| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Kernel-based Virtual Machine -- Performance Monitoring Unit support |
| * |
| * Copyright 2015 Red Hat, Inc. and/or its affiliates. |
| * |
| * Authors: |
| * Avi Kivity <avi@redhat.com> |
| * Gleb Natapov <gleb@redhat.com> |
| * Wei Huang <wei@redhat.com> |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/types.h> |
| #include <linux/kvm_host.h> |
| #include <linux/perf_event.h> |
| #include <linux/bsearch.h> |
| #include <linux/sort.h> |
| #include <asm/perf_event.h> |
| #include <asm/cpu_device_id.h> |
| #include "x86.h" |
| #include "cpuid.h" |
| #include "lapic.h" |
| #include "pmu.h" |
| |
| /* This is enough to filter the vast majority of currently defined events. */ |
| #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300 |
| |
| struct x86_pmu_capability __read_mostly kvm_pmu_cap; |
| EXPORT_SYMBOL_GPL(kvm_pmu_cap); |
| |
| /* Precise Distribution of Instructions Retired (PDIR) */ |
| static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = { |
| X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL), |
| X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL), |
| /* Instruction-Accurate PDIR (PDIR++) */ |
| X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL), |
| {} |
| }; |
| |
| /* Precise Distribution (PDist) */ |
| static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = { |
| X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL), |
| {} |
| }; |
| |
| /* NOTE: |
| * - Each perf counter is defined as "struct kvm_pmc"; |
| * - There are two types of perf counters: general purpose (gp) and fixed. |
| * gp counters are stored in gp_counters[] and fixed counters are stored |
| * in fixed_counters[] respectively. Both of them are part of "struct |
| * kvm_pmu"; |
| * - pmu.c understands the difference between gp counters and fixed counters. |
| * However AMD doesn't support fixed-counters; |
| * - There are three types of index to access perf counters (PMC): |
| * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD |
| * has MSR_K7_PERFCTRn and, for families 15H and later, |
| * MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are |
| * aliased to MSR_K7_PERFCTRn. |
| * 2. MSR Index (named idx): This normally is used by RDPMC instruction. |
| * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access |
| * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except |
| * that it also supports fixed counters. idx can be used to as index to |
| * gp and fixed counters. |
| * 3. Global PMC Index (named pmc): pmc is an index specific to PMU |
| * code. Each pmc, stored in kvm_pmc.idx field, is unique across |
| * all perf counters (both gp and fixed). The mapping relationship |
| * between pmc and perf counters is as the following: |
| * * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters |
| * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed |
| * * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H |
| * and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters |
| */ |
| |
| static struct kvm_pmu_ops kvm_pmu_ops __read_mostly; |
| |
| #define KVM_X86_PMU_OP(func) \ |
| DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \ |
| *(((struct kvm_pmu_ops *)0)->func)); |
| #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP |
| #include <asm/kvm-x86-pmu-ops.h> |
| |
| void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops) |
| { |
| memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops)); |
| |
| #define __KVM_X86_PMU_OP(func) \ |
| static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func); |
| #define KVM_X86_PMU_OP(func) \ |
| WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func) |
| #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP |
| #include <asm/kvm-x86-pmu-ops.h> |
| #undef __KVM_X86_PMU_OP |
| } |
| |
| static inline bool pmc_is_enabled(struct kvm_pmc *pmc) |
| { |
| return static_call(kvm_x86_pmu_pmc_is_enabled)(pmc); |
| } |
| |
| static void kvm_pmi_trigger_fn(struct irq_work *irq_work) |
| { |
| struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work); |
| struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu); |
| |
| kvm_pmu_deliver_pmi(vcpu); |
| } |
| |
| static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi) |
