error(fs_info); |
| } |
| |
| static void btrfs_put_super(struct super_block *sb) |
| { |
| struct btrfs_root *root = btrfs_sb(sb); |
| int ret; |
| |
| ret = close_ctree(root); |
| sb->s_fs_info = NULL; |
| |
| (void)ret; /* FIXME: need to fix VFS to return error? */ |
| } |
| |
| enum { |
| Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, |
| Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, |
| Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, |
| Opt_compress_type, Opt_compress_force, Opt_compress_force_type, |
| Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, |
| Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, |
| Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, |
| Opt_inode_cache, Opt_no_space_cache, Opt_err, |
| }; |
| |
| static match_table_t tokens = { |
| {Opt_degraded, "degraded"}, |
| {Opt_subvol, "subvol=%s"}, |
| {Opt_subvolid, "subvolid=%d"}, |
| {Opt_device, "device=%s"}, |
| {Opt_nodatasum, "nodatasum"}, |
| {Opt_nodatacow, "nodatacow"}, |
| {Opt_nobarrier, "nobarrier"}, |
| {Opt_max_inline, "max_inline=%s"}, |
| {Opt_alloc_start, "alloc_start=%s"}, |
| {Opt_thread_pool, "thread_pool=%d"}, |
| {Opt_compress, "compress"}, |
| {Opt_compress_type, "compress=%s"}, |
| {Opt_compress_force, "compress-force"}, |
| {Opt_compress_force_type, "compress-force=%s"}, |
| {Opt_ssd, "ssd"}, |
| {Opt_ssd_spread, "ssd_spread"}, |
| {Opt_nossd, "nossd"}, |
| {Opt_noacl, "noacl"}, |
| {Opt_notreelog, "notreelog"}, |
| {Opt_flushoncommit, "flushoncommit"}, |
| {Opt_ratio, "metadata_ratio=%d"}, |
| {Opt_discard, "discard"}, |
| {Opt_space_cache, "space_cache"}, |
| {Opt_clear_cache, "clear_cache"}, |
| {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, |
| {Opt_enospc_debug, "enospc_debug"}, |
| {Opt_subvolrootid, "subvolrootid=%d"}, |
| {Opt_defrag, "autodefrag"}, |
| {Opt_inode_cache, "inode_cache"}, |
| {Opt_no_space_cache, "no_space_cache"}, |
| {Opt_err, NULL}, |
| }; |
| |
| /* |
| * Regular mount options parser. Everything that is needed only when |
| * reading in a new superblock is parsed here. |
| */ |
| int btrfs_parse_options(struct btrfs_root *root, char *options) |
| { |
| struct btrfs_fs_info *info = root->fs_info; |
| substring_t args[MAX_OPT_ARGS]; |
| char *p, *num, *orig = NULL; |
| u64 cache_gen; |
| int intarg; |
| int ret = 0; |
| char *compress_type; |
| bool compress_force = false; |
| |
| cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy); |
| if (cache_gen) |
| btrfs_set_opt(info->mount_opt, SPACE_CACHE); |
| |
| if (!options) |
| goto out; |
| |
| /* |
| * strsep changes the string, duplicate it because parse_options |
| * gets called twice |
| */ |
| options = kstrdup(options, GFP_NOFS); |
| if (!options) |
| return -ENOMEM; |
| |
| orig = options; |
| |
| while ((p = strsep(&options, ",")) != NULL) { |
| int token; |
| if (!*p) |
| continue; |
| |
| token = match_token(p, tokens, args); |
| switch (token) { |
| case Opt_degraded: |
| printk(KERN_INFO "btrfs: allowing degraded mounts\n"); |
| btrfs_set_opt(info->mount_opt, DEGRADED); |
| break; |
| case Opt_subvol: |
| case Opt_subvolid: |
| case Opt_subvolrootid: |
| case Opt_device: |
| /* |
| * These are parsed by btrfs_parse_early_options |
| * and can be happily ignored here. |
| */ |
| break; |
| case Opt_nodatasum: |
| printk(KERN_INFO "btrfs: setting nodatasum\n"); |
| btrfs_set_opt(info->mount_opt, NODATASUM); |
| break; |
| case Opt_nodatacow: |
| printk(KERN_INFO "btrfs: setting nodatacow\n"); |
| btrfs_set_opt(info->mount_opt, NODATACOW); |
| btrfs_set_opt(info->mount_opt, NODATASUM); |
| break; |
| case Opt_compress_force: |
| case Opt_compress_force_type: |
| compress_force = true; |
| case Opt_compress: |
| case Opt_compress_type: |
| if (token == Opt_compress || |
| token == Opt_compress_force || |
| strcmp(args[0].from, "zlib") == 0) { |
| compress_type = "zlib"; |
| info->compress_type = BTRFS_COMPRESS_ZLIB; |
| } else if (strcmp(args[0].from, "lzo") == 0) { |
| compress_type = "lzo"; |
| info->compress_type = BTRFS_COMPRESS_LZO; |
| } else { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| btrfs_set_opt(info->mount_opt, COMPRESS); |
| if (compress_force) { |
| btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); |
