blob: bcc14a0692259363180e21a465a92e03ddf70833 [file] [log] [blame]
/* drivers/misc/uid_sys_stats.c
*
* Copyright (C) 2014 - 2015 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/atomic.h>
#include <linux/err.h>
#include <linux/hashtable.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/llist.h>
#include <linux/mm.h>
#include <linux/proc_fs.h>
#include <linux/profile.h>
#include <linux/sched/cputime.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/spinlock_types.h>
#define UID_HASH_BITS 10
#define UID_HASH_NUMS (1 << UID_HASH_BITS)
DECLARE_HASHTABLE(hash_table, UID_HASH_BITS);
/* uid_lock[bkt] ensure consistency of hash_table[bkt] */
spinlock_t uid_lock[UID_HASH_NUMS];
#define for_each_bkt(bkt) \
for (bkt = 0; bkt < HASH_SIZE(hash_table); bkt++)
/* iterate over all uid_entrys hashing to the same bkt */
#define for_each_uid_entry(uid_entry, bkt) \
hlist_for_each_entry(uid_entry, &hash_table[bkt], hash)
#define for_each_uid_entry_safe(uid_entry, tmp, bkt) \
hlist_for_each_entry_safe(uid_entry, tmp,\
&hash_table[bkt], hash)
static struct proc_dir_entry *cpu_parent;
static struct proc_dir_entry *io_parent;
static struct proc_dir_entry *proc_parent;
struct io_stats {
u64 read_bytes;
u64 write_bytes;
u64 rchar;
u64 wchar;
u64 fsync;
};
#define UID_STATE_FOREGROUND 0
#define UID_STATE_BACKGROUND 1
#define UID_STATE_TOTAL_LAST 2
#define UID_STATE_DEAD_TASKS 3
#define UID_STATE_SIZE 4
#define MAX_TASK_COMM_LEN 256
struct task_entry {
char comm[MAX_TASK_COMM_LEN];
pid_t pid;
struct io_stats io[UID_STATE_SIZE];
struct hlist_node hash;
};
struct uid_entry {
uid_t uid;
u64 utime;
u64 stime;
int state;
struct io_stats io[UID_STATE_SIZE];
struct hlist_node hash;
};
static void init_hash_table_and_lock(void)
{
int i;
hash_init(hash_table);
for (i = 0; i < UID_HASH_NUMS; i++)
spin_lock_init(&uid_lock[i]);
}
static inline int uid_to_bkt(uid_t uid)
{
return hash_min(uid, HASH_BITS(hash_table));
}
static inline int trylock_uid(uid_t uid)
{
return spin_trylock(&uid_lock[uid_to_bkt(uid)]);
}
static inline void lock_uid(uid_t uid)
{
spin_lock(&uid_lock[uid_to_bkt(uid)]);
}
static inline void unlock_uid(uid_t uid)
{
spin_unlock(&uid_lock[uid_to_bkt(uid)]);
}
static inline void lock_uid_by_bkt(u32 bkt)
{
spin_lock(&uid_lock[bkt]);
}
static inline void unlock_uid_by_bkt(u32 bkt)
{
spin_unlock(&uid_lock[bkt]);
}
static u64 compute_write_bytes(struct task_io_accounting *ioac)
{
if (ioac->write_bytes <= ioac->cancelled_write_bytes)
return 0;
return ioac->write_bytes - ioac->cancelled_write_bytes;
}
static void compute_io_bucket_stats(struct io_stats *io_bucket,
struct io_stats *io_curr,
struct io_stats *io_last,
struct io_stats *io_dead)
{
/* tasks could switch to another uid group, but its io_last in the
* previous uid group could still be positive.
