| /* |
| * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the BSD-type |
| * license below: |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * |
| * Neither the name of the Network Appliance, Inc. nor the names of |
| * its contributors may be used to endorse or promote products |
| * derived from this software without specific prior written |
| * permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| /* |
| * verbs.c |
| * |
| * Encapsulates the major functions managing: |
| * o adapters |
| * o endpoints |
| * o connections |
| * o buffer memory |
| */ |
| |
| #include <linux/interrupt.h> |
| #include <linux/slab.h> |
| #include <linux/prefetch.h> |
| #include <linux/sunrpc/addr.h> |
| #include <asm/bitops.h> |
| #include <linux/module.h> /* try_module_get()/module_put() */ |
| |
| #include "xprt_rdma.h" |
| |
| /* |
| * Globals/Macros |
| */ |
| |
| #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) |
| # define RPCDBG_FACILITY RPCDBG_TRANS |
| #endif |
| |
| /* |
| * internal functions |
| */ |
| |
| /* |
| * handle replies in tasklet context, using a single, global list |
| * rdma tasklet function -- just turn around and call the func |
| * for all replies on the list |
| */ |
| |
| static DEFINE_SPINLOCK(rpcrdma_tk_lock_g); |
| static LIST_HEAD(rpcrdma_tasklets_g); |
| |
| static void |
| rpcrdma_run_tasklet(unsigned long data) |
| { |
| struct rpcrdma_rep *rep; |
| unsigned long flags; |
| |
| data = data; |
| spin_lock_irqsave(&rpcrdma_tk_lock_g, flags); |
| while (!list_empty(&rpcrdma_tasklets_g)) { |
| rep = list_entry(rpcrdma_tasklets_g.next, |
| struct rpcrdma_rep, rr_list); |
| list_del(&rep->rr_list); |
| spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags); |
| |
| rpcrdma_reply_handler(rep); |
| |
| spin_lock_irqsave(&rpcrdma_tk_lock_g, flags); |
| } |
| spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags); |
| } |
| |
| static DECLARE_TASKLET(rpcrdma_tasklet_g, rpcrdma_run_tasklet, 0UL); |
| |
| static void |
| rpcrdma_schedule_tasklet(struct list_head *sched_list) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rpcrdma_tk_lock_g, flags); |
| list_splice_tail(sched_list, &rpcrdma_tasklets_g); |
| spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags); |
| tasklet_schedule(&rpcrdma_tasklet_g); |
| } |
| |
| static void |
| rpcrdma_qp_async_error_upcall(struct ib_event *event, void *context) |
| { |
| struct rpcrdma_ep *ep = context; |
| |
| pr_err("RPC: %s: %s on device %s ep %p\n", |
| __func__, ib_event_msg(event->event), |
| event->device->name, context); |
| if (ep->rep_connected == 1) { |
| ep->rep_connected = -EIO; |
| rpcrdma_conn_func(ep); |
| wake_up_all(&ep->rep_connect_wait); |
| } |
| } |
| |
| static void |
| rpcrdma_cq_async_error_upcall(struct ib_event *event, void *context) |
| { |
| struct rpcrdma_ep *ep = context; |
| |
| pr_err("RPC: %s: %s on device %s ep %p\n", |
| __func__, ib_event_msg(event->event), |
| event->device->name, context); |
| if (ep->rep_connected == 1) { |
| ep->rep_connected = -EIO; |
| rpcrdma_conn_func(ep); |
| wake_up_all(&ep->rep_connect_wait); |
| } |
| } |
| |
| static void |
| rpcrdma_sendcq_process_wc(struct ib_wc *wc) |
| { |
| /* WARNING: Only wr_id and status are reliable at this point */ |
| if (wc->wr_id == RPCRDMA_IGNORE_COMPLETION) { |
| if (wc->status != IB_WC_SUCCESS && |
| wc->status != IB_WC_WR_FLUSH_ERR) |
| pr_err("RPC: %s: SEND: %s\n", |
| __func__, ib_wc_status_msg(wc->status)); |
| } else { |
| struct rpcrdma_mw *r; |
| |
| r = (struct rpcrdma_mw *)(unsigned long)wc->wr_id; |
| r->mw_sendcompletion(wc); |
| } |
| } |
| |
| static int |
| rpcrdma_sendcq_poll(struct ib_cq *cq, struct rpcrdma_ep *ep) |
| { |
| struct ib_wc *wcs; |
| int budget, count, rc; |
| |
| budget = RPCRDMA_WC_BUDGET / RPCRDMA_POLLSIZE; |
| do { |
| wcs = ep->rep_send_wcs; |
| |
| rc = ib_poll_cq(cq, RPCRDMA_POLLSIZE, wcs); |
| if (rc <= 0) |
| return rc; |
| |
| count = rc; |
| while (count-- > 0) |
| rpcrdma_sendcq_process_wc(wcs++); |
| } while (rc == RPCRDMA_POLLSIZE && --budget); |
| return 0; |
| } |
| |
| /* |
| * Handle send, fast_reg_mr, and local_inv completions. |
| * |
| * Send events are typically suppressed and thus do not result |
| * in an upcall. Occasionally one is signaled, however. This |
| * prevents the provider's completion queue from wrapping and |
| * losing a completion. |
| */ |
| static void |
| rpcrdma_sendcq_upcall(struct ib_cq *cq, void *cq_context) |
| { |
| struct rpcrdma_ep *ep = (struct rpcrdma_ep *)cq_context; |
| int rc; |
| |
| rc = rpcrdma_sendcq_poll(cq, ep); |
| if (rc) { |
| dprintk("RPC: %s: ib_poll_cq failed: %i\n", |