| pr_info("btrfs: force %s compression\n", |
| compress_type); |
| } else |
| pr_info("btrfs: use %s compression\n", |
| compress_type); |
| break; |
| case Opt_ssd: |
| printk(KERN_INFO "btrfs: use ssd allocation scheme\n"); |
| btrfs_set_opt(info->mount_opt, SSD); |
| break; |
| case Opt_ssd_spread: |
| printk(KERN_INFO "btrfs: use spread ssd " |
| "allocation scheme\n"); |
| btrfs_set_opt(info->mount_opt, SSD); |
| btrfs_set_opt(info->mount_opt, SSD_SPREAD); |
| break; |
| case Opt_nossd: |
| printk(KERN_INFO "btrfs: not using ssd allocation " |
| "scheme\n"); |
| btrfs_set_opt(info->mount_opt, NOSSD); |
| btrfs_clear_opt(info->mount_opt, SSD); |
| btrfs_clear_opt(info->mount_opt, SSD_SPREAD); |
| break; |
| case Opt_nobarrier: |
| printk(KERN_INFO "btrfs: turning off barriers\n"); |
| btrfs_set_opt(info->mount_opt, NOBARRIER); |
| break; |
| case Opt_thread_pool: |
| intarg = 0; |
| match_int(&args[0], &intarg); |
| if (intarg) { |
| info->thread_pool_size = intarg; |
| printk(KERN_INFO "btrfs: thread pool %d\n", |
| info->thread_pool_size); |
| } |
| break; |
| case Opt_max_inline: |
| num = match_strdup(&args[0]); |
| if (num) { |
| info->max_inline = memparse(num, NULL); |
| kfree(num); |
| |
| if (info->max_inline) { |
| info->max_inline = max_t(u64, |
| info->max_inline, |
| root->sectorsize); |
| } |
| printk(KERN_INFO "btrfs: max_inline at %llu\n", |
| (unsigned long long)info->max_inline); |
| } |
| break; |
| case Opt_alloc_start: |
| num = match_strdup(&args[0]); |
| if (num) { |
| info->alloc_start = memparse(num, NULL); |
| kfree(num); |
| printk(KERN_INFO |
| "btrfs: allocations start at %llu\n", |
| (unsigned long long)info->alloc_start); |
| } |
| break; |
| case Opt_noacl: |
| root->fs_info->sb->s_flags &= ~MS_POSIXACL; |
| break; |
| case Opt_notreelog: |
| printk(KERN_INFO "btrfs: disabling tree log\n"); |
| btrfs_set_opt(info->mount_opt, NOTREELOG); |
| break; |
| case Opt_flushoncommit: |
| printk(KERN_INFO "btrfs: turning on flush-on-commit\n"); |
| btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT); |
| break; |
| case Opt_ratio: |
| intarg = 0; |
| match_int(&args[0], &intarg); |
| if (intarg) { |
| info->metadata_ratio = intarg; |
| printk(KERN_INFO "btrfs: metadata ratio %d\n", |
| info->metadata_ratio); |
| } |
| break; |
| case Opt_discard: |
| btrfs_set_opt(info->mount_opt, DISCARD); |
| break; |
| case Opt_space_cache: |
| btrfs_set_opt(info->mount_opt, SPACE_CACHE); |
| break; |
| case Opt_no_space_cache: |
| printk(KERN_INFO "btrfs: disabling disk space caching\n"); |
| btrfs_clear_opt(info->mount_opt, SPACE_CACHE); |
| break; |
| case Opt_inode_cache: |
| printk(KERN_INFO "btrfs: enabling inode map caching\n"); |
| btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE); |
| break; |
| case Opt_clear_cache: |
| printk(KERN_INFO "btrfs: force clearing of disk cache\n"); |
| btrfs_set_opt(info->mount_opt, CLEAR_CACHE); |
| break; |
| case Opt_user_subvol_rm_allowed: |
| btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); |
| break; |
| case Opt_enospc_debug: |
| btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); |
| break; |
| case Opt_defrag: |
| printk(KERN_INFO "btrfs: enabling auto defrag"); |
| btrfs_set_opt(info->mount_opt, AUTO_DEFRAG); |
| break; |
| case Opt_err: |
| printk(KERN_INFO "btrfs: unrecognized mount option " |
| "'%s'\n", p); |
| ret = -EINVAL; |
| goto out; |
| default: |
| break; |
| } |
| } |
| out: |
| if (!ret && btrfs_test_opt(root, SPACE_CACHE)) |
| printk(KERN_INFO "btrfs: disk space caching is enabled\n"); |
| kfree(orig); |
| return ret; |
| } |
| |
| /* |
| * Parse mount options that are required early in the mount process. |
| * |
| * All other options will be parsed on much later in the mount process and |
| * only when we need to allocate a new super block. |
| */ |
| static int btrfs_parse_early_options(const char *options, fmode_t flags, |
| void *holder, char **subvol_name, u64 *subvol_objectid, |
| u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices) |
| { |
| substring_t args[MAX_OPT_ARGS]; |
| char *device_name, *opts, *orig, *p; |
| int error = 0; |
| int intarg; |
| |
| if (!options) |
| return 0; |
| |
| /* |
| * strsep changes the string, duplicate it because parse_options |
