blob: 0b69fb7bafd85da9b51a9d40db7a24553447bf5b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Universal power supply monitor class
*
* Copyright © 2007 Anton Vorontsov <cbou@mail.ru>
* Copyright © 2004 Szabolcs Gyurko
* Copyright © 2003 Ian Molton <spyro@f2s.com>
*
* Modified: 2004, Oct Szabolcs Gyurko
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/notifier.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/power_supply.h>
#include <linux/property.h>
#include <linux/thermal.h>
#include <linux/fixp-arith.h>
#include "power_supply.h"
#include "samsung-sdi-battery.h"
/* exported for the APM Power driver, APM emulation */
struct class *power_supply_class;
EXPORT_SYMBOL_GPL(power_supply_class);
ATOMIC_NOTIFIER_HEAD(power_supply_notifier);
EXPORT_SYMBOL_GPL(power_supply_notifier);
static struct device_type power_supply_dev_type;
#define POWER_SUPPLY_DEFERRED_REGISTER_TIME msecs_to_jiffies(10)
static bool __power_supply_is_supplied_by(struct power_supply *supplier,
struct power_supply *supply)
{
int i;
if (!supply->supplied_from && !supplier->supplied_to)
return false;
/* Support both supplied_to and supplied_from modes */
if (supply->supplied_from) {
if (!supplier->desc->name)
return false;
for (i = 0; i < supply->num_supplies; i++)
if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
return true;
} else {
if (!supply->desc->name)
return false;
for (i = 0; i < supplier->num_supplicants; i++)
if (!strcmp(supplier->supplied_to[i], supply->desc->name))
return true;
}
return false;
}
static int __power_supply_changed_work(struct device *dev, void *data)
{
struct power_supply *psy = data;
struct power_supply *pst = dev_get_drvdata(dev);
if (__power_supply_is_supplied_by(psy, pst)) {
if (pst->desc->external_power_changed)
pst->desc->external_power_changed(pst);
}
return 0;
}
static void power_supply_changed_work(struct work_struct *work)
{
unsigned long flags;
struct power_supply *psy = container_of(work, struct power_supply,
changed_work);
dev_dbg(&psy->dev, "%s\n", __func__);
spin_lock_irqsave(&psy->changed_lock, flags);
/*
* Check 'changed' here to avoid issues due to race between
* power_supply_changed() and this routine. In worst case
* power_supply_changed() can be called again just before we take above
* lock. During the first call of this routine we will mark 'changed' as
* false and it will stay false for the next call as well.
*/
if (likely(psy->changed)) {
psy->changed = false;
spin_unlock_irqrestore(&psy->changed_lock, flags);
class_for_each_device(power_supply_class, NULL, psy,
__power_supply_changed_work);
power_supply_update_leds(psy);
atomic_notifier_call_chain(&power_supply_notifier,
PSY_EVENT_PROP_CHANGED, psy);
kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
spin_lock_irqsave(&psy->changed_lock, flags);
}
/*
* Hold the wakeup_source until all events are processed.
* power_supply_changed() might have called again and have set 'changed'
* to true.
*/
if (likely(!psy->changed))
pm_relax(&psy->dev);
spin_unlock_irqrestore(&psy->changed_lock, flags);
}
void power_supply_changed(struct power_supply *psy)
{
unsigned long flags;
dev_dbg(&psy->dev, "%s\n", __func__);
spin_lock_irqsave(&psy->changed_lock, flags);
psy->changed = true;
pm_stay_awake(&psy->dev);
spin_unlock_irqrestore(&psy->changed_lock, flags);
schedule_work(&psy->changed_work);
}
EXPORT_SYMBOL_GPL(power_supply_changed);
/*
* Notify that power supply was registered after parent finished the probing.
*
* Often power supply is registered from driver's probe function. However
* calling power_supply_changed() directly from power_supply_register()
* would lead to execution of get_property() function provided by the driver
* too early - before the probe ends.
*
* Avoid that by waiting on parent's mutex.
*/
static void power_supply_deferred_register_work(struct work_struct *work)
{
struct power_supply *psy = container_of(work, struct power_supply,
deferred_register_work.work);
if (psy->dev.parent) {
while (!mutex_trylock(&psy->dev.parent->mutex)) {
if (psy->removing)
return;
msleep(10);
}
}
power_supply_changed(psy);
if (psy->dev.parent)
mutex_unlock(&psy->dev.parent->mutex);
}
#ifdef CONFIG_OF
static int __power_supply_populate_supplied_from(struct device *dev,
void *data)
{
struct power_supply *psy = data;
struct power_supply *epsy = dev_get_drvdata(dev);
struct device_node *np;
int i = 0;
do {
np = of_parse_phandle(psy->of_node, "power-supplies", i++);
if (!np)
break;
if (np == epsy->of_node) {
dev_dbg(&psy->dev, "%s: Found supply : %s\n",
psy->desc->name, epsy->desc->name);
psy->supplied_from[i-1] = (char *)epsy->desc->name;
psy->num_supplies++;
of_node_put(np);
break;
}
of_node_put(np);
} while (np);
return 0;
}
static int power_supply_populate_supplied_from(struct power_supply *psy)
{
int error;
error = class_for_each_device(power_supply_class, NULL, psy,
__power_supply_populate_supplied_from);
dev_dbg(&psy->dev, "%s %d\n", __func__, error);
return error;
}
static int __power_supply_find_supply_from_node(struct device *dev,
void *data)
{
struct device_node *np = data;
struct power_supply *epsy = dev_get_drvdata(dev);
/* returning non-zero breaks out of class_for_each_device loop */
if (epsy->of_node == np)
return 1;
return 0;
}
static int power_supply_find_supply_from_node(struct device_node *supply_node)
{
int error;
/*
* class_for_each_device() either returns its own errors or values
* returned by __power_supply_find_supply_from_node().
