| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _ALPHA_PGTABLE_H |
| #define _ALPHA_PGTABLE_H |
| |
| #include <asm-generic/pgtable-nopud.h> |
| |
| /* |
| * This file contains the functions and defines necessary to modify and use |
| * the Alpha page table tree. |
| * |
| * This hopefully works with any standard Alpha page-size, as defined |
| * in <asm/page.h> (currently 8192). |
| */ |
| #include <linux/mmzone.h> |
| |
| #include <asm/page.h> |
| #include <asm/processor.h> /* For TASK_SIZE */ |
| #include <asm/machvec.h> |
| #include <asm/setup.h> |
| |
| struct mm_struct; |
| struct vm_area_struct; |
| |
| /* Certain architectures need to do special things when PTEs |
| * within a page table are directly modified. Thus, the following |
| * hook is made available. |
| */ |
| #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) |
| #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) |
| |
| /* PMD_SHIFT determines the size of the area a second-level page table can map */ |
| #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3)) |
| #define PMD_SIZE (1UL << PMD_SHIFT) |
| #define PMD_MASK (~(PMD_SIZE-1)) |
| |
| /* PGDIR_SHIFT determines what a third-level page table entry can map */ |
| #define PGDIR_SHIFT (PAGE_SHIFT + 2*(PAGE_SHIFT-3)) |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| |
| /* |
| * Entries per page directory level: the Alpha is three-level, with |
| * all levels having a one-page page table. |
| */ |
| #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-3)) |
| #define PTRS_PER_PMD (1UL << (PAGE_SHIFT-3)) |
| #define PTRS_PER_PGD (1UL << (PAGE_SHIFT-3)) |
| #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) |
| #define FIRST_USER_ADDRESS 0UL |
| |
| /* Number of pointers that fit on a page: this will go away. */ |
| #define PTRS_PER_PAGE (1UL << (PAGE_SHIFT-3)) |
| |
| #ifdef CONFIG_ALPHA_LARGE_VMALLOC |
| #define VMALLOC_START 0xfffffe0000000000 |
| #else |
| #define VMALLOC_START (-2*PGDIR_SIZE) |
| #endif |
| #define VMALLOC_END (-PGDIR_SIZE) |
| |
| /* |
| * OSF/1 PAL-code-imposed page table bits |
| */ |
| #define _PAGE_VALID 0x0001 |
| #define _PAGE_FOR 0x0002 /* used for page protection (fault on read) */ |
| #define _PAGE_FOW 0x0004 /* used for page protection (fault on write) */ |
| #define _PAGE_FOE 0x0008 /* used for page protection (fault on exec) */ |
| #define _PAGE_ASM 0x0010 |
| #define _PAGE_KRE 0x0100 /* xxx - see below on the "accessed" bit */ |
| #define _PAGE_URE 0x0200 /* xxx */ |
| #define _PAGE_KWE 0x1000 /* used to do the dirty bit in software */ |
| #define _PAGE_UWE 0x2000 /* used to do the dirty bit in software */ |
| |
| /* .. and these are ours ... */ |
| #define _PAGE_DIRTY 0x20000 |
| #define _PAGE_ACCESSED 0x40000 |
| |
| /* |
| * NOTE! The "accessed" bit isn't necessarily exact: it can be kept exactly |
| * by software (use the KRE/URE/KWE/UWE bits appropriately), but I'll fake it. |
| * Under Linux/AXP, the "accessed" bit just means "read", and I'll just use |
| * the KRE/URE bits to watch for it. That way we don't need to overload the |
| * KWE/UWE bits with both handling dirty and accessed. |
| * |
| * Note that the kernel uses the accessed bit just to check whether to page |
| * out a page or not, so it doesn't have to be exact anyway. |
| */ |
| |
| #define __DIRTY_BITS (_PAGE_DIRTY | _PAGE_KWE | _PAGE_UWE) |
| #define __ACCESS_BITS (_PAGE_ACCESSED | _PAGE_KRE | _PAGE_URE) |