| * gets called twice |
| */ |
| opts = kstrdup(options, GFP_KERNEL); |
| if (!opts) |
| return -ENOMEM; |
| orig = opts; |
| |
| while ((p = strsep(&opts, ",")) != NULL) { |
| int token; |
| if (!*p) |
| continue; |
| |
| token = match_token(p, tokens, args); |
| switch (token) { |
| case Opt_subvol: |
| *subvol_name = match_strdup(&args[0]); |
| break; |
| case Opt_subvolid: |
| intarg = 0; |
| error = match_int(&args[0], &intarg); |
| if (!error) { |
| /* we want the original fs_tree */ |
| if (!intarg) |
| *subvol_objectid = |
| BTRFS_FS_TREE_OBJECTID; |
| else |
| *subvol_objectid = intarg; |
| } |
| break; |
| case Opt_subvolrootid: |
| intarg = 0; |
| error = match_int(&args[0], &intarg); |
| if (!error) { |
| /* we want the original fs_tree */ |
| if (!intarg) |
| *subvol_rootid = |
| BTRFS_FS_TREE_OBJECTID; |
| else |
| *subvol_rootid = intarg; |
| } |
| break; |
| case Opt_device: |
| device_name = match_strdup(&args[0]); |
| if (!device_name) { |
| error = -ENOMEM; |
| goto out; |
| } |
| error = btrfs_scan_one_device(device_name, |
| flags, holder, fs_devices); |
| kfree(device_name); |
| if (error) |
| goto out; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| out: |
| kfree(orig); |
| return error; |
| } |
| |
| static struct dentry *get_default_root(struct super_block *sb, |
| u64 subvol_objectid) |
| { |
| struct btrfs_root *root = sb->s_fs_info; |
| struct btrfs_root *new_root; |
| struct btrfs_dir_item *di; |
| struct btrfs_path *path; |
| struct btrfs_key location; |
| struct inode *inode; |
| u64 dir_id; |
| int new = 0; |
| |
| /* |
| * We have a specific subvol we want to mount, just setup location and |
| * go look up the root. |
| */ |
| if (subvol_objectid) { |
| location.objectid = subvol_objectid; |
| location.type = BTRFS_ROOT_ITEM_KEY; |
| location.offset = (u64)-1; |
| goto find_root; |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return ERR_PTR(-ENOMEM); |
| path->leave_spinning = 1; |
| |
| /* |
| * Find the "default" dir item which points to the root item that we |
| * will mount by default if we haven't been given a specific subvolume |
| * to mount. |
| */ |
| dir_id = btrfs_super_root_dir(&root->fs_info->super_copy); |
| di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); |
| if (IS_ERR(di)) { |
| btrfs_free_path(path); |
| return ERR_CAST(di); |
| } |
| if (!di) { |
| /* |
| * Ok the default dir item isn't there. This is weird since |
| * it's always been there, but don't freak out, just try and |
| * mount to root most subvolume. |
| */ |
| btrfs_free_path(path); |
| dir_id = BTRFS_FIRST_FREE_OBJECTID; |
| new_root = root->fs_info->fs_root; |
| goto setup_root; |
| } |
| |
| btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); |
| btrfs_free_path(path); |
| |
| find_root: |
| new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); |
| if (IS_ERR(new_root)) |
| return ERR_CAST(new_root); |
| |
| if (btrfs_root_refs(&new_root->root_item) == 0) |
| return ERR_PTR(-ENOENT); |
| |
| dir_id = btrfs_root_dirid(&new_root->root_item); |
| setup_root: |
| location.objectid = dir_id; |
| location.type = BTRFS_INODE_ITEM_KEY; |
| location.offset = 0; |
| |
| inode = btrfs_iget(sb, &location, new_root, &new); |
| if (IS_ERR(inode)) |
| return ERR_CAST(inode); |
| |
| /* |
| * If we're just mounting the root most subvol put the inode and return |
| * a reference to the dentry. We will have already gotten a reference |
| * to the inode in btrfs_fill_super so we're good to go. |
| */ |
| if (!new && sb->s_root->d_inode == inode) { |
| iput(inode); |
| return dget(sb->s_root); |
| } |
| |
| return d_obtain_alias(inode); |
| } |
| |
| static int btrfs_fill_super(struct super_block *sb, |
| struct btrfs_fs_devices *fs_devices, |
| void *data, int silent) |
| { |
| struct inode *inode; |
| struct dentry *root_dentry; |
| struct btrfs_root *tree_root; |
| struct btrfs_key key; |
| int err; |
| |
| sb->s_maxbytes = MAX_LFS_FILESIZE; |
| sb->s_magic = BTRFS_SUPER_MAGIC; |
| sb->s_op = &btrfs_super_ops; |
| sb->s_d_op = &btrfs_dentry_operations; |
| sb->s_export_op = &btrfs_export_ops; |
| sb->s_xattr = btrfs_xattr_handlers; |
| sb->s_time_gran = 1; |
| #ifdef CONFIG_BTRFS_FS_POSIX_ACL |
| sb->s_flags |= MS_POSIXACL; |
| #endif |