*
* __power_supply_find_supply_from_node() will return 0 (no match)
* or 1 (match).
*
* We return 0 if class_for_each_device() returned 1, -EPROBE_DEFER if
* it returned 0, or error as returned by it.
*/
error = class_for_each_device(power_supply_class, NULL, supply_node,
__power_supply_find_supply_from_node);
return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
}
static int power_supply_check_supplies(struct power_supply *psy)
{
struct device_node *np;
int cnt = 0;
/* If there is already a list honor it */
if (psy->supplied_from && psy->num_supplies > 0)
return 0;
/* No device node found, nothing to do */
if (!psy->of_node)
return 0;
do {
int ret;
np = of_parse_phandle(psy->of_node, "power-supplies", cnt++);
if (!np)
break;
ret = power_supply_find_supply_from_node(np);
of_node_put(np);
if (ret) {
dev_dbg(&psy->dev, "Failed to find supply!\n");
return ret;
}
} while (np);
/* Missing valid "power-supplies" entries */
if (cnt == 1)
return 0;
/* All supplies found, allocate char ** array for filling */
psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from),
GFP_KERNEL);
if (!psy->supplied_from)
return -ENOMEM;
*psy->supplied_from = devm_kcalloc(&psy->dev,
cnt - 1, sizeof(**psy->supplied_from),
GFP_KERNEL);
if (!*psy->supplied_from)
return -ENOMEM;
return power_supply_populate_supplied_from(psy);
}
#else
static int power_supply_check_supplies(struct power_supply *psy)
{
int nval, ret;
if (!psy->dev.parent)
return 0;
nval = device_property_string_array_count(psy->dev.parent, "supplied-from");
if (nval <= 0)
return 0;
psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
sizeof(char *), GFP_KERNEL);
if (!psy->supplied_from)
return -ENOMEM;
ret = device_property_read_string_array(psy->dev.parent,
"supplied-from", (const char **)psy->supplied_from, nval);
if (ret < 0)
return ret;
psy->num_supplies = nval;
return 0;
}
#endif
struct psy_am_i_supplied_data {
struct power_supply *psy;
unsigned int count;
};
static int __power_supply_am_i_supplied(struct device *dev, void *_data)
{
union power_supply_propval ret = {0,};
struct power_supply *epsy = dev_get_drvdata(dev);
struct psy_am_i_supplied_data *data = _data;
if (__power_supply_is_supplied_by(epsy, data->psy)) {
data->count++;
if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
&ret))
return ret.intval;
}
return 0;
}
int power_supply_am_i_supplied(struct power_supply *psy)
{
struct psy_am_i_supplied_data data = { psy, 0 };
int error;
error = class_for_each_device(power_supply_class, NULL, &data,
__power_supply_am_i_supplied);
dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
if (data.count == 0)
return -ENODEV;
return error;
}
EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
static int __power_supply_is_system_supplied(struct device *dev, void *data)
{
union power_supply_propval ret = {0,};
struct power_supply *psy = dev_get_drvdata(dev);
unsigned int *count = data;
if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret))
if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE)
return 0;
(*count)++;
if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
&ret))
return ret.intval;
return 0;
}
int power_supply_is_system_supplied(void)
{
int error;
unsigned int count = 0;
error = class_for_each_device(power_supply_class, NULL, &count,
__power_supply_is_system_supplied);
/*
* If no system scope power class device was found at all, most probably we
* are running on a desktop system, so assume we are on mains power.
*/
if (count == 0)
return 1;
return error;
}
EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
struct psy_get_supplier_prop_data {
struct power_supply *psy;
enum power_supply_property psp;
union power_supply_propval *val;
};
static int __power_supply_get_supplier_property(struct device *dev, void *_data)
{
struct power_supply *epsy = dev_get_drvdata(dev);
struct psy_get_supplier_prop_data *data = _data;
if (__power_supply_is_supplied_by(epsy, data->psy))
if (!power_supply_get_property(epsy, data->psp, data->val))
return 1; /* Success */
return 0; /* Continue iterating */
}
int power_supply_get_property_from_supplier(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct psy_get_supplier_prop_data data = {
.psy = psy,
.psp = psp,
.val = val,
};
int ret;
/*
* This function is not intended for use with a supply with multiple
* suppliers, we simply pick the first supply to report the psp.