| |
| #define _PFN_MASK 0xFFFFFFFF00000000UL |
| |
| #define _PAGE_TABLE (_PAGE_VALID | __DIRTY_BITS | __ACCESS_BITS) |
| #define _PAGE_CHG_MASK (_PFN_MASK | __DIRTY_BITS | __ACCESS_BITS) |
| |
| /* |
| * All the normal masks have the "page accessed" bits on, as any time they are used, |
| * the page is accessed. They are cleared only by the page-out routines |
| */ |
| #define PAGE_NONE __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOR | _PAGE_FOW | _PAGE_FOE) |
| #define PAGE_SHARED __pgprot(_PAGE_VALID | __ACCESS_BITS) |
| #define PAGE_COPY __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW) |
| #define PAGE_READONLY __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW) |
| #define PAGE_KERNEL __pgprot(_PAGE_VALID | _PAGE_ASM | _PAGE_KRE | _PAGE_KWE) |
| |
| #define _PAGE_NORMAL(x) __pgprot(_PAGE_VALID | __ACCESS_BITS | (x)) |
| |
| #define _PAGE_P(x) _PAGE_NORMAL((x) | (((x) & _PAGE_FOW)?0:_PAGE_FOW)) |
| #define _PAGE_S(x) _PAGE_NORMAL(x) |
| |
| /* |
| * The hardware can handle write-only mappings, but as the Alpha |
| * architecture does byte-wide writes with a read-modify-write |
| * sequence, it's not practical to have write-without-read privs. |
| * Thus the "-w- -> rw-" and "-wx -> rwx" mapping here (and in |
| * arch/alpha/mm/fault.c) |
| */ |
| /* xwr */ |
| #define __P000 _PAGE_P(_PAGE_FOE | _PAGE_FOW | _PAGE_FOR) |
| #define __P001 _PAGE_P(_PAGE_FOE | _PAGE_FOW) |
| #define __P010 _PAGE_P(_PAGE_FOE) |
| #define __P011 _PAGE_P(_PAGE_FOE) |
| #define __P100 _PAGE_P(_PAGE_FOW | _PAGE_FOR) |
| #define __P101 _PAGE_P(_PAGE_FOW) |
| #define __P110 _PAGE_P(0) |
| #define __P111 _PAGE_P(0) |
| |
| #define __S000 _PAGE_S(_PAGE_FOE | _PAGE_FOW | _PAGE_FOR) |
| #define __S001 _PAGE_S(_PAGE_FOE | _PAGE_FOW) |
| #define __S010 _PAGE_S(_PAGE_FOE) |
| #define __S011 _PAGE_S(_PAGE_FOE) |
| #define __S100 _PAGE_S(_PAGE_FOW | _PAGE_FOR) |
| #define __S101 _PAGE_S(_PAGE_FOW) |
| #define __S110 _PAGE_S(0) |
| #define __S111 _PAGE_S(0) |
| |
| /* |
| * pgprot_noncached() is only for infiniband pci support, and a real |
| * implementation for RAM would be more complicated. |
| */ |
| #define pgprot_noncached(prot) (prot) |
| |
| /* |
| * BAD_PAGETABLE is used when we need a bogus page-table, while |
| * BAD_PAGE is used for a bogus page. |
| * |
| * ZERO_PAGE is a global shared page that is always zero: used |
| * for zero-mapped memory areas etc.. |
| */ |
| extern pte_t __bad_page(void); |
| extern pmd_t * __bad_pagetable(void); |
| |
| extern unsigned long __zero_page(void); |
| |
| #define BAD_PAGETABLE __bad_pagetable() |
| #define BAD_PAGE __bad_page() |
| #define ZERO_PAGE(vaddr) (virt_to_page(ZERO_PGE)) |
| |
| /* number of bits that fit into a memory pointer */ |
| #define BITS_PER_PTR (8*sizeof(unsigned long)) |
| |
| /* to align the pointer to a pointer address */ |
| #define PTR_MASK (~(sizeof(void*)-1)) |
| |
| /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */ |
| #define SIZEOF_PTR_LOG2 3 |
| |
| /* to find an entry in a page-table */ |
| #define PAGE_PTR(address) \ |
| ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) |
| |
| /* |
| * On certain platforms whose physical address space can overlap KSEG, |
| * namely EV6 and above, we must re-twiddle the physaddr to restore the |
| * correct high-order bits. |
| * |
| * This is extremely confusing until you realize that this is actually |