| |
| tree_root = open_ctree(sb, fs_devices, (char *)data); |
| |
| if (IS_ERR(tree_root)) { |
| printk("btrfs: open_ctree failed\n"); |
| return PTR_ERR(tree_root); |
| } |
| sb->s_fs_info = tree_root; |
| |
| key.objectid = BTRFS_FIRST_FREE_OBJECTID; |
| key.type = BTRFS_INODE_ITEM_KEY; |
| key.offset = 0; |
| inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL); |
| if (IS_ERR(inode)) { |
| err = PTR_ERR(inode); |
| goto fail_close; |
| } |
| |
| root_dentry = d_alloc_root(inode); |
| if (!root_dentry) { |
| iput(inode); |
| err = -ENOMEM; |
| goto fail_close; |
| } |
| |
| sb->s_root = root_dentry; |
| |
| save_mount_options(sb, data); |
| cleancache_init_fs(sb); |
| return 0; |
| |
| fail_close: |
| close_ctree(tree_root); |
| return err; |
| } |
| |
| int btrfs_sync_fs(struct super_block *sb, int wait) |
| { |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *root = btrfs_sb(sb); |
| int ret; |
| |
| trace_btrfs_sync_fs(wait); |
| |
| if (!wait) { |
| filemap_flush(root->fs_info->btree_inode->i_mapping); |
| return 0; |
| } |
| |
| btrfs_start_delalloc_inodes(root, 0); |
| btrfs_wait_ordered_extents(root, 0, 0); |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| ret = btrfs_commit_transaction(trans, root); |
| return ret; |
| } |
| |
| static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs) |
| { |
| struct btrfs_root *root = btrfs_sb(vfs->mnt_sb); |
| struct btrfs_fs_info *info = root->fs_info; |
| char *compress_type; |
| |
| if (btrfs_test_opt(root, DEGRADED)) |
| seq_puts(seq, ",degraded"); |
| if (btrfs_test_opt(root, NODATASUM)) |
| seq_puts(seq, ",nodatasum"); |
| if (btrfs_test_opt(root, NODATACOW)) |
| seq_puts(seq, ",nodatacow"); |
| if (btrfs_test_opt(root, NOBARRIER)) |
| seq_puts(seq, ",nobarrier"); |
| if (info->max_inline != 8192 * 1024) |
| seq_printf(seq, ",max_inline=%llu", |
| (unsigned long long)info->max_inline); |
| if (info->alloc_start != 0) |
| seq_printf(seq, ",alloc_start=%llu", |
| (unsigned long long)info->alloc_start); |
| if (info->thread_pool_size != min_t(unsigned long, |
| num_online_cpus() + 2, 8)) |
| seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); |
| if (btrfs_test_opt(root, COMPRESS)) { |
| if (info->compress_type == BTRFS_COMPRESS_ZLIB) |
| compress_type = "zlib"; |
| else |
| compress_type = "lzo"; |
| if (btrfs_test_opt(root, FORCE_COMPRESS)) |
| seq_printf(seq, ",compress-force=%s", compress_type); |
| else |
| seq_printf(seq, ",compress=%s", compress_type); |
| } |
| if (btrfs_test_opt(root, NOSSD)) |
| seq_puts(seq, ",nossd"); |
| if (btrfs_test_opt(root, SSD_SPREAD)) |
| seq_puts(seq, ",ssd_spread"); |
| else if (btrfs_test_opt(root, SSD)) |
| seq_puts(seq, ",ssd"); |
| if (btrfs_test_opt(root, NOTREELOG)) |
| seq_puts(seq, ",notreelog"); |
| if (btrfs_test_opt(root, FLUSHONCOMMIT)) |
| seq_puts(seq, ",flushoncommit"); |
| if (btrfs_test_opt(root, DISCARD)) |
| seq_puts(seq, ",discard"); |
| if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) |
| seq_puts(seq, ",noacl"); |
| if (btrfs_test_opt(root, SPACE_CACHE)) |
| seq_puts(seq, ",space_cache"); |
| else |
| seq_puts(seq, ",no_space_cache"); |
| if (btrfs_test_opt(root, CLEAR_CACHE)) |
| seq_puts(seq, ",clear_cache"); |
| if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) |
| seq_puts(seq, ",user_subvol_rm_allowed"); |
| if (btrfs_test_opt(root, ENOSPC_DEBUG)) |
| seq_puts(seq, ",enospc_debug"); |
| if (btrfs_test_opt(root, AUTO_DEFRAG)) |
| seq_puts(seq, ",autodefrag"); |
| if (btrfs_test_opt(root, INODE_MAP_CACHE)) |
| seq_puts(seq, ",inode_cache"); |
| return 0; |
| } |
| |
| static int btrfs_test_super(struct super_block *s, void *data) |
| { |
| struct btrfs_root *test_root = data; |
| struct btrfs_root *root = btrfs_sb(s); |
| |
| /* |
| * If this super block is going away, return false as it |
| * can't match as an existing super block. |
| */ |
| if (!atomic_read(&s->s_active)) |
| return 0; |
| return root->fs_info->fs_devices == test_root->fs_info->fs_devices; |
| } |
| |
| static int btrfs_set_super(struct super_block *s, void *data) |
| { |
| s->s_fs_info = data; |
| |
| return set_anon_super(s, data); |
| } |
| |
| /* |
| * subvolumes are identified by ino 256 |
| */ |
| static inline int is_subvolume_inode(struct inode *inode) |