| __func__, rc); |
| return; |
| } |
| |
| rc = ib_req_notify_cq(cq, |
| IB_CQ_NEXT_COMP | IB_CQ_REPORT_MISSED_EVENTS); |
| if (rc == 0) |
| return; |
| if (rc < 0) { |
| dprintk("RPC: %s: ib_req_notify_cq failed: %i\n", |
| __func__, rc); |
| return; |
| } |
| |
| rpcrdma_sendcq_poll(cq, ep); |
| } |
| |
| static void |
| rpcrdma_recvcq_process_wc(struct ib_wc *wc, struct list_head *sched_list) |
| { |
| struct rpcrdma_rep *rep = |
| (struct rpcrdma_rep *)(unsigned long)wc->wr_id; |
| |
| /* WARNING: Only wr_id and status are reliable at this point */ |
| if (wc->status != IB_WC_SUCCESS) |
| goto out_fail; |
| |
| /* status == SUCCESS means all fields in wc are trustworthy */ |
| if (wc->opcode != IB_WC_RECV) |
| return; |
| |
| dprintk("RPC: %s: rep %p opcode 'recv', length %u: success\n", |
| __func__, rep, wc->byte_len); |
| |
| rep->rr_len = wc->byte_len; |
| ib_dma_sync_single_for_cpu(rep->rr_device, |
| rdmab_addr(rep->rr_rdmabuf), |
| rep->rr_len, DMA_FROM_DEVICE); |
| prefetch(rdmab_to_msg(rep->rr_rdmabuf)); |
| |
| out_schedule: |
| list_add_tail(&rep->rr_list, sched_list); |
| return; |
| out_fail: |
| if (wc->status != IB_WC_WR_FLUSH_ERR) |
| pr_err("RPC: %s: rep %p: %s\n", |
| __func__, rep, ib_wc_status_msg(wc->status)); |
| rep->rr_len = ~0U; |
| goto out_schedule; |
| } |
| |
| static int |
| rpcrdma_recvcq_poll(struct ib_cq *cq, struct rpcrdma_ep *ep) |
| { |
| struct list_head sched_list; |
| struct ib_wc *wcs; |
| int budget, count, rc; |
| |
| INIT_LIST_HEAD(&sched_list); |
| budget = RPCRDMA_WC_BUDGET / RPCRDMA_POLLSIZE; |
| do { |
| wcs = ep->rep_recv_wcs; |
| |
| rc = ib_poll_cq(cq, RPCRDMA_POLLSIZE, wcs); |
| if (rc <= 0) |
| goto out_schedule; |
| |
| count = rc; |
| while (count-- > 0) |
| rpcrdma_recvcq_process_wc(wcs++, &sched_list); |
| } while (rc == RPCRDMA_POLLSIZE && --budget); |
| rc = 0; |
| |
| out_schedule: |
| rpcrdma_schedule_tasklet(&sched_list); |
| return rc; |
| } |
| |
| /* |
| * Handle receive completions. |
| * |
| * It is reentrant but processes single events in order to maintain |
| * ordering of receives to keep server credits. |
| * |
| * It is the responsibility of the scheduled tasklet to return |
| * recv buffers to the pool. NOTE: this affects synchronization of |
| * connection shutdown. That is, the structures required for |
| * the completion of the reply handler must remain intact until |
| * all memory has been reclaimed. |
| */ |
| static void |
| rpcrdma_recvcq_upcall(struct ib_cq *cq, void *cq_context) |
| { |
| struct rpcrdma_ep *ep = (struct rpcrdma_ep *)cq_context; |
| int rc; |
| |
| rc = rpcrdma_recvcq_poll(cq, ep); |
| if (rc) { |
| dprintk("RPC: %s: ib_poll_cq failed: %i\n", |
| __func__, rc); |
| return; |
| } |
| |
| rc = ib_req_notify_cq(cq, |
| IB_CQ_NEXT_COMP | IB_CQ_REPORT_MISSED_EVENTS); |
| if (rc == 0) |
| return; |
| if (rc < 0) { |
| dprintk("RPC: %s: ib_req_notify_cq failed: %i\n", |
| __func__, rc); |
| return; |
| } |
| |
| rpcrdma_recvcq_poll(cq, ep); |
| } |
| |
| static void |
| rpcrdma_flush_cqs(struct rpcrdma_ep *ep) |
| { |
| struct ib_wc wc; |
| LIST_HEAD(sched_list); |
| |
| while (ib_poll_cq(ep->rep_attr.recv_cq, 1, &wc) > 0) |
| rpcrdma_recvcq_process_wc(&wc, &sched_list); |
| if (!list_empty(&sched_list)) |
| rpcrdma_schedule_tasklet(&sched_list); |
| while (ib_poll_cq(ep->rep_attr.send_cq, 1, &wc) > 0) |
| rpcrdma_sendcq_process_wc(&wc); |
| } |
| |
| static int |
| rpcrdma_conn_upcall(struct rdma_cm_id *id, struct rdma_cm_event *event) |
| { |
| struct rpcrdma_xprt *xprt = id->context; |
| struct rpcrdma_ia *ia = &xprt->rx_ia; |
| struct rpcrdma_ep *ep = &xprt->rx_ep; |
| #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) |
| struct sockaddr *sap = (struct sockaddr *)&ep->rep_remote_addr; |
| #endif |
| struct ib_qp_attr *attr = &ia->ri_qp_attr; |
| struct ib_qp_init_attr *iattr = &ia->ri_qp_init_attr; |
| int connstate = 0; |
| |
| switch (event->event) { |
| case RDMA_CM_EVENT_ADDR_RESOLVED: |
| case RDMA_CM_EVENT_ROUTE_RESOLVED: |
| ia->ri_async_rc = 0; |
| complete(&ia->ri_done); |
| break; |
| case RDMA_CM_EVENT_ADDR_ERROR: |
| ia->ri_async_rc = -EHOSTUNREACH; |
| dprintk("RPC: %s: CM address resolution error, ep 0x%p\n", |
| __func__, ep); |
| complete(&ia->ri_done); |
| break; |
| case RDMA_CM_EVENT_ROUTE_ERROR: |
| ia->ri_async_rc = -ENETUNREACH; |
| dprintk("RPC: %s: CM route resolution error, ep 0x%p\n", |
| __func__, ep); |
| complete(&ia->ri_done); |
| break; |
| case RDMA_CM_EVENT_ESTABLISHED: |
| connstate = 1; |
| ib_query_qp(ia->ri_id->qp, attr, |
| IB_QP_MAX_QP_RD_ATOMIC | IB_QP_MAX_DEST_RD_ATOMIC, |
| iattr); |