*/
ret = class_for_each_device(power_supply_class, NULL, &data,
__power_supply_get_supplier_property);
if (ret < 0)
return ret;
if (ret == 0)
return -ENODEV;
return 0;
}
EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
int power_supply_set_battery_charged(struct power_supply *psy)
{
if (atomic_read(&psy->use_cnt) >= 0 &&
psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
psy->desc->set_charged) {
psy->desc->set_charged(psy);
return 0;
}
return -EINVAL;
}
EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
static int power_supply_match_device_by_name(struct device *dev, const void *data)
{
const char *name = data;
struct power_supply *psy = dev_get_drvdata(dev);
return strcmp(psy->desc->name, name) == 0;
}
/**
* power_supply_get_by_name() - Search for a power supply and returns its ref
* @name: Power supply name to fetch
*
* If power supply was found, it increases reference count for the
* internal power supply's device. The user should power_supply_put()
* after usage.
*
* Return: On success returns a reference to a power supply with
* matching name equals to @name, a NULL otherwise.
*/
struct power_supply *power_supply_get_by_name(const char *name)
{
struct power_supply *psy = NULL;
struct device *dev = class_find_device(power_supply_class, NULL, name,
power_supply_match_device_by_name);
if (dev) {
psy = dev_get_drvdata(dev);
atomic_inc(&psy->use_cnt);
}
return psy;
}
EXPORT_SYMBOL_GPL(power_supply_get_by_name);
/**
* power_supply_put() - Drop reference obtained with power_supply_get_by_name
* @psy: Reference to put
*
* The reference to power supply should be put before unregistering
* the power supply.
*/
void power_supply_put(struct power_supply *psy)
{
might_sleep();
atomic_dec(&psy->use_cnt);
put_device(&psy->dev);
}
EXPORT_SYMBOL_GPL(power_supply_put);
#ifdef CONFIG_OF
static int power_supply_match_device_node(struct device *dev, const void *data)
{
return dev->parent && dev->parent->of_node == data;
}
/**
* power_supply_get_by_phandle() - Search for a power supply and returns its ref
* @np: Pointer to device node holding phandle property
* @property: Name of property holding a power supply name
*
* If power supply was found, it increases reference count for the
* internal power supply's device. The user should power_supply_put()
* after usage.
*
* Return: On success returns a reference to a power supply with
* matching name equals to value under @property, NULL or ERR_PTR otherwise.
*/
struct power_supply *power_supply_get_by_phandle(struct device_node *np,
const char *property)
{
struct device_node *power_supply_np;
struct power_supply *psy = NULL;
struct device *dev;
power_supply_np = of_parse_phandle(np, property, 0);
if (!power_supply_np)
return ERR_PTR(-ENODEV);
dev = class_find_device(power_supply_class, NULL, power_supply_np,
power_supply_match_device_node);
of_node_put(power_supply_np);
if (dev) {
psy = dev_get_drvdata(dev);
atomic_inc(&psy->use_cnt);
}
return psy;
}
EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
static void devm_power_supply_put(struct device *dev, void *res)
{
struct power_supply **psy = res;
power_supply_put(*psy);
}
/**
* devm_power_supply_get_by_phandle() - Resource managed version of
* power_supply_get_by_phandle()
* @dev: Pointer to device holding phandle property
* @property: Name of property holding a power supply phandle
*
* Return: On success returns a reference to a power supply with
* matching name equals to value under @property, NULL or ERR_PTR otherwise.
*/
struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
const char *property)
{
struct power_supply **ptr, *psy;
if (!dev->of_node)
return ERR_PTR(-ENODEV);
ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
psy = power_supply_get_by_phandle(dev->of_node, property);
if (IS_ERR_OR_NULL(psy)) {
devres_free(ptr);
} else {
*ptr = psy;
devres_add(dev, ptr);
}
return psy;
}
EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
#endif /* CONFIG_OF */
int power_supply_get_battery_info(struct power_supply *psy,
struct power_supply_battery_info **info_out)
{
struct power_supply_resistance_temp_table *resist_table;
struct power_supply_battery_info *info;
struct device_node *battery_np = NULL;
struct fwnode_reference_args args;
struct fwnode_handle *fwnode = NULL;
const char *value;
int err, len, index;
const __be32 *list;
u32 min_max[2];
if (psy->of_node) {
battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0);
if (!battery_np)
return -ENODEV;
fwnode = fwnode_handle_get(of_fwnode_handle(battery_np));
} else if (psy->dev.parent) {
err = fwnode_property_get_reference_args(
dev_fwnode(psy->dev.parent),
"monitored-battery", NULL, 0, 0, &args);
if (err)
return err;
fwnode = args.fwnode;
}
if (!fwnode)
return -ENOENT;
err = fwnode_property_read_string(fwnode, "compatible", &value);
if (err)
goto out_put_node;
/* Try static batteries first */
err = samsung_sdi_battery_get_info(&psy->dev, value, &info);
if (!err)
goto out_ret_pointer;
else if (err == -ENODEV)
/*
* Device does not have a static battery.
* Proceed to look for a simple battery.