* therefore before each update, do an overflow check first
*/
int64_t delta;
delta = io_curr->read_bytes + io_dead->read_bytes -
io_last->read_bytes;
io_bucket->read_bytes += delta > 0 ? delta : 0;
delta = io_curr->write_bytes + io_dead->write_bytes -
io_last->write_bytes;
io_bucket->write_bytes += delta > 0 ? delta : 0;
delta = io_curr->rchar + io_dead->rchar - io_last->rchar;
io_bucket->rchar += delta > 0 ? delta : 0;
delta = io_curr->wchar + io_dead->wchar - io_last->wchar;
io_bucket->wchar += delta > 0 ? delta : 0;
delta = io_curr->fsync + io_dead->fsync - io_last->fsync;
io_bucket->fsync += delta > 0 ? delta : 0;
io_last->read_bytes = io_curr->read_bytes;
io_last->write_bytes = io_curr->write_bytes;
io_last->rchar = io_curr->rchar;
io_last->wchar = io_curr->wchar;
io_last->fsync = io_curr->fsync;
memset(io_dead, 0, sizeof(struct io_stats));
}
static struct uid_entry *find_uid_entry(uid_t uid)
{
struct uid_entry *uid_entry;
u32 bkt = uid_to_bkt(uid);
for_each_uid_entry(uid_entry, bkt) {
if (uid_entry->uid == uid)
return uid_entry;
}
return NULL;
}
static struct uid_entry *find_or_register_uid(uid_t uid)
{
struct uid_entry *uid_entry;
uid_entry = find_uid_entry(uid);
if (uid_entry)
return uid_entry;
uid_entry = kzalloc(sizeof(struct uid_entry), GFP_ATOMIC);
if (!uid_entry)
return NULL;
uid_entry->uid = uid;
hash_add(hash_table, &uid_entry->hash, uid);
return uid_entry;
}
static void calc_uid_cputime(struct uid_entry *uid_entry,
u64 *total_utime, u64 *total_stime)
{
struct user_namespace *user_ns = current_user_ns();
struct task_struct *p, *t;
u64 utime, stime;
uid_t uid;
rcu_read_lock();
for_each_process(p) {
uid = from_kuid_munged(user_ns, task_uid(p));
if (uid != uid_entry->uid)
continue;
for_each_thread(p, t) {
/* avoid double accounting of dying threads */
if (!(t->flags & PF_EXITING)) {
task_cputime_adjusted(t, &utime, &stime);
*total_utime += utime;
*total_stime += stime;
}
}
}
rcu_read_unlock();
}
static int uid_cputime_show(struct seq_file *m, void *v)
{
struct uid_entry *uid_entry = NULL;
u32 bkt;
for_each_bkt(bkt) {
lock_uid_by_bkt(bkt);
for_each_uid_entry(uid_entry, bkt) {
u64 total_utime = uid_entry->utime;
u64 total_stime = uid_entry->stime;
calc_uid_cputime(uid_entry, &total_utime, &total_stime);
seq_printf(m, "%d: %llu %llu\n", uid_entry->uid,
ktime_to_us(total_utime), ktime_to_us(total_stime));
}
unlock_uid_by_bkt(bkt);
}
return 0;
}
static int uid_cputime_open(struct inode *inode, struct file *file)
{
return single_open(file, uid_cputime_show, pde_data(inode));
}
static const struct proc_ops uid_cputime_fops = {
.proc_open = uid_cputime_open,
.proc_read = seq_read,
.proc_lseek = seq_lseek,
.proc_release = single_release,
};
static int uid_remove_open(struct inode *inode, struct file *file)
{
return single_open(file, NULL, NULL);
}
static ssize_t uid_remove_write(struct file *file,
const char __user *buffer, size_t count, loff_t *ppos)
{
char uids[128];
char *start_uid, *end_uid = NULL;
long int uid_start = 0, uid_end = 0;
if (count >= sizeof(uids))
count = sizeof(uids) - 1;
if (copy_from_user(uids, buffer, count))
return -EFAULT;
uids[count] = '\0';
end_uid = uids;
start_uid = strsep(&end_uid, "-");
if (!start_uid || !end_uid)
return -EINVAL;
if (kstrtol(start_uid, 10, &uid_start) != 0 ||
kstrtol(end_uid, 10, &uid_end) != 0) {
return -EINVAL;
}
for (; uid_start <= uid_end; uid_start++) {
struct uid_entry *uid_entry;