| dprintk("RPC: %s: %d responder resources" |
| " (%d initiator)\n", |
| __func__, attr->max_dest_rd_atomic, |
| attr->max_rd_atomic); |
| goto connected; |
| case RDMA_CM_EVENT_CONNECT_ERROR: |
| connstate = -ENOTCONN; |
| goto connected; |
| case RDMA_CM_EVENT_UNREACHABLE: |
| connstate = -ENETDOWN; |
| goto connected; |
| case RDMA_CM_EVENT_REJECTED: |
| connstate = -ECONNREFUSED; |
| goto connected; |
| case RDMA_CM_EVENT_DISCONNECTED: |
| connstate = -ECONNABORTED; |
| goto connected; |
| case RDMA_CM_EVENT_DEVICE_REMOVAL: |
| connstate = -ENODEV; |
| connected: |
| dprintk("RPC: %s: %sconnected\n", |
| __func__, connstate > 0 ? "" : "dis"); |
| ep->rep_connected = connstate; |
| rpcrdma_conn_func(ep); |
| wake_up_all(&ep->rep_connect_wait); |
| /*FALLTHROUGH*/ |
| default: |
| dprintk("RPC: %s: %pIS:%u (ep 0x%p): %s\n", |
| __func__, sap, rpc_get_port(sap), ep, |
| rdma_event_msg(event->event)); |
| break; |
| } |
| |
| #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) |
| if (connstate == 1) { |
| int ird = attr->max_dest_rd_atomic; |
| int tird = ep->rep_remote_cma.responder_resources; |
| |
| pr_info("rpcrdma: connection to %pIS:%u on %s, memreg '%s', %d credits, %d responders%s\n", |
| sap, rpc_get_port(sap), |
| ia->ri_device->name, |
| ia->ri_ops->ro_displayname, |
| xprt->rx_buf.rb_max_requests, |
| ird, ird < 4 && ird < tird / 2 ? " (low!)" : ""); |
| } else if (connstate < 0) { |
| pr_info("rpcrdma: connection to %pIS:%u closed (%d)\n", |
| sap, rpc_get_port(sap), connstate); |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| static void rpcrdma_destroy_id(struct rdma_cm_id *id) |
| { |
| if (id) { |
| module_put(id->device->owner); |
| rdma_destroy_id(id); |
| } |
| } |
| |
| static struct rdma_cm_id * |
| rpcrdma_create_id(struct rpcrdma_xprt *xprt, |
| struct rpcrdma_ia *ia, struct sockaddr *addr) |
| { |
| struct rdma_cm_id *id; |
| int rc; |
| |
| init_completion(&ia->ri_done); |
| |
| id = rdma_create_id(rpcrdma_conn_upcall, xprt, RDMA_PS_TCP, IB_QPT_RC); |
| if (IS_ERR(id)) { |
| rc = PTR_ERR(id); |
| dprintk("RPC: %s: rdma_create_id() failed %i\n", |
| __func__, rc); |
| return id; |
| } |
| |
| ia->ri_async_rc = -ETIMEDOUT; |
| rc = rdma_resolve_addr(id, NULL, addr, RDMA_RESOLVE_TIMEOUT); |
| if (rc) { |
| dprintk("RPC: %s: rdma_resolve_addr() failed %i\n", |
| __func__, rc); |
| goto out; |
| } |
| wait_for_completion_interruptible_timeout(&ia->ri_done, |
| msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1); |
| |
| /* FIXME: |
| * Until xprtrdma supports DEVICE_REMOVAL, the provider must |
| * be pinned while there are active NFS/RDMA mounts to prevent |
| * hangs and crashes at umount time. |
| */ |
| if (!ia->ri_async_rc && !try_module_get(id->device->owner)) { |
| dprintk("RPC: %s: Failed to get device module\n", |
| __func__); |
| ia->ri_async_rc = -ENODEV; |
| } |
| rc = ia->ri_async_rc; |
| if (rc) |
| goto out; |
| |
| ia->ri_async_rc = -ETIMEDOUT; |
| rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); |
| if (rc) { |
| dprintk("RPC: %s: rdma_resolve_route() failed %i\n", |
| __func__, rc); |
| goto put; |
| } |
| wait_for_completion_interruptible_timeout(&ia->ri_done, |
| msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1); |
| rc = ia->ri_async_rc; |
| if (rc) |
| goto put; |
| |
| return id; |
| put: |
| module_put(id->device->owner); |
| out: |
| rdma_destroy_id(id); |
| return ERR_PTR(rc); |
| } |
| |
| /* |
| * Drain any cq, prior to teardown. |
| */ |
| static void |
| rpcrdma_clean_cq(struct ib_cq *cq) |
| { |
| struct ib_wc wc; |
| int count = 0; |
| |
| while (1 == ib_poll_cq(cq, 1, &wc)) |
| ++count; |
| |
| if (count) |
| dprintk("RPC: %s: flushed %d events (last 0x%x)\n", |
| __func__, count, wc.opcode); |
| } |
| |
| /* |
| * Exported functions. |
| */ |
| |
| /* |
| * Open and initialize an Interface Adapter. |
| * o initializes fields of struct rpcrdma_ia, including |
| * interface and provider attributes and protection zone. |
| */ |
| int |
| rpcrdma_ia_open(struct rpcrdma_xprt *xprt, struct sockaddr *addr, int memreg) |
| { |
| struct rpcrdma_ia *ia = &xprt->rx_ia; |
| struct ib_device_attr *devattr = &ia->ri_devattr; |
| int rc; |
| |
| ia->ri_dma_mr = NULL; |
| |
| ia->ri_id = rpcrdma_create_id(xprt, ia, addr); |
| if (IS_ERR(ia->ri_id)) { |
| rc = PTR_ERR(ia->ri_id); |
| goto out1; |
| } |
| ia->ri_device = ia->ri_id->device; |
| |
| ia->ri_pd = ib_alloc_pd(ia->ri_device); |
| if (IS_ERR(ia->ri_pd)) { |
| rc = PTR_ERR(ia->ri_pd); |
| dprintk("RPC: %s: ib_alloc_pd() failed %i\n", |
| __func__, rc); |
| goto out2; |
| } |
| |
| rc = ib_query_device(ia->ri_device, devattr); |