*/
err = 0;
if (strcmp("simple-battery", value)) {
err = -ENODEV;
goto out_put_node;
}
info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL);
if (!info) {
err = -ENOMEM;
goto out_put_node;
}
info->technology = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
info->energy_full_design_uwh = -EINVAL;
info->charge_full_design_uah = -EINVAL;
info->voltage_min_design_uv = -EINVAL;
info->voltage_max_design_uv = -EINVAL;
info->precharge_current_ua = -EINVAL;
info->charge_term_current_ua = -EINVAL;
info->constant_charge_current_max_ua = -EINVAL;
info->constant_charge_voltage_max_uv = -EINVAL;
info->tricklecharge_current_ua = -EINVAL;
info->precharge_voltage_max_uv = -EINVAL;
info->charge_restart_voltage_uv = -EINVAL;
info->overvoltage_limit_uv = -EINVAL;
info->maintenance_charge = NULL;
info->alert_low_temp_charge_current_ua = -EINVAL;
info->alert_low_temp_charge_voltage_uv = -EINVAL;
info->alert_high_temp_charge_current_ua = -EINVAL;
info->alert_high_temp_charge_voltage_uv = -EINVAL;
info->temp_ambient_alert_min = INT_MIN;
info->temp_ambient_alert_max = INT_MAX;
info->temp_alert_min = INT_MIN;
info->temp_alert_max = INT_MAX;
info->temp_min = INT_MIN;
info->temp_max = INT_MAX;
info->factory_internal_resistance_uohm = -EINVAL;
info->resist_table = NULL;
info->bti_resistance_ohm = -EINVAL;
info->bti_resistance_tolerance = -EINVAL;
for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
info->ocv_table[index] = NULL;
info->ocv_temp[index] = -EINVAL;
info->ocv_table_size[index] = -EINVAL;
}
/* The property and field names below must correspond to elements
* in enum power_supply_property. For reasoning, see
* Documentation/power/power_supply_class.rst.
*/
if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) {
if (!strcmp("nickel-cadmium", value))
info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
else if (!strcmp("nickel-metal-hydride", value))
info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
else if (!strcmp("lithium-ion", value))
/* Imprecise lithium-ion type */
info->technology = POWER_SUPPLY_TECHNOLOGY_LION;
else if (!strcmp("lithium-ion-polymer", value))
info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
else if (!strcmp("lithium-ion-iron-phosphate", value))
info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe;
else if (!strcmp("lithium-ion-manganese-oxide", value))
info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn;
else
dev_warn(&psy->dev, "%s unknown battery type\n", value);
}
fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours",
&info->energy_full_design_uwh);
fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours",
&info->charge_full_design_uah);
fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt",
&info->voltage_min_design_uv);
fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt",
&info->voltage_max_design_uv);
fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp",
&info->tricklecharge_current_ua);
fwnode_property_read_u32(fwnode, "precharge-current-microamp",
&info->precharge_current_ua);
fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt",
&info->precharge_voltage_max_uv);
fwnode_property_read_u32(fwnode, "charge-term-current-microamp",
&info->charge_term_current_ua);
fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt",
&info->charge_restart_voltage_uv);
fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt",
&info->overvoltage_limit_uv);
fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp",
&info->constant_charge_current_max_ua);
fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt",
&info->constant_charge_voltage_max_uv);
fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms",
&info->factory_internal_resistance_uohm);
if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius",
min_max, ARRAY_SIZE(min_max))) {
info->temp_ambient_alert_min = min_max[0];
info->temp_ambient_alert_max = min_max[1];
}
if (!fwnode_property_read_u32_array(fwnode, "alert-celsius",
min_max, ARRAY_SIZE(min_max))) {
info->temp_alert_min = min_max[0];
info->temp_alert_max = min_max[1];
}
if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius",
min_max, ARRAY_SIZE(min_max))) {
info->temp_min = min_max[0];
info->temp_max = min_max[1];
}
/*
* The below code uses raw of-data parsing to parse
* /schemas/types.yaml#/definitions/uint32-matrix
* data, so for now this is only support with of.
*/
if (!battery_np)
goto out_ret_pointer;
len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
if (len < 0 && len != -EINVAL) {
err = len;
goto out_put_node;
} else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
dev_err(&psy->dev, "Too many temperature values\n");
err = -EINVAL;
goto out_put_node;
} else if (len > 0) {
of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
info->ocv_temp, len);
}
for (index = 0; index < len; index++) {
struct power_supply_battery_ocv_table *table;
char *propname;
int i, tab_len, size;
propname = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", index);
if (!propname) {
power_supply_put_battery_info(psy, info);
err = -ENOMEM;
goto out_put_node;
}
list = of_get_property(battery_np, propname, &size);
if (!list || !size) {
dev_err(&psy->dev, "failed to get %s\n", propname);
kfree(propname);
power_supply_put_battery_info(psy, info);
err = -EINVAL;
goto out_put_node;
}
kfree(propname);
tab_len = size / (2 * sizeof(__be32));
info->ocv_table_size[index] = tab_len;
table = info->ocv_table[index] =
devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
if (!info->ocv_table[index]) {
power_supply_put_battery_info(psy, info);
err = -ENOMEM;
goto out_put_node;
}
for (i = 0; i < tab_len; i++) {
table[i].ocv = be32_to_cpu(*list);
list++;
table[i].capacity = be32_to_cpu(*list);
list++;
}
}
list = of_get_property(battery_np, "resistance-temp-table", &len);
if (!list || !len)
goto out_ret_pointer;
info->resist_table_size = len / (2 * sizeof(__be32));
resist_table = info->resist_table = devm_kcalloc(&psy->dev,
info->resist_table_size,
sizeof(*resist_table),
GFP_KERNEL);
if (!info->resist_table) {
power_supply_put_battery_info(psy, info);
err = -ENOMEM;
goto out_put_node;
}
for (index = 0; index < info->resist_table_size; index++) {
resist_table[index].temp = be32_to_cpu(*list++);
resist_table[index].resistance = be32_to_cpu(*list++);
}
out_ret_pointer:
/* Finally return the whole thing */
*info_out = info;