| { |
| if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * This will strip out the subvol=%s argument for an argument string and add |
| * subvolid=0 to make sure we get the actual tree root for path walking to the |
| * subvol we want. |
| */ |
| static char *setup_root_args(char *args) |
| { |
| unsigned copied = 0; |
| unsigned len = strlen(args) + 2; |
| char *pos; |
| char *ret; |
| |
| /* |
| * We need the same args as before, but minus |
| * |
| * subvol=a |
| * |
| * and add |
| * |
| * subvolid=0 |
| * |
| * which is a difference of 2 characters, so we allocate strlen(args) + |
| * 2 characters. |
| */ |
| ret = kzalloc(len * sizeof(char), GFP_NOFS); |
| if (!ret) |
| return NULL; |
| pos = strstr(args, "subvol="); |
| |
| /* This shouldn't happen, but just in case.. */ |
| if (!pos) { |
| kfree(ret); |
| return NULL; |
| } |
| |
| /* |
| * The subvol=<> arg is not at the front of the string, copy everybody |
| * up to that into ret. |
| */ |
| if (pos != args) { |
| *pos = '\0'; |
| strcpy(ret, args); |
| copied += strlen(args); |
| pos++; |
| } |
| |
| strncpy(ret + copied, "subvolid=0", len - copied); |
| |
| /* Length of subvolid=0 */ |
| copied += 10; |
| |
| /* |
| * If there is no , after the subvol= option then we know there's no |
| * other options and we can just return. |
| */ |
| pos = strchr(pos, ','); |
| if (!pos) |
| return ret; |
| |
| /* Copy the rest of the arguments into our buffer */ |
| strncpy(ret + copied, pos, len - copied); |
| copied += strlen(pos); |
| |
| return ret; |
| } |
| |
| static struct dentry *mount_subvol(const char *subvol_name, int flags, |
| const char *device_name, char *data) |
| { |
| struct super_block *s; |
| struct dentry *root; |
| struct vfsmount *mnt; |
| struct mnt_namespace *ns_private; |
| char *newargs; |
| struct path path; |
| int error; |
| |
| newargs = setup_root_args(data); |
| if (!newargs) |
| return ERR_PTR(-ENOMEM); |
| mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, |
| newargs); |
| kfree(newargs); |
| if (IS_ERR(mnt)) |
| return ERR_CAST(mnt); |
| |
| ns_private = create_mnt_ns(mnt); |
| if (IS_ERR(ns_private)) { |
| mntput(mnt); |
| return ERR_CAST(ns_private); |
| } |
| |
| /* |
| * This will trigger the automount of the subvol so we can just |
| * drop the mnt we have here and return the dentry that we |
| * found. |
| */ |
| error = vfs_path_lookup(mnt->mnt_root, mnt, subvol_name, |
| LOOKUP_FOLLOW, &path); |
| put_mnt_ns(ns_private); |
| if (error) |
| return ERR_PTR(error); |
| |
| if (!is_subvolume_inode(path.dentry->d_inode)) { |
| path_put(&path); |
| mntput(mnt); |
| error = -EINVAL; |
| printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n", |
| subvol_name); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| /* Get a ref to the sb and the dentry we found and return it */ |
| s = path.mnt->mnt_sb; |
| atomic_inc(&s->s_active); |
| root = dget(path.dentry); |
| path_put(&path); |
| down_write(&s->s_umount); |
| |
| return root; |
| } |
| |
| /* |
| * Find a superblock for the given device / mount point. |
| * |
| * Note: This is based on get_sb_bdev from fs/super.c with a few additions |
| * for multiple device setup. Make sure to keep it in sync. |
| */ |
| static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, |
| const char *device_name, void *data) |
| { |
| struct block_device *bdev = NULL; |
| struct super_block *s; |
| struct dentry *root; |
| struct btrfs_fs_devices *fs_devices = NULL; |
| struct btrfs_root *tree_root = NULL; |
| struct btrfs_fs_info *fs_info = NULL; |
| fmode_t mode = FMODE_READ; |
| char *subvol_name = NULL; |
| u64 subvol_objectid = 0; |
| u64 subvol_rootid = 0; |
| int error = 0; |
| |
| if (!(flags & MS_RDONLY)) |
| mode |= FMODE_WRITE; |
| |
| error = btrfs_parse_early_options(data, mode, fs_type, |
| &subvol_name, &subvol_objectid, |
| &subvol_rootid, &fs_devices); |
| if (error) |
| return ERR_PTR(error); |
| |
| if (subvol_name) { |
| root = mount_subvol(subvol_name, flags, device_name, data); |
| kfree(subvol_name); |
| return root; |
| } |
| |
| error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); |
| if (error) |
| return ERR_PTR(error); |
| |
| error = btrfs_open_devices(fs_devices, mode, fs_type); |