| if (rc) { |
| dprintk("RPC: %s: ib_query_device failed %d\n", |
| __func__, rc); |
| goto out3; |
| } |
| |
| if (memreg == RPCRDMA_FRMR) { |
| if (!(devattr->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) || |
| (devattr->max_fast_reg_page_list_len == 0)) { |
| dprintk("RPC: %s: FRMR registration " |
| "not supported by HCA\n", __func__); |
| memreg = RPCRDMA_MTHCAFMR; |
| } |
| } |
| if (memreg == RPCRDMA_MTHCAFMR) { |
| if (!ia->ri_device->alloc_fmr) { |
| dprintk("RPC: %s: MTHCAFMR registration " |
| "not supported by HCA\n", __func__); |
| rc = -EINVAL; |
| goto out3; |
| } |
| } |
| |
| switch (memreg) { |
| case RPCRDMA_FRMR: |
| ia->ri_ops = &rpcrdma_frwr_memreg_ops; |
| break; |
| case RPCRDMA_ALLPHYSICAL: |
| ia->ri_ops = &rpcrdma_physical_memreg_ops; |
| break; |
| case RPCRDMA_MTHCAFMR: |
| ia->ri_ops = &rpcrdma_fmr_memreg_ops; |
| break; |
| default: |
| printk(KERN_ERR "RPC: Unsupported memory " |
| "registration mode: %d\n", memreg); |
| rc = -ENOMEM; |
| goto out3; |
| } |
| dprintk("RPC: %s: memory registration strategy is '%s'\n", |
| __func__, ia->ri_ops->ro_displayname); |
| |
| rwlock_init(&ia->ri_qplock); |
| return 0; |
| |
| out3: |
| ib_dealloc_pd(ia->ri_pd); |
| ia->ri_pd = NULL; |
| out2: |
| rpcrdma_destroy_id(ia->ri_id); |
| ia->ri_id = NULL; |
| out1: |
| return rc; |
| } |
| |
| /* |
| * Clean up/close an IA. |
| * o if event handles and PD have been initialized, free them. |
| * o close the IA |
| */ |
| void |
| rpcrdma_ia_close(struct rpcrdma_ia *ia) |
| { |
| dprintk("RPC: %s: entering\n", __func__); |
| if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) { |
| if (ia->ri_id->qp) |
| rdma_destroy_qp(ia->ri_id); |
| rpcrdma_destroy_id(ia->ri_id); |
| ia->ri_id = NULL; |
| } |
| |
| /* If the pd is still busy, xprtrdma missed freeing a resource */ |
| if (ia->ri_pd && !IS_ERR(ia->ri_pd)) |
| ib_dealloc_pd(ia->ri_pd); |
| } |
| |
| /* |
| * Create unconnected endpoint. |
| */ |
| int |
| rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia, |
| struct rpcrdma_create_data_internal *cdata) |
| { |
| struct ib_device_attr *devattr = &ia->ri_devattr; |
| struct ib_cq *sendcq, *recvcq; |
| struct ib_cq_init_attr cq_attr = {}; |
| int rc, err; |
| |
| if (devattr->max_sge < RPCRDMA_MAX_IOVS) { |
| dprintk("RPC: %s: insufficient sge's available\n", |
| __func__); |
| return -ENOMEM; |
| } |
| |
| /* check provider's send/recv wr limits */ |
| if (cdata->max_requests > devattr->max_qp_wr) |
| cdata->max_requests = devattr->max_qp_wr; |
| |
| ep->rep_attr.event_handler = rpcrdma_qp_async_error_upcall; |
| ep->rep_attr.qp_context = ep; |
| ep->rep_attr.srq = NULL; |
| ep->rep_attr.cap.max_send_wr = cdata->max_requests; |
| rc = ia->ri_ops->ro_open(ia, ep, cdata); |
| if (rc) |
| return rc; |
| ep->rep_attr.cap.max_recv_wr = cdata->max_requests; |
| ep->rep_attr.cap.max_send_sge = RPCRDMA_MAX_IOVS; |
| ep->rep_attr.cap.max_recv_sge = 1; |
| ep->rep_attr.cap.max_inline_data = 0; |
| ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR; |
| ep->rep_attr.qp_type = IB_QPT_RC; |
| ep->rep_attr.port_num = ~0; |
| |
| dprintk("RPC: %s: requested max: dtos: send %d recv %d; " |
| "iovs: send %d recv %d\n", |
| __func__, |
| ep->rep_attr.cap.max_send_wr, |
| ep->rep_attr.cap.max_recv_wr, |
| ep->rep_attr.cap.max_send_sge, |
| ep->rep_attr.cap.max_recv_sge); |
| |
| /* set trigger for requesting send completion */ |
| ep->rep_cqinit = ep->rep_attr.cap.max_send_wr/2 - 1; |
| if (ep->rep_cqinit > RPCRDMA_MAX_UNSIGNALED_SENDS) |
| ep->rep_cqinit = RPCRDMA_MAX_UNSIGNALED_SENDS; |
| else if (ep->rep_cqinit <= 2) |
| ep->rep_cqinit = 0; |
| INIT_CQCOUNT(ep); |
| init_waitqueue_head(&ep->rep_connect_wait); |
| INIT_DELAYED_WORK(&ep->rep_connect_worker, rpcrdma_connect_worker); |
| |
| cq_attr.cqe = ep->rep_attr.cap.max_send_wr + 1; |
| sendcq = ib_create_cq(ia->ri_device, rpcrdma_sendcq_upcall, |
| rpcrdma_cq_async_error_upcall, ep, &cq_attr); |
| if (IS_ERR(sendcq)) { |
| rc = PTR_ERR(sendcq); |
| dprintk("RPC: %s: failed to create send CQ: %i\n", |
| __func__, rc); |
| goto out1; |
| } |
| |
| rc = ib_req_notify_cq(sendcq, IB_CQ_NEXT_COMP); |
| if (rc) { |
| dprintk("RPC: %s: ib_req_notify_cq failed: %i\n", |
| __func__, rc); |
| goto out2; |
| } |
| |
| cq_attr.cqe = ep->rep_attr.cap.max_recv_wr + 1; |
| recvcq = ib_create_cq(ia->ri_device, rpcrdma_recvcq_upcall, |
| rpcrdma_cq_async_error_upcall, ep, &cq_attr); |
| if (IS_ERR(recvcq)) { |
| rc = PTR_ERR(recvcq); |
| dprintk("RPC: %s: failed to create recv CQ: %i\n", |
| __func__, rc); |
| goto out2; |
| } |
| |
| rc = ib_req_notify_cq(recvcq, IB_CQ_NEXT_COMP); |