out_put_node:
fwnode_handle_put(fwnode);
of_node_put(battery_np);
return err;
}
EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
void power_supply_put_battery_info(struct power_supply *psy,
struct power_supply_battery_info *info)
{
int i;
for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
if (info->ocv_table[i])
devm_kfree(&psy->dev, info->ocv_table[i]);
}
if (info->resist_table)
devm_kfree(&psy->dev, info->resist_table);
devm_kfree(&psy->dev, info);
}
EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
const enum power_supply_property power_supply_battery_info_properties[] = {
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
POWER_SUPPLY_PROP_TEMP_MIN,
POWER_SUPPLY_PROP_TEMP_MAX,
};
EXPORT_SYMBOL_GPL(power_supply_battery_info_properties);
const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties);
EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size);
bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
enum power_supply_property psp)
{
if (!info)
return false;
switch (psp) {
case POWER_SUPPLY_PROP_TECHNOLOGY:
return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
return info->energy_full_design_uwh >= 0;
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
return info->charge_full_design_uah >= 0;
case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
return info->voltage_min_design_uv >= 0;
case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
return info->voltage_max_design_uv >= 0;
case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
return info->precharge_current_ua >= 0;
case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
return info->charge_term_current_ua >= 0;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
return info->constant_charge_current_max_ua >= 0;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
return info->constant_charge_voltage_max_uv >= 0;
case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
return info->temp_ambient_alert_min > INT_MIN;
case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
return info->temp_ambient_alert_max < INT_MAX;
case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
return info->temp_alert_min > INT_MIN;
case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
return info->temp_alert_max < INT_MAX;
case POWER_SUPPLY_PROP_TEMP_MIN:
return info->temp_min > INT_MIN;
case POWER_SUPPLY_PROP_TEMP_MAX:
return info->temp_max < INT_MAX;
default:
return false;
}
}
EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop);
int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
enum power_supply_property psp,
union power_supply_propval *val)
{
if (!info)
return -EINVAL;
if (!power_supply_battery_info_has_prop(info, psp))
return -EINVAL;
switch (psp) {
case POWER_SUPPLY_PROP_TECHNOLOGY:
val->intval = info->technology;
return 0;
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
val->intval = info->energy_full_design_uwh;
return 0;
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
val->intval = info->charge_full_design_uah;
return 0;
case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
val->intval = info->voltage_min_design_uv;
return 0;
case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
val->intval = info->voltage_max_design_uv;
return 0;
case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
val->intval = info->precharge_current_ua;
return 0;
case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
val->intval = info->charge_term_current_ua;
return 0;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
val->intval = info->constant_charge_current_max_ua;
return 0;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
val->intval = info->constant_charge_voltage_max_uv;
return 0;
case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
val->intval = info->temp_ambient_alert_min;
return 0;
case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
val->intval = info->temp_ambient_alert_max;
return 0;
case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
val->intval = info->temp_alert_min;
return 0;
case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
val->intval = info->temp_alert_max;
return 0;
case POWER_SUPPLY_PROP_TEMP_MIN:
val->intval = info->temp_min;
return 0;
case POWER_SUPPLY_PROP_TEMP_MAX:
val->intval = info->temp_max;
return 0;
default:
return -EINVAL;
}
}
EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop);
/**
* power_supply_temp2resist_simple() - find the battery internal resistance
* percent from temperature
* @table: Pointer to battery resistance temperature table
* @table_len: The table length
* @temp: Current temperature
*
* This helper function is used to look up battery internal resistance percent
* according to current temperature value from the resistance temperature table,
* and the table must be ordered descending. Then the actual battery internal
* resistance = the ideal battery internal resistance * percent / 100.
*
* Return: the battery internal resistance percent
*/
int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
int table_len, int temp)
{
int i, high, low;
for (i = 0; i < table_len; i++)
if (temp > table[i].temp)
break;
/* The library function will deal with high == low */
if (i == 0)
high = low = i;
else if (i == table_len)
high = low = i - 1;
else
high = (low = i) - 1;
return fixp_linear_interpolate(table[low].temp,
table[low].resistance,
table[high].temp,
table[high].resistance,
temp);
}
EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
/**
* power_supply_vbat2ri() - find the battery internal resistance
* from the battery voltage
* @info: The battery information container
* @vbat_uv: The battery voltage in microvolt
* @charging: If we are charging (true) or not (false)
*
* This helper function is used to look up battery internal resistance
* according to current battery voltage. Depending on whether the battery
* is currently charging or not, different resistance will be returned.
*
* Returns the internal resistance in microohm or negative error code.
*/
int power_supply_vbat2ri(struct power_supply_battery_info *info,
int vbat_uv, bool charging)
{
struct power_supply_vbat_ri_table *vbat2ri;
int table_len;
int i, high, low;
/*
* If we are charging, and the battery supplies a separate table
* for this state, we use that in order to compensate for the
* charging voltage. Otherwise we use the main table.
