| Code Examples |
| ============= |
| |
| Code Example For Symmetric Key Cipher Operation |
| ----------------------------------------------- |
| |
| This code encrypts some data with AES-256-XTS. For sake of example, |
| all inputs are random bytes, the encryption is done in-place, and it's |
| assumed the code is running in a context where it can sleep. |
| |
| :: |
| |
| static int test_skcipher(void) |
| { |
| struct crypto_skcipher *tfm = NULL; |
| struct skcipher_request *req = NULL; |
| u8 *data = NULL; |
| const size_t datasize = 512; /* data size in bytes */ |
| struct scatterlist sg; |
| DECLARE_CRYPTO_WAIT(wait); |
| u8 iv[16]; /* AES-256-XTS takes a 16-byte IV */ |
| u8 key[64]; /* AES-256-XTS takes a 64-byte key */ |
| int err; |
| |
| /* |
| * Allocate a tfm (a transformation object) and set the key. |
| * |
| * In real-world use, a tfm and key are typically used for many |
| * encryption/decryption operations. But in this example, we'll just do a |
| * single encryption operation with it (which is not very efficient). |
| */ |
| |
| tfm = crypto_alloc_skcipher("xts(aes)", 0, 0); |
| if (IS_ERR(tfm)) { |
| pr_err("Error allocating xts(aes) handle: %ld\n", PTR_ERR(tfm)); |
| return PTR_ERR(tfm); |
| } |
| |
| get_random_bytes(key, sizeof(key)); |
| err = crypto_skcipher_setkey(tfm, key, sizeof(key)); |
| if (err) { |
| pr_err("Error setting key: %d\n", err); |
| goto out; |
| } |
| |
| /* Allocate a request object */ |
| req = skcipher_request_alloc(tfm, GFP_KERNEL); |
| if (!req) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| /* Prepare the input data */ |
| data = kmalloc(datasize, GFP_KERNEL); |
| if (!data) { |
| err = -ENOMEM; |
| goto out; |
| } |
| get_random_bytes(data, datasize); |
| |
| /* Initialize the IV */ |
| get_random_bytes(iv, sizeof(iv)); |
| |
| /* |
| * Encrypt the data in-place. |
| * |
| * For simplicity, in this example we wait for the request to complete |
| * before proceeding, even if the underlying implementation is asynchronous. |
| * |
| * To decrypt instead of encrypt, just change crypto_skcipher_encrypt() to |
| * crypto_skcipher_decrypt(). |
| */ |
| sg_init_one(&sg, data, datasize); |
| skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | |
| CRYPTO_TFM_REQ_MAY_SLEEP, |
| crypto_req_done, &wait); |
| skcipher_request_set_crypt(req, &sg, &sg, datasize, iv); |
| err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); |
| if (err) { |
| pr_err("Error encrypting data: %d\n", err); |
| goto out; |
| } |
| |
| pr_debug("Encryption was successful\n"); |
| out: |
| crypto_free_skcipher(tfm); |
| skcipher_request_free(req); |
| kfree(data); |
| return err; |
| } |
| |
| |
| Code Example For Use of Operational State Memory With SHASH |
| ----------------------------------------------------------- |
| |
| :: |
| |
| |
| struct sdesc { |
| struct shash_desc shash; |
| char ctx[]; |
| }; |
| |
| static struct sdesc *init_sdesc(struct crypto_shash *alg) |
| { |
| struct sdesc *sdesc; |
| int size; |
| |
| size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); |
| sdesc = kmalloc(size, GFP_KERNEL); |
| if (!sdesc) |
| return ERR_PTR(-ENOMEM); |
| sdesc->shash.tfm = alg; |
| return sdesc; |
| } |
| |
| static int calc_hash(struct crypto_shash *alg, |
| const unsigned char *data, unsigned int datalen, |
| unsigned char *digest) |
| { |
| struct sdesc *sdesc; |
| int ret; |
| |
| sdesc = init_sdesc(alg); |
| if (IS_ERR(sdesc)) { |
| pr_info("can't alloc sdesc\n"); |
| return PTR_ERR(sdesc); |
| } |
| |
| ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest); |
| kfree(sdesc); |
| return ret; |
| } |
| |
| static int test_hash(const unsigned char *data, unsigned int datalen, |
| unsigned char *digest) |
| { |
| struct crypto_shash *alg; |
| char *hash_alg_name = "sha1-padlock-nano"; |
| int ret; |
| |
| alg = crypto_alloc_shash(hash_alg_name, 0, 0); |
| if (IS_ERR(alg)) { |
| pr_info("can't alloc alg %s\n", hash_alg_name); |
| return PTR_ERR(alg); |
| } |
| ret = calc_hash(alg, data, datalen, digest); |
| crypto_free_shash(alg); |
| return ret; |
| } |
| |
| |
| Code Example For Random Number Generator Usage |
| ---------------------------------------------- |
| |
| :: |
| |
| |
| static int get_random_numbers(u8 *buf, unsigned int len) |
| { |
| struct crypto_rng *rng = NULL; |
| char *drbg = "drbg_nopr_sha256"; /* Hash DRBG with SHA-256, no PR */ |
| int ret; |
| |
| if (!buf || !len) { |
| pr_debug("No output buffer provided\n"); |
| return -EINVAL; |
| } |
| |
| rng = crypto_alloc_rng(drbg, 0, 0); |
| if (IS_ERR(rng)) { |
| pr_debug("could not allocate RNG handle for %s\n", drbg); |
| return PTR_ERR(rng); |
| } |
| |
| ret = crypto_rng_get_bytes(rng, buf, len); |
| if (ret < 0) |
| pr_debug("generation of random numbers failed\n"); |
| else if (ret == 0) |
| pr_debug("RNG returned no data"); |
| else |
| pr_debug("RNG returned %d bytes of data\n", ret); |
| |
| out: |
| crypto_free_rng(rng); |
| return ret; |
| } |