| if (rc) { |
| dprintk("RPC: %s: ib_req_notify_cq failed: %i\n", |
| __func__, rc); |
| ib_destroy_cq(recvcq); |
| goto out2; |
| } |
| |
| ep->rep_attr.send_cq = sendcq; |
| ep->rep_attr.recv_cq = recvcq; |
| |
| /* Initialize cma parameters */ |
| |
| /* RPC/RDMA does not use private data */ |
| ep->rep_remote_cma.private_data = NULL; |
| ep->rep_remote_cma.private_data_len = 0; |
| |
| /* Client offers RDMA Read but does not initiate */ |
| ep->rep_remote_cma.initiator_depth = 0; |
| if (devattr->max_qp_rd_atom > 32) /* arbitrary but <= 255 */ |
| ep->rep_remote_cma.responder_resources = 32; |
| else |
| ep->rep_remote_cma.responder_resources = |
| devattr->max_qp_rd_atom; |
| |
| ep->rep_remote_cma.retry_count = 7; |
| ep->rep_remote_cma.flow_control = 0; |
| ep->rep_remote_cma.rnr_retry_count = 0; |
| |
| return 0; |
| |
| out2: |
| err = ib_destroy_cq(sendcq); |
| if (err) |
| dprintk("RPC: %s: ib_destroy_cq returned %i\n", |
| __func__, err); |
| out1: |
| if (ia->ri_dma_mr) |
| ib_dereg_mr(ia->ri_dma_mr); |
| return rc; |
| } |
| |
| /* |
| * rpcrdma_ep_destroy |
| * |
| * Disconnect and destroy endpoint. After this, the only |
| * valid operations on the ep are to free it (if dynamically |
| * allocated) or re-create it. |
| */ |
| void |
| rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) |
| { |
| int rc; |
| |
| dprintk("RPC: %s: entering, connected is %d\n", |
| __func__, ep->rep_connected); |
| |
| cancel_delayed_work_sync(&ep->rep_connect_worker); |
| |
| if (ia->ri_id->qp) |
| rpcrdma_ep_disconnect(ep, ia); |
| |
| rpcrdma_clean_cq(ep->rep_attr.recv_cq); |
| rpcrdma_clean_cq(ep->rep_attr.send_cq); |
| |
| if (ia->ri_id->qp) { |
| rdma_destroy_qp(ia->ri_id); |
| ia->ri_id->qp = NULL; |
| } |
| |
| rc = ib_destroy_cq(ep->rep_attr.recv_cq); |
| if (rc) |
| dprintk("RPC: %s: ib_destroy_cq returned %i\n", |
| __func__, rc); |
| |
| rc = ib_destroy_cq(ep->rep_attr.send_cq); |
| if (rc) |
| dprintk("RPC: %s: ib_destroy_cq returned %i\n", |
| __func__, rc); |
| |
| if (ia->ri_dma_mr) { |
| rc = ib_dereg_mr(ia->ri_dma_mr); |
| dprintk("RPC: %s: ib_dereg_mr returned %i\n", |
| __func__, rc); |
| } |
| } |
| |
| /* |
| * Connect unconnected endpoint. |
| */ |
| int |
| rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) |
| { |
| struct rdma_cm_id *id, *old; |
| int rc = 0; |
| int retry_count = 0; |
| |
| if (ep->rep_connected != 0) { |
| struct rpcrdma_xprt *xprt; |
| retry: |
| dprintk("RPC: %s: reconnecting...\n", __func__); |
| |
| rpcrdma_ep_disconnect(ep, ia); |
| rpcrdma_flush_cqs(ep); |
| |
| xprt = container_of(ia, struct rpcrdma_xprt, rx_ia); |
| id = rpcrdma_create_id(xprt, ia, |
| (struct sockaddr *)&xprt->rx_data.addr); |
| if (IS_ERR(id)) { |
| rc = -EHOSTUNREACH; |
| goto out; |
| } |
| /* TEMP TEMP TEMP - fail if new device: |
| * Deregister/remarshal *all* requests! |
| * Close and recreate adapter, pd, etc! |
| * Re-determine all attributes still sane! |
| * More stuff I haven't thought of! |
| * Rrrgh! |
| */ |
| if (ia->ri_device != id->device) { |
| printk("RPC: %s: can't reconnect on " |
| "different device!\n", __func__); |
| rpcrdma_destroy_id(id); |
| rc = -ENETUNREACH; |
| goto out; |
| } |
| /* END TEMP */ |
| rc = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr); |
| if (rc) { |
| dprintk("RPC: %s: rdma_create_qp failed %i\n", |
| __func__, rc); |
| rpcrdma_destroy_id(id); |
| rc = -ENETUNREACH; |
| goto out; |
| } |
| |
| write_lock(&ia->ri_qplock); |
| old = ia->ri_id; |
| ia->ri_id = id; |
| write_unlock(&ia->ri_qplock); |
| |
| rdma_destroy_qp(old); |
| rpcrdma_destroy_id(old); |
| } else { |
| dprintk("RPC: %s: connecting...\n", __func__); |
| rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); |
| if (rc) { |
| dprintk("RPC: %s: rdma_create_qp failed %i\n", |
| __func__, rc); |
| /* do not update ep->rep_connected */ |
| return -ENETUNREACH; |
| } |
| } |
| |
| ep->rep_connected = 0; |
| |
| rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma); |
| if (rc) { |
| dprintk("RPC: %s: rdma_connect() failed with %i\n", |
| __func__, rc); |
| goto out; |
| } |
| |
| wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0); |
| |
| /* |
| * Check state. A non-peer reject indicates no listener |
| * (ECONNREFUSED), which may be a transient state. All |
| * others indicate a transport condition which has already |
| * undergone a best-effort. |
| */ |
| if (ep->rep_connected == -ECONNREFUSED && |
| ++retry_count <= RDMA_CONNECT_RETRY_MAX) { |
| dprintk("RPC: %s: non-peer_reject, retry\n", __func__); |
| goto retry; |
| } |
| if (ep->rep_connected <= 0) { |