*/
if (charging && info->vbat2ri_charging) {
vbat2ri = info->vbat2ri_charging;
table_len = info->vbat2ri_charging_size;
} else {
vbat2ri = info->vbat2ri_discharging;
table_len = info->vbat2ri_discharging_size;
}
/*
* If no tables are specified, or if we are above the highest voltage in
* the voltage table, just return the factory specified internal resistance.
*/
if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) {
if (charging && (info->factory_internal_resistance_charging_uohm > 0))
return info->factory_internal_resistance_charging_uohm;
else
return info->factory_internal_resistance_uohm;
}
/* Break loop at table_len - 1 because that is the highest index */
for (i = 0; i < table_len - 1; i++)
if (vbat_uv > vbat2ri[i].vbat_uv)
break;
/* The library function will deal with high == low */
if ((i == 0) || (i == (table_len - 1)))
high = i;
else
high = i - 1;
low = i;
return fixp_linear_interpolate(vbat2ri[low].vbat_uv,
vbat2ri[low].ri_uohm,
vbat2ri[high].vbat_uv,
vbat2ri[high].ri_uohm,
vbat_uv);
}
EXPORT_SYMBOL_GPL(power_supply_vbat2ri);
struct power_supply_maintenance_charge_table *
power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info,
int index)
{
if (index >= info->maintenance_charge_size)
return NULL;
return &info->maintenance_charge[index];
}
EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting);
/**
* power_supply_ocv2cap_simple() - find the battery capacity
* @table: Pointer to battery OCV lookup table
* @table_len: OCV table length
* @ocv: Current OCV value
*
* This helper function is used to look up battery capacity according to
* current OCV value from one OCV table, and the OCV table must be ordered
* descending.
*
* Return: the battery capacity.
*/
int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
int table_len, int ocv)
{
int i, high, low;
for (i = 0; i < table_len; i++)
if (ocv > table[i].ocv)
break;
/* The library function will deal with high == low */
if (i == 0)
high = low = i;
else if (i == table_len)
high = low = i - 1;
else
high = (low = i) - 1;
return fixp_linear_interpolate(table[low].ocv,
table[low].capacity,
table[high].ocv,
table[high].capacity,
ocv);
}
EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
struct power_supply_battery_ocv_table *
power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
int temp, int *table_len)
{
int best_temp_diff = INT_MAX, temp_diff;
u8 i, best_index = 0;
if (!info->ocv_table[0])
return NULL;
for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
/* Out of capacity tables */
if (!info->ocv_table[i])
break;
temp_diff = abs(info->ocv_temp[i] - temp);
if (temp_diff < best_temp_diff) {
best_temp_diff = temp_diff;
best_index = i;
}
}
*table_len = info->ocv_table_size[best_index];
return info->ocv_table[best_index];
}
EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
int ocv, int temp)
{
struct power_supply_battery_ocv_table *table;
int table_len;
table = power_supply_find_ocv2cap_table(info, temp, &table_len);
if (!table)
return -EINVAL;
return power_supply_ocv2cap_simple(table, table_len, ocv);
}
EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
int resistance)
{
int low, high;
/* Nothing like this can be checked */
if (info->bti_resistance_ohm <= 0)
return false;
/* This will be extremely strict and unlikely to work */
if (info->bti_resistance_tolerance <= 0)
return (info->bti_resistance_ohm == resistance);
low = info->bti_resistance_ohm -
(info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
high = info->bti_resistance_ohm +
(info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
return ((resistance >= low) && (resistance <= high));
}
EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range);
static bool psy_has_property(const struct power_supply_desc *psy_desc,
enum power_supply_property psp)
{
bool found = false;
int i;
for (i = 0; i < psy_desc->num_properties; i++) {
if (psy_desc->properties[i] == psp) {
found = true;
break;
}
}
return found;
}
int power_supply_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
if (atomic_read(&psy->use_cnt) <= 0) {
if (!psy->initialized)
return -EAGAIN;
return -ENODEV;
}
if (psy_has_property(psy->desc, psp))
return psy->desc->get_property(psy, psp, val);
else if (power_supply_battery_info_has_prop(psy->battery_info, psp))
return power_supply_battery_info_get_prop(psy->battery_info, psp, val);
else
return -EINVAL;
}
EXPORT_SYMBOL_GPL(power_supply_get_property);
int power_supply_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property)
return -ENODEV;
return psy->desc->set_property(psy, psp, val);
}
EXPORT_SYMBOL_GPL(power_supply_set_property);
int power_supply_property_is_writeable(struct power_supply *psy,
enum power_supply_property psp)
{
if (atomic_read(&psy->use_cnt) <= 0 ||
!psy->desc->property_is_writeable)
return -ENODEV;
return psy->desc->property_is_writeable(psy, psp);
}
EXPORT_SYMBOL_GPL(power_supply_property_is_writeable);
void power_supply_external_power_changed(struct power_supply *psy)
{
if (atomic_read(&psy->use_cnt) <= 0 ||
!psy->desc->external_power_changed)
return;
psy->desc->external_power_changed(psy);
}
EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
int power_supply_powers(struct power_supply *psy, struct device *dev)
{
return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
}
EXPORT_SYMBOL_GPL(power_supply_powers);
static void power_supply_dev_release(struct device *dev)