| if (error) |
| return ERR_PTR(error); |
| |
| if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { |
| error = -EACCES; |
| goto error_close_devices; |
| } |
| |
| /* |
| * Setup a dummy root and fs_info for test/set super. This is because |
| * we don't actually fill this stuff out until open_ctree, but we need |
| * it for searching for existing supers, so this lets us do that and |
| * then open_ctree will properly initialize everything later. |
| */ |
| fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); |
| tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS); |
| if (!fs_info || !tree_root) { |
| error = -ENOMEM; |
| goto error_close_devices; |
| } |
| fs_info->tree_root = tree_root; |
| fs_info->fs_devices = fs_devices; |
| tree_root->fs_info = fs_info; |
| |
| bdev = fs_devices->latest_bdev; |
| s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root); |
| if (IS_ERR(s)) { |
| error = PTR_ERR(s); |
| goto error_close_devices; |
| } |
| |
| if (s->s_root) { |
| if ((flags ^ s->s_flags) & MS_RDONLY) { |
| deactivate_locked_super(s); |
| return ERR_PTR(-EBUSY); |
| } |
| |
| btrfs_close_devices(fs_devices); |
| kfree(fs_info); |
| kfree(tree_root); |
| } else { |
| char b[BDEVNAME_SIZE]; |
| |
| s->s_flags = flags | MS_NOSEC; |
| strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); |
| btrfs_sb(s)->fs_info->bdev_holder = fs_type; |
| error = btrfs_fill_super(s, fs_devices, data, |
| flags & MS_SILENT ? 1 : 0); |
| if (error) { |
| deactivate_locked_super(s); |
| return ERR_PTR(error); |
| } |
| |
| s->s_flags |= MS_ACTIVE; |
| } |
| |
| root = get_default_root(s, subvol_objectid); |
| if (IS_ERR(root)) { |
| deactivate_locked_super(s); |
| return root; |
| } |
| |
| return root; |
| |
| error_close_devices: |
| btrfs_close_devices(fs_devices); |
| kfree(fs_info); |
| kfree(tree_root); |
| return ERR_PTR(error); |
| } |
| |
| static int btrfs_remount(struct super_block *sb, int *flags, char *data) |
| { |
| struct btrfs_root *root = btrfs_sb(sb); |
| int ret; |
| |
| ret = btrfs_parse_options(root, data); |
| if (ret) |
| return -EINVAL; |
| |
| if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) |
| return 0; |
| |
| if (*flags & MS_RDONLY) { |
| sb->s_flags |= MS_RDONLY; |
| |
| ret = btrfs_commit_super(root); |
| WARN_ON(ret); |
| } else { |
| if (root->fs_info->fs_devices->rw_devices == 0) |
| return -EACCES; |
| |
| if (btrfs_super_log_root(&root->fs_info->super_copy) != 0) |
| return -EINVAL; |
| |
| ret = btrfs_cleanup_fs_roots(root->fs_info); |
| WARN_ON(ret); |
| |
| /* recover relocation */ |
| ret = btrfs_recover_relocation(root); |
| WARN_ON(ret); |
| |
| sb->s_flags &= ~MS_RDONLY; |
| } |
| |
| return 0; |
| } |
| |
| /* Used to sort the devices by max_avail(descending sort) */ |
| static int btrfs_cmp_device_free_bytes(const void *dev_info1, |
| const void *dev_info2) |
| { |
| if (((struct btrfs_device_info *)dev_info1)->max_avail > |
| ((struct btrfs_device_info *)dev_info2)->max_avail) |
| return -1; |
| else if (((struct btrfs_device_info *)dev_info1)->max_avail < |
| ((struct btrfs_device_info *)dev_info2)->max_avail) |
| return 1; |
| else |
| return 0; |
| } |
| |
| /* |
| * sort the devices by max_avail, in which max free extent size of each device |
| * is stored.(Descending Sort) |
| */ |
| static inline void btrfs_descending_sort_devices( |
| struct btrfs_device_info *devices, |
| size_t nr_devices) |
| { |
| sort(devices, nr_devices, sizeof(struct btrfs_device_info), |
| btrfs_cmp_device_free_bytes, NULL); |
| } |
| |
| /* |
| * The helper to calc the free space on the devices that can be used to store |
| * file data. |
| */ |
| static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_device_info *devices_info; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| struct btrfs_device *device; |
| u64 skip_space; |
| u64 type; |
| u64 avail_space; |
| u64 used_space; |
| u64 min_stripe_size; |
| int min_stripes = 1; |
| int i = 0, nr_devices; |
| int ret; |
| |
| nr_devices = fs_info->fs_devices->rw_devices; |
| BUG_ON(!nr_devices); |
| |
| devices_info = kmalloc(sizeof(*devices_info) * nr_devices, |
| GFP_NOFS); |
| if (!devices_info) |
| return -ENOMEM; |
| |
| /* calc min stripe number for data space alloction */ |