| /* Sometimes, the only way to reliably connect to remote |
| * CMs is to use same nonzero values for ORD and IRD. */ |
| if (retry_count++ <= RDMA_CONNECT_RETRY_MAX + 1 && |
| (ep->rep_remote_cma.responder_resources == 0 || |
| ep->rep_remote_cma.initiator_depth != |
| ep->rep_remote_cma.responder_resources)) { |
| if (ep->rep_remote_cma.responder_resources == 0) |
| ep->rep_remote_cma.responder_resources = 1; |
| ep->rep_remote_cma.initiator_depth = |
| ep->rep_remote_cma.responder_resources; |
| goto retry; |
| } |
| rc = ep->rep_connected; |
| } else { |
| dprintk("RPC: %s: connected\n", __func__); |
| } |
| |
| out: |
| if (rc) |
| ep->rep_connected = rc; |
| return rc; |
| } |
| |
| /* |
| * rpcrdma_ep_disconnect |
| * |
| * This is separate from destroy to facilitate the ability |
| * to reconnect without recreating the endpoint. |
| * |
| * This call is not reentrant, and must not be made in parallel |
| * on the same endpoint. |
| */ |
| void |
| rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) |
| { |
| int rc; |
| |
| rpcrdma_flush_cqs(ep); |
| rc = rdma_disconnect(ia->ri_id); |
| if (!rc) { |
| /* returns without wait if not connected */ |
| wait_event_interruptible(ep->rep_connect_wait, |
| ep->rep_connected != 1); |
| dprintk("RPC: %s: after wait, %sconnected\n", __func__, |
| (ep->rep_connected == 1) ? "still " : "dis"); |
| } else { |
| dprintk("RPC: %s: rdma_disconnect %i\n", __func__, rc); |
| ep->rep_connected = rc; |
| } |
| } |
| |
| static struct rpcrdma_req * |
| rpcrdma_create_req(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_req *req; |
| |
| req = kzalloc(sizeof(*req), GFP_KERNEL); |
| if (req == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| req->rl_buffer = &r_xprt->rx_buf; |
| return req; |
| } |
| |
| static struct rpcrdma_rep * |
| rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; |
| struct rpcrdma_ia *ia = &r_xprt->rx_ia; |
| struct rpcrdma_rep *rep; |
| int rc; |
| |
| rc = -ENOMEM; |
| rep = kzalloc(sizeof(*rep), GFP_KERNEL); |
| if (rep == NULL) |
| goto out; |
| |
| rep->rr_rdmabuf = rpcrdma_alloc_regbuf(ia, cdata->inline_rsize, |
| GFP_KERNEL); |
| if (IS_ERR(rep->rr_rdmabuf)) { |
| rc = PTR_ERR(rep->rr_rdmabuf); |
| goto out_free; |
| } |
| |
| rep->rr_device = ia->ri_device; |
| rep->rr_rxprt = r_xprt; |
| return rep; |
| |
| out_free: |
| kfree(rep); |
| out: |
| return ERR_PTR(rc); |
| } |
| |
| int |
| rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| struct rpcrdma_ia *ia = &r_xprt->rx_ia; |
| struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; |
| char *p; |
| size_t len; |
| int i, rc; |
| |
| buf->rb_max_requests = cdata->max_requests; |
| spin_lock_init(&buf->rb_lock); |
| |
| /* Need to allocate: |
| * 1. arrays for send and recv pointers |
| * 2. arrays of struct rpcrdma_req to fill in pointers |
| * 3. array of struct rpcrdma_rep for replies |
| * Send/recv buffers in req/rep need to be registered |
| */ |
| len = buf->rb_max_requests * |
| (sizeof(struct rpcrdma_req *) + sizeof(struct rpcrdma_rep *)); |
| |
| p = kzalloc(len, GFP_KERNEL); |
| if (p == NULL) { |
| dprintk("RPC: %s: req_t/rep_t/pad kzalloc(%zd) failed\n", |
| __func__, len); |
| rc = -ENOMEM; |
| goto out; |
| } |
| buf->rb_pool = p; /* for freeing it later */ |
| |
| buf->rb_send_bufs = (struct rpcrdma_req **) p; |
| p = (char *) &buf->rb_send_bufs[buf->rb_max_requests]; |
| buf->rb_recv_bufs = (struct rpcrdma_rep **) p; |
| p = (char *) &buf->rb_recv_bufs[buf->rb_max_requests]; |
| |
| rc = ia->ri_ops->ro_init(r_xprt); |
| if (rc) |
| goto out; |
| |
| for (i = 0; i < buf->rb_max_requests; i++) { |
| struct rpcrdma_req *req; |
| struct rpcrdma_rep *rep; |
| |
| req = rpcrdma_create_req(r_xprt); |
| if (IS_ERR(req)) { |
| dprintk("RPC: %s: request buffer %d alloc" |
| " failed\n", __func__, i); |
| rc = PTR_ERR(req); |
| goto out; |
| } |
| buf->rb_send_bufs[i] = req; |
| |
| rep = rpcrdma_create_rep(r_xprt); |
| if (IS_ERR(rep)) { |
| dprintk("RPC: %s: reply buffer %d alloc failed\n", |
| __func__, i); |
| rc = PTR_ERR(rep); |
| goto out; |
| } |
| buf->rb_recv_bufs[i] = rep; |
| } |
| |
| return 0; |
| out: |
| rpcrdma_buffer_destroy(buf); |
| return rc; |
| } |
| |
| static void |
| rpcrdma_destroy_rep(struct rpcrdma_ia *ia, struct rpcrdma_rep *rep) |
| { |
| if (!rep) |
| return; |
| |
| rpcrdma_free_regbuf(ia, rep->rr_rdmabuf); |
| kfree(rep); |
| } |
| |
| static void |
| rpcrdma_destroy_req(struct rpcrdma_ia *ia, struct rpcrdma_req *req) |
| { |
| if (!req) |
| return; |
| |
| rpcrdma_free_regbuf(ia, req->rl_sendbuf); |
| rpcrdma_free_regbuf(ia, req->rl_rdmabuf); |
| kfree(req); |
| } |
| |