{
struct power_supply *psy = to_power_supply(dev);
dev_dbg(dev, "%s\n", __func__);
kfree(psy);
}
int power_supply_reg_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_register(&power_supply_notifier, nb);
}
EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
void power_supply_unreg_notifier(struct notifier_block *nb)
{
atomic_notifier_chain_unregister(&power_supply_notifier, nb);
}
EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
#ifdef CONFIG_THERMAL
static int power_supply_read_temp(struct thermal_zone_device *tzd,
int *temp)
{
struct power_supply *psy;
union power_supply_propval val;
int ret;
WARN_ON(tzd == NULL);
psy = thermal_zone_device_priv(tzd);
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
if (ret)
return ret;
/* Convert tenths of degree Celsius to milli degree Celsius. */
*temp = val.intval * 100;
return ret;
}
static struct thermal_zone_device_ops psy_tzd_ops = {
.get_temp = power_supply_read_temp,
};
static int psy_register_thermal(struct power_supply *psy)
{
int ret;
if (psy->desc->no_thermal)
return 0;
/* Register battery zone device psy reports temperature */
if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) {
/* Prefer our hwmon device and avoid duplicates */
struct thermal_zone_params tzp = {
.no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON)
};
psy->tzd = thermal_tripless_zone_device_register(psy->desc->name,
psy, &psy_tzd_ops, &tzp);
if (IS_ERR(psy->tzd))
return PTR_ERR(psy->tzd);
ret = thermal_zone_device_enable(psy->tzd);
if (ret)
thermal_zone_device_unregister(psy->tzd);
return ret;
}
return 0;
}
static void psy_unregister_thermal(struct power_supply *psy)
{
if (IS_ERR_OR_NULL(psy->tzd))
return;
thermal_zone_device_unregister(psy->tzd);
}
#else
static int psy_register_thermal(struct power_supply *psy)
{
return 0;
}
static void psy_unregister_thermal(struct power_supply *psy)
{
}
#endif
static struct power_supply *__must_check
__power_supply_register(struct device *parent,
const struct power_supply_desc *desc,
const struct power_supply_config *cfg,
bool ws)
{
struct device *dev;
struct power_supply *psy;
int rc;
if (!desc || !desc->name || !desc->properties || !desc->num_properties)
return ERR_PTR(-EINVAL);
if (!parent)
pr_warn("%s: Expected proper parent device for '%s'\n",
__func__, desc->name);
if (psy_has_property(desc, POWER_SUPPLY_PROP_USB_TYPE) &&
(!desc->usb_types || !desc->num_usb_types))
return ERR_PTR(-EINVAL);
psy = kzalloc(sizeof(*psy), GFP_KERNEL);
if (!psy)
return ERR_PTR(-ENOMEM);
dev = &psy->dev;
device_initialize(dev);
dev->class = power_supply_class;
dev->type = &power_supply_dev_type;
dev->parent = parent;
dev->release = power_supply_dev_release;
dev_set_drvdata(dev, psy);
psy->desc = desc;
if (cfg) {
dev->groups = cfg->attr_grp;
psy->drv_data = cfg->drv_data;
psy->of_node =
cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
psy->supplied_to = cfg->supplied_to;
psy->num_supplicants = cfg->num_supplicants;
}
rc = dev_set_name(dev, "%s", desc->name);
if (rc)
goto dev_set_name_failed;
INIT_WORK(&psy->changed_work, power_supply_changed_work);
INIT_DELAYED_WORK(&psy->deferred_register_work,
power_supply_deferred_register_work);
rc = power_supply_check_supplies(psy);
if (rc) {
dev_dbg(dev, "Not all required supplies found, defer probe\n");
goto check_supplies_failed;
}
/*
* Expose constant battery info, if it is available. While there are
* some chargers accessing constant battery data, we only want to
* expose battery data to userspace for battery devices.
*/
if (desc->type == POWER_SUPPLY_TYPE_BATTERY) {
rc = power_supply_get_battery_info(psy, &psy->battery_info);
if (rc && rc != -ENODEV && rc != -ENOENT)
goto check_supplies_failed;
}
spin_lock_init(&psy->changed_lock);
rc = device_add(dev);
if (rc)
goto device_add_failed;
rc = device_init_wakeup(dev, ws);
if (rc)
goto wakeup_init_failed;
rc = psy_register_thermal(psy);
if (rc)
goto register_thermal_failed;
rc = power_supply_create_triggers(psy);
if (rc)
goto create_triggers_failed;
rc = power_supply_add_hwmon_sysfs(psy);
if (rc)
goto add_hwmon_sysfs_failed;
/*
* Update use_cnt after any uevents (most notably from device_add()).
* We are here still during driver's probe but
* the power_supply_uevent() calls back driver's get_property
* method so:
* 1. Driver did not assigned the returned struct power_supply,
* 2. Driver could not finish initialization (anything in its probe
* after calling power_supply_register()).
*/
atomic_inc(&psy->use_cnt);
psy->initialized = true;
queue_delayed_work(system_power_efficient_wq,
&psy->deferred_register_work,
POWER_SUPPLY_DEFERRED_REGISTER_TIME);
return psy;
add_hwmon_sysfs_failed:
power_supply_remove_triggers(psy);
create_triggers_failed:
psy_unregister_thermal(psy);
register_thermal_failed:
wakeup_init_failed:
device_del(dev);
device_add_failed:
check_supplies_failed:
dev_set_name_failed:
put_device(dev);
return ERR_PTR(rc);
}
/**
* power_supply_register() - Register new power supply
* @parent: Device to be a parent of power supply's device, usually
* the device which probe function calls this
* @desc: Description of power supply, must be valid through whole
* lifetime of this power supply
* @cfg: Run-time specific configuration accessed during registering,
* may be NULL
*
* Return: A pointer to newly allocated power_supply on success
* or ERR_PTR otherwise.