struct hlist_node *tmp;
u32 bkt = uid_to_bkt((uid_t)uid_start);
lock_uid(uid_start);
for_each_uid_entry_safe(uid_entry, tmp, bkt) {
if (uid_start == uid_entry->uid) {
hash_del(&uid_entry->hash);
kfree(uid_entry);
}
}
unlock_uid(uid_start);
}
return count;
}
static const struct proc_ops uid_remove_fops = {
.proc_open = uid_remove_open,
.proc_release = single_release,
.proc_write = uid_remove_write,
};
static void __add_uid_io_stats(struct uid_entry *uid_entry,
struct task_io_accounting *ioac, int slot)
{
struct io_stats *io_slot = &uid_entry->io[slot];
io_slot->read_bytes += ioac->read_bytes;
io_slot->write_bytes += compute_write_bytes(ioac);
io_slot->rchar += ioac->rchar;
io_slot->wchar += ioac->wchar;
io_slot->fsync += ioac->syscfs;
}
static void add_uid_io_stats(struct uid_entry *uid_entry,
struct task_struct *task, int slot)
{
struct task_entry *task_entry __maybe_unused;
/* avoid double accounting of dying threads */
if (slot != UID_STATE_DEAD_TASKS && (task->flags & PF_EXITING))
return;
__add_uid_io_stats(uid_entry, &task->ioac, slot);
}
static void update_io_stats_uid(struct uid_entry *uid_entry)
{
struct user_namespace *user_ns = current_user_ns();
struct task_struct *p, *t;
struct io_stats io;
memset(&io, 0, sizeof(struct io_stats));
rcu_read_lock();
for_each_process(p) {
uid_t uid = from_kuid_munged(user_ns, task_uid(p));
if (uid != uid_entry->uid)
continue;
for_each_thread(p, t) {
/* avoid double accounting of dying threads */
if (!(t->flags & PF_EXITING)) {
io.read_bytes += t->ioac.read_bytes;
io.write_bytes += compute_write_bytes(&t->ioac);
io.rchar += t->ioac.rchar;
io.wchar += t->ioac.wchar;
io.fsync += t->ioac.syscfs;
}
}
}
rcu_read_unlock();
compute_io_bucket_stats(&uid_entry->io[uid_entry->state], &io,
&uid_entry->io[UID_STATE_TOTAL_LAST],
&uid_entry->io[UID_STATE_DEAD_TASKS]);
}
static int uid_io_show(struct seq_file *m, void *v)
{
struct uid_entry *uid_entry = NULL;
u32 bkt;
for_each_bkt(bkt) {
lock_uid_by_bkt(bkt);
for_each_uid_entry(uid_entry, bkt) {
update_io_stats_uid(uid_entry);
seq_printf(m, "%d %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu\n",
uid_entry->uid,
uid_entry->io[UID_STATE_FOREGROUND].rchar,
uid_entry->io[UID_STATE_FOREGROUND].wchar,
uid_entry->io[UID_STATE_FOREGROUND].read_bytes,
uid_entry->io[UID_STATE_FOREGROUND].write_bytes,
uid_entry->io[UID_STATE_BACKGROUND].rchar,
uid_entry->io[UID_STATE_BACKGROUND].wchar,
uid_entry->io[UID_STATE_BACKGROUND].read_bytes,
uid_entry->io[UID_STATE_BACKGROUND].write_bytes,
uid_entry->io[UID_STATE_FOREGROUND].fsync,
uid_entry->io[UID_STATE_BACKGROUND].fsync);
}
unlock_uid_by_bkt(bkt);
}
return 0;
}
static int uid_io_open(struct inode *inode, struct file *file)
{
return single_open(file, uid_io_show, pde_data(inode));
}
static const struct proc_ops uid_io_fops = {
.proc_open = uid_io_open,
.proc_read = seq_read,
.proc_lseek = seq_lseek,
.proc_release = single_release,
};
static int uid_procstat_open(struct inode *inode, struct file *file)
{
return single_open(file, NULL, NULL);
}
static ssize_t uid_procstat_write(struct file *file,
const char __user *buffer, size_t count, loff_t *ppos)
{
struct uid_entry *uid_entry;
uid_t uid;
int argc, state;
char input[128];
if (count >= sizeof(input))
return -EINVAL;
if (copy_from_user(input, buffer, count))
return -EFAULT;
input[count] = '\0';
argc = sscanf(input, "%u %d", &uid, &state);
if (argc != 2)
return -EINVAL;