| void |
| rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf) |
| { |
| struct rpcrdma_ia *ia = rdmab_to_ia(buf); |
| int i; |
| |
| /* clean up in reverse order from create |
| * 1. recv mr memory (mr free, then kfree) |
| * 2. send mr memory (mr free, then kfree) |
| * 3. MWs |
| */ |
| dprintk("RPC: %s: entering\n", __func__); |
| |
| for (i = 0; i < buf->rb_max_requests; i++) { |
| if (buf->rb_recv_bufs) |
| rpcrdma_destroy_rep(ia, buf->rb_recv_bufs[i]); |
| if (buf->rb_send_bufs) |
| rpcrdma_destroy_req(ia, buf->rb_send_bufs[i]); |
| } |
| |
| ia->ri_ops->ro_destroy(buf); |
| |
| kfree(buf->rb_pool); |
| } |
| |
| struct rpcrdma_mw * |
| rpcrdma_get_mw(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| struct rpcrdma_mw *mw = NULL; |
| |
| spin_lock(&buf->rb_mwlock); |
| if (!list_empty(&buf->rb_mws)) { |
| mw = list_first_entry(&buf->rb_mws, |
| struct rpcrdma_mw, mw_list); |
| list_del_init(&mw->mw_list); |
| } |
| spin_unlock(&buf->rb_mwlock); |
| |
| if (!mw) |
| pr_err("RPC: %s: no MWs available\n", __func__); |
| return mw; |
| } |
| |
| void |
| rpcrdma_put_mw(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mw *mw) |
| { |
| struct rpcrdma_buffer *buf = &r_xprt->rx_buf; |
| |
| spin_lock(&buf->rb_mwlock); |
| list_add_tail(&mw->mw_list, &buf->rb_mws); |
| spin_unlock(&buf->rb_mwlock); |
| } |
| |
| static void |
| rpcrdma_buffer_put_sendbuf(struct rpcrdma_req *req, struct rpcrdma_buffer *buf) |
| { |
| buf->rb_send_bufs[--buf->rb_send_index] = req; |
| req->rl_niovs = 0; |
| if (req->rl_reply) { |
| buf->rb_recv_bufs[--buf->rb_recv_index] = req->rl_reply; |
| req->rl_reply = NULL; |
| } |
| } |
| |
| /* |
| * Get a set of request/reply buffers. |
| * |
| * Reply buffer (if needed) is attached to send buffer upon return. |
| * Rule: |
| * rb_send_index and rb_recv_index MUST always be pointing to the |
| * *next* available buffer (non-NULL). They are incremented after |
| * removing buffers, and decremented *before* returning them. |
| */ |
| struct rpcrdma_req * |
| rpcrdma_buffer_get(struct rpcrdma_buffer *buffers) |
| { |
| struct rpcrdma_req *req; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&buffers->rb_lock, flags); |
| |
| if (buffers->rb_send_index == buffers->rb_max_requests) { |
| spin_unlock_irqrestore(&buffers->rb_lock, flags); |
| dprintk("RPC: %s: out of request buffers\n", __func__); |
| return ((struct rpcrdma_req *)NULL); |
| } |
| |
| req = buffers->rb_send_bufs[buffers->rb_send_index]; |
| if (buffers->rb_send_index < buffers->rb_recv_index) { |
| dprintk("RPC: %s: %d extra receives outstanding (ok)\n", |
| __func__, |
| buffers->rb_recv_index - buffers->rb_send_index); |
| req->rl_reply = NULL; |
| } else { |
| req->rl_reply = buffers->rb_recv_bufs[buffers->rb_recv_index]; |
| buffers->rb_recv_bufs[buffers->rb_recv_index++] = NULL; |
| } |
| buffers->rb_send_bufs[buffers->rb_send_index++] = NULL; |
| |
| spin_unlock_irqrestore(&buffers->rb_lock, flags); |
| return req; |
| } |
| |
| /* |
| * Put request/reply buffers back into pool. |
| * Pre-decrement counter/array index. |
| */ |
| void |
| rpcrdma_buffer_put(struct rpcrdma_req *req) |
| { |
| struct rpcrdma_buffer *buffers = req->rl_buffer; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&buffers->rb_lock, flags); |
| rpcrdma_buffer_put_sendbuf(req, buffers); |
| spin_unlock_irqrestore(&buffers->rb_lock, flags); |
| } |
| |
| /* |
| * Recover reply buffers from pool. |
| * This happens when recovering from error conditions. |
| * Post-increment counter/array index. |
| */ |
| void |
| rpcrdma_recv_buffer_get(struct rpcrdma_req *req) |
| { |
| struct rpcrdma_buffer *buffers = req->rl_buffer; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&buffers->rb_lock, flags); |
| if (buffers->rb_recv_index < buffers->rb_max_requests) { |
| req->rl_reply = buffers->rb_recv_bufs[buffers->rb_recv_index]; |
| buffers->rb_recv_bufs[buffers->rb_recv_index++] = NULL; |
| } |
| spin_unlock_irqrestore(&buffers->rb_lock, flags); |
| } |
| |
| /* |
| * Put reply buffers back into pool when not attached to |
| * request. This happens in error conditions. |
| */ |
| void |
| rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep) |
| { |
| struct rpcrdma_buffer *buffers = &rep->rr_rxprt->rx_buf; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&buffers->rb_lock, flags); |
| buffers->rb_recv_bufs[--buffers->rb_recv_index] = rep; |
| spin_unlock_irqrestore(&buffers->rb_lock, flags); |
| } |
| |
| /* |
| * Wrappers for internal-use kmalloc memory registration, used by buffer code. |
| */ |
| |
| void |
| rpcrdma_mapping_error(struct rpcrdma_mr_seg *seg) |