| * just working around a userspace bug. The X server was intending to |
| * provide the physical address but instead provided the KSEG address. |
| * Or tried to, except it's not representable. |
| * |
| * On Tsunami there's nothing meaningful at 0x40000000000, so this is |
| * a safe thing to do. Come the first core logic that does put something |
| * in this area -- memory or whathaveyou -- then this hack will have |
| * to go away. So be prepared! |
| */ |
| |
| #if defined(CONFIG_ALPHA_GENERIC) && defined(USE_48_BIT_KSEG) |
| #error "EV6-only feature in a generic kernel" |
| #endif |
| #if defined(CONFIG_ALPHA_GENERIC) || \ |
| (defined(CONFIG_ALPHA_EV6) && !defined(USE_48_BIT_KSEG)) |
| #define KSEG_PFN (0xc0000000000UL >> PAGE_SHIFT) |
| #define PHYS_TWIDDLE(pfn) \ |
| ((((pfn) & KSEG_PFN) == (0x40000000000UL >> PAGE_SHIFT)) \ |
| ? ((pfn) ^= KSEG_PFN) : (pfn)) |
| #else |
| #define PHYS_TWIDDLE(pfn) (pfn) |
| #endif |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| */ |
| #ifndef CONFIG_DISCONTIGMEM |
| #define page_to_pa(page) (((page) - mem_map) << PAGE_SHIFT) |
| |
| #define pte_pfn(pte) (pte_val(pte) >> 32) |
| #define pte_page(pte) pfn_to_page(pte_pfn(pte)) |
| #define mk_pte(page, pgprot) \ |
| ({ \ |
| pte_t pte; \ |
| \ |
| pte_val(pte) = (page_to_pfn(page) << 32) | pgprot_val(pgprot); \ |
| pte; \ |
| }) |
| #endif |
| |
| extern inline pte_t pfn_pte(unsigned long physpfn, pgprot_t pgprot) |
| { pte_t pte; pte_val(pte) = (PHYS_TWIDDLE(physpfn) << 32) | pgprot_val(pgprot); return pte; } |
| |
| extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } |
| |
| extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep) |
| { pmd_val(*pmdp) = _PAGE_TABLE | ((((unsigned long) ptep) - PAGE_OFFSET) << (32-PAGE_SHIFT)); } |
| |
| extern inline void pud_set(pud_t * pudp, pmd_t * pmdp) |
| { pud_val(*pudp) = _PAGE_TABLE | ((((unsigned long) pmdp) - PAGE_OFFSET) << (32-PAGE_SHIFT)); } |
| |
| |
| extern inline unsigned long |
| pmd_page_vaddr(pmd_t pmd) |
| { |
| return ((pmd_val(pmd) & _PFN_MASK) >> (32-PAGE_SHIFT)) + PAGE_OFFSET; |
| } |
| |
| #ifndef CONFIG_DISCONTIGMEM |
| #define pmd_page(pmd) (mem_map + ((pmd_val(pmd) & _PFN_MASK) >> 32)) |
| #define pud_page(pud) (mem_map + ((pud_val(pud) & _PFN_MASK) >> 32)) |
| #endif |
| |
| extern inline unsigned long pud_page_vaddr(pud_t pgd) |
| { return PAGE_OFFSET + ((pud_val(pgd) & _PFN_MASK) >> (32-PAGE_SHIFT)); } |
| |
| extern inline int pte_none(pte_t pte) { return !pte_val(pte); } |
| extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_VALID; } |
| extern inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| { |
| pte_val(*ptep) = 0; |
| } |
| |
| extern inline int pmd_none(pmd_t pmd) { return !pmd_val(pmd); } |
| extern inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & ~_PFN_MASK) != _PAGE_TABLE; } |
| extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _PAGE_VALID; } |
| extern inline void pmd_clear(pmd_t * pmdp) { pmd_val(*pmdp) = 0; } |
| |
| extern inline int pud_none(pud_t pud) { return !pud_val(pud); } |
| extern inline int pud_bad(pud_t pud) { return (pud_val(pud) & ~_PFN_MASK) != _PAGE_TABLE; } |
| extern inline int pud_present(pud_t pud) { return pud_val(pud) & _PAGE_VALID; } |
| extern inline void pud_clear(pud_t * pudp) { pud_val(*pudp) = 0; } |
| |
| /* |
| * The following only work if pte_present() is true. |