| type = btrfs_get_alloc_profile(root, 1); |
| if (type & BTRFS_BLOCK_GROUP_RAID0) |
| min_stripes = 2; |
| else if (type & BTRFS_BLOCK_GROUP_RAID1) |
| min_stripes = 2; |
| else if (type & BTRFS_BLOCK_GROUP_RAID10) |
| min_stripes = 4; |
| |
| if (type & BTRFS_BLOCK_GROUP_DUP) |
| min_stripe_size = 2 * BTRFS_STRIPE_LEN; |
| else |
| min_stripe_size = BTRFS_STRIPE_LEN; |
| |
| list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { |
| if (!device->in_fs_metadata) |
| continue; |
| |
| avail_space = device->total_bytes - device->bytes_used; |
| |
| /* align with stripe_len */ |
| do_div(avail_space, BTRFS_STRIPE_LEN); |
| avail_space *= BTRFS_STRIPE_LEN; |
| |
| /* |
| * In order to avoid overwritting the superblock on the drive, |
| * btrfs starts at an offset of at least 1MB when doing chunk |
| * allocation. |
| */ |
| skip_space = 1024 * 1024; |
| |
| /* user can set the offset in fs_info->alloc_start. */ |
| if (fs_info->alloc_start + BTRFS_STRIPE_LEN <= |
| device->total_bytes) |
| skip_space = max(fs_info->alloc_start, skip_space); |
| |
| /* |
| * btrfs can not use the free space in [0, skip_space - 1], |
| * we must subtract it from the total. In order to implement |
| * it, we account the used space in this range first. |
| */ |
| ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1, |
| &used_space); |
| if (ret) { |
| kfree(devices_info); |
| return ret; |
| } |
| |
| /* calc the free space in [0, skip_space - 1] */ |
| skip_space -= used_space; |
| |
| /* |
| * we can use the free space in [0, skip_space - 1], subtract |
| * it from the total. |
| */ |
| if (avail_space && avail_space >= skip_space) |
| avail_space -= skip_space; |
| else |
| avail_space = 0; |
| |
| if (avail_space < min_stripe_size) |
| continue; |
| |
| devices_info[i].dev = device; |
| devices_info[i].max_avail = avail_space; |
| |
| i++; |
| } |
| |
| nr_devices = i; |
| |
| btrfs_descending_sort_devices(devices_info, nr_devices); |
| |
| i = nr_devices - 1; |
| avail_space = 0; |
| while (nr_devices >= min_stripes) { |
| if (devices_info[i].max_avail >= min_stripe_size) { |
| int j; |
| u64 alloc_size; |
| |
| avail_space += devices_info[i].max_avail * min_stripes; |
| alloc_size = devices_info[i].max_avail; |
| for (j = i + 1 - min_stripes; j <= i; j++) |
| devices_info[j].max_avail -= alloc_size; |
| } |
| i--; |
| nr_devices--; |
| } |
| |
| kfree(devices_info); |
| *free_bytes = avail_space; |
| return 0; |
| } |
| |
| static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) |
| { |
| struct btrfs_root *root = btrfs_sb(dentry->d_sb); |
| struct btrfs_super_block *disk_super = &root->fs_info->super_copy; |
| struct list_head *head = &root->fs_info->space_info; |
| struct btrfs_space_info *found; |
| u64 total_used = 0; |
| u64 total_free_data = 0; |
| int bits = dentry->d_sb->s_blocksize_bits; |
| __be32 *fsid = (__be32 *)root->fs_info->fsid; |
| int ret; |
| |
| /* holding chunk_muext to avoid allocating new chunks */ |
| mutex_lock(&root->fs_info->chunk_mutex); |
| rcu_read_lock(); |
| list_for_each_entry_rcu(found, head, list) { |
| if (found->flags & BTRFS_BLOCK_GROUP_DATA) { |
| total_free_data += found->disk_total - found->disk_used; |
| total_free_data -= |
| btrfs_account_ro_block_groups_free_space(found); |
| } |
| |
| total_used += found->disk_used; |
| } |
| rcu_read_unlock(); |
| |
| buf->f_namelen = BTRFS_NAME_LEN; |
| buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits; |
| buf->f_bfree = buf->f_blocks - (total_used >> bits); |
| buf->f_bsize = dentry->d_sb->s_blocksize; |
| buf->f_type = BTRFS_SUPER_MAGIC; |
| buf->f_bavail = total_free_data; |
| ret = btrfs_calc_avail_data_space(root, &total_free_data); |
| if (ret) { |
| mutex_unlock(&root->fs_info->chunk_mutex); |
| return ret; |
| } |
| buf->f_bavail += total_free_data; |
| buf->f_bavail = buf->f_bavail >> bits; |
| mutex_unlock(&root->fs_info->chunk_mutex); |
| |
| /* We treat it as constant endianness (it doesn't matter _which_) |
| because we want the fsid to come out the same whether mounted |
| on a big-endian or little-endian host */ |
| buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); |
| buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); |