| { |
| dprintk("RPC: map_one: offset %p iova %llx len %zu\n", |
| seg->mr_offset, |
| (unsigned long long)seg->mr_dma, seg->mr_dmalen); |
| } |
| |
| /** |
| * rpcrdma_alloc_regbuf - kmalloc and register memory for SEND/RECV buffers |
| * @ia: controlling rpcrdma_ia |
| * @size: size of buffer to be allocated, in bytes |
| * @flags: GFP flags |
| * |
| * Returns pointer to private header of an area of internally |
| * registered memory, or an ERR_PTR. The registered buffer follows |
| * the end of the private header. |
| * |
| * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for |
| * receiving the payload of RDMA RECV operations. regbufs are not |
| * used for RDMA READ/WRITE operations, thus are registered only for |
| * LOCAL access. |
| */ |
| struct rpcrdma_regbuf * |
| rpcrdma_alloc_regbuf(struct rpcrdma_ia *ia, size_t size, gfp_t flags) |
| { |
| struct rpcrdma_regbuf *rb; |
| struct ib_sge *iov; |
| |
| rb = kmalloc(sizeof(*rb) + size, flags); |
| if (rb == NULL) |
| goto out; |
| |
| iov = &rb->rg_iov; |
| iov->addr = ib_dma_map_single(ia->ri_device, |
| (void *)rb->rg_base, size, |
| DMA_BIDIRECTIONAL); |
| if (ib_dma_mapping_error(ia->ri_device, iov->addr)) |
| goto out_free; |
| |
| iov->length = size; |
| iov->lkey = ia->ri_pd->local_dma_lkey; |
| rb->rg_size = size; |
| rb->rg_owner = NULL; |
| return rb; |
| |
| out_free: |
| kfree(rb); |
| out: |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /** |
| * rpcrdma_free_regbuf - deregister and free registered buffer |
| * @ia: controlling rpcrdma_ia |
| * @rb: regbuf to be deregistered and freed |
| */ |
| void |
| rpcrdma_free_regbuf(struct rpcrdma_ia *ia, struct rpcrdma_regbuf *rb) |
| { |
| struct ib_sge *iov; |
| |
| if (!rb) |
| return; |
| |
| iov = &rb->rg_iov; |
| ib_dma_unmap_single(ia->ri_device, |
| iov->addr, iov->length, DMA_BIDIRECTIONAL); |
| kfree(rb); |
| } |
| |
| /* |
| * Prepost any receive buffer, then post send. |
| * |
| * Receive buffer is donated to hardware, reclaimed upon recv completion. |
| */ |
| int |
| rpcrdma_ep_post(struct rpcrdma_ia *ia, |
| struct rpcrdma_ep *ep, |
| struct rpcrdma_req *req) |
| { |
| struct ib_device *device = ia->ri_device; |
| struct ib_send_wr send_wr, *send_wr_fail; |
| struct rpcrdma_rep *rep = req->rl_reply; |
| struct ib_sge *iov = req->rl_send_iov; |
| int i, rc; |
| |
| if (rep) { |
| rc = rpcrdma_ep_post_recv(ia, ep, rep); |
| if (rc) |
| goto out; |
| req->rl_reply = NULL; |
| } |
| |
| send_wr.next = NULL; |
| send_wr.wr_id = RPCRDMA_IGNORE_COMPLETION; |
| send_wr.sg_list = iov; |
| send_wr.num_sge = req->rl_niovs; |
| send_wr.opcode = IB_WR_SEND; |
| |
| for (i = 0; i < send_wr.num_sge; i++) |
| ib_dma_sync_single_for_device(device, iov[i].addr, |
| iov[i].length, DMA_TO_DEVICE); |
| dprintk("RPC: %s: posting %d s/g entries\n", |
| __func__, send_wr.num_sge); |
| |
| if (DECR_CQCOUNT(ep) > 0) |
| send_wr.send_flags = 0; |
| else { /* Provider must take a send completion every now and then */ |
| INIT_CQCOUNT(ep); |
| send_wr.send_flags = IB_SEND_SIGNALED; |
| } |
| |
| rc = ib_post_send(ia->ri_id->qp, &send_wr, &send_wr_fail); |
| if (rc) |
| dprintk("RPC: %s: ib_post_send returned %i\n", __func__, |
| rc); |
| out: |
| return rc; |
| } |
| |
| /* |
| * (Re)post a receive buffer. |
| */ |
| int |
| rpcrdma_ep_post_recv(struct rpcrdma_ia *ia, |
| struct rpcrdma_ep *ep, |
| struct rpcrdma_rep *rep) |
| { |
| struct ib_recv_wr recv_wr, *recv_wr_fail; |
| int rc; |
| |
| recv_wr.next = NULL; |
| recv_wr.wr_id = (u64) (unsigned long) rep; |
| recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov; |
| recv_wr.num_sge = 1; |
| |
| ib_dma_sync_single_for_cpu(ia->ri_device, |
| rdmab_addr(rep->rr_rdmabuf), |
| rdmab_length(rep->rr_rdmabuf), |
| DMA_BIDIRECTIONAL); |
| |
| rc = ib_post_recv(ia->ri_id->qp, &recv_wr, &recv_wr_fail); |
| |
| if (rc) |
| dprintk("RPC: %s: ib_post_recv returned %i\n", __func__, |
| rc); |
| return rc; |
| } |
| |
| /* How many chunk list items fit within our inline buffers? |
| */ |
| unsigned int |
| rpcrdma_max_segments(struct rpcrdma_xprt *r_xprt) |
| { |
| struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; |
| int bytes, segments; |
| |
| bytes = min_t(unsigned int, cdata->inline_wsize, cdata->inline_rsize); |
| bytes -= RPCRDMA_HDRLEN_MIN; |
| if (bytes < sizeof(struct rpcrdma_segment) * 2) { |
| pr_warn("RPC: %s: inline threshold too small\n", |
| __func__); |
| return 0; |
| } |
| |
| segments = 1 << (fls(bytes / sizeof(struct rpcrdma_segment)) - 1); |
| dprintk("RPC: %s: max chunk list size = %d segments\n", |
| __func__, segments); |
| return segments; |
| } |