if (state != UID_STATE_BACKGROUND && state != UID_STATE_FOREGROUND)
return -EINVAL;
lock_uid(uid);
uid_entry = find_or_register_uid(uid);
if (!uid_entry) {
unlock_uid(uid);
return -EINVAL;
}
if (uid_entry->state == state) {
unlock_uid(uid);
return count;
}
update_io_stats_uid(uid_entry);
uid_entry->state = state;
unlock_uid(uid);
return count;
}
static const struct proc_ops uid_procstat_fops = {
.proc_open = uid_procstat_open,
.proc_release = single_release,
.proc_write = uid_procstat_write,
};
struct update_stats_work {
uid_t uid;
struct task_io_accounting ioac;
u64 utime;
u64 stime;
struct llist_node node;
};
static LLIST_HEAD(work_usw);
static void update_stats_workfn(struct work_struct *work)
{
struct update_stats_work *usw, *t;
struct uid_entry *uid_entry;
struct task_entry *task_entry __maybe_unused;
struct llist_node *node;
node = llist_del_all(&work_usw);
llist_for_each_entry_safe(usw, t, node, node) {
lock_uid(usw->uid);
uid_entry = find_uid_entry(usw->uid);
if (!uid_entry)
goto next;
uid_entry->utime += usw->utime;
uid_entry->stime += usw->stime;
__add_uid_io_stats(uid_entry, &usw->ioac, UID_STATE_DEAD_TASKS);
next:
unlock_uid(usw->uid);
kfree(usw);
}
}
static DECLARE_WORK(update_stats_work, update_stats_workfn);
static int process_notifier(struct notifier_block *self,
unsigned long cmd, void *v)
{
struct task_struct *task = v;
struct uid_entry *uid_entry;
u64 utime, stime;
uid_t uid;
if (!task)
return NOTIFY_OK;
uid = from_kuid_munged(current_user_ns(), task_uid(task));
if (!trylock_uid(uid)) {
struct update_stats_work *usw;
usw = kmalloc(sizeof(struct update_stats_work), GFP_KERNEL);
if (usw) {
usw->uid = uid;
/*
* Copy task->ioac since task might be destroyed before
* the work is later performed.
*/
usw->ioac = task->ioac;
task_cputime_adjusted(task, &usw->utime, &usw->stime);
llist_add(&usw->node, &work_usw);
schedule_work(&update_stats_work);
}
return NOTIFY_OK;
}
uid_entry = find_or_register_uid(uid);
if (!uid_entry) {
pr_err("%s: failed to find uid %d\n", __func__, uid);
goto exit;
}
task_cputime_adjusted(task, &utime, &stime);
uid_entry->utime += utime;
uid_entry->stime += stime;
add_uid_io_stats(uid_entry, task, UID_STATE_DEAD_TASKS);
exit:
unlock_uid(uid);
return NOTIFY_OK;
}
static struct notifier_block process_notifier_block = {
.notifier_call = process_notifier,
};
static int __init proc_uid_sys_stats_init(void)
{
init_hash_table_and_lock();
cpu_parent = proc_mkdir("uid_cputime", NULL);
if (!cpu_parent) {
pr_err("%s: failed to create uid_cputime proc entry\n",
__func__);
goto err;
}
proc_create_data("remove_uid_range", 0222, cpu_parent,
&uid_remove_fops, NULL);
proc_create_data("show_uid_stat", 0444, cpu_parent,
&uid_cputime_fops, NULL);
io_parent = proc_mkdir("uid_io", NULL);
if (!io_parent) {
pr_err("%s: failed to create uid_io proc entry\n",
__func__);
goto err;
}
proc_create_data("stats", 0444, io_parent,
&uid_io_fops, NULL);
proc_parent = proc_mkdir("uid_procstat", NULL);
if (!proc_parent) {
pr_err("%s: failed to create uid_procstat proc entry\n",
__func__);
goto err;
}
proc_create_data("set", 0222, proc_parent,
&uid_procstat_fops, NULL);
profile_event_register(PROFILE_TASK_EXIT, &process_notifier_block);
return 0;
err:
remove_proc_subtree("uid_cputime", NULL);
remove_proc_subtree("uid_io", NULL);
remove_proc_subtree("uid_procstat", NULL);
return -ENOMEM;
}
early_initcall(proc_uid_sys_stats_init);