* Use power_supply_unregister() on returned power_supply pointer to release
* resources.
*/
struct power_supply *__must_check power_supply_register(struct device *parent,
const struct power_supply_desc *desc,
const struct power_supply_config *cfg)
{
return __power_supply_register(parent, desc, cfg, true);
}
EXPORT_SYMBOL_GPL(power_supply_register);
/**
* power_supply_register_no_ws() - Register new non-waking-source power supply
* @parent: Device to be a parent of power supply's device, usually
* the device which probe function calls this
* @desc: Description of power supply, must be valid through whole
* lifetime of this power supply
* @cfg: Run-time specific configuration accessed during registering,
* may be NULL
*
* Return: A pointer to newly allocated power_supply on success
* or ERR_PTR otherwise.
* Use power_supply_unregister() on returned power_supply pointer to release
* resources.
*/
struct power_supply *__must_check
power_supply_register_no_ws(struct device *parent,
const struct power_supply_desc *desc,
const struct power_supply_config *cfg)
{
return __power_supply_register(parent, desc, cfg, false);
}
EXPORT_SYMBOL_GPL(power_supply_register_no_ws);
static void devm_power_supply_release(struct device *dev, void *res)
{
struct power_supply **psy = res;
power_supply_unregister(*psy);
}
/**
* devm_power_supply_register() - Register managed power supply
* @parent: Device to be a parent of power supply's device, usually
* the device which probe function calls this
* @desc: Description of power supply, must be valid through whole
* lifetime of this power supply
* @cfg: Run-time specific configuration accessed during registering,
* may be NULL
*
* Return: A pointer to newly allocated power_supply on success
* or ERR_PTR otherwise.
* The returned power_supply pointer will be automatically unregistered
* on driver detach.
*/
struct power_supply *__must_check
devm_power_supply_register(struct device *parent,
const struct power_supply_desc *desc,
const struct power_supply_config *cfg)
{
struct power_supply **ptr, *psy;
ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
psy = __power_supply_register(parent, desc, cfg, true);
if (IS_ERR(psy)) {
devres_free(ptr);
} else {
*ptr = psy;
devres_add(parent, ptr);
}
return psy;
}
EXPORT_SYMBOL_GPL(devm_power_supply_register);
/**
* devm_power_supply_register_no_ws() - Register managed non-waking-source power supply
* @parent: Device to be a parent of power supply's device, usually
* the device which probe function calls this
* @desc: Description of power supply, must be valid through whole
* lifetime of this power supply
* @cfg: Run-time specific configuration accessed during registering,
* may be NULL
*
* Return: A pointer to newly allocated power_supply on success
* or ERR_PTR otherwise.
* The returned power_supply pointer will be automatically unregistered
* on driver detach.
*/
struct power_supply *__must_check
devm_power_supply_register_no_ws(struct device *parent,
const struct power_supply_desc *desc,
const struct power_supply_config *cfg)
{
struct power_supply **ptr, *psy;
ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
psy = __power_supply_register(parent, desc, cfg, false);
if (IS_ERR(psy)) {
devres_free(ptr);
} else {
*ptr = psy;
devres_add(parent, ptr);
}
return psy;
}
EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws);
/**
* power_supply_unregister() - Remove this power supply from system
* @psy: Pointer to power supply to unregister
*
* Remove this power supply from the system. The resources of power supply
* will be freed here or on last power_supply_put() call.
*/
void power_supply_unregister(struct power_supply *psy)
{
WARN_ON(atomic_dec_return(&psy->use_cnt));
psy->removing = true;
cancel_work_sync(&psy->changed_work);
cancel_delayed_work_sync(&psy->deferred_register_work);
sysfs_remove_link(&psy->dev.kobj, "powers");
power_supply_remove_hwmon_sysfs(psy);
power_supply_remove_triggers(psy);
psy_unregister_thermal(psy);
device_init_wakeup(&psy->dev, false);
device_unregister(&psy->dev);
}
EXPORT_SYMBOL_GPL(power_supply_unregister);
void *power_supply_get_drvdata(struct power_supply *psy)
{
return psy->drv_data;
}
EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
static int __init power_supply_class_init(void)
{
power_supply_class = class_create("power_supply");
if (IS_ERR(power_supply_class))
return PTR_ERR(power_supply_class);
power_supply_class->dev_uevent = power_supply_uevent;
power_supply_init_attrs(&power_supply_dev_type);
return 0;
}
static void __exit power_supply_class_exit(void)
{
class_destroy(power_supply_class);
}
subsys_initcall(power_supply_class_init);
module_exit(power_supply_class_exit);
MODULE_DESCRIPTION("Universal power supply monitor class");
MODULE_AUTHOR("Ian Molton <spyro@f2s.com>, "
"Szabolcs Gyurko, "
"Anton Vorontsov <cbou@mail.ru>");