| { |
| struct kvm_pmu *pmu = pmc_to_pmu(pmc); |
| bool skip_pmi = false; |
| |
| if (pmc->perf_event && pmc->perf_event->attr.precise_ip) { |
| if (!in_pmi) { |
| /* |
| * TODO: KVM is currently _choosing_ to not generate records |
| * for emulated instructions, avoiding BUFFER_OVF PMI when |
| * there are no records. Strictly speaking, it should be done |
| * as well in the right context to improve sampling accuracy. |
| */ |
| skip_pmi = true; |
| } else { |
| /* Indicate PEBS overflow PMI to guest. */ |
| skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, |
| (unsigned long *)&pmu->global_status); |
| } |
| } else { |
| __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); |
| } |
| |
| if (!pmc->intr || skip_pmi) |
| return; |
| |
| /* |
| * Inject PMI. If vcpu was in a guest mode during NMI PMI |
| * can be ejected on a guest mode re-entry. Otherwise we can't |
| * be sure that vcpu wasn't executing hlt instruction at the |
| * time of vmexit and is not going to re-enter guest mode until |
| * woken up. So we should wake it, but this is impossible from |
| * NMI context. Do it from irq work instead. |
| */ |
| if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu)) |
| irq_work_queue(&pmc_to_pmu(pmc)->irq_work); |
| else |
| kvm_make_request(KVM_REQ_PMI, pmc->vcpu); |
| } |
| |
| static void kvm_perf_overflow(struct perf_event *perf_event, |
| struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| struct kvm_pmc *pmc = perf_event->overflow_handler_context; |
| |
| /* |
| * Ignore overflow events for counters that are scheduled to be |
| * reprogrammed, e.g. if a PMI for the previous event races with KVM's |
| * handling of a related guest WRMSR. |
| */ |
| if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi)) |
| return; |
| |
| __kvm_perf_overflow(pmc, true); |
| |
| kvm_make_request(KVM_REQ_PMU, pmc->vcpu); |
| } |
| |
| static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc) |
| { |
| /* |
| * For some model specific pebs counters with special capabilities |
| * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise |
| * level to the maximum value (currently 3, backwards compatible) |
| * so that the perf subsystem would assign specific hardware counter |
| * with that capability for vPMC. |
| */ |
| if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) || |
| (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu))) |
| return 3; |
| |
| /* |
| * The non-zero precision level of guest event makes the ordinary |
| * guest event becomes a guest PEBS event and triggers the host |
| * PEBS PMI handler to determine whether the PEBS overflow PMI |
| * comes from the host counters or the guest. |
| */ |
| return 1; |
| } |
| |
| static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config, |
| bool exclude_user, bool exclude_kernel, |
| bool intr) |
| { |
| struct kvm_pmu *pmu = pmc_to_pmu(pmc); |
| struct perf_event *event; |
| struct perf_event_attr attr = { |
| .type = type, |
| .size = sizeof(attr), |
| .pinned = true, |
| .exclude_idle = true, |
| .exclude_host = 1, |
| .exclude_user = exclude_user, |
| .exclude_kernel = exclude_kernel, |
| .config = config, |
| }; |
| bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable); |
| |
| attr.sample_period = get_sample_period(pmc, pmc->counter); |
| |
| if ((attr.config & HSW_IN_TX_CHECKPOINTED) && |
| guest_cpuid_is_intel(pmc->vcpu)) { |
| /* |
| * HSW_IN_TX_CHECKPOINTED is not supported with nonzero |
| * period. Just clear the sample period so at least |
| * allocating the counter doesn't fail. |
| */ |
| attr.sample_period = 0; |
| } |
| if (pebs) { |
| /* |
| * For most PEBS hardware events, the difference in the software |
| * precision levels of guest and host PEBS events will not affect |
| * the accuracy of the PEBS profiling result, because the "event IP" |
| * in the PEBS record is calibrated on the guest side. |
| */ |
| attr.precise_ip = pmc_get_pebs_precise_level(pmc); |
| } |
| |
| event = perf_event_create_kernel_counter(&attr, -1, current, |
| kvm_perf_overflow, pmc); |
| if (IS_ERR(event)) { |
| pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n", |
| PTR_ERR(event), pmc->idx); |
| return PTR_ERR(event); |
| } |