| * Undefined behaviour if not.. |
| */ |
| extern inline int pte_write(pte_t pte) { return !(pte_val(pte) & _PAGE_FOW); } |
| extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } |
| extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } |
| |
| extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_FOW; return pte; } |
| extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(__DIRTY_BITS); return pte; } |
| extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~(__ACCESS_BITS); return pte; } |
| extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_FOW; return pte; } |
| extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= __DIRTY_BITS; return pte; } |
| extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= __ACCESS_BITS; return pte; } |
| |
| /* |
| * The smp_read_barrier_depends() in the following functions are required to |
| * order the load of *dir (the pointer in the top level page table) with any |
| * subsequent load of the returned pmd_t *ret (ret is data dependent on *dir). |
| * |
| * If this ordering is not enforced, the CPU might load an older value of |
| * *ret, which may be uninitialized data. See mm/memory.c:__pte_alloc for |
| * more details. |
| * |
| * Note that we never change the mm->pgd pointer after the task is running, so |
| * pgd_offset does not require such a barrier. |
| */ |
| |
| /* Find an entry in the second-level page table.. */ |
| extern inline pmd_t * pmd_offset(pud_t * dir, unsigned long address) |
| { |
| pmd_t *ret = (pmd_t *) pud_page_vaddr(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PAGE - 1)); |
| smp_read_barrier_depends(); /* see above */ |
| return ret; |
| } |
| #define pmd_offset pmd_offset |
| |
| /* Find an entry in the third-level page table.. */ |
| extern inline pte_t * pte_offset_kernel(pmd_t * dir, unsigned long address) |
| { |
| pte_t *ret = (pte_t *) pmd_page_vaddr(*dir) |
| + ((address >> PAGE_SHIFT) & (PTRS_PER_PAGE - 1)); |
| smp_read_barrier_depends(); /* see above */ |
| return ret; |
| } |
| #define pte_offset_kernel pte_offset_kernel |
| |
| extern pgd_t swapper_pg_dir[1024]; |
| |
| /* |
| * The Alpha doesn't have any external MMU info: the kernel page |
| * tables contain all the necessary information. |
| */ |
| extern inline void update_mmu_cache(struct vm_area_struct * vma, |
| unsigned long address, pte_t *ptep) |
| { |
| } |
| |
| /* |
| * Non-present pages: high 24 bits are offset, next 8 bits type, |
| * low 32 bits zero. |
| */ |
| extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) |
| { pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; } |
| |
| #define __swp_type(x) (((x).val >> 32) & 0xff) |
| #define __swp_offset(x) ((x).val >> 40) |
| #define __swp_entry(type, off) ((swp_entry_t) { pte_val(mk_swap_pte((type), (off))) }) |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
| |
| #ifndef CONFIG_DISCONTIGMEM |
| #define kern_addr_valid(addr) (1) |
| #endif |
| |
| #define pte_ERROR(e) \ |
| printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) |
| #define pmd_ERROR(e) \ |
| printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) |
| #define pgd_ERROR(e) \ |
| printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) |
| |
| extern void paging_init(void); |
| |
| /* We have our own get_unmapped_area to cope with ADDR_LIMIT_32BIT. */ |
| #define HAVE_ARCH_UNMAPPED_AREA |
| |
| #endif /* _ALPHA_PGTABLE_H */ |