| /* Mask in the root object ID too, to disambiguate subvols */ |
| buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32; |
| buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid; |
| |
| return 0; |
| } |
| |
| static struct file_system_type btrfs_fs_type = { |
| .owner = THIS_MODULE, |
| .name = "btrfs", |
| .mount = btrfs_mount, |
| .kill_sb = kill_anon_super, |
| .fs_flags = FS_REQUIRES_DEV, |
| }; |
| |
| /* |
| * used by btrfsctl to scan devices when no FS is mounted |
| */ |
| static long btrfs_control_ioctl(struct file *file, unsigned int cmd, |
| unsigned long arg) |
| { |
| struct btrfs_ioctl_vol_args *vol; |
| struct btrfs_fs_devices *fs_devices; |
| int ret = -ENOTTY; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| vol = memdup_user((void __user *)arg, sizeof(*vol)); |
| if (IS_ERR(vol)) |
| return PTR_ERR(vol); |
| |
| switch (cmd) { |
| case BTRFS_IOC_SCAN_DEV: |
| ret = btrfs_scan_one_device(vol->name, FMODE_READ, |
| &btrfs_fs_type, &fs_devices); |
| break; |
| } |
| |
| kfree(vol); |
| return ret; |
| } |
| |
| static int btrfs_freeze(struct super_block *sb) |
| { |
| struct btrfs_root *root = btrfs_sb(sb); |
| mutex_lock(&root->fs_info->transaction_kthread_mutex); |
| mutex_lock(&root->fs_info->cleaner_mutex); |
| return 0; |
| } |
| |
| static int btrfs_unfreeze(struct super_block *sb) |
| { |
| struct btrfs_root *root = btrfs_sb(sb); |
| mutex_unlock(&root->fs_info->cleaner_mutex); |
| mutex_unlock(&root->fs_info->transaction_kthread_mutex); |
| return 0; |
| } |
| |
| static const struct super_operations btrfs_super_ops = { |
| .drop_inode = btrfs_drop_inode, |
| .evict_inode = btrfs_evict_inode, |
| .put_super = btrfs_put_super, |
| .sync_fs = btrfs_sync_fs, |
| .show_options = btrfs_show_options, |
| .write_inode = btrfs_write_inode, |
| .dirty_inode = btrfs_dirty_inode, |
| .alloc_inode = btrfs_alloc_inode, |
| .destroy_inode = btrfs_destroy_inode, |
| .statfs = btrfs_statfs, |
| .remount_fs = btrfs_remount, |
| .freeze_fs = btrfs_freeze, |
| .unfreeze_fs = btrfs_unfreeze, |
| }; |
| |
| static const struct file_operations btrfs_ctl_fops = { |
| .unlocked_ioctl = btrfs_control_ioctl, |
| .compat_ioctl = btrfs_control_ioctl, |
| .owner = THIS_MODULE, |
| .llseek = noop_llseek, |
| }; |
| |
| static struct miscdevice btrfs_misc = { |
| .minor = BTRFS_MINOR, |
| .name = "btrfs-control", |
| .fops = &btrfs_ctl_fops |
| }; |
| |
| MODULE_ALIAS_MISCDEV(BTRFS_MINOR); |
| MODULE_ALIAS("devname:btrfs-control"); |
| |
| static int btrfs_interface_init(void) |
| { |
| return misc_register(&btrfs_misc); |
| } |
| |
| static void btrfs_interface_exit(void) |
| { |
| if (misc_deregister(&btrfs_misc) < 0) |
| printk(KERN_INFO "misc_deregister failed for control device"); |
| } |
| |
| static int __init init_btrfs_fs(void) |
| { |
| int err; |
| |
| err = btrfs_init_sysfs(); |
| if (err) |
| return err; |
| |
| err = btrfs_init_compress(); |
| if (err) |
| goto free_sysfs; |
| |
| err = btrfs_init_cachep(); |
| if (err) |
| goto free_compress; |
| |
| err = extent_io_init(); |
| if (err) |
| goto free_cachep; |
| |
| err = extent_map_init(); |
| if (err) |
| goto free_extent_io; |
| |
| err = btrfs_delayed_inode_init(); |
| if (err) |
| goto free_extent_map; |
| |
| err = btrfs_interface_init(); |
| if (err) |
| goto free_delayed_inode; |
| |
| err = register_filesystem(&btrfs_fs_type); |
| if (err) |
| goto unregister_ioctl; |
| |
| printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION); |
| return 0; |
| |
| unregister_ioctl: |
| btrfs_interface_exit(); |
| free_delayed_inode: |
| btrfs_delayed_inode_exit(); |
| free_extent_map: |
| extent_map_exit(); |
| free_extent_io: |
| extent_io_exit(); |
| free_cachep: |
| btrfs_destroy_cachep(); |
| free_compress: |
| btrfs_exit_compress(); |
| free_sysfs: |
| btrfs_exit_sysfs(); |
| return err; |
| } |
| |
| static void __exit exit_btrfs_fs(void) |
| { |
| btrfs_destroy_cachep(); |
| btrfs_delayed_inode_exit(); |
| extent_map_exit(); |
| extent_io_exit(); |
| btrfs_interface_exit(); |
| unregister_filesystem(&btrfs_fs_type); |
| btrfs_exit_sysfs(); |
| btrfs_cleanup_fs_uuids(); |
| btrfs_exit_compress(); |
| } |
| |
| module_init(init_btrfs_fs) |
| module_exit(exit_btrfs_fs) |
| |
| MODULE_LICENSE("GPL"); |