| |
| pmc->perf_event = event; |
| pmc_to_pmu(pmc)->event_count++; |
| pmc->is_paused = false; |
| pmc->intr = intr || pebs; |
| return 0; |
| } |
| |
| static void pmc_pause_counter(struct kvm_pmc *pmc) |
| { |
| u64 counter = pmc->counter; |
| |
| if (!pmc->perf_event || pmc->is_paused) |
| return; |
| |
| /* update counter, reset event value to avoid redundant accumulation */ |
| counter += perf_event_pause(pmc->perf_event, true); |
| pmc->counter = counter & pmc_bitmask(pmc); |
| pmc->is_paused = true; |
| } |
| |
| static bool pmc_resume_counter(struct kvm_pmc *pmc) |
| { |
| if (!pmc->perf_event) |
| return false; |
| |
| /* recalibrate sample period and check if it's accepted by perf core */ |
| if (is_sampling_event(pmc->perf_event) && |
| perf_event_period(pmc->perf_event, |
| get_sample_period(pmc, pmc->counter))) |
| return false; |
| |
| if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) != |
| (!!pmc->perf_event->attr.precise_ip)) |
| return false; |
| |
| /* reuse perf_event to serve as pmc_reprogram_counter() does*/ |
| perf_event_enable(pmc->perf_event); |
| pmc->is_paused = false; |
| |
| return true; |
| } |
| |
| static int filter_cmp(const void *pa, const void *pb, u64 mask) |
| { |
| u64 a = *(u64 *)pa & mask; |
| u64 b = *(u64 *)pb & mask; |
| |
| return (a > b) - (a < b); |
| } |
| |
| |
| static int filter_sort_cmp(const void *pa, const void *pb) |
| { |
| return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT | |
| KVM_PMU_MASKED_ENTRY_EXCLUDE)); |
| } |
| |
| /* |
| * For the event filter, searching is done on the 'includes' list and |
| * 'excludes' list separately rather than on the 'events' list (which |
| * has both). As a result the exclude bit can be ignored. |
| */ |
| static int filter_event_cmp(const void *pa, const void *pb) |
| { |
| return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT)); |
| } |
| |
| static int find_filter_index(u64 *events, u64 nevents, u64 key) |
| { |
| u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]), |
| filter_event_cmp); |
| |
| if (!fe) |
| return -1; |
| |
| return fe - events; |
| } |
| |
| static bool is_filter_entry_match(u64 filter_event, u64 umask) |
| { |
| u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8); |
| u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH; |
| |
| BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >> |
| (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) != |
| ARCH_PERFMON_EVENTSEL_UMASK); |
| |
| return (umask & mask) == match; |
| } |
| |
| static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel) |
| { |
| u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT; |
| u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK; |
| int i, index; |
| |
| index = find_filter_index(events, nevents, event_select); |
| if (index < 0) |
| return false; |
| |
| /* |
| * Entries are sorted by the event select. Walk the list in both |
| * directions to process all entries with the targeted event select. |
| */ |
| for (i = index; i < nevents; i++) { |
| if (filter_event_cmp(&events[i], &event_select)) |
| break; |
| |
| if (is_filter_entry_match(events[i], umask)) |
| return true; |
| } |
| |
| for (i = index - 1; i >= 0; i--) { |
| if (filter_event_cmp(&events[i], &event_select)) |
| break; |
| |
| if (is_filter_entry_match(events[i], umask)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f, |
| u64 eventsel) |
| { |
| if (filter_contains_match(f->includes, f->nr_includes, eventsel) && |
| !filter_contains_match(f->excludes, f->nr_excludes, eventsel)) |
| return f->action == KVM_PMU_EVENT_ALLOW; |
| |
| return f->action == KVM_PMU_EVENT_DENY; |
| } |
| |
| static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter, |
| int idx) |
| { |
| int fixed_idx = idx - INTEL_PMC_IDX_FIXED; |
| |
| if (filter->action == KVM_PMU_EVENT_DENY && |
| test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap)) |
| return false; |
| if (filter->action == KVM_PMU_EVENT_ALLOW && |
| !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool check_pmu_event_filter(struct kvm_pmc *pmc) |
| { |
| struct kvm_x86_pmu_event_filter *filter; |
| struct kvm *kvm = pmc->vcpu->kvm; |
| |
| if (!static_call(kvm_x86_pmu_hw_event_available)(pmc)) |
| return false; |
| |
| filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu); |
| if (!filter) |
| return true; |
| |
| if (pmc_is_gp(pmc)) |
| return is_gp_event_allowed(filter, pmc->eventsel); |
| |
| return is_fixed_event_allowed(filter, pmc->idx); |
| } |
| |
| static void reprogram_counter(struct kvm_pmc *pmc) |
| { |
| struct kvm_pmu *pmu = pmc_to_pmu(pmc); |
| u64 eventsel = pmc->eventsel; |
| u64 new_config = eventsel; |
| u8 fixed_ctr_ctrl; |
| |
| pmc_pause_counter(pmc); |
| |
| if (!pmc_speculative_in_use(pmc) || !pmc_is_enabled(pmc)) |
| goto reprogram_complete; |
| |
| if (!check_pmu_event_filter(pmc)) |
| goto reprogram_complete; |
| |
| if (pmc->counter < pmc->prev_counter) |
| __kvm_perf_overflow(pmc, false); |
| |
| if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL) |
| printk_once("kvm pmu: pin control bit is ignored\n"); |
| |
| if (pmc_is_fixed(pmc)) { |
| fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, |
| pmc->idx - INTEL_PMC_IDX_FIXED); |
| if (fixed_ctr_ctrl & 0x1) |
| eventsel |= ARCH_PERFMON_EVENTSEL_OS; |
| if (fixed_ctr_ctrl & 0x2) |
| eventsel |= ARCH_PERFMON_EVENTSEL_USR; |
| if (fixed_ctr_ctrl & 0x8) |
| eventsel |= ARCH_PERFMON_EVENTSEL_INT; |
| new_config = (u64)fixed_ctr_ctrl; |
| } |
| |
| if (pmc->current_config == new_config && pmc_resume_counter(pmc)) |
| goto reprogram_complete; |
| |
| pmc_release_perf_event(pmc); |
| |
| pmc->current_config = new_config; |
| |
| /* |
| * If reprogramming fails, e.g. due to contention, leave the counter's |
| * regprogram bit set, i.e. opportunistically try again on the next PMU |
| * refresh. Don't make a new request as doing so can stall the guest |
| * if reprogramming repeatedly fails. |
| */ |
| if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW, |
| (eventsel & pmu->raw_event_mask), |
| !(eventsel & ARCH_PERFMON_EVENTSEL_USR), |
| !(eventsel & ARCH_PERFMON_EVENTSEL_OS), |
| eventsel & ARCH_PERFMON_EVENTSEL_INT)) |
| return; |
| |
| reprogram_complete: |
| clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi); |
| pmc->prev_counter = 0; |
| } |
| |
| void kvm_pmu_handle_event(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| int bit; |
| |
| for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) { |
| struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit); |
| |
| if (unlikely(!pmc)) { |
| clear_bit(bit, pmu->reprogram_pmi); |
| continue; |
| } |
| |
| reprogram_counter(pmc); |
| } |
| |
| /* |
| * Unused perf_events are only released if the corresponding MSRs |
| * weren't accessed during the last vCPU time slice. kvm_arch_sched_in |
| * triggers KVM_REQ_PMU if cleanup is needed. |
| */ |
| if (unlikely(pmu->need_cleanup)) |
| kvm_pmu_cleanup(vcpu); |
| } |
| |
| /* check if idx is a valid index to access PMU */ |
| bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx) |
| { |
| return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx); |
| } |
| |
| bool is_vmware_backdoor_pmc(u32 pmc_idx) |
| { |
| switch (pmc_idx) { |
| case VMWARE_BACKDOOR_PMC_HOST_TSC: |
| case VMWARE_BACKDOOR_PMC_REAL_TIME: |
| case VMWARE_BACKDOOR_PMC_APPARENT_TIME: |
| return true; |
| } |
| return false; |
| } |
| |
| static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) |
| { |
| u64 ctr_val; |
| |
| switch (idx) { |
| case VMWARE_BACKDOOR_PMC_HOST_TSC: |
| ctr_val = rdtsc(); |
| break; |
| case VMWARE_BACKDOOR_PMC_REAL_TIME: |
| ctr_val = ktime_get_boottime_ns(); |
| break; |
| case VMWARE_BACKDOOR_PMC_APPARENT_TIME: |
| ctr_val = ktime_get_boottime_ns() + |
| vcpu->kvm->arch.kvmclock_offset; |
| break; |
| default: |
| return 1; |
| } |
| |
| *data = ctr_val; |
| return 0; |
| } |
| |
| int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) |
| { |
| bool fast_mode = idx & (1u << 31); |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| struct kvm_pmc *pmc; |
| u64 mask = fast_mode ? ~0u : ~0ull; |
| |
| if (!pmu->version) |
| return 1; |
| |
| if (is_vmware_backdoor_pmc(idx)) |
| return kvm_pmu_rdpmc_vmware(vcpu, idx, data); |
| |
| pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask); |
| if (!pmc) |
| return 1; |
| |
| if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) && |
| (static_call(kvm_x86_get_cpl)(vcpu) != 0) && |
| (kvm_read_cr0(vcpu) & X86_CR0_PE)) |
| return 1; |
| |
| *data = pmc_read_counter(pmc) & mask; |
| return 0; |
| } |
| |
| void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu) |
| { |
| if (lapic_in_kernel(vcpu)) { |
| static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu); |
| kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC); |
| } |
| } |
| |
| bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) |
| { |
| return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) || |
| static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr); |
| } |
| |
| static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr); |
| |
| if (pmc) |
| __set_bit(pmc->idx, pmu->pmc_in_use); |
| } |
| |
| int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| { |
| return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info); |
| } |
| |
| int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| { |
| kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index); |
| return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info); |
| } |
| |
| /* refresh PMU settings. This function generally is called when underlying |
| * settings are changed (such as changes of PMU CPUID by guest VMs), which |
| * should rarely happen. |
| */ |
| void kvm_pmu_refresh(struct kvm_vcpu *vcpu) |
| { |
| static_call(kvm_x86_pmu_refresh)(vcpu); |
| } |
| |
| void kvm_pmu_reset(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| |
| irq_work_sync(&pmu->irq_work); |
| static_call(kvm_x86_pmu_reset)(vcpu); |
| } |
| |
| void kvm_pmu_init(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| |
| memset(pmu, 0, sizeof(*pmu)); |
| static_call(kvm_x86_pmu_init)(vcpu); |
| init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn); |
| pmu->event_count = 0; |
| pmu->need_cleanup = false; |
| kvm_pmu_refresh(vcpu); |
| } |
| |
| /* Release perf_events for vPMCs that have been unused for a full time slice. */ |
| void kvm_pmu_cleanup(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| struct kvm_pmc *pmc = NULL; |
| DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX); |
| int i; |
| |
| pmu->need_cleanup = false; |
| |
| bitmap_andnot(bitmask, pmu->all_valid_pmc_idx, |
| pmu->pmc_in_use, X86_PMC_IDX_MAX); |
| |
| for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) { |
| pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i); |
| |
| if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc)) |
| pmc_stop_counter(pmc); |
| } |
| |
| static_call_cond(kvm_x86_pmu_cleanup)(vcpu); |
| |
| bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX); |
| } |
| |
| void kvm_pmu_destroy(struct kvm_vcpu *vcpu) |
| { |
| kvm_pmu_reset(vcpu); |
| } |
| |
| static void kvm_pmu_incr_counter(struct kvm_pmc *pmc) |
| { |
| pmc->prev_counter = pmc->counter; |
| pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc); |
| kvm_pmu_request_counter_reprogam(pmc); |
| } |
| |
| static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc, |
| unsigned int perf_hw_id) |
| { |
| return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) & |
| AMD64_RAW_EVENT_MASK_NB); |
| } |
| |
| static inline bool cpl_is_matched(struct kvm_pmc *pmc) |
| { |
| bool select_os, select_user; |
| u64 config; |
| |
| if (pmc_is_gp(pmc)) { |
| config = pmc->eventsel; |
| select_os = config & ARCH_PERFMON_EVENTSEL_OS; |
| select_user = config & ARCH_PERFMON_EVENTSEL_USR; |
| } else { |
| config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl, |
| pmc->idx - INTEL_PMC_IDX_FIXED); |
| select_os = config & 0x1; |
| select_user = config & 0x2; |
| } |
| |
| return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user; |
| } |
| |
| void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| struct kvm_pmc *pmc; |
| int i; |
| |
| for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) { |
| pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i); |
| |
| if (!pmc || !pmc_is_enabled(pmc) || !pmc_speculative_in_use(pmc)) |
| continue; |
| |
| /* Ignore checks for edge detect, pin control, invert and CMASK bits */ |
| if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc)) |
| kvm_pmu_incr_counter(pmc); |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event); |
| |
| static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter) |
| { |
| u64 mask = kvm_pmu_ops.EVENTSEL_EVENT | |
| KVM_PMU_MASKED_ENTRY_UMASK_MASK | |
| KVM_PMU_MASKED_ENTRY_UMASK_MATCH | |
| KVM_PMU_MASKED_ENTRY_EXCLUDE; |
| int i; |
| |
| for (i = 0; i < filter->nevents; i++) { |
| if (filter->events[i] & ~mask) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter) |
| { |
| int i, j; |
| |
| for (i = 0, j = 0; i < filter->nevents; i++) { |
| /* |
| * Skip events that are impossible to match against a guest |
| * event. When filtering, only the event select + unit mask |
| * of the guest event is used. To maintain backwards |
| * compatibility, impossible filters can't be rejected :-( |
| */ |
| if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT | |
| ARCH_PERFMON_EVENTSEL_UMASK)) |
| continue; |
| /* |
| * Convert userspace events to a common in-kernel event so |
| * only one code path is needed to support both events. For |
| * the in-kernel events use masked events because they are |
| * flexible enough to handle both cases. To convert to masked |
| * events all that's needed is to add an "all ones" umask_mask, |
| * (unmasked filter events don't support EXCLUDE). |
| */ |
| filter->events[j++] = filter->events[i] | |
| (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT); |
| } |
| |
| filter->nevents = j; |
| } |
| |
| static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter) |
| { |
| int i; |
| |
| if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS)) |
| convert_to_masked_filter(filter); |
| else if (!is_masked_filter_valid(filter)) |
| return -EINVAL; |
| |
| /* |
| * Sort entries by event select and includes vs. excludes so that all |
| * entries for a given event select can be processed efficiently during |
| * filtering. The EXCLUDE flag uses a more significant bit than the |
| * event select, and so the sorted list is also effectively split into |
| * includes and excludes sub-lists. |
| */ |
| sort(&filter->events, filter->nevents, sizeof(filter->events[0]), |
| filter_sort_cmp, NULL); |
| |
| i = filter->nevents; |
| /* Find the first EXCLUDE event (only supported for masked events). */ |
| if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) { |
| for (i = 0; i < filter->nevents; i++) { |
| if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE) |
| break; |
| } |
| } |
| |
| filter->nr_includes = i; |
| filter->nr_excludes = filter->nevents - filter->nr_includes; |
| filter->includes = filter->events; |
| filter->excludes = filter->events + filter->nr_includes; |
| |
| return 0; |
| } |
| |
| int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp) |
| { |
| struct kvm_pmu_event_filter __user *user_filter = argp; |
| struct kvm_x86_pmu_event_filter *filter; |
| struct kvm_pmu_event_filter tmp; |
| struct kvm_vcpu *vcpu; |
| unsigned long i; |
| size_t size; |
| int r; |
| |
| if (copy_from_user(&tmp, user_filter, sizeof(tmp))) |
| return -EFAULT; |
| |
| if (tmp.action != KVM_PMU_EVENT_ALLOW && |
| tmp.action != KVM_PMU_EVENT_DENY) |
| return -EINVAL; |
| |
| if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK) |
| return -EINVAL; |
| |
| if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS) |
| return -E2BIG; |
| |
| size = struct_size(filter, events, tmp.nevents); |
| filter = kzalloc(size, GFP_KERNEL_ACCOUNT); |
| if (!filter) |
| return -ENOMEM; |
| |
| filter->action = tmp.action; |
| filter->nevents = tmp.nevents; |
| filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap; |
| filter->flags = tmp.flags; |
| |
| r = -EFAULT; |
| if (copy_from_user(filter->events, user_filter->events, |
| sizeof(filter->events[0]) * filter->nevents)) |
| goto cleanup; |
| |
| r = prepare_filter_lists(filter); |
| if (r) |
| goto cleanup; |
| |
| mutex_lock(&kvm->lock); |
| filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter, |
| mutex_is_locked(&kvm->lock)); |
| mutex_unlock(&kvm->lock); |
| synchronize_srcu_expedited(&kvm->srcu); |
| |
| BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) > |
| sizeof(((struct kvm_pmu *)0)->__reprogram_pmi)); |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull); |
| |
| kvm_make_all_cpus_request(kvm, KVM_REQ_PMU); |
| |
| r = 0; |
| cleanup: |
| kfree(filter); |
| return r; |
| } |